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Abstract
Schematic depictions in text books and maps often need to label specific point features with a text
label. We investigate one variant of such a labeling, where the image contour is a circle and the
labels are placed as circular arcs along the circumference of this circle. To map the labels to the
feature points, we use orbital-radial leaders, which consist of a circular arc concentric with the
image contour circle and a radial line to the contour. In this paper, we provide a framework, which
captures various dimensions of the problem space as well as several polynomial time algorithms and
complexity results for some problem variants.
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1 Introduction

Map labeling is an extensively studied topic in computational geometry [1,7,13] that typically
involves annotating feature points with names or additional descriptions, ensuring non-
overlapping annotations. While traditional maps often use internal label positions next to
the feature points [12], external labeling models [4] place labels remotely along the contour
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Figure 1 An orbital labeling on a map for illustrating our notation.
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Table 1 A tabular overview of the problem space and our results. Empty cells remain open.

A🔒

Bars A🔑

Bars A🔒

Align-Center A🔑

Align-Center

C🔒

O🔒

SBars O(n2∣C ∣) [Sec. 5.1] O(n2∣C ∣) [Sec. 5.1]

SAlign-Center O(n2∣C ∣) [Sec. 5.1] O(n2∣C ∣) [Sec. 5.1]

O🔑

SBars O(n∣C ∣2) [Sec. 5.2]

SAlign-Center

C🔑

O🔒

SBars O(n2) [Sec. 4.1] O(n2) [Sec. 4.1]

SAlign-Center O(n2) [Sec. 4.1] O(n2) [Sec. 4.1]

O🔑

SBars O(n5) [Sec. 4.2]

SAlign-Center NP-c [Sec. 4.2.2] NP-c [Sec. 4.2.2] NP-c [Sec. 4.2.2]

of a bounding shape and connect them to their feature points by crossing-free leaders. This
model is frequently used in applications, where feature points are dense, the details of a map
or an illustration should not be obscured by labels, or labels are relatively large, e.g., in
anatomy atlases or assembly drawings. In this paper we study a novel variant of external
labeling with a circular bounding shape, e.g., for displays of smartwatches; see Figure 1. The
circular map is displayed in the center of the display and each label is bent and turned into
a segment of the circular boundary of the map; we call these labels orbital labels. This is a
special case of external and boundary labeling [3]. We assume that the lengths of the orbital
labels are normalized and sum up to the perimeter of the boundary of the map. Previous
research on circular map display considered either multirow circular labels where the sum of
label lengths does not equal the map’s boundary length [9], radial labels [2, 6], or horizontal
labels [6,10,11]. The latter two settings are relevant for circular maps on rectangular displays
but not suitable for circular displays with a narrow annulus for labels.

Formally, we assume that we are given a disk D in the plane R2. The disk contains n

points P = {p1, . . . , pn}. We call the set P of points features and we refer to the boundary of
the disk as the boundary B. Every feature p ∈ P has an associated label which represents
additional information that is to be placed along a circular arc on the boundary starting at
a point b1 ∈ B and ending at a point b2 ∈ B. The circular arc along B is denoted as b̂1b2B

.
Usually, the start and endpoint of the label are not fixed in the input, however, the length
of the arc is part of the input. We represent the associated label simply as a number λ(p),
which indicates the length of the associated label. We assume that ∑n

i=1 λ(pi) is equal to
the circumference of D, i.e., if all labels are placed non-overlapping then there are no gaps
between the arcs on B.

In a labeling L, every feature p ∈ P is assigned a label with starting point sL(p) ∈ B and
an endpoint eL(p) ∈ B, s.t., ∣ ̂sL(p)eL(p)∣ = λ(p). We assume that all labels are pairwise
non-overlapping. Additionally, every feature p is connected to its label via a leader. In this
paper, we consider orbital-radial leaders, which consist of two parts: (1) starting at the
feature p with a (possibly empty) orbital circular arc that ends at a bend point q, and (2) a
radial segment that connects q to the boundary B; see Figure 1. We call the leader endpoint,
i.e., the point where the leader connects to B the port ξL(p) of the leader starting at p. Note
that q has the same distance to the circle center as p since the first part of the leader is an
orbital-radial arc. We denote the length of the leader of feature p by l(p).

Let the port ratio ρL(p) =
∣ ̂sL(p)ξ(p)∣

λ(p) be the ratio of the arc from the starting point to the
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(a) Uniform ratio of 0.5. (b) Clockwise rotation. (c) Uniform ratio of 0.

Figure 2 Any solution with uniform label sizes and a uniform ratio (e.g., 0.5) (a) can be rotated
(b) to obtain a solution of any other ratio, e.g., 0 (c).

port and the arc from the start-point to the end-point. Now, we define the generic orbital
labeling problem.

I Problem 1 (Orbital Boundary Labeling). Given a disk D, containing n feature
points P compute a labeling L, in which all leaders are pairwise non-intersecting and the
sum of leader lengths is minimal.

In this paper we first provide a detailed overview of the different variants of Orbital
Boundary Labeling in Section 2. For many of these variants, we obtain polynomial time
algorithms and complexity results, see Table 1.After some general observations in Section 3,
we present our main results about a set of variants, that allow the labels to be placed
anywhere around the boundary, in Section 4. The more constrained variants, that consider
only a given set of possible candidates for the ports, are discussed in Section 5.

2 Problem Space

In the following, we discuss the dimensions of our problem space. For the different dimensions,
we use the notation based on the COSA-Orbital Boundary Labeling scheme and use
each letter to describe the variants for the respective dimension.

[C] Candidate port positions on the boundary. If we are given a set C of candidate
positions on B and in any valid labeling L we require that for any port ξ ∈ ΞL we have ξ ∈ C,
we say the port candidates are locked (and use the symbol C🔒) otherwise they are free (C🔑).
[O] Order. Next, we consider the cyclic order of labels around B. If a certain label order
is pre-specified we say the label order is locked (O🔒); otherwise, for the unconstrained
setting, we say the label order is free (O🔑).
[S] Size of labels. Then, we distinguish the setting where ∀p ∈ P ∶ λ(p) = 1, in which case
we say that the label size is uniform (SBars), otherwise the label size is non-uniform (SAlign-Center).
[A] Port position on labels. Lastly, we distinguish different positions of the ports
on the labels. We differentiate between uniform port ratios, where ∀i, j ρL(pi) = ρL(pj),
and non-uniform port ratios. We also distinguish between the ratios being predefined
as part of the input, in which case we call the ratios locked, or not, in which case we call
them free. We obtain the following four settings:

Ratios are uniform and locked to a value k ∈ [0, 1] given in the input (A🔒

Bars).
Ratios are uniform and free, i.e., we have to find a value k ∈ [0, 1] for the ratios (A🔑

Bars).
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Figure 3 Given a free label order Of we can reroute the leaders to arrive at a crossing-free
solution with a shorter total leader length.

Ratios are non-uniform and locked, meaning, we are given a set K = {k1, . . . , kn} of
ratios, s.t., in a valid labeling L, we have ρL(pi) = ki (A🔒

Align-Center).
Ratios are non-uniform and free, i.e., ports can be chosen freely and independently (A🔑

Align-Center).

For our problem variants, we use the notation based on the COSA-Orbital Boundary
Labeling scheme where we substitute C, O, S and A with C🔑/C🔒, O🔑/O🔒, SBars/SAlign-Center and
A🔑

Align-Center/A🔑

Align-Center/A🔒

Bars/A🔒

Align-Center , respectively. An overview of all variants and our results can be seen in
Table 1. Whenever a statement applies to all variants along a certain dimension of the
problem space, we drop the sub- or superscript of C, O, S, or A. For example, C🔑O🔒SA🔒

Bars

refers to the variants where the port candidates are free (C🔑), the order is locked (O🔒), the
label sizes could be fixed to be uniform or they could be non-uniform (S) and all port ratios
are fixed to a given value (A🔒

Bars). Therefore, C🔑O🔒SA🔒

Bars covers a set of two problem variants.

3 Uniformly Spaced Ports

Using a simple shifting argument, illustrated in Figure 2, we show the following equivalence.

I Observation 3.1. All problems in COSBarsA🔒

Bars are equivalent over all k ∈ [0, 1]. Similarly all
problems in COSBarsA🔑

Bars are equivalent over all k ∈ [0, 1].

This equivalence is based on the fact that the ports in these problems are necessarily
equally spaced, which is only the case if both the label size and the port ratio are uniform.
Based on the same property, we make the following statement, visualized in Figure 3.

I Lemma 3.2. Given an instance of a problem variant in CO🔑SABars any leader-length minimal
labeling L is crossing-free, assuming that all feature points in P lie on circles of different
radii concentric with D.

Proof. Assume a leader-length minimal labeling L contains two crossing leaders γ1 and γ2
connecting p1 to its port ξ1 and p2 to its port ξ2, respectively. Both leaders begin with
an orbital segment p̂1q1 (or q̂1p1) and p̂2q2 (or q̂2p2), respectively, followed by their radial
straight-line segment q1ξ1 and q2ξ2. Clearly the crossing x between the radial segment of the
point closer to the center X of D and the orbital segment of the point closer to B. W.l.o.g.
assume that x = p̂1q1 ∩ q2ξ2, and that p1 is on the counter-clockwise end of p̂1q1 . Let q′ be
the intersection of the supporting line of q1ξ1 and the circle containing q̂2p2 . There are two
cases shown in Figure 3.

In the first case (Figure 3a) we can replace γ1 with a curve consisting of p̂1x and xξ2 and
γ2 with curve consisting of p̂2q′ and q′ξ1 (Figure 3b). Since ∣q2x∣ = ∣q′q1∣ and ∣x̂q1 ∣ > ∣q̂2q′ ∣,
the total leader length has decreased. Note that the rerouting might have introduced new
crossings, but since this method reduces the total leader length we can iteratively apply this
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Figure 4 Determining the leader length by the length of the orbital and radial segment.

procedure and will never obtain an already seen labeling. Since there is a finite number of
possible solutions, we have to arrive at a solution, which does not contain crossings anymore
(otherwise we could apply the procedure infinitely many times contradicting the finite number
of possible solutions). While the setup of the second case (Figure 3c) looks different, we can
resolve the crossing identically to the first case and the sum of leader lengths again decreases
concluding the proof. J

4 Free Candidates

In this section, we consider the problem set C🔑OSA. Intuitively, these are problem variants,
that allow solutions to be continuously rotated around B. Let g ∶ P × [0, 2π] → R be a
function which maps a feature p ∈ P and an angle θ to the length of a leader that connects
p and a port on B, s.t., the orbital segment of the leader spans the angle θ. Let r be the
radius of the circle containing p concentric with D. If D has a circumference of C it has a
radius of C

2π
. Then g(p, θ) = C2π

− r + rθ; see Figure 4.

I Observation 4.1. The function g(p, θ) is linear in θ.

The total leader length of a labeling L can obtained as h(L) = ∑n
i=1 g(pi, θ(pi)), where

θ(pi) is the angle spanned by the orbital segment of the leader connected to pi.
Note that by fixing a port ξ on the boundary for a feature p, there are two orbital-radial

leaders by which we could choose to connect them (with a clockwise or a counter-clockwise
orbital segment). We call these clockwise and counter-clockwise leader, respectively.

I Observation 4.2. The inner-most feature, i.e., the feature which lies on a circle concentric
with D whose radius is smallest among all features can always be labeled with a clockwise or
a counterclockwise leader.

Observe that the leader of the inner-most feature p uses a radial line segment s starting
on a circle concentric with D, which does not contain any other feature of P . Consider
any other feature p′ and any other point ξ′ on B, then, p′ and ξ′ can be connected either
with a clockwise or a counter-clockwise leader; see Figure 5. The orbital segments of the
clockwise and the counter-clockwise leader of p′ together form an entire circle concentric
with D containing p and, hence, one of them has to intersect s.

I Observation 4.3. A leader of the inner-most feature determines for every other leader γ

connecting a feature and a point on B if γ is a clockwise or counter-clockwise leader.

4.1 Locked Order.
Next, we consider problem variants in C🔑O🔒SA, in which the label order is locked.
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Figure 5 The port position of the inner-most feature (blue) determines labeling of other features:
Depending on the labeling of the inner-most feature, the green feature point has access to different
candidate ports (dark labels and solid leaders vs. light labels and dashed leaders).

I Lemma 4.4. For C🔑O🔒SA🔒, the choice of a port point on B for the inner-most feature
determines all other label placements including their port positions as well as their leaders.
This also includes the length of their leaders and the angle that is spanned by the orbital
segment of these leaders.

Proof. This lemma directly follows from Observation 4.3 and the key point that the placement
of one label not only determines the placement of others but also their port positions. J

With this, we state a method of solving the four problems C🔑O🔒SA🔒 and by extension
C🔑O🔒SBarsA🔑

Bars (recall Observation 3.1). By Lemma 4.4 the exact position of the port of the
inner-most feature p1 is the only degree of freedom when choosing a labeling. By Lemma 4.4,
we immediately obtain the angle θ1 spanned by its orbital segment. By Lemma 4.4, we
likewise obtain all angles θ2, . . . , θn of all the other leaders. Therefore we can express the
functions g(p2, θ2), . . . , g(pn, θn) all as piecewise linear functions of θ1, which consist of
exactly two linear pieces. The sum over all of these functions is therefore a piece-wise linear
uni-variate function and we can find the minimum of it in O(n) time.

To guarantee that a solution (if it exists) found in this way is crossing free we compute an
admissible range Ii,j for θ1, s.t., if θ1 ∈ Ii,j the leaders of pi and pj are crossing free; see Figure 6.
Ii,j is one continuous interval and therefore we can in O(n2) time determine all ranges as
well as their (also continuous) intersection if it exists. Then we either restrict our search for a
minimum to this intersection or – if the intersection is empty – know that no solution exists.

4.2 Free Order.
When the label order is not locked, we get problem variants in C🔑O🔑SA. We will present in
Section 4.2.1 a polytime algorithm for uniform labels (or more specifically uniformly spaced
ports, i.e., the problems in C🔑O🔑SBarsABars). However for most variants with non-uniform labels
the problem turns out to be NP-hard (Section 4.2.2).

4.2.1 An algorithm for uniformly spaced ports
We will use a reduction of some of these problems to a non-circular variant called Boundary
Labeling [5]. In particular we use the following lemma.

I Lemma 4.5. In any (crossing-free) labeling of an instance of a problem in C🔑O🔑SA, there
exists a point b ∈ B, s.t., db does not intersect any leader, where d is the center of D.
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Figure 6 Two clockwise leaders whose ports are rotated, s.t., (a) the length of the orbital segment
of pj is 0, (b) the leaders are non intersecting, (c), the radial segment of pj contains pi and (d) the
leaders intersect. The admissible range of θ is shown in blue.

Proof. Let x be the smallest angle between two points, two ports, or a point and a port in
an optimal labeling L (measured with 0 as the center). Consider the radial segment of the
leader of the inner-most feature p1, and assume w.l.o.g. that the orbital segment is clockwise.
Set b′ to be ξ(p1) but rotate it clockwise by x/2. Since the leader of p1 does not intersect
any other leader and the next feature or port is at least at an angle x in clockwise position
from ξ(p1), the segment db′ must now be crossing free. J

The previous lemma argues the existence of this splitting line in any labeling. Next, we
state that we only need to consider O(n2) possibilities for such a line.

I Lemma 4.6. For any problem in C🔑O🔑SBarsABars there are only n2 possibilities for the port of
the inner-most feature.

Proof. First note that if we can guarantee that a port in an optimal labeling is an intersection
of B and a line through the center d of D and a feature, then we only need to consider all n

such intersection points together with n − 1 equally distributed points around B as ports.
Assume that L is an optimal labeling, where no port is such an intersection point. Now

consider a small rotation of all ports clockwise, which does not change the order of labels and
does not introduce any intersections. If such a rotation is not possible, the radial segment of
a clockwise leader already contains another feature and therefore its port was an intersection
point. If this rotation decreases the total leader length, then L was not optimal. If the
leader length stays the same, we can continue the rotation until either the orbital segment of
a counter-clockwise leader reaches length 0 or the radial segment of a leader hits another
feature. In both cases its port is an intersection point. If the leader length increases, we
rotate counter-clockwise. Again if now the total leader length decreases or stays the same,
the arguments above apply. Assume therefore that the total leader length again increases.
Since by Observation 4.1 the change in leader length is linear in θ, there must be a single
leader that increases its length in both rotation directions, which implies that its orbital
segment has length 0 in L.

Therefore in any optimal labeling, at least one port is an intersection point. By considering
all n possible points, which each define a set of n ports we obtain at most n2 possibilities
for the port of the inner-most feature. J

The Boundary Labeling problem takes as input a set of features, which are entirely to
the left of a straight vertical line V . The goal is to find a placement of uniformly sized labels
along this line, s.t., every feature can be connected to one label with a po-leader, which is
a piecewise linear line segment starting at the feature, continuing for some amount vertically
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X

(a) Instance Orbital
Boundary Labeling

α4 α40

0

2π

n
2π

n
2π r4

r4

(b) Construction of new instance of
Boundary Labeling

(c) Solution Bound-
ary Labeling

Figure 7 Based on an instance (a) of Orbital Boundary Labeling and a cutting line we
use an appropriate mapping to construct an instance of Boundary Labeling, whose solution (c)
corresponds to the solution of Orbital Boundary Labeling.

(parallel to V ) and then turning 90○ towards the line and continue horizontally until it meets V .
For any feature p and any point v ∈ V , let bad(p, v) be a function, which provides the ’badness’
of a po-leader connecting p and v. A labeling, which optimizes an arbitrary badness function
bad(p, v) can be computed in O(n3) time [5]. In the next lemma we explain how we obtain an
instance of Boundary Labeling based on an instance of Orbital Boundary Labeling.

I Lemma 4.7. Given a port ξ1 for the inner-most feature p1, we can reduce C🔑O🔑SBarsABars to
an instance of po-Boundary Labeling [5].

Proof. The reduction is shown in Figure 7. Let `c be a line segment from X to ξ1. Note
that, if we remove the leader of p1, `c does not intersect any leader of a leader-length optimal
labeling. For any feature p ∈ P , let αp = ]ξ1Xp, i.e., the size of the clockwise angle between
ξ1 and p centered at X. Let rp = ∣Xp∣, i.e., the distance of p to the center of D. For every
feature p ∈ P we create a feature p′ = (rp, αp). Note that the visualization in Figure 7 is being
drawn top to bottom and therefore technically uses the coordinates (rp, 2π −αp), which is of
course equivalent up to symmetry. Finally we place the vertical line segment V of length
(n − 1)2π, with its lowest point at (n/2π, 0).

Now the length of the radial segment of an orbital-radial leader connecting p to a point
b ∈ B in our problem is equal to the length of the orthogonal part of the po-leader connecting
p′ to a point v ∈ V . The relation between the length of the orthogonal part of the po-leader
and the length of the orbital segment of the or-leader is more complicated. The length of the
orthogonal part of the po-leader is simply the difference in y-coordinate between p′ and v.
Note that we mapped the clockwise angle of a point relative to `c to the y-coordinate of p′.
However, the length of the circular segment of the or-leader is dependent on the distance of
p to X, i.e., two or-leaders whose circular segments span the same angle can have different
lengths. Specifically the length of a circular segment in an or-leader of a feature p is exactly
rpθp. Therefore we define our badness function simply as bad(p, v) = n/2π − r + r(∣θp − y(v)∣),
where y(v) is the y-coordinate of v1. J

I Theorem 4.8. Any problem in C🔑O🔑SBarsABars can be solved exactly in O(n5).

1 It should be noted that the restriction of port placement on V to a specific range can be encoded in this
badness function too, by setting the value of any leader that would exceed the permitted range to ∞.
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Figure 8 Visualization of the reduction. The two points pU and pD are placed close two the
boundary (a) and all points p1, . . . , pn are placed in the very small red circle. A zoomed in picture
of the red circle is shown in (b).

Proof. This theorem follows immediately by applying the reduction of Lemma 4.7 to the
instance of C🔑O🔑SBarsABars and each one of the at most O(n2) possible ports of the innermost
feature point (Lemma 4.6) and afterwards solving each of the resulting O(n2) instances using
the existing O(n3) algorithm [5] to obtain a po-labeling minimizing the badness function,
which has a one-to-one correspondence to a leader length minimal or-labeling of our original
instance. J

4.2.2 Non-uniform label sizes are NP-hard.
Finally, we investigate problems without candidate ports, a free order on the labels, and
non-uniform label sizes. We show NP-hardness for the problem variants C🔑O🔑SAlign-CenterABars. The
hardness of C🔑O🔑SAlign-CenterA🔒

Bars extends to C🔑O🔑SAlign-CenterA🔒

Align-Center , while C🔑O🔑SAlign-CenterA🔑

Align-Center remains open.

I Theorem 4.9. Given an instance of C🔑O🔑SAlign-CenterA🔑

Bars , C🔑O🔑SAlign-CenterA🔒

Bars or C🔑O🔑SAlign-CenterA🔒

Align-Center together with
k ∈ R it is (weakly) NP-hard to decide if there exists a labeling L with a total leader length of
less than k.

Proof. The reduction is from Partition, where we are given a set X of n integers with
S = ∑x∈X x and need to decide if X can be partitioned into two sets X1 and X2, s.t.,
∑x∈X1 x = ∑x∈X2 x = S/2. For the reduction we place for every xi ∈X a feature pi = (0, i

4πn2 ).
Additionally we place two fetures pU = (0, r) and pD = (0,−r), where r > S+2

4π
. We define

λ(pi) = xi for all 1 ≤ i ≤ n and λ(pU) = λ(pD) = 1. Note that ∑n
i=1 λ(pi)+λ(pU)+λ(pD) = S+2

and the radius of the enclosing disk is therefore (S + 2)/2π.
Any feature pi, s.t., 1 ≤ i ≤ n is contained in a disk of radius 1 centered at the origin. Let

o(i) and r(i) be the orbital and radial part of γpi

L , respectively. Note that the sum over all
r(i) is equal in all labelings. Let this sum be equal to Lradial. Further note that for any pi,
o(i) < 1/2n. Therefore the sum of length over all o(i) is smaller than 1/2 in all labelings.
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Figure 9 Three rotations for case C🔒O🔒SA🔒. The highlighted feature is the first that is placed
and we iteratively test every port candidate. Due to the fixed order the other leaders are directly
obtained.

For the problem variants C🔑O🔑SAlign-CenterA🔑

Bars and C🔑O🔑SAlign-CenterA🔒

Bars , in any labeling L the port ratios
ρL(pU), and ρL(pD) are necessarily equal. For the variant C🔑O🔑SAlign-CenterA🔒

Align-Center port ratios are
described as part of the input and we define them, s.t., ρL(pU) = ρL(pD).

Assume there exists a partition of X into two sets X1, X2, s.t., ∑x∈X1 x = ∑x∈X2 x.
We now make three observations. First, there exists a labeling L in which the length
of the orbital part of γpU

L and γpD

L is equal to 0 and therefore γpU

L and γpD

L are straight
lines. Second, in L both spaces between the labels of pU and pD are equally spaced, i.e.,
∣ ̂eL(pU)sL(pD)∣ = ∣ ̂eL(pD)sL(pU)∣, since ρL(pU) = ρL(pD). Third, in a labeling L′, in which
the length of the orbital part of γpU

L or γpD

L is not equal to 0, the sum of the length of the
orbital parts of γpU

L′ and γpD

L′ (and therefore the sum over the lengths of all orbital parts of
leaders in L′) is at least 2π

S+2 ⋅
S+2
4π
= 1

2 . This is because the difference between ̂eL′(pU)sL′(pD)
and ̂eL′(pD)L′(pU) is at least 1 (since the label sizes are integers).

Therefore the sum over all leader lengths in L is less than 1/2 +Lradial, while in L′ it is
at least 1/2 +Lradial and L′ can never be optimal. Finally we set k = 1/2 +Lradial.

Assume now that X can be partitioned into two subsets X1, X2, s.t., ∑x∈X1 x = ∑x∈X2 x.
Then we know that the labels can be equally partitioned and the leaders of pU and pD can
be straight lines. Therefore the total sum of leader lengths is less than k. Conversely assume
that no such partition exists. Then the leaders of pU and pD must together always contain
orbital segments of length at least 1/2 and the total sum of leader lengths is at least k,
concluding the proof. J

5 Locked Port Candidates

Here we investigate the problem set C🔒OSA. Recall that we are given a set C of candidate
positions for the ports. There are 2n∣C ∣ possible leaders: each of the n features can connect
to each port candidate in C, via a clockwise or counter-clockwise or-leader.

5.1 Locked Order.
If we have a locked order and locked port ratios, i.e., C🔒O🔒SA🔒 the placement of a single
label determines the position of all other labels. Therefore it is sufficient to place the first
label with its port coinciding with one candidate (O(∣C ∣) possibilities) and then check in O(n)
time if the ports of the remaining labels placed in order of O also coincide with candidates;
see Figure 9. To ensure that for each such choice of candidate port no leaders overlap, we can
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Figure 10 Case C🔒O🔑SBarsA🔒

Bars . Each feature p1, ⋯, p6 and port candidate c1,⋯, c12(left) introduces
a vertex in the weighted complete bipartite graph (right). An edge in the bipartite graph corresponds
to a leader and is weighted with the leader’s length.

naively check for each leader whether it overlaps with any of the other leaders in O(n) time,
or O(n2) time in total. Therefore we can in O(n2∣C ∣) time compute a leader length optimal
labeling or decide that no labeling exists given the port candidates. By Observation 3.1, the
result of C🔒O🔒SBarsA🔒

Bars extends to C🔒O🔒SBarsA🔑

Bars .

5.2 Free Order.

Now we consider the problem C🔒O🔑SBarsA🔒

Bars (equivalent to C🔒O🔑SBarsA🔑

Bars by Observation 3.1).
We can create a weighted complete bipartite graph G between P and C (recall that n ≤ C)
using the length of the leader between a feature p ∈ P and a potential port c ∈ C as the
weight of the edge (p, c); see Figure 10. Then a minimum weight bipartite matching in G

corresponds to a leader-length minimal labeling. Such a matching in a bipartite graph with
∣V ∣ vertices and ∣E∣ edges can be computed in O(∣V ∣2 log ∣V ∣ + ∣V ∣∣E∣) time [8]. In our case
∣V ∣ = n + ∣C ∣ and ∣E∣ = n∣C ∣ and n ≤ ∣C ∣ (otherwise no solution exists). Therefore the runtime
is O(n∣C ∣2). We know by Lemma 3.2, that such a labeling is crossing free and therefore the
optimal solution.
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