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Abstract

The advent of generative Al models has revolutionized
digital content creation, yet it introduces challenges in
maintaining copyright integrity due to generative parroting,
where models mimic their training data too closely. Our
research presents a novel approach to tackle this issue by
employing an overfitted Masked Autoencoder (MAE) to de-
tect such parroted samples effectively. We establish a de-
tection threshold based on the mean loss across the train-
ing dataset, allowing for the precise identification of par-
roted content in modified datasets. Preliminary evaluations
demonstrate promising results, suggesting our method’s po-
tential to ensure ethical use and enhance the legal compli-
ance of generative models.

1. Introduction

Generative artificial intelligence (AI) models, including but
not limited to Stable Diffusion [10], DALLE [9], and Gen-
erative Pre-trained Transformers (GPT) [7], represent a
groundbreaking shift in the landscape of digital content
creation, empowering users to generate text, images, and
other forms of media with unprecedented ease and flexibil-
ity. These models have been applied across a wide range of
domains, from artistic creation and design to content gener-
ation for social media and marketing purposes, demonstrat-
ing their versatility and potential to enhance creativity and
productivity.

The rapid adoption and deployment of these technolo-
gies have also raised significant ethical, legal, and techni-
cal challenges, particularly in the context of copyright in-
fringement and data privacy [4, 11, 15]. At the heart of
these concerns is the phenomenon known as “generative
parroting,” where models produce outputs that are not suf-
ficiently distinct from their training data [3, 14], leading to
the generation of content that closely mimics or even di-
rectly copies existing copyrighted materials. This issue not
only poses legal risks for users and developers but also un-
dermines trust in generative Al technologies, especially in
trust-critical scenarios where the protection of intellectual
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property and sensitive information is paramount.

The challenge of detecting and mitigating generative par-
roting is compounded by the inherent complexities of Al
models’ training processes and the vastness of the data
landscapes they navigate. Traditional approaches to model
training and evaluation may not adequately address the nu-
ances of copyright-sensitive scenarios, necessitating inno-
vative solutions that are specifically tailored to recognize
and respect the boundaries of copyright law [12]. Moreover,
the dynamic nature of copyright legislation, which varies
across jurisdictions and is continually evolving in response
to technological advancements, adds another layer of com-
plexity to this challenge [6].

While passing generated samples through a representa-
tion learner to obtain feature vectors and compare them with
training data might be feasible for small datasets, this ap-
proach becomes impractical for larger datasets with billions
of samples, especially in real-time scenarios. For instance,
designers interacting with generative models need immedi-
ate feedback, rendering exhaustive comparisons untenably
slow.

In pursuit of an efficient solution, our work pro-
poses the use of a single model capable of encapsulat-
ing the essence of the training data and providing a bi-
nary response—indicating whether a sample is parroted or
not—without the need for pairwise comparison with the en-
tire training dataset. This paper demonstrates that by ex-
ploiting the tendency of a Masked Autoencoder (MAE) to
overfit, we can effectively identify parroted samples. We
hypothesize and confirm that an overfitted MAE discerns
between samples that are closely aligned with the training
data and those that are novel or substantially altered. The re-
sulting loss value from the reconstruction process acts as an
effective metric to distinguish potential instances of parrot-
ing. This method offers a significant step towards efficient
real-time detection of generative parroting, streamlining the
design process and safeguarding the creative output.

By providing a mechanism to detect and flag potential
instances of generative parroting, we aim to contribute to
the ongoing discourse on ethical Al development and de-
ployment, fostering an environment where generative mod-



els can be used responsibly and creatively without compro-
mising copyright integrity or customer trust.

2. Related Work

The evaluation and mitigation of generative parroting have
been explored in various capacities within the machine
learning community. However, these explorations often fall
short of providing scalable solutions for detecting parroted
content within extensive datasets.

Gulrajani et al. [5] propose benchmarks aimed at resist-
ing trivial memorization by generative models, focusing on
the use of neural network divergences for evaluation. While
their work contributes valuable insights into model gener-
alization, it does not offer a direct mechanism for iden-
tifying individual parroted samples within large datasets.
Vyas, Kakade, and Barak [15] introduce a formal definition
of Near Access-Freeness and present algorithms aimed at
copyright protection for generative models by ensuring out-
puts diverge sufficiently from any potentially copyrighted
training data. While this work makes significant theo-
retical contributions to copyright protection in generative
modeling, its practical application in detecting specific in-
stances of parroted content across billions of data points re-
mains computationally challenging. Meehan, Chaudhuri,
and Dasgupta [8] propose a method which signals the pres-
ence of data copying across a broad class of models but does
not scale effectively to the era of large datasets, as it does
not specifically address the computational challenges inher-
ent in analyzing billions of data points.

Carlini et al.’s [2] investigate the extent to which large
language models memorize parts of their training data.
Their analysis uncovers three log-linear relationships that
quantify the degree of emitted memorized training data as a
function of the model’s capacity, the repetition of examples
within the training data, and the amount of context used to
prompt the model. They demonstrate that memorization is
more prevalent than previously understood and suggest it
will likely increase as models continue to scale, highlight-
ing a significant challenge for ensuring privacy and reduc-
ing the risk of copyright infringement in generated content.
However, their study focuses on language models and the
explicit replication of verbatim text, which differs from the
broader scope of generative parroting that encompasses var-
ious data modalities and subtler forms of content replication
addressed by our work with overfitted MAEs. While Carlini
et al. provide a foundational understanding of memoriza-
tion dynamics in neural language models, their approach to
quantifying memorization does not directly tackle the com-
putational challenges of detecting parroted content in the
vast and diverse datasets typical of today’s generative mod-
els, underscoring the novelty and necessity of our method-
ology for scalable detection.

These studies, while instrumental in advancing our un-

derstanding of generative model evaluation and the nu-
ances of model memorization, underscore a significant gap:
the need for computationally feasible methods to detect
parroted content amidst the challenges posed by today’s
large datasets. The computational overhead of existing ap-
proaches, such as feature extraction and comparison across
billions of samples, renders them impractical for application
in real-world scenarios where dataset sizes can be immense.

Our work seeks to bridge this gap by introducing an over-
fitted MAE approach, specifically tailored to identify par-
roted samples without the need for exhaustive dataset com-
parisons. This method not only addresses the computational
inefficiencies of previous models but also opens new av-
enues for scalable detection of generative parroting across
various data modalities.

3. Methodology
3.1. Dataset

For our preliminary experiments, we focus on 2D computer-
aided design (CAD) data, employing the SketchGraphs
dataset [13]. We utilize a total of 535,358 sketches, from
which we have created two distinct variations of each orig-
inal sketch. The variations were created by adjusting the
sketch parameters which control lengths and angles and us-
ing the constraint solver in Fusion 360 [1] to update the ge-
ometry while respecting other sketch constraints. The origi-
nal and modified geometries were rendered as PNG images
of size 640x480 pixels. Our dataset comprises four subsets
for training and evaluation, designed to assess the model’s
ability to detect parroted content and its response to novel
samples:

Training set (Dyi,): Consists of the original, unaltered
sketches, serving as a baseline for the model’s learning
process.

Modified set 1 (Dy,0q1): Derived from Dy;,, with each
sample slightly modified to emulate the minor variations
that a generative model might produce, akin to potential
parroted outputs. The parameters defining lengths were
incremented or decremented by 1/20th of the maximum
length of the sketch’s bounding box, while parameters
defining angles were varied by 1 degree.

Modified set 2 (Dp,0q2): Further derived from D,;,, ex-
hibiting more substantial alterations, representing a wider
range of potential generative deviations. The parame-
ters defining lengths were incremented or decremented
by 1/5th of the maximum bounding box length, while
parameters defining angles were varied by 4 degree.
Novel set (D,,y): Contains completely new samples, un-
seen by the model during training, to evaluate the model’s
ability to correctly pass novel samples that are not par-
roted.

The rationale for such dataset structure is predicated on
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Figure 1. Representative samples from the datasets: Dyin (original training set), Dy, 1 (first variation), and Dy, (second variation), shown

from the first to third rows, respectively

the assumption that a generative model may output exact
duplicates or modified versions of the training data. It is
imperative that our detection system accurately identifies
these instances. The inclusion of D,,, allows us to mea-
sure the model’s accuracy in discerning novel, non-parroted
samples from those that are parroted. The ultimate goal is
to ensure the model flags only genuine instances of parrot-
ing while permitting novel content, thereby achieving a fine
balance between sensitivity and specificity in real-world ap-
plications. In figure 1, we have visualized training and mod-
ified samples.

3.2. Masked Autoencoder (MAE) Loss

The MAE is designed based on a vision transformer archi-
tecture, tasked with processing masked versions of the input
data X to reconstruct the original inputs. The reconstruc-
tion loss for an input image X and its reconstructed ver-
sion X is calculated using the Mean Squared Error (MSE)
over the unmasked portions of the image. Specifically, for
the CAD dataset where most of the background pixels are
white, the MSE is calculated only on the drawings, i.e., non-
fully-white pixels:
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where Nyrawing TEpresents the number of non-fully-white
pixels in the image, and the summation runs over these pix-
els only. For natural images, the regular MSE calculation
over all pixels can be applied.

3.3. Overfitting and Threshold Setting

To induce overfitting, the MAE is trained on Dy, until the
loss on this dataset reaches a minimal value. The threshold
7 for detecting parroted samples is set as the mean loss over
the Training Dataset:
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A sample is flagged as parroted if its reconstruction loss
L(X, X) is less than or equal to 7. This criterion is applied
across Dioq 1 and Dinoq 2 to detect parroted samples.

4. Experiments

In our experiments, we leverage the Vision Transformer
(ViT) based MAE with a patch size of 14, an embedding
dimension of 1280, a depth of 32 layers, 16 attention heads,
and an MLP ratio of 4. The batch size was set to 128. We
trained the model for a range of epochs, from 1 to 10,000,
as demonstrated in Table 1. Extended training consistently
improved parroting detection rates for both seen (train) and
modified samples. However, a trade-off became apparent
as the training duration increased and the threshold was set
based solely on training loss, leading to a model prone to
flagging most samples, including the unseen ones (Dpqy),
as parroted.

The nuanced interplay between model parameters and
the detection outcomes was evident. While weight decay
and data augmentation slightly decreased the detection rates
for Dyin, sSuggesting an impact on the model’s sensitivity, a
lower masking percentage (p-mask) significantly enhanced



Table 1. Detection results across four datasets: Diains Dmod 1, Dmod 2, and Dpoy. *"WD’ indicates weight decay, set to 0.05 when enabled.
’AUG’ denotes data augmentation; when enabled, only vertical and horizontal flips are used. The * Dyov pass’ percentage reflects the novel

samples not flagged as parroted.

Detection rate (%)

WD AUG p.mask (%) Epochs Doy pass (%)
tain©~ Dmod1 Dimod 2

No No 75 1K 95.56 70.55 67.35 38.58

No No 75 3K 99.62 7140 67.67 39.57

Yes  Yes 75 10K 99.87 71.39  67.70 40.03

Yes  Yes 50 10K 99.70  80.33  77.34 23.94

Yes  Yes 85 10K 99.61 66.30 62.10 47.53

detection capabilities for modified samples. Nonetheless,
a higher detection rate was often accompanied by a lower
Dyov pass percentage, indicating a potential increase in
false positives. An optimal balance was observed with an
85% p-mask, which, despite a minor reduction in detection
rates, resulted in the highest D, pass percentage, offering
a more conservative and practical approach for scenarios
where it is crucial to minimize false positives. This balance
is critical in settings where the novel set may contain sam-
ples similar to the training ones, as all sets were generated
from a single source.

5. Conclusion

We presented a new approach for detecting generative par-
roting using an overfitted Masked Autoencoder with a Vi-
sion Transformer architecture. Our experiments demon-
strate that training duration and model parameters, partic-
ularly the percentage mask (p-mask), play significant roles
in the model’s ability to discern between seen, modified,
and novel samples. The careful calibration of the loss
threshold emerges as a crucial factor in mitigating the in-
cidence of false positives, especially in large datasets where
the distinction between original and parroted content is nu-
anced. Through extensive training, we observed that while
a longer training time generally leads to higher detection
rates for training and modified samples, it also increases
the likelihood of incorrectly flagging novel samples as par-
roted. Our results underline the importance of selecting
model configurations that balance sensitivity with speci-
ficity, thereby minimizing false positives without sacrificing
detection accuracy.

Several avenues for further research are apparent. Firstly,
investigating the impact of alternative architectures and
learning strategies on the model’s detection capabili-
ties could yield improvements in performance. Further-
more, exploring different data modalities beyond 2D CAD
sketches may provide insights into the generalizability of
our approach. Additionally, the development of more so-
phisticated thresholding techniques that adapt to the vari-

ability within and between datasets could enhance the
model’s discernment between parroted and genuinely novel
content. Finally, as generative models continue to evolve,
ongoing collaboration with legal experts will be vital in en-
suring that our detection mechanisms remain aligned with
the latest copyright legislation and ethical standards. This
will ensure that advancements in Al content generation
move forward responsibly and sustainably.
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