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Abstract

There has been tremendous progress in multimodal
Large Language Models (LLMs). Recent works have ex-
tended these models to video input with promising instruc-
tion following capabilities. However, an important missing
piece is temporal localization. These models cannot accu-
rately answer the “When?” questions. We identify three
key aspects that limit their temporal localization capabili-
ties: (i) time representation, (ii) architecture, and (iii) data.
We address these shortcomings by proposing Language In-
structed Temporal-Localization Assistant (LITA) with the
following features: (1) We introduce time tokens that en-
code timestamps relative to the video length to better repre-
sent time in videos. (2) We introduce SlowFast tokens in the
architecture to capture temporal information at fine tempo-
ral resolution. (3) We emphasize temporal localization data
for LITA. In addition to leveraging existing video datasets
with timestamps, we propose a new task, Reasoning Tempo-
ral Localization (RTL), along with the dataset, ActivityNet-
RTL, for learning and evaluating this task. Reasoning tem-
poral localization requires both the reasoning and temporal
localization of Video LLMs. LITA demonstrates strong per-
formance on this challenging task, nearly doubling the tem-
poral mean intersection-over-union (mloU) of baselines. In
addition, we show that our emphasis on temporal localiza-
tion also substantially improves video-based text generation
compared to existing Video LLMs, including a 36% relative
improvement of Temporal Understanding. Code is available
at: https://github.com/NVliabs/LITA

1. Introduction

Large language models (LLMs) [3, 7, 11, 28, 35, 36] have
demonstrated impressive instruction following capabilities,
and shown that language can be a universal interface for
various tasks [7, 28]. These models can be further extended
to multimodal LLMs to process language and other modal-
ities, such as image, video, and audio [1, 24, 45].

While most multimodal LLMs focus on images for vi-

Q: when does the woman's dance become the
most energetic in the video?

A: Her dance is the most energetic
between 7.37s and 12.81ls when she does a
handspring, which is more energetic than
standing and lying on the floor.

Figure 1. Example to illustrate our proposed Reasoning Temporal
Localization (RTL). Instead of directly querying about an event,
questions in RTL require further reasoning to answer. Here, the
model needs to compare all activities in the video to find the times-
tamps of the most energetic activity (i.e., handspring).

sual content, several recent works introduce models that
specialize in processing videos [20, 25, 27, 41]. These
Video LLMs preserve the instruction following capabilities
of LLMs and allow users to ask various questions about a
given video. However, one important missing piece in these
Video LLMs is temporal localization. When prompted with
the “When?” questions, these models cannot accurately lo-
calize time periods, and often hallucinate irrelevant infor-
mation [43]. Temporal localization is an important compo-
nent that differentiates videos from images, and has been
widely studied outside the context of instruction following
LLMs [4, 10, 15, 33]. It is thus crucial for Video LLMs to
have temporal localization capabilities.

We identify three key aspects that limit the temporal lo-
calization capabilities of existing Video LLMs: time repre-
sentation, architecture, and data. First, existing models of-
ten represent timestamps as plain text (e.g. 01:22 or 142sec).
However, given a set of frames, the correct timestamp still
depends on the frame rate, which the model does not have
access to. This makes learning temporal localization harder.
Second, the architecture of existing Video LLMs might not
have sufficient temporal resolution to interpolate time infor-
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mation accurately. For example, Video-LLaMA [41] only
uniformly samples 8 frames from the entire video, which is
insufficient for accurate temporal localization. Finally, tem-
poral localization is largely ignored in the data used by ex-
isting Video LLMs. Data with timestamps are only a small
subset of video instruction tuning data, and the accuracy of
these timestamps is also not verified.

Our Approach. We address the aforementioned short-
comings of existing Video LLMs, and propose Language
Instructed Temporal-Localization Assistant (LITA): (1)
Time Representation: We introduce time tokens to repre-
sent relative timestamps and allow Video LLMs to better
communicate about time than using plain text. (2) Archi-
tecture: We introduce SlowFast tokens to capture temporal
information at fine temporal resolution to enable accurate
temporal localization. (3) Data: We emphasize temporal
localization data for LITA. We propose a new task, Reason-
ing Temporal Localization (RTL), along with the dataset,
ActivityNet-RTL, for learning this task.

The first important design of LITA is to use relative rep-
resentation for time (e.g. first 10% of the video) instead of
the absolute time representation with plain text (e.g. 01:22).
We divide a given video into T’ equal length chunks, and in-
troduce 7T time tokens <1> to <T> to represent the relative
time location in the video. During training and inference,
these time tokens can be easily encoded and decoded from
plain text timestamps given the length of the video. The
start and end timestamps are well-defined by the time to-
kens given only the input video. This is in contrast to plain
text timestamps. Without the frame rate, the correct abso-
lute timestamp is ill-defined given just the video frames.

The second important design of LITA is to use densely
sampled input frames from videos. It is unlikely to achieve
accurate temporal localization with only sparsely sam-
pled frames. The challenge is that the LLM module in-
side Video LLMs cannot naively process large numbers
of frames simultaneously due to context length limitation.
Take LLaVA [24] as an example. Each image is converted
to 256 tokens, which are then fed into its LLM module as in-
put. If we directly feed 100 frames to the LLM module, then
that is 256 x 100 = 25600 tokens, which is already over the
max context length for some LLMs [6, 36]. Inspired by the
SlowFast architecture for videos [12], we instead consider
two types of tokens, fast tokens and slow tokens, to address
this efficiency issue. We generate fast tokens at a high tem-
poral resolution to provide the temporal information, while
keeping the tokens per frame at a low number. On the other
hand, we generate slow fokens at a low temporal resolution,
which allows us to use a higher number of tokens per frame
to provide the spatial information.

Finally, We emphasize temporal localization data for
LITA. We include dense video captioning [16] and event
localization [39] in instruction tuning of LITA. These tasks

include human annotated timestamps to promote accurate
temporal localization. In addition to leveraging existing
data and tasks, we further propose a new task, Reason-
ing Temporal Localization (RTL), along with the dataset,
ActivityNet-RTL, for training and evaluating this task. An-
swers to RTL questions can only be derived by utilizing
world knowledge and temporal reasoning. Figure 1 shows
an example. To answer the question: “When does the
woman’s dance become the most energetic?”’ the model
needs to first recognize the woman’s dance moves in the
video, then reason about the most active part, and finally
temporally localize the event (i.e. handspring). In addition
to the predicted timestamps, we further consider the expla-
nation provided by the model. Thus our new task not only
assesses temporal understanding, but also requires strong
reasoning capabilities that are unique to LLMs.

For the challenging RTL task, LITA doubles baseline’s
performance for temporal metrics (mIOU, Precision@0.5),
while providing much better explanations. In addition to
enabling accurate temporal localization, we show that our
emphasis on temporal understanding also improves LITA’s
core Video LLM capabilities. LITA substantially improves
all scores on a benchmark for video-based question answer-
ing [27]. This includes a 22% relative improvement for Cor-
rectness of Information, and a 36% relative improvement
for Temporal Understanding compared to existing Video
LLMs.

2. Related Work

Multimodal Large Language Models. Large language
models (LLMs) [7, 28] inspire recent works to address
multimodal tasks by leveraging LLMs [37]. Some ap-
proaches add additional parameters inside LLMs, such as
gated cross-attention layers [1, 2, 19] or adapter layers [42],
to adapt it to process multimodal inputs. Several works, on
the other hand, only use modules, such as projection layers
or Q-Formers, to project outputs of visual encoders to the
input space of LLMs [8, 24, 45]. Recent works further ex-
pand multimodal LLM to visual grounding tasks, such as
detection [5, 23, 29] and segmentation [18]. The most re-
lated to ours is LISA [18], which extends referring segmen-
tation to reasoning segmentation. We share the same spirit
and propose Reasoning Temporal Localization to jointly
evaluate reasoning and temporal understanding.

Video Large Language Models. Building on the success
of multimodal LLMs, several works extend image LLMs to
Video LLMs [20, 25, 27, 41]. These works mainly use the
approach of projecting visual tokens to LLMs’ input space
using projection layers [25, 27] or Q-Formers [20, 41].
While these models show promise in descriptive questions
and instructions, they still lack temporal localization ca-
pabilities. LITA is designed to address this shortcoming,



Al: She is dancing from <2> to <3>. A2:

Her cloth is black. A3: <1><2> She is standing. <2><3>...

Large Language Model Module

FastTokens 1 2 3 4 Slow Tokens 2 2 4 4

SlowFast Token Pooling

Language Tokens

Ql: When is the woman dancing?

Q2: What is the color of her cloth?

Q3: Describe the video. Each sentence
begins with start and end timestamps.

Language Instructions

Figure 2. Overview of LITA. The input video frames are first encoded into visual tokens (numbered by frame), which are further processed
by two pathways. The Fast Token pathway averages all the tokens in a frame to maintain a high temporal resolution. The Slow Token
pathway sparsely samples frames to maintain a larger number of tokens per frame to provide spatial information. Timestamps are converted
to time tokens <1> to <T>. This is important for better temporal localization learning. Various video tasks on the right can be converted
to natural language visual question answering (Q1-3 and A1-3) to jointly optimize LITA.

while also improving downstream video tasks. Concur-
rent works [13, 21, 22, 30, 32] further improve existing
VideoLLMs. The most related concurrent works to ours
are VTimeLLM [13], TimeChat [32], and Momentor [30].
These works also aim to address temporal localization of
Video LLMs. We further introduce the reasoning aspect to
temporal localization.

Temporal Localization in Videos. The goal of temporal
localization is to pinpoint activities within untrimmed video
sequences on a temporal scale [39]. The target activities can
be predefined action classes [9, 15] or events described by
natural language [4, 44]. Our goal of video temporal un-
derstanding is also related to various video tasks, such as
dense video captioning [14, 16, 40] and action segmenta-
tion [17, 26, 34]. Models for these temporal tasks can have
quite different design. Instruction following Video LLMs
like LITA provide a way to unify these frameworks.

3. Language Instructed Temporal-Localization

LITA enables temporal localization for Video LLMs by: (1)
relative time representation with the time tokens, (2) Slow-
Fast tokens to capture temporal information at fine tempo-
ral resolution, (3) multi-task training that includes accurate
timestamps. We will first introduce the overall architecture
and discuss further details of individual components.

3.1. Architecture

An overview of LITA is shown in Figure 2. We build on
Image LLMs. In particular, we select LLaVA due to its
simplicity and effectiveness [24]. Note that LITA does not
depend on the specific underlying Image LLM architecture
and can be easily adapted to other base architectures.

Given a video, we first uniformly select 7" frames and en-
code each frame into M tokens. 7" should be large enough
to support the desired granularity of temporal localization.
T x M is a large number that usually cannot be directly
processed by the LLM module. Thus, we then use Slow-
Fast pooling to reduce the 7' x M tokens to T+ M tokens.

The slow and fast tokens are projected by a linear layer
and concatenated with the text tokens to use as input to the
LLM module. The text tokens (prompt) are processed to
convert any referenced timestamps to specialized time to-
kens (<1> to <T>). All the input tokens are then jointly
processed by the LLM module sequentially. We fine-tune
the entire model with our reasoning temporal localization
data (Section 4) along with other video tasks, such as dense
video captioning and event localization. LITA learns to use
time tokens instead of absolute timestamps. For temporal
localization, we can then directly ask LITA the “When”
questions (e.g. “When is she dancing?”’). LITA would re-
spond with time tokens (e.g. “She is dancing from <2> to
<3>.), which can then be converted to timestamps given
the video length.

3.2. Time Tokens

We use a relative time representation instead of absolute
timestamps in LITA. As shown in Figure 2, the LLM mod-
ule can only see the visual tokens (slow and fast) and the
language tokens (text prompt). There is not enough infor-
mation in this input space for the LLM module to infer the
absolute timestamp because the frame rate is not known to
the model in advance. A better way is to represent times-
tamps relative to the video length, thus removing the depen-
dency on the frame rate. We divide the video into 7" chunks



and use T specialized time tokens <1> to <T> for times-
tamps. Given a continuous timestamp 7 and video length
L, 7 can be easily converted to time token <t>, where
t = round(7(T — 1)/L) + 1, and conversely <t> can
be converted back to 7 = L(t — 1)/(T — 1). While this
does introduce discretization error, it greatly simplifies the
time representation with LLMs. Relative timestamp is also
used in other temporally heavy video tasks, such as dense
video captioning [40].

Given this time representation, many video tasks related
to temporal localization can be transformed into language
instructions and answers. For example, dense video cap-
tioning can be achieved by prompting the model with “De-
scribe the video. Each sentence begins with start and end
timestamps.” (Q3 and A3 in Fig. 2). Standard event lo-
calization is also transformed to “When does X happen?”
(01 and A1 in Fig. 2). We also incorporate standard video
question answering (Q2 and A2 in Fig. 2). More details are
discussed in Section 3.4.

3.3. SlowFast Visual Tokens

We have discussed how we discretize time in videos into
T steps in order to make Video LLMs better at reasoning
about time. Still, the visual input should match the tem-
poral resolution 7" in order to achieve effective temporal
processing. Ideally, one would need at least T" frames to
temporally localize events with the resolution 7". However,
naively feeding all 7" frames into the LLM module could
be computationally prohibitive. In our experiment, we use
T = 100 and M = 256 (CLIP ViT-L-14 [31]). This leads
to 25600 tokens per video.

Inspired by SlowFast models [12], we consider two path-
ways to pool the T' x M tokens for T" frames. The first is
densely sampled fast tokens to provide temporal informa-
tion. We obtain 7" fast tokens from 7" frames by averaging
all the tokens belonging to the same frame. The second is
the sparsely sampled slow tokens to maintain better spatial
information. We select a spatial downsampling ratio of s,
and uniformly select s? frames from the video. For each se-
lected frame, we perform a s X s spatial average pooling to
the M tokens, which lead to % slow tokens per frame. This
leads to a total M = SMQ x 5% slow tokens. We use s = 2 in
our experiments. This leads to a total of 7' + M tokens to
represent a video instead of 7' x M tokens.

3.4. Training Tasks

In addition to architecture, training tasks and data also play
an important role for LLMs. We emphasize temporal local-
ization data and train LITA with the following five tasks:
(1) dense video captioning [16], (2) event localization [39],
(3) video question answering [38], (4) natural language vi-
sual question answering [24], and (5) our proposed reason-
ing temporal localization. Temporal localization is a crucial

component for three out of the five tasks (1, 2, and 5).

We now introduce each task in order. The first three tasks
are standard video tasks and equip LITA with basic video
understanding:

Dense Video Captioning. In dense video captioning [16],
each video is described by a set of sentences, and each sen-
tence comes with the start and end timestamps of the event.
Each sentence in dense video captioning can thus be repre-
sented as: <start time> <end time> SENTENCE.
We then sort all sentences by its start time, and directly
concatenate all sentences and timestamps. One example
prompt to the model for this task is: “Provide a detailed
description of the given video. Each sentence should be-
gin with the start and end timestamps.” Other prompts are
included in the supplementary materials.

Event Localization. In event localization, the goal is
to temporally localize the event described by a sentence.
We use a simple answer format: <start time> <end
time>. One example prompt for this task is: “When does
“SENTENCE” happen in the video? Answer the question
only using start and end timestamps.”

Video Question Answering. The question answering task
is already represented as language instructions. However,
answers in existing question answering datasets often con-
sist of a single word or phrase because models for this task
might not be able to generate longer text. We follow Liu et
al. [23] and append the following prompt to the question:
“Answer the question using a single word or phrase.” The
goal is to provide the context for short answers so that it
affects the model’s text generation less.

Natural Language Visual Question Answering. Training
with the above three tasks gives LITA video understanding
capabilities. However, we observe that models trained with
only these tasks often provide short answers and lack nat-
ural language conversation capabilities. We thus also train
LITA with natural language visual question answering or vi-
sual instruction tuning datasets [24]. The goal is to improve
the natural language conversation of LITA. We find that
mixing instruction tuning datasets [24] with standard video
tasks improves LITA’s conversation quality while maintain-
ing good video understanding.

Reasoning Temporal Localization. Finally, we also train
LITA with our reasoning temporal localization task (details
in Section 4). The answer to a reasoning temporal localiza-
tion question consists of two parts: timestamps and expla-
nation. We find it challenging for models to simultaneously
output both of them without any example. Nevertheless,
with some training data, LITA quickly pick up reasoning
and temporal localization, and provide both the timestamps
and explanation of its reasoning in answers.
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Q: When is the first time the group members have
to adjust their position to avoid obstacles
during their journey

stability?

A: [46.97s 60.71s] The athlete is working on his
balance and stability between 46.97s and 60.71s
when he switches to a one leg stance on the
machine. Standing on one leg improves balance
and engages the core muscles for stability.

A: [32.71ls 45.09s] The group members have to
adjust their position to avoid obstacles between
32.71s and 45.09s when they duck down to go
under a low clearance bridge.

(a) Temporal Reasoning

(b) World Knowledge

e R S ——————y E

Q: When is the athlete working on his balance and Q: When is the man on the stage engaging the kids

in the most atypical ways of jump roping?

A: [127.22s 141.35s] The man on the stage is
engaging the kids in the most atypical ways of
jump roping between 127.22s and 141.35s. During
this time, he sits on the floor and jumps rope,
which contrasts to the common standing position
for jump roping.

(c) Complex Reasoning

Figure 3. Examples from our ActivityNet-RTL dataset. RTL questions ask about events that are not explicitly described. The model needs
to utilize reasoning or its world knowledge to answer. This is in contrast to standard temporal localization, which directly asks about the
event of interest. For example in (c), standard temporal localization might directly ask: “when does the man sit on the floor?”

4. Reasoning Temporal Localization

We now discuss further details of the proposed Reasoning
Temporal Localization (RTL) task. Standard temporal lo-
calization does not fully leverage the potential of Video
LLMs. One impressive aspect of LLMs is its reasoning ca-
pabilities. LLMs can even answer complex questions that
involve multi-step reasoning. Therefore, we propose the
RTL task to utilize both of Video LLMs’ temporal under-
standing and reasoning capabilities.

4.1. Problem Definition

In reasoning temporal localization, the query is still a
“when” question that asks about the start and end times-
tamps of an event. The key difference compared to the stan-
dard temporal localization task is that the target event is not
directly described in the question, and can only be inferred
by reasoning and using world knowledge of the model. The
answer to such a question thus consists of two parts: (1) the
start and end timestamps of the target event, and (2) an ex-
planation of the reasoning process the model goes through
to derive the timestamps.

Some examples are shown in Figure 3 to better illus-
trate the idea. The answer format is: [start end]
Explanation. In Figure 3(a), the model not only has to
localize “adjust their position to avoid obstacles,” but also
needs to temporally reason about which instance happened
earlier in the video. In Figure 3(b), instead of directly ask-
ing about “one-leg row,” it asks about the workout target-
ing balance and stability. The model thus needs to utilize
its knowledge of what kind of exercises are good for bal-
ance and stability. Finally, there are questions that require
multi-step reasoning. In Figure 3(c), the question asks about
“the most atypical ways of jump roping,” which requires the
model to understand what is typical and atypical for jump
roping, and then temporally find the most atypical time pe-
riod. A standard temporal localization task, in contrast,
would just ask when the man is sitting on the floor.

4.2. ActivityNet-RTL Dataset

The above examples are from ActivityNet-RTL, a dataset
curated by us for the Reasoning Temporal Localization
(RTL) task. We build our dataset from the ActivityNet
Captions dataset [16], which annotates multiple events de-
scribed by sentences in a video, and all the events are tem-
porally localized with start and end timestamps. Consider
the following toy example:

[00:00-00:10] A woman is standing.
[00:12-00:30] The woman is dancing.
[00:32-00:36] The woman is sleeping.

We then use this as context and ask GPT-4 to generate tem-
poral localization questions that require further reasoning to
answer. We also ask GPT-4 to simultaneously generate the
answer that includes the queried start and end timestamps,
along with the explanation about the reasoning process.
Using the above toy example, by seeing that the woman
has done three activities, one possible reasoning temporal
localization question is to ask “When is she the least ac-
tive?” Since sleeping is the least active out of the three
activities, the target time period is 00:32-00:36, the pe-
riod when she is sleeping. This illustrates how GPT-4 can
still generate interesting questions without seeing the actual
video. We annotate few-shot examples for GPT-4 as in pre-
vious works to improve the generation quality [24]. All of
our prompts are included in the supplementary materials.

Training Set Generation. For our training set, we directly
use the results generated by GPT-4 with 10,009 videos from
the training split of ActivityNet-Captions. This leads to
33,557 Reasoning Temporal Localizaiton question-answer
pairs. By inspecting the GPT generated results, we find that
most of the questions are valid temporal localization ques-
tions given the context. The main shortcoming is that not all
question-answer pairs require reasoning. Sometimes GPT-4
generates questions that directly ask about events that are al-
ready described by the dense video captions. However, we
do hope that LITA can also answer these standard temporal
localization questions correctly using natural language. We
thus leave these questions in the training set.



Evaluation Set Curation. On the other hand, the eval-
uation set requires manual efforts otherwise we would
end up with many non-reasoning questions. We start
from the GPT-4 generated questions using a subset of the
ActivityNet-Captions validation set, and manually remove
non-reasoning questions. We also double check the times-
tamps and explanations in the answers. This leads to a total
of 229 question-answer pairs for 160 videos.

4.3. Metrics

We consider three metrics for ActivityNet-RTL: mIOU,
Precision@0.5, and GPT-4 Relative Scores. The first two
metrics are for temporal localization, and the third metric
is to evaluate the explanation capability. mIOU averages
the intersection-over-union (IOU) between predicted and
groundtruth start and end timestamps. Precision@0.5 mea-
sures the percentage of predictions that have over 0.5 I0OU.
We first average these two metrics per video, and then aver-
age over all videos in the evaluation set. This avoids over-
weighting videos and time periods with more questions, as
some time periods in a video have multiple questions.

To evaluate the quality of the explanation, we follow the
evaluation pipeline of LLaVA [24] and leverage GPT-4 for
evaluation. GPT-4 is asked to evaluate the helpfulness, rele-
vance, accuracy, and level of details of the explanations, and
give a score from 1 to 10. We ask GPT-4 to evaluate both the
predicted and groundtruth explanations, and normalize the
score for the prediction by the score of the groundtruth. For
this metric, we directly average over all question-answer
pairs as the explanations could be quite different even for
questions about the same time period in the same video.

5. Experiments

We evaluate LITA with both temporal localization and
video tasks that do not involve temporal localization be-
cause most existing Video LLMs cannot handle temporal
localization. In addition to our proposed Reasoning Tempo-
ral Localization, we further evaluate LITA on Video-based
Text Generation Performance Benchmarking proposed by
Maaz et al. [27]. This provides a holistic evaluation of LITA
as a Video LLM and not just for temporal localization.

5.1. Implementation Details

Architecture. We uniformly sample 100 frames from a
video, and use 100 time tokens <1> to <100> to represent
timestamps. We use CLIP-L-14 [31] as the visual encoder,
and Vicuna [6] as the LLM module. We follow LLaVA’s ar-
chitecture and train a single linear layer for projection [24].
We use 4 frames for slow tokens and use average pool win-
dow s = 2. With 1 fast token per frame, this leads to a total
of 100 + 23% x 4 = 356 tokens per video.

Training Datasets. We discussed training tasks in Sec-

Table 1. Results on ActivityNet-RTL. LITA substantially outper-
forms all baselines for all metrics. This shows the importance of
our design choices. Interestingly the temporal localization accu-
racy also improves as we scale the model from 7B to 13B.

Model Size mIOU P@0.5 Score

LITA-7B 7B 24.1 21.2 44.0

Video-LLaMA-v2 [41] 13B - - 32.1

Video-ChatGPT [27] 13B - - 38.8
Slow Tokens Only 13B 14.6 11.8 322
SlowFast Tokens 13B 17.5 14.5 34.1
LITA-13B 13B  28.6 25.9 46.3

tion 3.4. We now discuss the training datasets for each
task. For dense video captioning and event localization,
we use the training splits of ActivityNet-Captions [16] and
YouCook?2 [44], which combine to around 11k videos. The
event localization dataset can be generated from the dense
video captioning dataset by using the caption as query and
the timestamps as target. For video question answering, we
use NExT-QA [38] as it contains more complex questions.
For image instruction tuning, we use LLaVA-150K [24].
For reasoning temporal localization, we use the training
split of our ActivityNet-RTL, which builts on the training
split of ActivityNet-Captions.

Training Setup. For each of the five tasks, we randomly se-
lect 100K samples with replacement (total S00K). We then
use batch size 128 and learning rate 2e-5 to train for 4k it-
erations. The training takes around 13 hours for 13B and 9
hours for 7B models using 8 A100 GPUs. The linear pro-
jection is initialized with the LLaVA pre-trained weights.

5.2. Reasoning Temporal Localization Evaluation

We first evaluate on the newely proposed ActivityNet-RTL
for reasoning temporal localization. Please refer to Sec-
tion 4 for dataset details and metrics. We use “P@0.5” for
Precision@0.5 and “Score” for the GPT evaluation score
for explanations. Other than variations of our model, we
include Video-LLaMA-v2 [41] and Video-ChatGPT [27]
for comparison. We observe that most of their outputs on
ActivityNet-RTL omit any timestamps and thus mIOU and
Precision@0.5 become absolute. Therefore, for these meth-
ods we only evaluate the GPT-Score. In addition, we ablate
the following variations for LITA, all of which are trained
with the same five training tasks as LITA:

- “Slow Tokens Only” samples 4 frames from the video, and
computes 64 tokens per frame. It does not use the fast to-
kens, and it also does not use time tokens for relative times-
tamps. This can be seen as naively implementing a Video
LLM via the LLaVA architecture.

- “SlowFast Tokens” additionally includes fast tokens (i.e.



Q: When is the girl and boy's second arm
wrestling match? (annot: 25.42s 18

LITA: The girl and boy's second arm wrestling
match is between 25.94s and 51.36s. They redo

the arm wrestling during this time. and 123.44s.

V. -LLaMA-v2:
Video-LLaMA-v2: The girl and boy are not shown s v

to have an arm wrestling match in the video.
o A = + v food on the fire.

related to the fire, othe:
: 66.66s to 145)

Q: When do the boys engage in an activity

r than building it?

LITA: The boys engage in an activity related to
the fire, other than building it, between 99.75s
During this time,
roasting marshmallows in the campfire.

The boys engage in an activity
related to the fire when they are seen cooking

Q: When does the girl show resilience in her
performance? (annot: 37.57s 66s)

LITA: The girl shows resilience in her
performance between 38.23s and 55.66s. During
this time, she falls off the beam but gets back
on it and continues her performance.

they are seen

Video-LLaMA-v2: The girl shows resilience in her
performance when she is able to maintain her
balance and continue her routine despite the
obstacles she faces.

Figure 4. Qualitative results on ActivityNet-RTL. Overall, LITA not only more accurately localizes events in the video, but also provides
sensible explanations with more details. In the first example, LITA correctly identifies the second arm wrestling. In the second example,
LITA provides further details that they are roasting marshmallows. In the third example, LITA impressively recognizes that the girl “falls
off the beam but gets back”™ and explains that this shows resilience. These are in contrast to the more generic answers by Video-LLaMA-v2.

Table 2. Video-based Text Generation Benchmarking results. LITA significantly outperforms existing Video LLMs including Video-
LLaMA-v2 [41] and Video-ChatGPT [27] on all evaluated aspects. This shows that LITA not only enables accurate temporal localization,

but also generally improves video understanding for Video LLMs.

Model Correctness  Detail Context ~ Temporal  Consistency  Average
LLaMA-Adapter 2.03 232 230 1.98 2.15 2.16
Video-LLaMA 1.96 2.18  2.16 1.82 1.79 1.98
Video-LLaMA-v2 2.36 242 274 1.83 2.12 2.29
VideoChat 2.23 250 253 1.94 2.24 2.29
Video-ChatGPT 2.40 2.52  2.62 1.98 2.37 2.38
LITA 2.94 298 343 2.68 3.19 3.04

1 token per frame) compared to “Slow Tokens Only”. This
improves the architectural design for representing video,
and should allow better temporal processing.

- “LITA” is our full model that further includes time tokens
to better represent timestamps compared to “SlowFast To-
kens.” We consider two model sizes, 7B and 13B, for LITA
to understand the effect of different model sizes.

Importance of Our Model Components. Results on
ActivityNet-RTL are shown in Table 1. All metrics are
averaged over three trials. LITA substantially outperforms
all baselines for all metrics, and almost double mIOU and
P@0.5 when compared to “Slow Tokens Only”, which is
considered as a naive extension of Image LLMs to Video
LLMs. “Score” is assisted by GPT-4 to evaluate the qual-
ity of the explanation provided by the models. While we
prompt GPT-4 to ignore the timestamps mentioned in the
explanations, we observe that the scores are still slightly
affected by the timestamps. Nevertheless, LITA provides
better explanations for its reasoning due to an overall better
video understanding.

LITA Gives Detailed and Accurate Explanations. Quali-
tative results are shown in Figure 4. In the first example,
LITA correctly localizes when the second arm wrestling
happens. On the other hand, Video-LLaMA-v2 does not

recognize that there is arm wrestling in the video. In the
second example, while both models identify that the cor-
rect activity is cooking with fire, LITA provides much more
accurate details, including the fact that they are roasting
marshmallows, and the start and end time for that. Fi-
nally, in the third example, LITA impressively recognizes
the event where the girl “falls off the beam but gets back”
and correctly responds that this shows resilience in her per-
formance. In contrast, Video-LLaMA-v2 gives a generic
answer given the “resilience” prompt.

Temporal Localization Scales with LITA Size. One inter-
esting observation is that the temporal localization quality
of LITA also improves as we scale up the model from 7B to
13B (Table 1). One might think that scaling the model only
improves language understanding, but our result shows that
this could also improve temporal reasoning and understand-
ing for Video LLMs.

5.3. Video-Based Generation Evaluation

In addition to our proposed reasoning temporal localization,
we further evaluate LITA on standard evaluation for Video
LLMs to better compare with existing Video LLMs. We
use the “Video-based Text Generation Performance Bench-
marking” proposed by Maaz et al. [27]. This benchmark



Q1l: What are they doing in the video? Q2: Is there any fish in the video?

RTL Only: [104.87s 167.46s]
video between 104.87s and 167.46s. During this
time, the scuba divers are seen swimming with the

RTL Only: [104.87s 167.46s] They are scuba diving
in the sea next to a rocky shore with a lot of

reenery around. q
g Y fishes.

No NLVQA: scuba diving No NLVQA: yes

LITA: In the video, we see a group of people scuba
diving in an underwater environment. They are
exploring the ocean floor, looking at fish and

2 3 P . scuba divers.
wildlife, and enjoying the beautiful scenery

There are fish in the

LITA: Yes, there are fish in the video. At one
point, we see a school of fish swimming around the

T =167

Q3: When are they enduring the most water pressure?

RTL Only: The scuba divers are enduring the most
water pressure between 81.19s and 167.46s. This is
the deepest part of their dive, where the pressure
is greatest.

No NLVQA: [55.82s 86.27s] The scuba divers are
enduring the most water pressure between 55.82s
and 86.27s . This is because they are diving
deeper to explore the ocean floor.

LITA: The scuba divers are enduring the most water
pressure between 6.77s and 18.61s. This is when
they are deep water scuba diving, which is when
the water pressure is at its highest.

Figure 5. Qualitative results to analyze the effect of training tasks. 7 is the continuous time in seconds. The questions are not from
ActivityNet-RTL as we are also interested in questions other than reasoning temporal localization. “RTL Only” answers in the format
for reasoning temporal localization, as this is the only training data it has. “No NLVQA” further includes standard video tasks and can
correctly answer non-temporal questions (Q1 and Q2). However, the answers are short due to the short answers in existing video question
answering datasets. LITA improves both reasoning and natural language conversation by utilizing NLVQA datasets.

selects videos from ActivityNet [4] and annotates question-
answer pairs with natural language. This is in contrast to
existing video question answering benchmarks, where the
answers are often limited to a single word or phrase. In this
benchmark, there are specific questions like: “What kind
of tricks is the man performing while skating?” or generic
questions like “Can you describe the video in detail?” For
evaluation, the benchmark uses GPT to measure the fol-
lowing aspects of Video LLMs’ answers: Correctness of
Information, Detail Orientation, Contextual Understanding,
Temporal Understanding, and Consistency.

The results are shown in Table 2. We compare
LITA with LLaMA-Adapter [42], Video-LLaMA [41],
VideoChat [20], and Video-ChatGPT [27]. Video-ChatGPT
slightly outperforms other baselines including Video-
LLaMA-v2. LITA significantly outperforms these two ex-
isting Video LLMs from all aspects. In particular, LITA
achieves a 22% improvement for Correctness of Informa-
tion (2.94 vs. 2.40) and a 36% relative improvement for
Temporal Understanding (2.68 vs. 1.98). This shows that
our emphasis of temporal understanding in training not
only enables accurate temporal localization, but also im-
proves the video understanding of LITA. We hypothesize
that temporal localization enables the model to learn more
details about videos, leading to improved video understand-
ing. A similar observation was made for Image LLMs [5],
where joint training with grounding tasks also improved
non-grounding text generation.

5.4. Evaluating the Effects of Training Tasks

We have analyze the effect of our model components in Sec-
tion 5.2, where we use all of our training tasks. Now we fur-
ther analyze the effect of these training tasks for our model.

Table 3. Analysis of LITA’s training tasks on ActivityNet-RTL.
“RTL” is needed to predict both timestamps and explanations.
“Video” includes standard video tasks to improve video under-
standing. “NLVQA” further improves reasoning and natural lan-
guage generation capabilities of LITA.

Model | RTL  Video NLVQA | mIOU P@0.5 Score
RTL Only v X X 266 209 435
NoNLVQA | v v X 269 235 449
LITA v v v 286 259 463

We split the five tasks into three groups: RTL, Video, and
NLVQA. “RTL” only includes the proposed reasoning tem-
poral localization. Without training on our ActivityNet-
RTL, the model would not output timestamps for us to eval-
uate temporal localization in many cases. The second group
“Video” includes all the standard video tasks: dense video
captioning, event localization, and video question answer-
ing. Using these video tasks, the model should learn bet-
ter video understanding. Finally, “NLVQA” refers to the
natural language visual question answering task to improve
LITA’s natural language conversation. We refer to training
with just RTL as “RTL Only,” and training with both RTL
and Video but without NLVQA as “No NLVQA.” Training
with all three and thus all tasks is our proposed LITA.

Results. The results on ActivityNet-RTL are shown in Ta-
ble 3 and qualitative comparisons are shown in Figure 5. By
only training on RTL, “RTL Only” does not have enough
supervision to learn the task. This is reflected in both times-
tamp accuracy (P@0.5) and explanation quality (Score).
In addition, for non-temporal questions (Q1 and Q2) in
Figure 5, the model cannot properly answer and always
use the answer format for reasoning temporal localization.



By adding standard video tasks in Video to training, “No
NLVQA” improves all metrics compared to “RTL Only”.
Qualitatively in Figure 5, it can also answer Q1 and Q2
correctly. However, this capability mainly comes from
the inclusion of video question answering datasets, which
leads to short answers. LITA further improves by includ-
ing NLVQA, which contains complex reasoning questions
to improve its reasoning capabilities. More importantly, as
shown in Figure 5, LITA now answers questions with natu-
ral language instead of short phrases.

6. Conclusion

We propose Language Instructed Temporal-Localization
Assistant (LITA), which enables accurate temporal local-
ization using Video LLMs. LITA demonstrates promising
capabilities to answer complex temporal localization ques-
tions. At the same time, LITA substantially improves video-
based text generation compared to existing Video LLMs
even for non-temporal questions. This is the result of both
our model design and data strategy. For model design, we
propose time tokens to better represent the time and Slow-
Fast tokens to efficiently process video inputs. Our exper-
iments show the importance of these model components.
For data strategy, we emphasize temporal localization data
in training LITA. To achieve this, we propose the Reasoning
Temporal Localization task and curate the ActivityNet-RTL
dataset. Our results show that the inclusion of temporal lo-
calization data not only enables temporal localization for
Video LLMs, but also improves the general video under-
standing capabilities. We further analyze our training data
and show the benefits of incorporating standard video tasks
and image instruction tuning data to train Video LLMs.
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