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SUFFICIENT CONDITIONS FOR SOLVABILITY OF

OPERATORS OF SUBPRINCIPAL TYPE

NILS DENCKER

LUND UNIVERSITY

Abstract. In this paper we show that condition Subr(Ψ) on the subprincipal symbol
is sufficient for local solvability of pseudodifferential operators of real subprincipal type.
These are the operators having real principal symbol which vanish on an involutive
manifold where the subprincipal symbol is of principal type. This condition has been
shown in [5] and [6] to be necessary for local solvability of pseudodifferential operators
of real subprincipal type.

Acknowledgement

This project was partly funded by the Swedish Research Council grant 2018-04228.

1. Introduction

In this paper we shall study the local solvability of classical pseudodifferential operators

P ∈ Ψm
cl , which are given by an asymptotic expansion pm(x, ξ)+pm−1(x, ξ)+ . . . of terms

pm−j(x, ξ) homogeneous of degree m − j in ξ for j ∈ N, where pm = p is the principal

symbol. We are going to study operators which are not of principal type, i.e., when the

principal symbol p vanishes of at least order 2, in particular the sufficiency in the case

when the principal symbol is real and has involutive double characteristics. But we will

also assume that the operator is of subprincipal type, so that the subprincipal symbol of

the operator is of principal type, see Definition 1.9.

The definition that P is locally solvable at a compact subset of a manifold K ⊆ X is

that the equation

(1.1) Pu = v

has a local solution u ∈ D′(X) in a neighborhood of K for any v ∈ C∞(X) in a set of

finite codimension. We can also define microlocal solvability of P at any compactly based

cone K ⊂ T ∗X, see Definition 1.10.
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For classical pseudodifferential operators P ∈ Ψm
cl which are of principal type, local

solvability is equivalent to condition (Ψ) on the principal symbol p, i.e.,

(1.2) Im ap does not change sign from − to +

along the oriented bicharacteristics of Re ap when Re ap = 0

for any 0 6= a ∈ C∞(T ∗X), see [3] and [9]. The oriented bicharacteristics are the positive

flow of the Hamilton vector field HRe ap 6= 0 on which Re ap = 0, these are also called

semibicharacteristics of p. Observe that if condition (Ψ) is satisfied on a set, then it is

trivially satisfied on any subset.

For operators which are not of principal type, the invariant subprincipal symbol

(1.3) ps = pm−1 +
i

2

∑

j

∂xj
∂ξjp

becomes important. There are several conditions corresponding to condition (Ψ) on the

subprincipal symbol, several necessary conditions for solvability are known, but not many

sufficient conditions.

One of the earliest results are by Mendoza and Uhlman [16], who studied the case

when principal symbol is equal to a product p = p1p2 with pj of real principal type

with linearly independent differentials dp1 and dp2. Thus the double characteristic set

Σ2 = {p1 = p2 = 0} is a intersection of two transversal hypersurfaces. In this case, they

proved that P is not solvable if the imaginary part of the subprincipal symbol ps changes

sign on the bicharacteristics of p1 or p2 on Σ2. These are the limits of the characteristics

of the principal symbol at the double characteristic set Σ2. They proved in [17] that P

is solvable if the imaginary part of the subprincipal symbol ps does not vanish on the

double characteristics, thus there are no sign changes.

Mendoza [18] generalized the necessary condition to the case when the principal symbol

is real, vanishes of second order on an involutive submanifold where it has an indefinite

Hessian with rank equal to the codimension of the manifold. Then Hessian gives well-

defined limit bicharacteristis on the submanifold, and P is not solvable if the imaginary

part of the subprincipal symbol changes sign on any of these limit bicharacteristics.

There are several other necessary condition for solvability of operators that are not

of principal type corresponding to condition (Ψ) on operators of principal type. The

following one generalizes Mendoza’s and Uhlmann’s necessary conditions for solvability.

Example 1.1. A necessary condition on the subprincipal symbol for solvability of op-

erators with real principal symbol p vanishing of at least second order on an involutive
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submanifold Σ2 is condition Lim(Ψ):

(1.4) Im ps does not change sign from − to + on the limit bicharacteristics of p on Σ2

which follows from the necessary condition (2.9) of [5].

This condition is invariant under symplectic changes of variables and multiplication

with nonvanishing real factors, since a negative factor changes both the direction of the

limit bicharacteristic and the sign of the imaginary part. Thus, it is invariant under

conjugations of the operator with Fourier integral operators with real principal symbols.

Observe that this is a condition on the sign changes of Im ps at a (possibly empty) subset

of directions on the leaves of Σ2. The sufficient conditions that we are going to use will

exclude any sign changes of Im ps on the leaves of Σ2. But even this stronger condition is

not sufficient, one also needs conditions on the imaginary part of the subprincipal symbol

in the direction of the bicharacteristics if the real part of the subprincipal symbol. For

that, the operator has to be of subprincipal type, which means that the subprincipal

symbol is of principal type, with Hamilton vector field that is tangent to Σ2 at the

characteristics, see Definition 2.2 in [6] or Definition 1.9 in this paper.

Example 1.2. A necessary conditions for solvability for operators of subprincipal type

for involutive Σ2 is given by Definition 2.4 in [6]. It is condition Sub(Ψ) which is Sub(Ψ)

on subprincipal symbol ps on Σ2:

(1.5) Im aps does not change sign from − to +

on the oriented bicharacteristics of Re aps when Re aps = 0 on Σ2.

for any 0 6= a ∈ C∞. It is known that this condition is invariant under symplectic changes

of variables and multiplication with nonvanishing factors, since the subprincipal symbol

then only get multiplied with these factors.

Observe that condition (1.5) is empty if ps vanishes of second order, so for this condition

we need that the operator is of subprincipal type, see Definition 1.9.

A stronger necessary condition for solvability involves the sign changes on the imaginary

part of the subprincipal symbol on a larger set of curves on the double characteristic set,

actually on the limits of the bicharacteristics of the real part of the refined principal

symbol

(1.6) pr = p+ ps
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where ps is the subprincipal symbol given by (1.3), see Theorem 18.1.33 in [10]. This

symbol is invariant under conjugation with elliptic Fourier integral operators, and multi-

plication with a(x,D) ∈ Ψ0 gives the refined principal symbol apr modulo terms in Sm−1

vanishing of order 1 on Σ2. In fact, the refined principal symbol of a(x,D)P (x,D) is

apr +
i
2
Hpa modulo Sm−2.

Example 1.3. A necessary condition for solvability for operators of subprincipal type

with principal symbol vanishing of second order on Σ2 is Sub2(Ψ). This condition is

given by Definition 2.6 in [7] and is condition (Ψ) on the symbol

(1.7) ps,2 = J2(p) + J0(pm−1) = J2(p) + ps

where J2(p) equal to the 2:nd jet of p at Σ2.

This condition is invariant under symplectic changes of variables and multiplication

with nonvanishing factors by Remark 2.3 in [7], since then ps,2 gets multiplied with a

nonvanishing factor.

Observe that this definition gives conditions on the sign changes of Im ps,2 on the limits

of the bicharacteristics of Re ps,2 at Σ2, which are the limits of of the bicharacteristics of

Re pr, see (1.19). Condition Sub2(Ψ) gives (1.4) and (1.5), but the directions of the limit

characteristics depend on the sign of Re ps, see the following example.

Example 1.4. If p = |ξ′|2 − |ξ′′|2 with (ξ′, ξ′′) ∈ R
n ×R

m, then

Hp = 2(ξ′ · ∂x′ − ξ′′ · ∂x′′) = 2|ξ|(θ′ · ∂x′ − θ′′ · ∂x′′) |θ| = 1

which gives all directions in x when ξ → 0. If we take the limit only when pr = 0, i.e.,

when p = −Re ps, then we get the limit bicharacteristics θ′ · ∂x′ − θ′′ · ∂x′′ with |θ′| > |θ′′|
when Re ps < 0, the ones with |θ′| < |θ′′| when Re ps > 0 and all directions in R

n ×R
m

when Re pr = 0.

Thus, when Re ps = 0 we may obtain that the sign of Im ps,2 = Im ps is constant on the

leaves of Σ2 when Re ps = 0, but by Example 1.5 that is not enough to get solvability.

Observe that we shall assume that Re pr is constant on the leaves by (1.13).

Also observe that the necessity of the conditions in Examples 1.1–1.3 only hold under

some additional conditions on the symbol, for example finite order of the sign change.

For the sufficiency, it is not enough that Sub(Ψ) holds when ps = 0, by the following

example.

Example 1.5. Consider the PDO

(1.8) P± = (1 + t2)∆x +Dt ± itDt
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with symbol (1 + t2)|ξ|2 + τ ± itτ = (1 + t2)|ξ|2 + (1 ± it)τ . This operator satisfies the

condition Lim(Ψ) by (1.4) and Sub(Ψ) by (1.5) since Im ps = ±tτ = 0 when Re ps = τ =

0. But multiplication by (1±it)−1 = (1∓it)/(1+t2) gives the operator Dt+(1∓it)∆x, and

conjugation with the Schrödinger kernel exp(±it∆x) gives the operator Q∓ = D1 ∓ it∆x.

Here Q+ is the Mizohata operator which is a standard example of an unsolvable operator,

and Q− is solvable, since u(t, x) = i
∫ t

0
exp((s2−t2)∆x/2)f(s, x) ds solves Q−u = f ∈ C∞

0 .

Observe that the condition Lim(Ψ) in Example 1.1 does in general not imply that Im ps

has constant sign on the leaves of Σ2.

Example 1.6. If the principal symbol of P is Dx1
Dx2

, then the leaves of Σ2 have di-

mension 2. Divide the leaves into a checkerboard and index the squares with (j, k) ∈ Z
2.

Denote the squares with index (2j, 2k) with S+ and the ones with index (2j + 1, 2k + 1)

with S− and the rest with S0. If Im ps > 0 in the interior of the squares in S+, Im ps < 0

in the interior of the squares in S− and Im ps = 0 on the squares in S0, then Im ps has

constant sign along any x1 and x2 lines, but not on the whole plane.

The conditions on P ∈ Ψm
cl in the present paper will be the following. Let p be the

real principal symbol, Σ = p−1(0) be the characteristics and Σ2 = { p = |dp| = 0 } be the

double characteristics. We assume that Σ2 is a nonradial involutive submanifold and that

p is real and vanishes of exactly second order at Σ2 so that

(1.9) Hess p is nondegenerate on Σ2

This implies that p is of real principal type on Σ1 = Σ \Σ2 in a sufficiently small conical

neighborhood of Σ2, since it cannot vanish of second order on Σ1. Also, Hess p
∣∣
Σ2

has

locally constant rank and index. That Σ2 is nonradial means that if a function vanishes

on Σ2 then its Hamilton vector field does not have the radial direction on T ∗X, which is

a generic condition.

Remark 1.7. The invariant condition is that p is proportional to a real function. This

means that the quotient q = Im p/Re p, which is defined where Re p 6= 0, can be extended

to a C∞ function with values on the extended real line R, i.e., either q or q−1 is smooth.

In fact, if q ∈ C∞ then p = (1 + iq) Re p and if q−1 ∈ C∞ then p = (q−1 + i) Im p.

In the following, we will assume that P is on the form so that the principal symbol p

is real valued. In the case when p is not proportional to a real function, condition (Ψ) on

the principal symbol has to be satisfied on Σ1 since it is then necessary for solvability.
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Recall that the subprincipal symbol

(1.10) ps = pm−1 +
i

2

∑

j

∂xj
∂ξjp

is invariantly defined on Σ2 under conjugation with elliptic Fourier integral operators. In

fact, ps is the value of the Weyl symbol of p+ pm−1 at Σ2 modulo Sm−2, see [8].

Remark 1.8. When Σ2 is involutive we may choose symplectic coordinates so that Σ2 =

{ ξ1 = · · · = ξk = 0 } and then the subprincipal symbol ps = pm−1 at Σ2.

In fact, since ∂x ∈ TΣ2 we find that ∂xp vanishes of second order on Σ2. If C is

a pseudodifferential operator with principal symbol c = σ(C), then the value of the

subprincipal symbol of the composition CP is equal to cps +
i
2
Hpc = cps on Σ2. Observe

that the subprincipal symbol is complexly conjugated when taking the adjoint of the

operator, see [10, Theorem 18.1.34].

Since we shall assume that p is real, the real and imaginary parts of ps are invariant

under multiplication with elliptic pseudodifferential operators and conjugation with el-

liptic Fourier integral operators if these operators have real principal symbols. In order

to study the invariants, we need some symplectic concepts.

The symplectic annihilator to a linear space consists of the vectors that are symplec-

tically orthogonal to the space. Let TΣσ
2 be the symplectic annihilator to TΣ2, which

spans the symplectic leaves of Σ2. If Σ2 = { ξ = 0 }, (x, y) ∈ R
d ×R

n−d, then the leaves

are spanned by ∂x. Let

(1.11) T σΣ2 = TΣ2/TΣ
σ
2

which is a symplectic space over Σ2. In these coordinates it is parametrized by

(1.12) T σΣ2 =
{
((x0, y0; 0, η0); (0, y; 0, η)) ∈ TΣ2 : (y, η) ∈ T ∗

R
n−d
}

Thus the fiber is isomorphic to the symplectic manifold T ∗
R

n−d with (x0, y0; 0, η0) =

w0 ∈ Σ2 as a parameter.

Definition 1.9. If the principal symbol is real valued, then we say that the operator P is

of real subprincipal type if the following conditions hold:

(1.13) HRe ps ⊂ TΣ2

which means that dRe ps
∣∣
TL

= 0, and

(1.14) dRe ps
∣∣
TσΣ2

6= 0
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so that HRe ps is transversal to the leaves and we shall assume that it does not have the

radial direction. The bicharacteristics of Re ps with respect to the symplectic structure of

Σ2 are called the subprincipal bicharacteristics for any value of Re ps.

This definition is invariant under symplectic changes of variables and but not by mul-

tiplication with nonvanishing real factors when Re ps 6= 0. But it is invariant by multi-

plication with nonvanishing real factors that are constant on the leaves of Σ2. When the

coordinates are given as in (1.12), we find from (1.13) that ∂x Re ps = 0 on Σ2 and from

(1.14) that ∂η Re ps 6= 0 or ∂y Re ps 6‖ η on Σ2. Thus it follows that

(1.15) Re ps is of real principal type

and thus has simple zeroes. In [6, Definition 2.1] the definition was that P is of sub-

principal type if Definition 1.9 hold with Re ps replaced with ps, but only when ps = 0,

which is invariant under multiplication with nonvanishing factors and symplectic changes

of variables. But in that case the principal symbol may not be proportional to a real

symbol ant then Re ps is not well defined.

We shall study the microlocal solvability of the operator P , which is given by the

following definition from [10]. Recall that H loc
(s)(X) is the set of distributions that are

locally in the L2 Sobolev space H(s)(X).

Definition 1.10. If P ∈ Ψm
cl and K ⊂ T ∗X is a compactly based cone, then we say that

P is microlocally solvable at K if there exists an integer N so that for every f ∈ H loc
(N)(X)

there exists u ∈ D′(X) such that K
⋂
WF(Pu− f) = ∅.

Observe that solvability at a compact set M ⊂ X is equivalent to solvability at T ∗X
∣∣
M

by [10, Theorem 26.4.2], and that solvability at a set implies solvability at a subset.

Also, by Proposition 26.4.4 in [10] the microlocal solvability is invariant under conjuga-

tion by elliptic Fourier integral operators and multiplication by elliptic pseudodifferential

operators.

To prove solvability we shall use a priori estimates. Let ‖u‖(k) be the L2 Sobolev norm

of order k, u ∈ C∞
0 . In the following, P ∗ will be the L2 adjoint of P .

Remark 1.11. Let P ∈ Ψm
cl (X) and K ⊂ T ∗X be a compactly based cone, and assume

that there exists ν ∈ R and a pseudodifferential operator A so that K
⋂

WF(A) = ∅ and

(1.16) ‖u‖(−N) ≤ C(‖P ∗u‖(ν) + ‖u‖(−N−n) + ‖Au‖(0)) u ∈ C∞
0 (Y )

Then P is microlocally solvable at K and one can take this N in Definition 1.10.
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Observe that if P ∈ Ψm
cl then there is a loss of ν+m+N derivatives in the estimate (1.16)

compared with the elliptic case. One can have several operators Aj in (1.16) by taking

A = (A1, . . . ) vector valued.

Definition 1.12. We say that P ∈ Ψm satisfies condition Subr(Ψ) if there exists a

homogeneous 0 6= a ∈ S0 such that apr has real principal symbol that vanishes of order 2

at an involutive manifold Σ2 with nondegenerate Hessian, apr is of real subprincipal type

and satisfies condition (Ψ) at the limit Σ2. This means that Im apr does not change sign

from − to + on the limits of the bicharacteristic of Re apr at Σ2.

The refined principal symbol is equal to pr = p + ps by (1.6). Observe that this

condition gives conditions on the sign changes for any value of Re ps, and that is not the

case in Example 1.5. This condition is stronger than the conditions in Examples (1.1)–

(1.3). Observe that the factor a makes this condition invariant under multiplication with

with nonvanishing factors. It is also invariant under symplectic changes of variables,

thus the conditions is invariant under conjugation with Fourier integral operators and

multiplication with elliptic pseudodifferential operators having real principal symbols.

Proposition 1.13. If P ∈ Ψm has real principal symbol that vanishes of order 2 at

an involutive manifold Σ2 with nondegenerate Hessian and is of real subprincipal type,

then P satisfies condition Subr(Ψ) if and only if Im pr = Im ps does not change sign

on the leaves of Σ2 and the sign of Im ps on the leaves do not change from − to + on

the subprincipal bicharacteristics, i.e., the bicharacteristics of Re ps with respect to the

symplectic structure of Σ2 for any value of Re ps, see Definition 1.9.

Here, the sign on the leaves is ±1 if ± Im ps ≥ 0 and Im ps 6≡ 0 on leaf L of Σ2 and

equal to 0 if Im ps ≡ 0 on L, see Definition 4.1. Thus, condition Subr(Ψ) implies the

necessary conditions in Examples 1.1 and 1.2, and it is not hard to show that it implies

the condition Sub2(Ψ) in Example 1.3. In fact, the limits at Σ2 of the Hamilton vector

field of the refined principal symbol only depend on the values at Σ2 of the Hessian of

the principal symbol and the gradient of the subprincipal symbol, see (1.19).

Proof. By multiplying with 〈D〉2−m we assume that P ∈ Ψ2, and we may choose sym-

plectic coordinates so that (x, y) ∈ R
d×R

nd and Σ2 = { ξ = 0 }. By Taylor’s formula we

can write the real principal symbol as

(1.17) p2(x, y; ξ, η) =
∑

jk

ajk(x, y; ξ, η)ξjξk
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where the Hessian {ajk(x, y; 0, η)}jk is nondegenerate near w0 by assumption. We have

that p1 = ps the subprincipal symbol on Σ2 and by extending it we may assume it is

constant in ξ.

Now the Poisson parentheses { ξ,Re ps } ≡ ∂x Re ps ≡ 0 on Σ2 and {x,Re ps } ≡
−∂ξ Re ps ≡ 0. Thus ∂x∂ξ Re ps ≡ 0 which gives ∂x Re ps ≡ 0. Since Re ps is homogeneous

and of principal type, we can thus complete x, ξ and τ = Re ps
∣∣
Σ2

to a symplectic

homogeneous coordinate system (x, t, y; ξ, τ, η) microlocally near w0 ∈ Σ2. We then

obtain that the refined principal symbol of P is equal to

(1.18)
∑

jk

ajk(x, t, y; ξ, τ, η)ξjξk+τ+if(x, t, y; τ, η)+C(x, t, y; ξ, τ, η)·ξ+p0(x, t, y; τ, ξ, η)

modulo terms in S−1, where C homogeneous of degree 0 with values in R
m, f is real and

homogeneous of degree 1 and p0 ∈ S0.

The Hamilton vector field of the real part of the refined principal symbol is given by

(1.19) HRe pr
∼= 2

∑

jk

ajk(x, t, y; 0, τ, η)ξj∂xk
+ ∂t + ReC(x, t, y; 0, τ, η) · ∂x

modulo terms with coefficients that are O((|ξ|2+ |ξ|)/Λ) with Λ =
√
τ 2 + |η|2 in the base

of homogeneous vector fields V = (∂t, ∂x, ∂y,Λ∂τ ,Λ∂ξ,Λ∂η). We get the limit at Σ2 when

|ξ|/Λ → 0.

One limit is when ξ → 0 for fixed Λ and then the limit of (1.19) is equal to ∂t+ReC ·∂x
which gives the subprincipal bicharacteristics. We can also take τ = Λτ0, η = Λη0 and

ξ = Λ1/3θ with |τ0|2 + |η0|2 = |θ| = 1. Since the coefficients ajk and C are homogeneous,

one can write (1.19) as

(1.20) 2Λ1/3
∑

jk

ajk(x, t, y0; 0, τ0, η0)θj∂xk
+ ∂t + ReC(x, t, y; 0, τ0, η0) · ∂x

modulo vector fields in V with coefficients that are O(Λ−1/3). By dividing by λ1/3 and

taking the limit λ→ ∞ we obtain the limit Hamilton vector field

(1.21) Hp2 = 2
∑

jk

ajk(x, t, y0; 0, τ0, η0)θj∂xk

This vector field gives for fixed θ0 = (θ1, . . . , θd) a foliation of the leaves of Σ2. Let

Γ(ξ) with ξ = ̺θ be the flow-out of the Hamilton vector field ̺Hp2 with Hp2 given

by (1.21). Then the Hessian Hess Γ(0) is non-degenerate so the mapping ξ 7→ Γ(ξ) is

a diffeomorphism from |ξ| < c to a neighborhood of the w0 in the leaf through w0 =

(x, t, y; 0, τ0, η0). Since we can take ±ξ we obtain from condition Subr(Ψ) that there can

be no sign changes of f on the leaves of Σ2 near w0.
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We can also take the limit (τ, η) = Λ(τ0, η0) and ξ = ̺ · θ with |τ0|2 + |η0|2 = |θ| = 1

and 0 ≤ ̺≪
√
Λ → ∞. As before, we obtain the limit Hamilton vector field

(1.22) 2
∑

jk

ajk(x, t, y0; 0, τ0, η0)ξj∂xk
+ ∂t + ReC(x, t, y0; 0, τ0, η0) · ∂x

As before, the orbits of (1.19) gives a foliation of Σ2 for fixed θ. When ξ = 0 the

orbit γ0 of (1.19) through w0 = (x0, t0, y0; 0, τ0, η0) is a subprincipal bicharacteristic.

When ξ = ̺θ 6= 0 then the orbits Γ(t, ξ) of (1.19) through w0 with t > 0 form a proper

cone in Σ2 with the subprincipal bicharacteristic in its interior. Now scaling gives that

the Hessian of ξ 7→ Γ(̺t, ξ/̺) at t = 0 is constant in ̺ > 0, so by letting ̺ → 0 we find

for some c > 0 that
⋃

0<̺≤c Γ(̺t, ξ/̺) for |ξ| < c forms a cylindrical neighborhood of the

forward subprincipal bicharacteristic. Thus, we find from condition Subr(Ψ) that if f 6≥ 0

on a leaf in a neighborhood of (t0, y0; 0, τ0, η0) then f ≤ 0 on the leafs in a neighborhood

of (t, y0; τ0, η0) for 0 ≤ t− t0 ≤ c which proves the proposition. �

Remark 1.14. The requirement that condition (Ψ) shall hold on the refined principal

symbol for all values of the real part is only needed when f = Im pr = Im ps depends

on τ = Re ps. In fact, if f does not depend on τ , then by choosing suitable τ so that

Re pr = 0 we can get the same limits at Σ2 of the Hamilton vector field of Re pr as in

the proof of Proposition 1.13. One may of course eliminate the τ dependence of f by the

Malgrange preparation theorem, but that would change the imaginary part of the principal

symbol p, see for example Example 1.5.

The following is the main result of the paper.

Theorem 1.15. Assume that P ∈ Ψm
cl (X) satisfies Subr(Ψ) microlocally near w0 ∈ Σ2,

then P is microolocally solvable near w0 with a loss of 5/2 derivatives by the a priori

estimate (1.16).

Thus, by Example 1.3 condition Subr(Ψ) is both necessary (under additional condi-

tions) and sufficient for local solvability for operators of subprincipal type with principal

symbol that is real and vanishes of exactly second order at a nonradial involutive mani-

fold Σ2.

The solvability with a loss of 5/2 derivatives can be compared with the loss of 2

derivatives when the antisymmetric part of P is bounded. In fact, by using the normal

form (2.1) with f ≡ 0 gives a Schrödinger type operator that is symmetric modulo

bounded operators. By using a multiplier as in Lemma 6.9 one can obtain L2 estimates

with arbitrarily small constants. For small enough constant, these estimates may be

perturbed by any bounded term. This is similar to the case of operators of principal part,
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where the loss of derivatives is 1/2 more when the antisymmetric part if the operator is

unbounded and condition (Ψ) is satisfied.

This paper treats subprincipal type operators with involutive characteristics having

nondegenerate second order vanishing of the principal symbol. For the noninvolutive or

degenerate cases, see [19], [20] and the references there.

To prove Theorem 1.15 we shall use suitable a priori estimate and Remark 1.11. The

proof will occupy most of the remaining paper.

2. The Preparation

As in the proof of Proposition 1.13 we may assume that the operator P ∈ Ψ2
cl(X) is

of second order with real principal symbol, X = R
n and the coordinates are chosen so

that Σ2 = { ξ = 0 }, (x, y; ξ, η) ∈ T ∗(Rd ×R
d−n) microlocally near w0 ∈ Σ2, where x 7→

(x, y0; 0, η0) spans the leaves of the symplectic foliation of Σ2 and d is the codimension of

Σ2. We may multiply P with an elliptic operator of order zero so that the refined principal

symbol satifies condition Subr(Ψ), see Definition 1.12. Thus, we have the operator on the

normal form given by (1.18)

(2.1)
∑

jk

ajk(x, t, y; ξ, τ, η)ξjξk + p1(x, t, y; ξ, τ, η) + p0(x, t, y; ξ, τ, η)

modulo terms in S−1, where { ajk }jk is nondegenerate on Σ2,

(2.2) p1(x, t, y; ξ, τ, η) = τ + if(x, t, y; τ, η) + C(x, t, y; ξ, τ, η) · ξ

with f homogeneous of degree 1, and C and p0 homogeneous of degree 0. By condition

Subr(Ψ) and Proposition 1.13 we find that f does not change sign on the leaves of Σ2

and the sign on the leaves do not change from − to + as t increases by Definition 4.1.

We shall compute the symbol modulo the error terms

(2.3) R = {〈C2ξ, ξ〉+ C1 · ξ + C0 : Cj ∈ S−1}

These are sums of terms that are either in S1 vanishing of second order on Σ2, in S0

vanishing on Σ2 or in S−1. Observe that homogeneous vector fields that are tangent to

Σ2 maps R into itself.

We shall use the Weyl quantization, which has the property that symmetric operators

have real symbols. The Weyl quantization of symbols a ∈ S ′(T ∗
R

n) is defined by:

(2.4) (awu, v) = (2π)−n

∫∫
exp (i〈x− y, ξ〉)a

(
x+y
2
, ξ
)
u(x)v(y) dxdydξ u, v ∈ C∞

0

Observe that Re aw = (Re a)w is the symmetric part and i Im aw = (i Im a)w the antisym-

metric part of the operator aw. Also, if a ∈ Sm
1,0 then a(x,Dx) = bw(x,Dx) modulo Ψm−2

1,0
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where

(2.5) b(x, ξ) = a(x, ξ) +
i

2

∑

j

∂xj
∂ξja(x, ξ)

which gives the subprincipal symbol by [10, Theorem 18.5.10]. The equality (2.5) shows

that a ∈ R if and only if b ∈ R. I

Now by conjugating with eφ ∈ S0 having phase φ(x, t, y; τ, η) that is real and homoge-

neous of degree 0, we may obtain that Im p0 = 0 at Σ2, i.e., Im p0 ∈ R. In fact, we obtain

this by solving the equation

(2.6) ∂tφ(x, t, y; τ, η) + ReC(x, t, y; τ, 0, η) · ∂xφ(x, t, y; τ, η) = Im p0(x, t, y; τ, 0, η)

but this may of course change the values of ImC and Re p0.

Next, we want to reduce to the case ImC = 0 on Σ2. i.e, ImC ∈ R, but that can in

general not be done by conjugation. Instead we shall use symplectic changes of variables

given microlocally by Fourier integral operators. In the following, we shall for simplicity

include the variable t in the y variables, and the variable τ in the η variables. The

variables (y, η) will then parametrize the leaves of Σ2.

Let R
d ∋ x 7→ χ(x, y, η) ∈ R

d, where χ ∈ C∞, homogeneous in η and |∂xχ| 6= 0 and

let

(2.7) Fu(x, y) = (2π)−n

∫∫
ei(〈χ(x,y,η)−z,ξ〉+〈y−w,η〉)u(z, w) dzdwdξdη u ∈ C∞

0

which is an elliptic Fourier integral operator. This correspond to the homogeneous sym-

plectic transformation

(x, y; ∂xχ(x, y, η) · ξ, η + ∂yχ(x, y, η) · ξ) 7→ (χ(x, y, η), y + ∂ηχ · ξ; ξ, η)

which preserves Σ2, thus |ξ| and |η| are preserved modulo multiplicative constants. In

fact, when ξ = 0 we get the mapping (x, y; 0, η) 7→ (χ(x, y, η), y; 0, η) which gives a

homogeneous change of x variables. We put the amplitude of F equal to 1 to simplify

the notation, actually the amplitude only has to equal to 1 near the wave front set of the

kernel of F .

By applying the operator P we find

(2.8) PFu(x, y) = (2π)−n

∫∫
ei(〈χ(x,y,η)−z,ξ〉+〈y−w,η〉)Q(x, y; ξ, η)u(z, w) dzdwdξdη

so PFu = FQu, where

(2.9) Q(x, y; ξ, η) =
∑

α, β∈N

∂αξ ∂
β
ηP (x, y; ∂xχ · ξ, η + ∂yχ · ξ)Mχ

α,β(x, y; ξ, η)/α!β!

with

(2.10) Mχ
α,β(x, y; ξ, η) = Dα

zD
β
we

iχ2(x,y,z,w,η)·ξ
∣∣z=x
w=y



SUFFICIENT CONDITIONS 13

where the phase function

(2.11) χ2(x, y, z, w, η) = χ(z, w, η)− χ(x, y, η)

+ 〈x− z, ∂xχ(x, y, η)〉+ 〈y − w, ∂yχ(x, y, η)〉

vanishes of second order at z = x and w = y, see [10, Th. 18.1.17] or [21, Chapter 7,

Theorem 3.1]. Thus there are no terms with |α|+ |β| = 1 in the expansion of (2.9). Since

we only need the symbols modulo terms in R it suffices to compute the first two terms

of the expansion (2.9).

We obtain from (2.1) by a straighforward computation that

(2.12) Q(x, y; ξ, η) ∼= P (x, y; ∂xχ · ξ, η+ ∂yχ · ξ) + 1

2i

∑

jk

ajk(x, y; 0, η)∂xj
∂xk

χ(x, y, η) · ξ

modulo terms that are in R. In fact, ∂ξajk ∈ S−1, ∂αξ ∂
β
η p2 = O(|η|−1|ξ|) if β 6= 0 and

|α + β| ≥ 2, and ∂αξ ∂
β
η p1 ∈ S−1 if |α + β| ≥ 2.

We shall first simplify by making a change of variables to diagonalize A = {ajk}jk =

Hess p2. Since A is nondegenerate, we can use the spectral projections to obtain either

that A =

(
A+ 0
0 A−

)
or A = A±, where ±A± is positive definite. Then we can use

(±A±)
−1/2 to construct real valued χ(x, y, η) so that (∂xχ·ξ)tA∂xχ·ξ = |ξ′|2−|ξ′′|2 = L(ξ)

has constant coefficients near w0 ∈ Σ2. Here (ξ′, ξ′′) = ξ, and L(ξ) is the real quadratic

form with the polarized bilinear form L(ξ0, ξ). Of course, this may also change the values

of pj for j < 2. But observe that the term homogeneous of order 0 in the expansion (2.12)

of Q is equal to

q0(x, y; ξ, η) = p0(x, y; ∂xχk(x, y, η) · ξ, η + ∂yχ(x, y, η) · ξ)

modulo terms vanishing at Σ2, so we find that Im q0(x, y; 0, η) = Im p0(x, y; 0, η) = 0.

Thus, we may assume that A = L is constant in the following. Next we shall do

another change of symplectic variables to make ImC = 0 at Σ2. Assume that χ =

(χ1, . . . , χd) where χj is parallel to ej for the standard base e1, . . . , ed of Rd, so that we

can write χ = (χ1e1, . . . , χded) with scalar χj. As before, we get the expansion (2.12)

with { ak }jk = A = L.

In order to get the symmetric part of the operator we shall compute the Weyl symbol

of Q which is given by Q̃ ∼= Q + i
2

∑
j ∂xj

∂ξjq2 modulo S0 where

q2(ξ) = L(∂xχ · ξ) = |∂x′χ · ξ|2 − |∂x′′χ · ξ|2 =
ℓ∑

k=1

(∂xk
χ · ξ)2 −

m∑

k=ℓ+1

(∂xk
χ · ξ)2
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is the principal symbol of Q̃, so (2.12) gives

(2.13) Q̃ ∼= q2 + i
m∑

k=1

(
2L(∂xχk, ∂x∂xk

χk)−
1

2
L(∂x)χk

)
ξk + p1(x, y; ∂xχ · ξ, η + ∂yχ · ξ)

modulo S0.

Let q1 be the terms homogeneous of order 1 in the expansion (2.13) of Q̃, then we have

q1(x, y; 0, η) = p1(x, y; 0, η) on Σ2. We find from (2.13) that the ξk derivative of q1 at Σ2

is equal to

(2.14) 2iL(∂xχk(x, y, η), ∂x∂kχk(x, y, η))−
i

2
L(∂x)χk(x, y, η)

+ ∂ξp1(x, y; 0, η) · ∂xχk(x, y, η) + ∂ηp1(x, y; 0, η) · ∂yχk(x, y, η)

Here Im ∂ηp1 = ∂ηf and Im ∂ξp1 = ImC on Σ2. Observe that the terms in q1 vanishing

of second order at Σ2 are in R.

By taking the imaginary part and ignoring the term ∂ηf · ∂yχk for now, we find

∂ξ Im q1(x, y; 0, η) = 0 if for any k we have

(2.15) L(∂x)χk(x, y, η)− 4L(∂xχk(x, y, η), ∂x∂kχk(x, y, η))

− 2 ImC(x, y; η) · ∂xχk(x, y, η) = 0

which is a quasilinear second order system of PDE on the leaves of Σ2 having real co-

efficients. Observe that this system is completely decoupled with one equation for each

χk. As before, we we find that Im q0(x, y; 0, η) = Im p0(x, y; 0, η) = 0. In order to

get a suitable change of coordinates we shall solve system (2.15) in a neighborhood of

w0 = (x0, y0, η0) with initial data χ = 0 and |∂xχ| 6= 0 at w0.

Proposition 2.1. For any vk ∈ R
d, 1 ≤ k ≤ d, the equation (2.15) with data χk = 0 and

∂xχk = vk at w0 = (x0, y0, η0) has a solution χk(x, y, η) ∈ C∞ in a neighborhood of w0.

Proposition 2.1 follows from Theorem A.1 in Appendix A, and shows that this initial

value problem has a C∞ solution χ(x, y, η) = (χ1(x, y, η), χ2(x, y, η) · · · ) near w0 such

that χ(x0, y0, η0) = 0 and ∂xχ(x0, y0, η0) = Id. By restricting χ(x, y, η) to the set |η| = 1

and extending it by homogeneity in η, we obtain a homogeneous change of coordinates

so that ∂ξ Im p1 = ImC = 0 and Im p0 = 0 at Σ2 near w0. Thus we have proved the

following result.

Proposition 2.2. Assume that P ∈ Ψm
cl (X) satisfies the conditions in Theorem 1.15

microlocally near w ∈ Σ2. By conjugation with elliptic Fourier integral operators and

multiplication with symmetric elliptic pseudodifferential operators, we may assume that
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X = T ∗
R

n, the coordinates are (x, t, y; ξ, τ.η) so that Σ2 = { ξ = 0 } and P is on the form

(2.16) P ∼= Dt + Aw + ifw
1

microlocally near w ∈ Σ2 modulo terms with symbols in R given by (2.3). Here A =

A2 +A1 +A0 ∈ S2
cl, Aj ∈ Sj, is real valued, with principal symbol A2 vanishing of second

order at Σ2 with HessA2 nondegenerate on the normal bundle NΣ2, and A1 = 0 at Σ2.

Also, f1 = f + f0 is real and homogeneous of degree 1 where f does not depend on ξ and

f0 = ∂ηf · r · ξ with r ∈ S0. By condition Subr(Ψ) we have that f = f1
∣∣
Σ2

does not change

sign on the leaves of Σ2 and the sign of f on the leaves do not change from − to + as t

increases. Here the sign of f is given by Definition 4.1.

Observe that P in (2.16) is an evolution operator and it is of subprincipal type.

Remark 2.3. The normal form of the L2 adjoint P ∗ is (2.16) with f1 replaced by −f1.
Then P ∗ satisfies condition Subr(Ψ) which gives the opposite conditions on sign changes

as t increases given by (3.3).

3. The microlocal estimate

Next, we shall microlocalize and reduce the proof of Theorem 1.15 to the semiclassical

multiplier estimate of Proposition 3.6 for a microlocal normal form of the adjoint operator.

We shall consider operators given by Proposition 2.2

(3.1) P ∗ ∼= Dt + Aw + ifw(x, t, y;Dt, Dy)

modulo terms with symbols in R given by (2.3). Here f1 = f+f0 is real and homogeneous

of degree 1 where f0 = ∂ηf · r · ξ with r ∈ S0, f does not depend on ξ and

(3.2) A =
∑

jk

ajkξjξk +
∑

j

ajξj + a0

where ajk and aj ∈ S0
1,0 are real and homogeneous of degree 0, and {ajk}jk is symmetric

and nondegenerate.

In the following, we shall assume that P ∗ satisfies condition Subr(Ψ), so that the sign

of f(t, x, y; τ, η) is constant in x and

(3.3) f(t, x0, y0; τ0, η0) > 0 and s > t =⇒ f(s, x, y0; τ0, η0) ≥ 0 ∀ x

so that the sign on the leaves cannot change from + to − as t increases, see Defini-

tion 4.1 for the definition of the sign. Observe that if χ ≥ 0 then χf also satisfies

condition Subr(Ψ), so this condition can be microlocalized.

In order to prove Theorem 1.15 we shall make a second microlocalization using the

specialized symbol classes of the Weyl calculus. We shall therefore recall the definitions
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of the Weyl calculus: let gw be a Riemannean metric on T ∗
R

n, w = (x, ξ), then we say

that g is slowly varying if there exists c > 0 so that gw0
(w − w0) < c implies gw ∼= gw0

,

i.e., 1/C ≤ gw/gw0
≤ C. Let σ be the standard symplectic form on T ∗

R
n, and assume

gσ(w) ≥ g(w) where gσ is the dual metric of w 7→ g(σ(w)). We say that g is σ temperate

if it is slowly varying and there exists C > 0 and N ∈ N so that

gw ≤ Cgw0
(1 + gσw(w − w0))

N ∀ w, w0 ∈ T ∗
R

n

Actually, σ temperate metrics with g ≤ gσ are called Hörmander metrics. A positive real

valued functionm(w) on T ∗
R

n is g continuous if there exists c > 0 so that gw0
(w−w0) < c

implies m(w) ∼= m(w0). We say that m is σ, g temperate if it is g continuous and there

exists C > 0 and N ∈ N so that

m(w) ≤ Cm(w0)(1 + gσw(w − w0))
N ∀ w, w0 ∈ T ∗

R
n.

If m is σ, g temperate, then m is a weight for g and we can define the symbol classes:

a ∈ S(m, g) if a ∈ C∞(T ∗
R

n) and

(3.4) |a|gj(w) = sup
Ti 6=0

|a(j)(w, T1, . . . , Tj)|∏j
1 gw(Ti)

1/2
≤ Cjm(w) ∀ w ∈ T ∗

R
n for j ≥ 0,

which gives the seminorms of S(m, g). If a ∈ S(m, g) then we say that the corresponding

Weyl operator aw ∈ OpS(m, g). For more on the Weyl calculus, see [10, Section 18.5].

Definition 3.1. Let m be a weight for the metric g. We say that a ∈ S+(m, g) if

a ∈ C∞(T ∗
R

n) and |a|gj ≤ Cjm for j ≥ 1.

Observe that by the mean value theorem we find that

(3.5) |a(w)−a(w0)| ≤ C1 sup
θ∈[0,1]

gwθ
(w−w0)

1/2m(wθ) ≤ C ′m(w0)(1+g
σ
w0
(w−w0))

(3N+1)/2

where wθ = θw + (1− θ)w0, since wθ − w0 = θ(w − w0) for some 0 < θ < 1 and

gwθ
(w − w0) . gσwθ

(w − w0) . gσw0
(w − w0)(1 + gσw0

(w − w0))
N

Thus m+ |a| is a weight for g and a ∈ S(m+ |a|, g), so the operator aw is well-defined.

Lemma 3.2. Assume that mj is a weight for gj = hjg
♯ ≤ g♯ = (g♯)σ ≤ gσj ≤ h−1

j g♯ and

aj ∈ S+(mj , gj), j = 1, 2. Let g = g1 + g2 and h2 = sup g1/g
σ
2 = sup g2/g

σ
1 = h1h2, then

(3.6) aw1 a
w
2 − (a1a2)

w ∈ OpS(m1m2h, g)

with the usual expansion of (3.6) in terms in S(m1m2h
k, g), k ≥ 1. We also have that

(3.7) Re aw1 a
w
2 − (a1a2)

w ∈ OpS(m1m2h
2, g)

if aj ∈ C∞ is real and |aj|gjk ≤ Ckmj, k ≥ 2, for j = 1, 2. In that case we have

aj ∈ S(mj + |aj |+ |aj|gj1 , gj).



SUFFICIENT CONDITIONS 17

Proof. As shown after Definition 3.1 we have that mj + |aj| is a weight for gj and aj ∈
S(mj + |aj|, gj), j = 1, 2. Thus aw1 a

w
2 ∈ OpS((m1 + |a1|)(m2 + |a2|), g) is given by

Proposition 18.5.5 in [10]. We find that aw1 a
w
2 − (a1a2)

w = aw with

(3.8) a(w) = E( i
2
σ(Dw1

, Dw2
)) i

2
σ(Dw1

, Dw2
)a1(w1)a2(w2)

∣∣
w1=w2=w

where E(z) = (ez − 1)/z =
∫ 1

0
eθz dθ. Here σ(Dw1

, Dw2
)a1(w1)a2(w2) ∈ S(MH,G) where

M(w1, w2) = m1(w1)m2(w2), Gw1,w2
(z1, z2) = g1,w1

(z1) + g2,w2
(z2) and H2(w1, w2) =

h1(w1)h2(w2) = sup Gw1,w2
/Gσ

w1,w2
so that H(w,w) = h(w). The proof of Theorem 18.5.5

in [10] works when σ(Dw1
, Dw2

) is replaced by θσ(Dw1
, Dw2

), uniformly in 0 ≤ θ ≤ 1

(when θ = 0 we just get the Poisson parenthesis i
2
{a1, a2}). By integrating over θ ∈ [0, 1]

we obtain that a(w) has an asymptotic expansion in S(m1m2h
k, g), which proves (3.6).

If |aj |gjk ≤ Ckmj , k ≥ 2, then we have by Taylor’s formula as in (3.5) that

|aj(w)− aj(w0)| ≤ gw0
(w − w0)

1/2|aj |g1(w0) + C1 sup
θ∈[0,1]

gwθ
(w − w0)m(wθ)

≤ C ′(|aj |g1(w0) +m(w0))(1 + gσw0
(w − w0))

2N+1

|〈T, ∂waj(w)〉 − 〈T, ∂waj(w0)〉| ≤ C2 sup
θ∈[0,1]

gwθ
(T )1/2gwθ

(w − w0)
1/2m(wθ)

≤ C3gw0
(T )1/2m(w0)(1 + gσw0

(w − w0))
(4N+1)/2

thus mj + |aj|+ |aj|gj1 is a weight for gj and clearly aj ∈ S(mj + |aj|+ |aj |gj1 , gj).
Now if a1 and a2 are real, then Re aw1 a

w
2 − (a1a2)

w = aw with

a(w) = ReE( i
2
σ(Dw1

, Dw2
))( i

2
σ(Dw1

, Dw2
))2a1(w1)a2(w2)/2

∣∣
w1=w2=w

where σ(Dw1
, Dw2

)2a1(w1)a2(w2) ∈ S(MH2, G), with the same E, M , G and H as before.

The proof of (3.7) then follows in the same way as the proof of (3.6). �

Remark 3.3. The conclusions of Lemma 3.2 also hold if a1 has values in L(B1, B2) and

a2 in B1 where B1 and B2 are Banach spaces, then aw1 a
w
2 has values in B2.

For example, if { aj }j ∈ S(m1, g1) with values in ℓ2, and bj ∈ S(m2, g2) uniformly in j,

then
{
awj b

w
j

}
j
∈ Op(m1m2, g) with values in ℓ2.

Remark 3.4. For pseudodifferential operators with the Kohn-Nirenberg quantization, we

have by Theorem 4.5 and (4.13) in [8] that a1(x,D)a2(x,D) = a(x,D) with

(3.9) a(x, ξ) = ei〈Dξ,Dy〉a1(x, ξ)a1(y, η)
∣∣y=x
η=ξ

As in the proof of Lemma 3.2 we find that a1(x,D)a2(x,D)− a(x,D) = r(x,D) with

(3.10) r(x, ξ) = E(i〈Dξ, Dy〉)∂ξa1(x, ξ)Dya1(y, η)
∣∣y=x
η=ξ

where E(z) = (ez − 1)/z =
∫ 1

0
eθz dθ.



18 NILS DENCKER

To prove Theorem 1.15 we shall prove an estimate for the microlocal normal form of

the adjoint operator. Since the proof is rather long, we will take it in two steps, and the

first is microlocal estimate. For that, we shall use the symbol classes Sm
1,0 and Sm

1/2,1/2.

Proposition 3.5. Assume that P is as in Proposition 2.2 microlocally near w0 ∈ Σ2

and that t = t0 and x = x0 at w0. Then there exist T0 > 0 and a real valued symbol

bT ∈ S1
1/2,1/2 with homogeneous gradient ∇bT = (∂zbT , |ζ |∂ζbT ) ∈ S1

1/2,1/2 uniformly for

0 < T ≤ T0, (z, ζ) ∈ T ∗
R

n, such that for every N > 0 there exists CN > 0 so that

(3.11) ‖bwTu‖2(−1/2) + ‖Dxu‖2 + ‖u‖2 ≤ CN

(
T Im (P ∗u, bwTu) + ‖u‖2(−N)

)
+ ‖ψwu‖2

for u ∈ C∞
0 having support where |t−t0| ≤ T and |x−x0| ≤ T . Here ψ ∈ S2, w0 /∈ WFψw

and the constants T0, CN and the seminorms of bT only depend on the seminorms of’

the symbols in P .

Proof that Proposition 3.5 gives Theorem 1.15. We shall prove that there exists φ ∈ S0
1,0

such that φ ≥ 0 and φ = 1 in a conical neighborhood of w0 ∈ Σ2, and R ∈ S
3/2
1,0 with

w0 /∈ WFRw so that for any N > 0 there exists CN > 0 such that

(3.12) ‖φwu‖ ≤ CN

(
‖φwP ∗u‖(1/2) + ‖Rwu‖+ ‖u‖(−N)

)
u ∈ C∞

0

Here ‖u‖(s) is the usual L2 Sobolev norm, so by Remark 1.11 we obtain that P is solvable

with a loss of 5/2 derivatives in a conical neighborhood of w0 since w0 /∈ WF(1−φ)w and

m = 2.

We may assume that m = 2 and P ∈ Ψ2
1,0 is on the form in Proposition 2.2 in a conical

neighborhood of w0. Let φ ≥ 0 have support in a smaller conical neighborhood such that

max (|t|, |x|) ≤ T ≤ T0 in supp φ, ψ in (3.11) vanishes on supp φ and φ = 1 in a conical

neighborhood of w0. Then by applying the estimate (3.11) on φwu we obtain for any

N > 0

(3.13) ‖bwTφwu‖2(−1/2) + ‖φwu‖2 + ‖Dxφ
wu‖2 ≤ CN

(
T Im (P ∗φwu, bwTφ

wu) + ‖u‖2(−N)

)

where CN > 0 and bwT ∈ Ψ1
1/2,1/2 is symmetric with homogeneous gradient ∇bT ∈ S1

1/2,1/2.

By Cauchy-Schwarz,

(3.14) | (P ∗φwu, bwTφ
wu) | . ‖P ∗φwu‖2(1/2) + ‖bwTφwu‖2(−1/2)

and ‖P ∗φwu‖2(1/2) ≤ ‖φwP ∗u‖2(1/2)+ ‖[P ∗, φw]u‖2(1/2) where the commutator [P ∗, φw] ∈ Ψ1

with w0 /∈ WF[P ∗, φw].
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Thus, for T small enough, we obtain for any N > 1 the estimate

(3.15) ‖φwu‖2 ≤ ‖bwTφwu‖2(−1/2) + ‖φwu‖2 + ‖Dxφ
wu‖2

≤ CN

(
T‖φwP ∗u‖2(1/2) + T‖[P ∗, φw]u‖2(1/2) + ‖u‖2(−N)

)

This gives the estimate (3.12) with R = T 〈D〉1/2[P ∗, φw] ∈ Ψ3/2 which completes the

proof of Theorem 1.15. �

Next we shall derive a semiclassical estimate for the proof of Proposition 3.5. We shall

assume that the coordinates are chosen as in Proposition 2.2 so that Σ2 = { ξ = 0 }. The

proof involves a second microlocalization near (t0, x0, y0; τ0, 0, η0) = (z0; ζ0) ∈ Σ2 using

the homogeneous metric g = g1,0. Then sup g/gσ = h2 ≤ 1 are constant and |ξ| . h−1 ∼=
〈(τ, η)〉. We have g/h = g♯ ∼= g1/2,1/2 where g♯ = (g♯)σ is constant, Sk

1,0 = S(h−k, g) and

Sk
1/2,1/2 = S(h−k, g♯) for k ∈ R. Observe that now the the symbols of the error terms R

can be written 〈R2ξ, ξ〉+R1 · ξ +R0 where Rj ∈ S(h, g).

Proposition 3.6. Assume that P ∗ ∼= Dt + Aw + ifw
1 with real f1 = f + f0 where f ∈

S(h−1, g) is independent of ξ and satisfies condition Subr(Ψ) in (3.3), f0 = ∂ηf · r · ξ ∈
S(h−1, g) with r ∈ S(1, g) and

(3.16) A =
∑

jk

ajkξjξk +
∑

j

ajξj + a0

where ajk and aj ∈ S(1, g) are real and {ajk}jk is symmetric and nondegenerate, here

0 < h ≤ 1 and g♯ = (g♯)σ are constant. Then there exist T0 > 0 and real valued symbols

bT (t, x, ξ) ∈ S(h−1/2, g♯)
⋂
S+(1, g♯) + S(h−1/2, g) uniformly for any 0 < T ≤ T0 and

|x| ≤ T , so that

(3.17) h1/2
(
‖bwTu‖2 + ‖Dxu‖2 + ‖u‖2

)
≤ C0T Im (P ∗u, bwTu) + ‖Ψwu‖2

when u ∈ C∞
0 has support where |t| ≤ T and |x| ≤ T . Here Ψ ∈ S2, Σ2

⋂
suppΨ = ∅

and C0, T0 and the seminorms of bT only depend on the seminorms of f in S(h−1, g).

Proposition 3.6 will be proved at the end of Section 8.

Proof of that Proposition 3.6 gives Proposition 3.5. First note that in the estimate (3.11),

P ∗ can be perturbed by operators with symbols in R. In fact, if R̃ = 〈R2Dx, Dx〉 +
〈R1, Dx〉 + R0 with Rj ∈ Ψ−1

1,0, then Re bwT R̃ = 〈S2Dx, Dx〉 + 〈S1, Dx〉 + S0 where Sj ∈
Ψ0

1/2,1/2 is continuous on L2. Thus, this term can be estimated by the last two terms in

the left hand side of (3.11) for small enough T .

As before, we shall include τ in the variables η and use the coordinates (z, ζ) ∈ T ∗
R

n.

For the localization, we shall take φ ∈ S0
1,0 such that 0 ≤ φ ≤ 1, φ = 1 in a conical
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neighborhood of w0 ∈ Σ2 such that φ is supported where |ξ| . h−1, Ψ = 0 and P is on

the normal form (2.16). By taking φ(z, ζ) = φ0(z)φ1(ζ) as a product, we obtain that

∂t,xϕ has support where max(|t|, |x|)| ≥ T0 for some T0 > 0.

Next, we shall microlocalize in ζ = (τ, ξ, η) with respect to the homogeneous metric

g = g1,0 with a partition of unity {ϕj(ζ) }j ∈ S0
1,0 = S(1, g) independent of z with values

in ℓ2 such that
∑

j ϕ
2
j = 1, 0 ≤ ϕ≤1 and ϕj is supported where 〈ζ〉 ∼= h−1

j . Then we can

get a partition of unity in a conical neighborhood of w0 by putting φj = φϕj, so that φj is

supported where |ξ| . h−1
j ,
∑

j φ
2
j = φ2 and ∂t,xφj has support where max(|t|, |x|)| ≥ T0.

Since the functions φj are real, we find from the calculus and symmetry that
∑

j φ
w
j φ

w
j =

φwφw + rw where r ∈ S−2 is real valued, which gives ‖φwv‖2 ≤∑j ‖φw
j v‖2+C‖v‖2(−2) for

v ∈ C∞
0 and by continuity we have

∑
j ‖φw

j v‖2 . ‖v‖2. By cutting off, we find that

(3.18) ‖v‖2(−2) .
∑

j

‖h2jφw
j v‖2 + ‖〈D〉−2(1− φ)wv‖2

Since the cut-off functions have values in ℓ2 the calculus gives that the operators that we

obtain from these will have values in ℓ2 (or scalar values after summation) by Remark 3.3.

By possibly shrinking T0 we can also choose real symbols {ψj }j ∈ S0
1,0 with values

in ℓ2, such that 0 ≤ ψj ≤ 1 has support in a g neighborhood of wj of radius 2T0 so that

ψjφj = φj. If T0 is small enough, we may assume that P is on the normal form (2.16)

and g1,0 ∼= g = hg♯ is constant in suppψj , and that there is a fixed bound on number of

overlapping supports of ψj , see [10, Section 18.5]. Then we obtain that Sm
1,0 = S(h−m

j , gj)

and Sm
1/2,1/2 = S(h−m

j , g♯) in suppψj for m ∈ R, where hj ≤ 1, gj = hjg
♯.

The microlocalization of P is Pj = Dt + Aw
j + ifw

j where Aj = ψjA + (1 − ψj)A0,j ∈
S(〈ξ〉2, gj) with A0,j(t, x, y; η, ξ) =

∑
kℓ akℓ(wj)ξkξℓ, f1j = ψjf1 ∈ S(h−1

j , gj) uniformly

in j satisfying condition Subr(Ψ). If the support of ψj is small enough, then the Hessian

∂2ξAj is nondegenerate at Σ2.

Then, by using Proposition 3.6 with Pj and substituting φw
j u in (3.17), we obtain real

bj,T ∈ S(h
−1/2
j , g♯j)

⋂
S+(1, g♯j) + S(h

1/2
j 〈ξ〉, gj) uniformly so that

(3.19) ‖bwj,Tφw
j u‖2 + ‖φw

j u‖2 + ‖Dxφ
w
j u‖2

≤ C0Th
−1/2
j Im

(
P ∗
j φ

w
j u, b

w
j,Tφ

w
j u
)
+ CN‖φw

j u‖2(−N)

for u ∈ C∞
0 having support where max(|t|, |x|) ≤ T ≤ T0. We have P ∗

j φ
w
j = φw

j P
∗
j + Qw

j ,

where

(3.20) Qw
j = [Dt, φ

w
j ] + [Aw

j , φ
w
j ]− i[fw

1j , φ
w
j ] ∈ OpS(h−1

j , gj)

Since the commutator of symmetric operators is antisymmetric, the calculus gives that

ImQj ∈ S(hj〈ξ〉2, gj) when max(|t|, |x|)| ≤ T0 since then ∂t,xφj = 0 which gives [Aw
j , φ

w
j ] =
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∑
kℓ[a

w
kℓ, φ

w
j ]Dxk

Dxℓ
and [Dt, φ

w
j ] = 0. This also gives Dxφ

w
j u = φw

j Dxu when u is sup-

ported where max(|t|, |x|)| ≤ T0. We also have ReQj ∈ S(1, gj) since 〈ξ〉 . h−1
j in

supp φj.

By using the calculus we obtain that φw
j P = φw

j Pj modulo OpS(hNj , gj), ∀N , since

ψjφj = φj. We obtain for any N that

(3.21) ‖bwj,Tφw
j u‖2 + ‖φw

j u‖2 + ‖φw
j Dxu‖2

≤ C0T
(
Im
(
P ∗u,Bw

j,Tu
)
+ h

−1/2
j Im

(
Qw

j u, b
w
j,Tφ

w
j u
))

+ CN‖hNj φw
j u‖2 ∀ j

if u ∈ C∞
0 supported where max(|t|, |x|) ≤ T ≤ T0. Here

Bw
j,T = h

−1/2
j φw

j b
w
j,Tφ

w
j ∈ OpS(h−1

j , g♯j)
⋂

OpS+(h
−1/2
j , g♯j) + OpS(〈ξ〉, gj)

uniformly and by symmetry Bj,T is real. Since φw
j b

w
j,T

∼= (bj,Tφj)
w modulo OpS(h

1/2
j , g♯j)

and ReQj ∈ S(1, gj) we find that {h−1/2
j Imφw

j b
w
j,TQ

w
j }j ∈ OpS(〈ξ〉2, g♯) with values in ℓ2

when max(|t|, |x|)| ≤ T0. Thus we may find ψ ∈ S1 with support outside a conical

neighborhood of w0 so that

∑

j

h
−1/2
j Im

(
Qw

j u, b
w
j,Tφ

w
j u
)
. ‖u‖2 + ‖Dxu‖2 + ‖ψwu‖2

if u ∈ C∞
0 supported where max(|t|, |x|) ≤ T0.

Let bwT =
∑

j B
w
j,T , then by the finite bound on the overlap of the supports we find that

(3.22) ‖bwTu‖2(−1/2) .

∥∥∥∥∥
∑

j

h
1/2
j Bw

j,Tu

∥∥∥∥∥

2

=

∥∥∥∥∥
∑

j

φw
j b

w
j,Tφ

w
j u

∥∥∥∥∥

2

.
∑

j

‖bwj,Tφw
j u‖2 + ‖u‖2(−N)

since 〈Bw
j,Tu,B

w
k,Tu〉 = 0 if |j − k| ≫ 1. Thus, by summing up we obtain

(3.23) ‖bwTu‖2(−1/2) + ‖u‖2 + ‖Dxu‖2

≤ C1

(
T (Im (P ∗u, bwTu) + ‖u‖2 + ‖Dxu‖2 + ‖ψwu‖2) + ‖u‖2(−N) + ‖(1− φ)wu‖2(1)

)

for u ∈ C∞
0 having support where max(|t|, |x|) ≤ T ≤ T0. Here we find that w0 /∈

WFψw
⋃

WF(1 − φ)w which gives (3.11) for small enough T . We also have that bwT =
∑

j h
−1/2
j φw

j b
w
j,Tφ

w
j ∈ Ψ1

1/2,1/2 since φj ∈ S(1, gj) is supported where 〈ζ〉 ≃ h−1
j and bj,T ∈

S(h
−1/2
j , g♯). The homogeneous gradient ∇bT ∈ S1

1/2,1/2 since bj,T ∈ S+(1, g♯) and the

homogeneous gradient is equal to h−1/2 times the gradient in coordinates which are g♯

orthonormal. This finishes the proof of Proposition 3.5. �

It remains to prove Proposition 3.6, which will be done at the end of Section 8. The

proof involves the construction of a multiplier bwT , and it will occupy most of the remaining

part of the paper.
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4. The symbol classes

In this section we shall define the symbol classes we shall use. We shall follow Section 3

in [4] with some changes due to the different conditions and normal forms. We shall study

the subprincipal symbol ps = τ + if1 with f1 = f + f0 where f(t, x, y, τ, η) ∈ S(h−1, g)

and f0 = ∂ηf · r · ξ where ∂ηf · r ∈ S(1, g). The metric is localized and assumed to be

constant, but the result holds in general for σ temperate metrics g ≤ h2gσ.

Since we are going to study the adjoint, we shall also assume that f(t, x, τ, w) ∈
S(h−1, g) is independent of ξ and satisfies condition Subr(Ψ) in (3.3). Here g = g1,0 is

the usual homogeneous metric, x ∈ R
m, (t, τ) ∈ T ∗

R and w = (y, η) ∈ T ∗
R

n−m−1 as in

Section 2. We have that g = hg♯ where g♯ ≤ (g♯)σ, in the case of the homogeneous metric

we have

(4.1) g♯ = (dt2 + |dx|2 + |dy|2)/h+ h(dτ 2 + |dξ|2 + |dη|2)

We shall construct a metric, weight and multiplier adapted to f , so the symbols in this

section will be independent of ξ except for f0, which will be handled as an error term

in the estimates, see Remark 4.8. We shall suppress the ξ variables and assume that

we have choosen g♯ orthonormal coordinates so that g♯ is the euclidean metric so that

g♯(t, x, τ, w) = |(t, x, τ, w)|2. Then we have |f ′| = |f |g♯1 . h−1/2, |f ′′| = |f |g♯2 . 1 and

|f (k)| = |f |g♯k . h−1+k/2 . h1/2 for k > 2. By decreasing h we may obtain that |f ′| ≤
h−1/2 which we assume in what follows. Observe that after the change of coordinates

|∂ηf | = h1/2|∂ηf |g♯ ≤ h1/2|f ′| ≤ 1 and |∂tf | = h−1/2|∂tf |g♯ ≤ h−1/2|f ′| ≤ h−1. The results

in this section are uniform in the sense that they depend only on the seminorms of f

in S(h−1, g).

Since we assume that f = Im pr does not change sign on the leaves of Σ2, we may

have the following definition of the sign of f .

Definition 4.1. If f does not change sign on the leaves L of Σ2, then we define the sign

function

(4.2) sgn(f) =

{±1 if ± f ≥ 0 and f 6≡ 0 on L

0 if f ≡ 0 on L

which is then constant on the leaves of Σ2 such that sgn(f)f ≥ 0.

Let

X+ =
{
(t, τ, w) : ∃ s ≤ t, max

x
f(s, x, τ, w) > 0

}
(4.3)

X− =
{
(t, τ, w) : ∃ s ≥ t, min

x
f(s, x, τ, w) < 0

}
.(4.4)



SUFFICIENT CONDITIONS 23

Observe that by the definition, X± is open in Σ2 and is a union of leaves of Σ2. By condi-

tion Subr(Ψ) we find that ±f(t, x, τ, w) ≥ 0 when (t, τ, w) ∈ X± and that X−

⋂
X+ = ∅.

Let X0 = Σ2 \ (X+

⋃
X−) which is a union of leaves and is relatively closed in Σ2.

Definition 4.2. Let

(4.5) d(t, τ, w) = inf { |(t, τ, w)− (s, σ, z)| : (s, σ, z) ∈ X0 }

be the g♯ distance to X0, it is constant in x and equal to +∞ in the case when X0 = ∅.
We define the signed distance function δ(t, w) by

(4.6) δ = sgn(f)min(d, h−1/2),

where d is given by (4.5) and sgn(f) by Definition 4.1.

We say that a(t, x, τ, w) is Lipschitz continuous if it is Lipschitz with respect to the

metric g♯.

Proposition 4.3. The signed distance function (t, τ, w) 7→ δ(t, τ, w) given by Defini-

tion 4.2 is Lipschitz continuous with Lipschitz constant equal to 1. We also find that

t 7→ δ(t, τ, w) is nondecreasing, δ is constant in x, 0 ≤ δf , |δ| ≤ h−1/2 and |δ| = d when

|δ| < h−1/2.

Proof. Clearly δf ≥ 0, and by the definition we have that |δ| = min(d, h−1/2) ≤ h−1/2 so

|δ| = d when |δ| < h−1/2. Now, it suffices to show the Lipschitz continuity of (t, τ, w) 7→
δ(t, τ, w) locally, and thus locally on ∁X0 when d < ∞. Then d(t, τ, w) is the distance

function to X0 so it is Lipschitz continuous with constant 1.

Next we show that t 7→ δ(t, τ, w) is nondecreasing. In fact, when t increases we can

only go from X− to X0 and from X0 to X+. If (t, τ, w) ∈ X+ then c = δ(t, τ, w) > 0 is the

distance to ∁X+. If there exists ε > 0 so that δ(t + ε, τ, w) < c then there would exists

(s, σ, z) /∈ X+ so that |(t + ε, τ, w)− (s, σ, z)| < c. But then |(t, τ, w)− (s− ε, σ, z)| < c

where (s− ε, σ, z) /∈ X+ which gives a contradiction. By switching t to −t, δ to −δ and

X+ to X− we similarly find that δ < 0 is nondecreasing on X− and δ is of course equal

to 0 on X0. �

Next, we are going to define the metric that we are going to use for f .

Definition 4.4. Let

(4.7) H−1/2 = 1 + |δ|+ |f ′|
|f ′′|+ h1/4|f ′|1/2 + h1/2

and G = Hg♯.
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Remark 4.5. We have that

(4.8) 1 ≤ H−1/2 ≤ 1 + |δ|+ h−1/4|f ′|1/2 ≤ 3h−1/2

since |f ′| ≤ h−1/2 and |δ| ≤ h−1/2. Moreover, |f ′| ≤ H−1/2(|f ′′|+ h1/4|f ′|1/2 + h1/2) so by

the Cauchy-Schwarz inequality we obtain

(4.9) |f ′| ≤ 2|f ′′|H−1/2 + 3h1/2H−1/2 ≤ C2H
−1/2.

which gives that f ∈ S+(H−1, G), see Definition 3.1.

Since the metric G does not depend on the values of f , we shall need a weight to define

the symbol class of f .

Definition 4.6. Let

(4.10) M = |f |+ |f ′|H−1/2 + |f ′′|H−1 + h1/2H−3/2 = |f |+ |f ′|G1 + |f ′′|G2 + h1/2H−3/2

then we have that h1/2 ≤M ≤ C3h
−1 by (4.8).

In the following, we shall simplify the notation and include the variables x, t and τ in

the w variables.

Proposition 4.7. We find that H−1/2 is Lipschitz continuous, G is σ temperate such

that G = H2Gσ and

(4.11) H(w) ≤ C0H(w0)(1 +Gw(w − w0)).

We have that M is a weight for G such that f ∈ S(M,G) and

(4.12) M(w) ≤ C1M(w0)(1 +Gw0
(w − w0))

3/2.

In the case when 1 + |δ(w0)| ≤ H−1/2(w0)/2 we have |f ′(w0)| ≥ h1/2,

(4.13) |f (k)(w0)| ≤ Ck|f ′(w0)|H
k−1

2 (w0) k ≥ 1,

and 1/C ≤ |f ′(w)|/|f ′(w0| ≤ C when |w − w0| ≤ cH−1/2(w0) for some c > 0.

Remark 4.8. The term f0 = ∂ηf · r · ξ ∈ S(h−1, g) in Proposition 3.6 can be written

f0 = r0 · ξ with r0 ∈ S(MH1/2h1/2, G) ⊂ S(1, G) since |∂ηf | ≤ h1/2|f ′|. Now, 〈ξ〉 is not

a weight for g♯ near Σ2 but f0 ∈ S(MH1/2h1/2〈ξ〉, G0) where G0 is given by (7.11).

Since G ≤ g♯ ≤ Gσ we find that the conditions (4.11) and (4.12) are stronger than

the property of being σ temperate (in fact, it is strongly σ temperate in the sense of

[1, Definition 7.1]), and imply that G is slowly varying and M is G continuous. When

1 + |δ| < H−1/2/2 we find from (4.13) that |f ′| > 0 is a weight for G, f ′ ∈ S(|f ′|, G)
and f−1(0) is a C∞ hypersurface. Since that surface does not depend on x we find that
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minxH
1/2 gives an upper bound on the curvature of f−1(0) by (4.13). Proposition 4.9

shows that (4.13) also holds for k = 0 when 1 + |δ| ≪ H−1/2.

Proof. First we note that if H−1/2 is Lipschitz continuous, then

(4.14) H−1/2(w0) . H−1/2(w) + C1|w − w0|

which gives (4.11) since G = Hg♯. Next, we shall show that H
−1/2
1 is Lipschitz continuous.

Since the first terms of (4.7) are Lipschitz continuous, we only have to prove that

|f ′|/(|f ′′|+ h1/4|f ′|1/2 + h1/2) = E/D

is Lipschitz continuous. Since this is a local property, it suffices to prove this when

|∆w| = |w−w0| ≤ 1. Then we have that D(w) ∼= D(w0), in fact D2 ∼= h+h1/2|f ′|+ |f ′′|2

so

D2(w) ≤ C(D2(w0) + |f ′′(w0)|h1/2 + h) ≤ C ′D2(w0)

when |∆w| ≤ 1. We find that
∣∣∣∣∆

E

D

∣∣∣∣ =
∣∣∣∣
E(w)

D(w)
− E(w0)

D(w0)

∣∣∣∣ ≤
|∆E|
D(w)

+
E(w0)|∆D|
D(w)D(w0)

.

Taylor’s formula gives that

(4.15) |∆E| ≤ (|f ′′(w)|+ Ch1/2)|∆w| ≤ CD(w)

when |∆w| ≤ 1. It remains to show that E(w0)|∆D| ≤ CD(w)D(w0)|∆w|, which is

trivial if E(w0) = 0. Else, we have

|∆|f ′′|| ≤ Ch1/2|∆w| ≤ CD2(w0)|∆w|/E(w0) ≤ C ′D(w0)D(w)||∆w|/E(w0)

when |∆w| ≤ 1 since h1/2 ≤ D2/E and D(w0) ≤ CD(w). Finally, we have

h1/4|∆|f ′|1/2| ≤ h1/4|∆E|/(|f ′(w0)|1/2 + |f ′(w)|1/2)

≤ Ch1/4|f ′(w0)|1/2D(w)|∆w|/|f ′(w0)| ≤ CD(w0)D(w)|∆w|/E(w0)

when |∆w| ≤ 1 by (4.15), which proves the Lipschitz continuity.

Next, we study the case when 1 + |δ(w0)| ≤ H−1/2(w0)/2, then H1/2(w0) ≤ 1/2. Then

we find from (4.7) that

(4.16) |f ′′(w0)|+ h1/4|f ′(w0)|1/2 + h1/2 ≤ 2H1/2(w0)|f ′(w0)| ≤ |f ′(w0)|.

which gives |f ′(w0)| ≥ h1/2, |f ′(w0)| ≥ |f ′′(w0)| and that h1/2 ≤ 4H(w0)|f ′(w0)|. When

|w − w0| ≤ cH−1/2(w0) we find from (4.16) by using Taylors formula that

|f ′(w)− f ′(w0)| ≤ |f ′′(w0)|cH−1/2(w0) + C3h
1/2c2H−1(w0) ≤ (c+ 4C3c

2)|f ′(w0)|
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which gives 1/C ≤ |f ′(w)|/|f ′(w0| ≤ C for small enough c > 0. Now (4.13) follows

from (4.16) for k = 2. When k ≥ 3 we have

|f (k)(w0)| ≤ Ckh
k−2

2 ≤ 4Ck3
k−3|f ′(w0)|H

k−1

2 ,

since h1/2 ≤ 4H|f ′(w0)| by (4.16) and h(k−3)/2 ≤ 3k−3H(k−3)/2 by (4.8).

Finally, we shall prove that M is a weight for G. By Taylor’s formula we have

(4.17) |f (k)(w)| ≤ C4

2−k∑

j=0

|f (k+j)(w0)|w − w0|j + C4h
1/2|w − w0|(3−k) 0 ≤ k ≤ 2,

thus we obtain that

M(w) ≤ C5

2∑

k=0

|f (k)(w0)|(|w − w0|+H−1/2(w))k + C5h
1/2(|w − w0|+H−1/2(w))3.

By switching w and w0 in (4.14) we find H−1/2(w)+ |w−w0| ≤ C0(H
−1/2(w0)+ |w−w0|).

Thus we obtain that

M(w) ≤ C6

2∑

k=0

|f (k)(w0)|H−k/2(w0)(1 +H1/2(w0)|w − w0|)k

+ C6h
1/2H−3/2(w0)(1 +H1/2(w0)|w − w0|)3 ≤ C6M(w0)(1 +Gw0

(w − w0))
3/2

which gives (4.12). It is clear from the definition of M that |f (k)| ≤MHk/2 when k ≤ 2,

and when k ≥ 3 we have |f (k)| ≤ Ckh
k−2

2 ≤ Ck3
k−3MH

k
2 since h1/2 ≤ MH3/2 and

h(k−3)/2 ≤ 3k−3H(k−3)/2 when k ≥ 3. �

Proposition 4.9. We have that

(4.18) 1/C ≤M/(|f ′′|H−1 + h1/2H−3/2) ≤ C

When |δ| ≤ κ0H
−1/2 and H1/2 ≤ κ0 for 0 < κ0 ≤ 1/4 we find that

(4.19) 1/C1 ≤M/|f ′|H−1/2 ≤ C1

which implies that f ∈ S(H−1, G) by (4.9).

Proof. First note that when |δ| ∼= h−1/2 we have H−1/2 ∼= h−1/2, which gives M ∼= h−1

and proves (4.18) in this case. If |δ(w0)| < h−1/2, then as before there exists w ∈ f−1(0)

such that |w − w0| = |δ(w0)| ≤ H−1/2(w0). Since f(w) = 0, Taylor’s formula gives that

(4.20) |f(w0)| ≤ |f ′(w0||δ(w0)|+ |f ′′(w0)||δ(w0)|2/2 + Ch1/2|δ(w0)|3.

We obtain from (4.20) and (4.9) that

M ≤ C
(
|f ′|H−1/2 + |f ′′|H−1 + h1/2H−3/2

)
≤ C ′

(
|f ′′|H−1 + h1/2H−3/2

)
at w0,

which gives (4.18) since the opposite estimate is trivial.
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If |δ| ≤ κ0H
−1/2 < h1/2 and H1/2 ≤ κ0 with κ0 ≤ 1/4 then 〈δ〉 ≤ H−1/2/2 so we we

obtain by (4.13), (4.16) and (4.20) that

M ≤ C
(
|f ′|H−1/2 + |f ′′|H−1 + h1/2H−3/2

)
≤ C ′|f ′|H−1/2 at w0.

since h1/2 ≤ 4H|f ′| by (4.16). This gives (4.19) since the opposite estimate is trivial,

which completes the proof of the proposition. �

Proposition 4.10. Let H−1/2 be given by Definition 4.4 for f ∈ S(h−1, g). There exists

positive κ1 and c so that if 〈δ〉 = 1 + |δ| ≤ κ1H
−1/2 at w0 then

(4.21) f = αδ when |w − w0| ≤ cH−1/2(w0)

where 0 ≤ α ∈ S(MH1/2, G), such that α ≥ κ1MH1/2, which implies that δ = f/α ∈
S(H−1/2, G).

Proof. Let κ0 > 0 be given by Proposition 4.9. If κ1 ≤ κ0 and 〈δ〉 ≤ κ1H
−1/2 at w0 then

we find that |f ′(w0)| ∼= M(w0)H
1/2(w0) by (4.19). We may change coordinates so that

w0 = 0. Let H1/2 = H1/2(0) and M =M(0), w = H−1/2z and

F (z) = H1/2f(H−1/2z)/|f ′(0)| ∼= f(H−1/2z)/M ∈ C∞

Now δ1(z) = H1/2δ(H−1/2z) is the signed distance to F−1(0) in the z coordinates which

is constant in x.

We have |F (0)| ≤ C0, |F ′(0)| = 1, |F ′′(0)| ≤ C2 and |F (3)(z)| ≤ C3, ∀ z, by (4.13) in

Proposition 4.7. It is no restriction to assume that the coordinates z = (z1, z
′) are chosen

so that ∂z′F (0) = 0, and then |∂z1F (z)| ≥ c > 0 in a fixed neighborhood of the origin. If

|δ1(0)| = |δ(0)H1/2| ≤ κ1 ≪ 1 then F−1(0) is a C∞ manifold in this neighborhood, δ1(z)

is uniformly C∞ and ∂z1δ1(z) ≥ c0 > 0 in a fixed neighborhood of the origin.

By choosing (δ1(z), z
′) as local coordinates and using Taylor’s formula we find that

F (z) = α1(z)δ1(z) for any x since F = 0 when δ1 = 0. Here 0 ≤ α1 ∈ C∞ and

α1 ≥ C > 0 in a fixed neighborhood of the origin. Thus

f(w) = |f ′(0)|H−1/2α1(H
1/2w)δ1(H

1/2w) = |f ′(0)|α1(H
1/2w)δ(w)

when |w| ≤ cH−1/2. Now α(w) = |f ′(0)|α1(H
1/2w) ∈ S(MH1/2, G) with α ∼= MH1/2

which gives the proposition. �

5. Properties of the symbol

In this section we shall study the properties of the symbol near the sign changes.

We shall follow Section in [4] with some minor changes, and we shall start with a one-

dimensional result.
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Lemma 5.1. Assume that f(t) ∈ C3(R) such that ‖f (3)‖∞ = supt |f (3)(t)| is bounded. If

(5.1) sgn(t)f(t) ≥ 0 when ̺0 ≤ |t| ≤ ̺1

for ̺1 ≥ 3̺0 > 0, then we find

|f(0)| ≤ 3

2

(
̺0f

′(0) + ̺30‖f (3)‖∞/2
)

(5.2)

|f ′′(0)| ≤ f ′(0)/̺0 + 7̺0‖f (3)‖∞/6.(5.3)

Proof. By Taylor’s formula we have

0 ≤ sgn(t)f(t) = |t|f ′(0) + sgn(t)(f(0) + f ′′(0)t2/2) +R(t) ̺0 ≤ |t| ≤ ̺1

where |R(t)| ≤ ‖f (3)‖∞|t|3/6. We obtain that

(5.4)
∣∣f(0) + t2f ′′(0)/2

∣∣ ≤ f ′(0)|t|+ ‖f (3)‖∞|t|3/6

for any |t| ∈ [̺0, ̺1]. By choosing |t| = ̺0 and |t| = 3̺0, we obtain that

4̺20|f ′′(0)| ≤ 4f ′(0)̺0 + 28‖f (3)‖∞̺30/6

which gives (5.3). By letting |t| = ̺0 in (5.4) and substituting (5.3), we obtain (5.2). �

Proposition 5.2. Let f(w) ∈ C∞(Rn) such that ‖f (3)‖∞ <∞. Assume that there exists

0 < ε ≤ r/5 such that

(5.5) sgn(w1)f(w) ≥ 0 when |w1| ≥ ε+ |w′|2/r and |w| ≤ r

where w = (w1, w
′). Then we obtain

(5.6) |f ′′(0)| ≤ 33(|∂w1
f(0)|/̺+ ̺‖f (3)‖∞)

for any ε ≤ ̺ ≤ r/
√
10.

Proof. We shall consider the function t 7→ f(t, w′) which satisfies (5.1) for fixed w′ with

ε+ |w′|2/r = ̺0(w
′) ≤ |t| ≤ ̺1 ≡ 3r/

√
10

and |w′| ≤ r/
√
10 which we assume in what follows. In fact, then t2 + |w′|2 ≤ r2 and

3̺0(w
′) ≤ 9r/10 ≤ 3r/

√
10 = ̺1. We obtain from (5.2) and (5.3) that

|f(0, w′)| ≤ 3

2
∂w1

f(0, w′)̺+ 3̺3‖f (3)‖∞/4(5.7)

|∂2w1
f(0, w′)| ≤ ∂w1

f(0, w′)/̺+ 7̺‖f (3)‖∞/6(5.8)

for ε+ |w′|2/r ≤ ̺ ≤ r/
√
10 and |w′| ≤ r/

√
10. By letting w′ = 0 in (5.8) we find that

(5.9) |∂2w1
f(0)| ≤ ∂w1

f(0)/̺+ 7̺‖f (3)‖∞/6

for ε ≤ ̺ ≤ r/
√
10. By letting ̺ = ̺0(w

′) in (5.7) and dividing with 3̺0(w
′)/2, we obtain

that

(5.10) 0 ≤ ∂w1
f(0, w′) + 2‖f (3)‖∞|w′|2
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when ε ≤ |w′| ≤ r/
√
10 since then ̺0(w

′) ≤ ε + |w′| ≤ 2|w′|. By using Taylor’s formula

for w′ 7→ ∂w1
f(0, w′) in (5.10), we find that

0 ≤ ∂w1
f(0) + 〈w′, ∂w′(∂w1

f)(0)〉+ 5

2
‖f (3)‖∞|w′|2

when ε ≤ |w′| ≤ r/
√
10. Thus, by optimizing over fixed |w′|, we obtain that

(5.11) |w′||∂w′(∂w1
f)(0)| ≤ ∂w1

f(0) +
5

2
‖f (3)‖∞|w′|2 when ε ≤ |w′| ≤ r/

√
10.

By again putting ̺ = ̺0(w
′) in (5.7), using Taylor’s formula for w′ 7→ ∂w1

f(0, w′) but

this time substituting (5.11), we obtain

(5.12) |f(0, w′)| ≤ 6∂w1
f(0)|w′|+ 15‖f (3)‖∞|w′|3 when ε ≤ |w′| ≤ r/

√
10.

We may also estimate the even terms in Taylor’s formula by (5.12):

|f(0) + 〈∂2w′f(0)w′, w′〉/2| ≤ 1

2
|f(0, w′) + f(0,−w′)|+ ‖f (3)‖∞|w′|3/6

≤ 6∂w1
f(0)|w′|+ 91

6
‖f (3)‖∞|w′|3

when ε ≤ |w′| ≤ r/
√
10. Thus, by using (5.7) with ̺ = ε and w′ = 0 to estimate |f(0)|

and optimizing over fixed |w′|, we obtain that

(5.13) |∂2w′f(0)||w′|2/2 ≤ 15

2
|∂w1

f(0)||w′|+ 16‖f (3)‖∞|w′|3

when ε ≤ |w′| ≤ r/
√
10. Thus we obtain (5.6) by taking ε ≤ |w′| = ̺ ≤ r/

√
10 in (5.9)–

(5.13). �

As before, if f ∈ C∞(Rn) then we define the signed distance function of f as δ =

sgn(f)d where d is the Euclidean distance to f−1(0).

Proposition 5.3. Let fj(w) ∈ C∞(Rn) and δj(w) be the signed distance functions of

fj(w), for j = 1, 2. Assume that f1(w) > 0 =⇒ f2(w) ≥ 0. There exists positive c0 and

c1, such that if |δj(w0)| ≤ c0, |f ′
j(w0)| ≥ c1, for j = 1, 2, and

(5.14) |δ1(w0)− δ2(w0)| = ε

then there exist g♯ orthonormal coordinates w = (w1, w
′) so that w0 = (x1, 0) with x1 =

δ1(w0) and

sgn(w1)fj(w) > 0 when |w1| ≥ (ε+ |w′|2)/c0 and |w| ≤ c0 j = 1, 2(5.15)

|δ2(w)− δ1(w)| ≤ (ε+ |w − w0|2)/c0 when |w| ≤ c0.(5.16)

The constant c0 only depends on the seminorms of f1 and f2 in a fixed neighborhood of w0.

Proof. Observe that the conditions get stronger and the conclusions weaker when c0

decreases. Assume that f1 and f2 are uniformly bounded in C∞ near w0. For any
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positive c0 and c1 there exists c2 > 0 so that if |f ′
j(w0)| ≥ c1 and |δj(w0)| ≤ c0, j = 1, 2

then |f ′
j(w)| > 0 for |w − w0| ≤ c2, thus f−1

j (0) is a C∞ hypersurface in |w − w0| ≤ c2.

By decreasing c0 we obtain as in the proof of Proposition 4.10 that there exists c3 > 0

so that w 7→ δj(w) ∈ C∞(Rn) uniformly in |w − w0| ≤ c3, j = 1, 2. We may also choose

z0 ∈ f−1
1 (0) so that |δ1(w0)| = |w0 − z0|, and then choose g♯ orthonormal coordinates so

that z0 = 0, w0 = (δ1(w0), 0) and ∂w′δ1(0) = ∂w′δ1(w0) = 0, w = (w1, w
′). If c0 ≤ c3/3

we find that δj ∈ C∞ in |w| ≤ c4 = 2c3/3. Since sgn(f1(w0)) = sgn(δ1(w0)) we find that

∂w1
f1(0) > 0.

We have that |∂2wδj(w)| ≤ C0 for |w| ≤ c4, j = 1, 2, and ∆(w) = δ2(w)− δ1(w) ≥ 0 by

the sign condition. By [10, Lemma 7.7.2] we obtain that |∂w∆(w)|2 ≤ C1∆(w) ≤ C1ε

when w = w0 by (5.14). This gives

(5.17) |∆(w)| ≤ |∆(w0)|+ |∂w∆(w0)||w − w0|+ C2|w − w0|2

≤ C3(ε+ |w − w0|2) for |w| ≤ c4

which proves (5.16). Since |∂w′δ1(w0)| = 0 we find that |∂w′δ2(w)| ≤ C4(
√
ε+|w−w0|) ≪ 1

when |w − w0| ≪ 1 and ε ≤ 2c0 ≪ 1. Now f2(w) = 0 for some |w| ≤ ε. Thus for c0 ≪ 1

we obtain |∂w′δ2(w)| ≪ 1, which gives that |∂w1
f2(w)| ≥ c5|∂wf2(w)| ≥ c25 > 0 for some

c5 > 0. Since sgn(f2(w1, 0)) = 1 when w1 > 0, we obtain that ∂w1
f2(w) ≥ c6|∂wf2(w)| ≥

c26 when |w| ≤ c6 for some c6 > 0.

By using the implicit function theorem, we obtain bj(w
′) ∈ C∞, so that that ±fj(w) > 0

if and only if ±(w1−bj(w′)) ≥ 0 when |w| ≤ c7 > 0, j = 1, 2. Since f1(0) = |∂w′f1(0)| = 0

we obtain that b1(0) = |b′1(0)| = 0. This gives that |b1(w′)| ≤ C5|w′|2 and proves the

positive part of (5.15) by the sign condition. Observe that the sign condition gives that

b1(w
′) ≥ b2(w

′). Now |δ2(w0)| ≤ |δ1(w0)|+ ε, thus we find −ε ≤ b2(w
′) ≤ b1(w

′) for some

|w′| ≤ C
√
ε ≤ C

√
2c0 ≤ c7 for c0 ≪ 1. This gives b2(w

′) ≤ C5C
2ε and |b′1(w′)| ≤ C6

√
ε,

and we obtain as before that |b′1(w′)− b′2(w
′)| ≤ C7

√
ε. As in (5.17), we find

|b2(w′)| ≤ C8(ε+ |w′ − w′|2) ≤ C9(ε+ |w′|2) for |w| ≤ c7

which proves the negative part of (5.15) and the proposition. �

6. The Weight function

In this section, we shall define the weight m we shall use. We shall follow Section

5 in [4] with some necessary changes because of the different conditions and normal

forms. We shall use the same notation as in Section 4, and let δ(t, τ, w), H−1/2(t, x, τ, w)

and M(t, x, τ, w) be given by Definitions 4.2, 4.4 and 4.6 for f(t, x, τ, w) ∈ S(h−1, hg♯)
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satisfying condition Subr(Ψ) given by (3.3) such that |f ′| ≤ h−1/2. As before, we shall

include τ in w but t will be a parameter.

The weight m will essentially measure how much t 7→ δ(t, w) changes between the

minima of t 7→ H1/2(t, x, w)〈δ(t, w)〉2, which will give restrictions on the sign changes of

the symbol. As before, we assume that we have choosen g♯ orthonormal coordinates so

that g♯(w) is the euclidean metric, and the results will only depend on the seminorms

of f . The following definition uses that t 7→ δ(t, w) is nondecreasing and δ is constant

in x, and assumes that H is only defined in |x| ≤ C.

Definition 6.1. Let H1(t, w) = minxH(t, x, w) and

(6.1) m(t, w) = inf
t1≤t≤t2

{
δ(t2, w)− δ(t1, w)

+ max
(
H

1/2
1 (t1, w)〈δ(t1, w)〉2, H1/2

1 (t2, w)〈δ(t2, w)〉2
)
/2
}

where 〈δ〉 = 1 + |δ| ≤ H
−1/2
1 = maxxH

−1/2. Thus m is constant on the leaves of Σ2.

This is actually Definition 5.1 in [4] with H replaced by H1. It will be important in

the proof that this weight is constant on the leaves of Σ2.

Remark 6.2. When t 7→ δ(t, w) is constant for fixed w, we find that t 7→ m(t, w) is equal

to the largest quasi-convex minorant of t 7→ H
1/2
1 (t, w)〈δ(t, w)〉2/2, i.e., supI m = sup∂I m

for compact intervals I ⊂ R, see [11, Definition 1.6.3].

Remark 6.3. One can also make a local definition of m by taking the infimum over

−T ≤ t1 ≤ t ≤ t2 ≤ T in (6.1) for some 0 < T ≪ 1. Then the results of this section

will hold when |t| ≤ T . By making a translation in t we can of course define m in a

neighborhood of any point.

Proposition 6.4. We have that m ∈ L∞, such that w 7→ m(t, w) is uniformly Lipschitz

continous, ∀ t, and

(6.2) h1/2〈δ〉2/6 ≤ m ≤ H
1/2
1 〈δ〉2/2 ≤ H1/2〈δ〉2/2 ≤ 〈δ〉/2.

We may choose t1 ≤ t0 ≤ t2 so that

(6.3) max
j=0,1,2

〈δ(tj, w0)〉 ≤ 2 min
j=0,1,2

〈δ(tj , w0)〉.

and

(6.4) H
1/2
0 = max(H

1/2
1 (t1, w0), H

1/2
1 (t2, w0))

satisfies

(6.5) H
1/2
0 < 16m(t0, w0)/〈δ(tj, w0)〉2 for j = 0, 1, 2.
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If m(t0, w0) ≤ ̺〈δ(t0, w0)〉 for ̺≪ 1, then we may choose g♯ orthonormal coordinates so

that w0 = (x1, 0), |x1| < 2〈δ(t0, w0)〉 < 32̺H
−1/2
0 , and

sgn(w1)f(t0, w) ≥ 0 when |w1| ≥ (m(t0, w0) +H
1/2
0 |w′|2)/c0(6.6)

|δ(t1, w)− δ(t2, w)| ≤ (m(t0, w0) +H
1/2
0 |w − w0|2)/c0(6.7)

when |w| ≤ c0H
−1/2
0 . The constant c0 only depends on the seminorms of f .

Observe that condition (6.6) is not empty when m(t0, w0) ≤ ̺〈δ(t0, w0)〉 for ̺ suffi-

ciently small since then H
−1/2
0 & 〈δ〉2/m≫ m by (6.5) .

Proof. If we let

F (s, t, w) = |δ(s, w)− δ(t, w)|+max(H
1/2
1 (s, w)〈δ(s, w)〉2, H1/2

1 (t, w)〈δ(t, w)〉2)/2

then we find that w 7→ F (s, t, w) is uniformly Lipschitz continuous. Now, it suffices to

show this when |∆w| = |w−w0| ≪ 1, and we know that 〈δ〉 and H−1/2 are uniformly Lip-

schitz continuous by Proposition 4.7 which gives that H
−1/2
1 = maxxH

−1/2 is uniformly

Lipschitz continuous. The first term |δ(s, w) − δ(t, w)| is obviously uniformly Lipschitz

continuous. We have for fixed t that
∣∣∣∆(H

1/2
1 〈δ〉2)

∣∣∣ ≤ C(〈δ〉2|∆H1/2
1 |+H

1/2
1 〈δ〉|∆δ|)

where H
1/2
1 〈δ〉 ≤ 1, |∆δ| ≤ |∆w| and |∆H1/2

1 | ≤ CH1|∆H−1/2
1 | ≤ C ′H1|∆w|, which gives

the uniform Lipschitz continuity of F (s, t, w). By taking the infimum, we obtain (6.2)

and the uniform Lipschitz continuity of m. In fact, h1/2/3 ≤ H
1/2
1 by (4.8) and since t 7→

δ(t, w) is monotone, we find that t 7→ 〈δ(t, w)〉 is quasi-convex. Thus h1/2〈δ(t0, w0)〉/6 ≤
F (s, t, w0) when s ≤ t0 ≤ t.

By approximating the infimum, we may choose t1 ≤ t0 ≤ t2 so that F (t1, t2, w0) <

m(t0, w0) + h1/2/6. Since h1/2/6 ≤ m ≤ H
1/2
1 〈δ〉2/2 by (6.2), we find that

|δ(t1, w0)− δ(t2, w0)| < m(t0, w0) ≤ 〈δ(t0, w0)〉/2 and(6.8)

H
1/2
1 (tj , w0)〈δ(tj, w0)〉2/2 < 2m(t0, w0) for j = 1 and 2.(6.9)

Since t 7→ δ(t, w0) is monotone, we obtain (6.3) from (6.8), and (6.5) from (6.9) and (6.3).

Next assume that m(t0, w0) ≤ ̺〈δ(t0, w0)〉 for some 0 < ̺ ≤ 1. Then we find from (6.5)

that

(6.10) 1 + |δ(tj, w0)| < 16̺H
−1/2
0 for j = 0, 1, 2.

We may choose g♯ orthonormal coordinates so that w0 = 0. Since δ, H1, H0 and m

are constant in x, the results will hold for any x. I If we choose xj so that H1(tj , 0) =
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H(tj, xj , 0) then 〈δ(tj , 0)〉 < 16̺H−1/2(tj , xj, 0) for j = 1, 2 by (6.10) so we find from

Proposition 4.7 that

(6.11) h1/2 ≤ |f ′(tj, xj , 0)| ∼= |f ′(tj, xj , w)| for |w| ≤ cH
−1/2
0 ≤ cH−1/2(tj , xj , 0)

when ̺≪ 1 and j = 1, 2. Since H
−1/2
0 ≤ 3h−1/2 we find from (6.10) that f(tj, xj , w̃j) = 0

for some |w̃j| < 16̺H
−1/2
0 by (6.10) when ̺ < 1/48 and j = 1, 2. Thus, when 16̺ ≤ c we

obtain from (6.11) for j = 1, 2 that

|f(tj, xj, w)| ≤ C|f ′(tj , xj , 0)|H−1/2
0 when |w| < cH

−1/2
0

and then (4.13) gives f(tj , xj, w) ∈ S(|f ′(tj , xj , 0)|H−1/2
0 , H0g

♯) since H1/2(tj , xj, 0) ≤
H

1/2
0 , j = 1, 2. By Proposition 4.10 we have that fj = αδ where δ ∈ S(H

−1/2
0 , H0g

♯) and

α ∈ S(|f ′(tj , xj, 0)|, H0g
♯) in a H0g

♯ neighborhood of (tj , 0) such that |α| = |f ′(tj , xj , 0)|
and |δ′| = 1 at (tj , 0). Now ∂tδ ≥ 0 so if |∂tδ|g♯ ≥ ε > 0 at (tj , 0) for j = 1 or 2 then

∂tδ ≥ cεh−1/2 in a small H1g
♯ neighborhood. The interval {(t, 0) : |t− tj | ≤ c0h

1/2H
−1/2
1 }

is contained in this neighborhood for small enough c0 > 0. Then we find

|δ(t0, 0)− δ(tj , 0)| ≥ cc0εH
−1/2
1 (tj , 0) ≥ cc0εH

−1/2
0 ≥ cc0ε〈δ(tj, 0)〉/16̺

by (6.10), which by (6.3) contradicts (6.8) for small enough ̺. Thus, we may assume that

|∂wδ| ≥ 1/2 at (tj , 0) for j = 1, 2.

Choose coordinates z = H
1/2
0 w, we shall use Proposition 5.3 with

fj(z) = H
1/2
0 f(tj, xj , H

−1/2
0 z)/|f ′(tj , 0)| ∈ C∞ for j = 1, 2.

Let δj(z) = H
1/2
0 δ(tj , H

−1/2
0 z) ∈ C∞ be the signed distance function to f−1

j (0) in z

coordinates, then (6.10) gives that |δj(0)| ≤ 16̺ for = 0, 1, 2. Now |∂zδj(tj , 0)| ≥ 1/2,

which for small enough ̺ gives |∂zfj(0)| ≥ c0 for some c0 > 0. In fact, we have that

fj = ajδj where aj ∈ C∞ is uniformly bounded and aj(0) = 1. Then we obtain that

∂zfj(0) = aj(0)∂zδj(0) + δj(0)∂zaj(0) ≥ 1/2 − c̺. Because of condition Subr(Ψ) given

by (3.3) we find that f1(z) > 0 =⇒ f2(z) ≥ 0. Since |δj(0)| < 16̺ we find that

(6.12) |δ1(0)− δ2(0)| = ε < H
1/2
0 m(t0, 0) ≤ H

1/2
0 〈δ(t0, 0)〉/2 < 8̺

by (6.8). Thus, for sufficiently small ̺ we may use Proposition 5.3 with this choice of fj

to obtain g♯ orthogonal coordinates (z1, z
′) so that w0 = z0 = (y1, 0), |y1| = |δ1(0)| and

{
sgn(z1)fj(z) > 0 when |z1| ≥ (ε+ |z′|2)/c0
|δ1(z)− δ2(z)| ≤ (ε+ |z − z0|2)/c0

when |z| ≤ c0. Let x1 = H
−1/2
0 y1 then |x1| < 2〈δ(t0, 0)〉 < 32̺H

−1/2
0 by (6.3) and (6.10).

We obtain (6.6)–(6.7) by the condition Subr(Ψ), since H
−1/2
0 ε < m(t0, 0) by (6.12). �
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Proposition 6.5. There exists C > 0 such that

(6.13) m(t0, w) ≤ Cm(t0, w0)(1 + |w − w0|/〈δ(t0, w0)〉)3

thus m is a weight for g♯.

Proof. Since m ≤ 〈δ〉/2 we only have to consider the case when

(6.14) m(t0, w0) ≤ ̺〈δ(t0, w0)〉

for some ̺ > 0. In fact, otherwise we have by (6.2) that

m(t0, w) ≤ 〈δ(t0, w)〉/2 < m(t0, w0)(1 + |w − w0|/〈δ(t0, w0)〉)/2̺

since the Lipschitz continuity of w 7→ δ(t0, w) gives

(6.15) 〈δ(t, w)〉 ≤ 〈δ(t, w0)〉(1 + |w − w0|/〈δ(t, w0)〉) ∀ t.

If (6.14) holds for ̺ ≪ 1, then Proposition 6.4 gives t1 ≤ t0 ≤ t2 such that (6.3), (6.5)

and (6.7) hold when |w| ≤ c0H
−1/2
0 with H

1/2
0 = max(H

1/2
1 (t1, w0), H

1/2
1 (t2, w0)).

Now, for fixed w0 it suffices to prove (6.13) when

(6.16) |w − w0| ≤ ̺H
−1/2
0

for some ̺ > 0. In fact, when |w − w0| > ̺H
−1/2
0 we obtain from (6.5) that

|w − w0|2/〈δ(t0, w0)〉2 > ̺2H−1
0 /〈δ(t0, w0)〉2 > ̺2〈δ(t0, w0)〉2/256m2(t0, w0)

≥ ̺2〈δ(t0, w0)〉m(t0, w)/64〈δ(t0, w)〉m(t0, w0)

since 〈δ〉 ≥ 2m. By (6.15) we obtain that (6.13) is satisfied with C = 64/̺2. Thus in

the following we shall only consider w such that (6.16) is satisfied for ̺ ≪ 1. We find

by (6.5) and (6.7) that

(6.17) |δ(t1, w)− δ(t2, w)| ≤ (m(t0, w0) +H
1/2
0 |w − w0|2)/c0

< 16m(t0, w0)(1 + |w − w0|2/〈δ(t0, w0)〉2)/c0

when |w −w0| ≤ c0H
−1/2
0 . Now G is slowly varying, thus we find for small enough ̺ > 0

that

H
1/2
1 (tj , w) ≤ CH

1/2
1 (tj , w0) when |w − w0| ≤ ̺H

−1/2
0 ≤ ̺H

−1/2
1 (tj , w0)

for j = 1, 2. By (6.15) and (6.3) we obtain that

(6.18) H
1/2
1 (tj , w)〈δ(tj, w)〉2 ≤ 4CH

1/2
1 (tj , w0)〈δ(tj, w0)〉2(1 + |w − w0|/〈δ(t0, w0)〉)2

when j = 1, 2, and |w − w0| ≤ c0H
−1/2
0 . Now H

1/2
1 (tj , w0)〈δ(tj, w0)〉2 < 16m(t0, w0)

by (6.5) for j = 1, 2. Thus, by using (6.17), (6.18) and taking the infimum we obtain

m(t0, w) ≤ C0m(t0, w0)(1 + |w − w0|/〈δ(t0, w0)〉)2
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when |w − w0| ≤ ̺H
−1/2
0 for ̺≪ 1. �

The following result will be important for the proof of Proposition 3.6 in Section 8.

Proposition 6.6. Let M be given by Definition 4.6 and m by Definition 6.1. Then there

exists C0 > 0 such that

(6.19) MH3/2 ≤ C0m/〈δ〉2.

Proof. In the proof, we shall include the t variable in the w variables. Observe that since

h1/2〈δ〉2/6 ≤ m we find that (6.19) is equivalent to

(6.20) |f ′′|H1/2 ≤ Cm/〈δ〉2

by Proposition 4.9. First we note that if m ≥ c〈δ〉 > 0, then MH3/2〈δ〉2 ≤ C〈δ〉 ≤ Cm/c

since 〈δ〉 ≤ H−1/2 and M ≤ CH−1 by Proposition 4.9.

Thus, we only have to consider the case m ≤ ̺〈δ〉 at w0 for some ̺ > 0 to be chosen

later. Then we may use Proposition 6.4 for ̺ ≪ 1 to choose g♯ orthonormal coordinates

so that |w0| < 2〈δ(w0)〉 < 32̺H
−1/2
0 and f satisfies (6.6) with

(6.21) h1/2/3 ≤ H
1/2
0 < 16m(w0)/〈δ(w0)〉2 ≤ 8H1/2(w0)

by (4.8), (6.2) and (6.5). Thus it suffices to prove the estimate

(6.22) |f ′′|H1/2 ≤ CH
1/2
0

at w0. Now it actually suffices to prove (6.22) at w = 0. In fact, (4.11) gives

(6.23) H(w0) ≤ C0H(0)(1 +H(w0)|w0|2) ≤ 5C0H(0)

since |w0| < 2〈δ(w0)〉 ≤ 2H−1/2(w0). Thus Taylor’s formula gives

(6.24)

|f ′′(w0)|H1/2(w0) ≤
(
|f ′′(0)|+ C3h

1/2|w0|
)
H1/2(w0) ≤ C1(|f ′′(0)|H1/2(w0) + h1/2)

since |f (3)| ≤ C3h
1/2, which gives (6.22) at w = 0 by (6.21) and (6.23).

By Definition 4.4 we find that

H−1/2 ≥ 1 + |f ′|/(|f ′′|+ h1/4|f ′|1/2 + h1/2)

≥ (|f ′′|+ |f ′|+ h1/2)/(|f ′′|+ h1/4|f ′|1/2 + h1/2),

thus (6.22) follows if we prove

(6.25) |f ′′|(|f ′′|+ h1/4|f ′|1/2 + h1/2) ≤ C
(
|f ′|+ |f ′′|+ h1/2

)
H

1/2
0 at 0.

Since h1/2/3 ≤ H
1/2
0 we obtain (6.25) by the Cauchy-Schwarz inequality if we prove that

(6.26) |f ′′(0)| ≤ C(H
1/4
0 |f ′(0)|1/2 + h1/2).
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Let F (z) = H0f(H
−1/2
0 z), then (6.6) gives

sgn(z1)F (z) ≥ 0 when |z1| ≥ ε+ |z′|2/r and |z| ≤ r

where r = c0 and

ε = H
1/2
0 m(w0)/c0 ≤ 16m2(w0)/c0〈δ(w0)〉2 ≤ 16̺2/c0 ≤ c0/5

by (6.21) when ̺ ≤ c0/4
√
5 which we shall assume. Proposition 5.2 then gives that

|F ′′(0)| ≤ C1

(
|F ′(0)|/̺0 +H

−1/2
0 h1/2̺0

)
ε ≤ ̺0 ≤ c0/

√
10

since ‖F (3)‖∞ ≤ C3H
−1/2
0 h1/2. Observe that |F ′(0)| ≤ C2 since H

1/2
0 ≤ 8H1/2(w0) ≤

CH1/2(0) by (6.21) and (6.23), and |f ′(0)| ≤ CH−1/2(0) by (4.9). Choose

̺0 = ε+ λ|F ′(0)|1/2 ≤ c0/
√
10

with λ = c0(
√
10− 2)/10

√
C2, then we obtain that

|F ′′(0)| ≤ C4(|F ′(0)|1/2 + h1/2m(w0))

since H
−1/2
0 ≤ 3h−1/2 and ε = H

1/2
0 m(w0)/c0.

If h1/2m(w0) ≤ |F ′(0)|1/2 then we obtain (6.26) since F ′ = H
1/2
0 f ′ and F ′′ = f ′′. If

|F ′(0)|1/2 ≤ h1/2m(w0), then we find

|f ′′(0)| ≤ 2C4h
1/2m(w0) ≤ 4C2m(w0)/〈δ(w0)〉.

Then (6.20) follows from (6.13), (6.15) and (6.23) since H1/2(w0) ≤ 〈δ(w0)〉−1, which

completes the proof of the proposition. �

Next, we shall prove a convexity property of t 7→ m(t, w), which will be essential for

the proof.

Proposition 6.7. Let m be given by Definition 6.1. Then

(6.27) sup
t1≤t≤t2

m(t, w) ≤ δ(t2, w)− δ(t1, w) +m(t1, w) +m(t2, w) ∀w.

Proof. By definition we find that

(6.28) inf
±(t−t0)≥0

(
|δ(t, w)− δ(t0, w)|+H

1/2
1 (t, w)〈δ(t, w)〉2/2

)
≤ m(t0, w).

Let t ∈ [t1, t2], then by taking the independent infima, we obtain that

m(t, w) ≤ inf
r≤t1<t2≤s

δ(s, w)− δ(r, w) +H
1/2
1 (s, w)〈δ(s, w)〉2/2 +H

1/2
1 (r, w)〈δ(r, w)〉2/2

≤ δ(t2, w)− δ(t1, w) + inf
t≥t2

(
|δ(t, w)− δ(t2, w)|+H

1/2
1 (t, w)〈δ(t, w)〉2/2

)

+ inf
t≤t1

(
|δ(t, w)− δ(t1, w)|+H

1/2
1 (t, w)〈δ(t, w)〉2/2

)
.

By using (6.28) for t0 = t1, t2, we obtain (6.27) after taking the supremum. �
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Next, we shall construct the pseudo-sign B = δ + ̺0, which we shall use in Section 8

to prove Proposition 3.6 with the multiplier bw = BWick.

Proposition 6.8. Assume that δ is given by Definition 4.2 and m is given by Defini-

tion 6.1. Then for T > 0 there exists real valued ̺T (t, w) ∈ L∞ with the property that

w 7→ ̺T (t, w) is uniformly Lipschitz continuous, and

|̺T | ≤ m(6.29)

T∂t(δ + ̺T ) ≥ m/2 in D′(R)(6.30)

when |t| < T .

Proof. (We owe this argument to Lars Hörmander [12].) Let

(6.31) ̺T (t, w) = sup
−T≤s≤t

(
δ(s, w)− δ(t, w) +

1

2T

∫ t

s

m(r, w) dr−m(s, w)

)

for |t| ≤ T , then

δ(t, w) + ̺T (t, w) = sup
−T≤s≤t

(
δ(s, w)− 1

2T

∫ s

0

m(r, w) dr−m(s, w)

)

+
1

2T

∫ t

0

m(r, w) dr

which immediately gives (6.30) since the supremum is nondecreasing. Since w 7→ δ(t, w)

and w 7→ m(t, w) are uniformly Lipschitz continuous by Proposition 6.4, we find that

w 7→ ̺T (t, w) is uniformly Lipschitz continuous by taking the supremum. Since δ(s, w) ≤
δ(t, w) when s ≤ t ≤ T , we find from Proposition 6.7 that

δ(s, w)− δ(t, w) +
1

2T

∫ t

s

m(r, w) dr−m(s, w) ≤ m(t, w) − T ≤ s ≤ t ≤ T.

By taking the supremum, we obtain that −m(t, w) ≤ ̺T (t, w) ≤ m(t, w) when |t| ≤ T ,

which proves the result. �

We shall also include a term in the multiplier to control the error terms involving Dxu.

Lemma 6.9. Assume that A satisfies the conditions in Proposition 2.2 near w0 ∈ Σ2.

Then there exists a matrix L and constant c1 > 0 such that {A, 〈L(x−x0), ξ〉} ≥ |ξ|2− c1
microlocally near w0 ∈ Σ2, where x0 is the value of x at w0. The constants only depend

on the seminorms of A.

Proof. Let w = (x, ξ, z), then we find from the conditions that

A(x, ξ, z) = 〈C2(x, ξ, z)ξ, ξ〉+ 〈C1(x, z), ξ〉+ C0(x, z)
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where Cj ∈ S0 is real valued, ∀ j, and C2 is a symmetric and nondegenerate matrix

microlocally near w0. By a translation we may assume that x = 0 at w0. If we take

L = C−1
2 (0, 0, w0) then we find that

(6.32) {A, 〈Lx, ξ〉} = 〈Lξ, ∂ξA〉 − 〈Lx, ∂xA〉 ≥ c2|ξ|2 − c0

where c2 = 2 at w0, since ∂ξA = 2C2ξ + 〈∂ξC2ξ, ξ〉 + C1. By continuity, we get the

estimate in a neighborhood of w0 where |∂ξC2ξ| ≪ 1. �

Because of the cut-off in the estimate (3.17) we will only need the lower bound in a

neighborhood of w0.

Definition 6.10. Let the multiplier symbol BT = δ0 + ̺T + λT , where δ0 = δ is given by

Definition 4.2, ̺T is given by Definition 6.8 for T > 0 so it is real valued and Lipschitz

continuous, satisfying |̺T | ≤ m when |t| ≤ T , with m ≤ 〈δ0〉/2 given by Definition 6.1,

and λT = ǫh1/2〈L(x−x0), ξ〉/T ∈ S(h−1/2, g) uniformly when |x−x0| ≤ T and |ξ| . h−1,

where 0 < ǫ ≤ 1 and L is given by Lemma 6.9, so λT is Lipschitz continuous.

7. The Wick quantization

In order to define the multiplier we shall use the Wick quantization. We shall start by

recapitulating some results from Section 6 in [4] about the Wick operators. As before,

we shall assume that g♯ = (g♯)σ and the coordinates chosen so that g♯(w) = |w|2. For

a ∈ L∞(T ∗
R

n) we define the Wick quantization:

aWick(x,Dx)u(x) =

∫

T ∗Rn

a(y, η)Σw
y,η(x,Dx)u(x) dydη u ∈ C∞

0

using the orthonormal projections Σw
y,η(x,Dx) with Weyl symbol

Σy,η(x, ξ) = π−n exp(−g♯(x− y, ξ − η))

(see [2, Appendix B] or [13, Section 4]). We find that aWick: S 7→ S ′ so that

(7.1) a ≥ 0 =⇒
(
aWick(x,Dx)u, u

)
≥ 0 u ∈ C∞

0

(aWick)∗ = (a)Wick and ‖aWick(x,Dx)‖L(L2(Rn)) ≤ ‖a‖L∞(T ∗Rn), which is the main advan-

tage with the Wick quantization (see [13, Proposition 4.2]).

We obtain from the definition that aWick = aw0 where

(7.2) a0(w) = π−n

∫

T ∗Rn

a(z) exp(−|w − z|2) dz

is the Gaussian regularization, thus Wick operators with real symbols have real Weyl

symbols. This convolution also maps polynomials to polynomials.

Remark 7.1. Observe that aWick = aw if a(x, ξ) is affine in x for fixed ξ and affine in ξ

for fixed x, for example if a(x, ξ) = 〈Lx, ξ〉 with a constant matrix L .
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In fact, aWick = aw if and only if

π−n

∫

T ∗Rn

(a(z)− a(w)) exp(−|w − z|2) dz = 0

This vanishes if a is affine in x for fixed ξ and affine in ξ for fixed x since

a(x, ξ)− a(y, η) = a(x, ξ)− a(y, ξ) + a(y, ξ)− a(y, η)

which are two odd integrands giving vanishing integrals.

In the following, we shall assume that G = Hg♯ ≤ g♯ is a slowly varying metric

satisfying

(7.3) H(w) ≤ C0H(w0)(1 + |w − w0|)N0

andm is a weight for G satisfying (7.3) withH replaced by m, by Propositions 4.7 and 6.5.

This means that G and m are strongly σ temperate in the sense of [1, Definition 7.1].

Recall the symbol class S+(1, g♯) given by Definition 3.1.

Proposition 7.2. Assume that a ∈ L∞ such that |a| ≤ Cm, where m is a weight for

g♯, then aWick = aw0 where a0 ∈ S(m, g♯) is given by (7.2). If a ≥ m we obtain that

a0 ≥ c0m for a fixed constant c0 > 0. If a ∈ S(M,G), where M is a weight for G,

then a0 ∼= a modulo S(mH,G). If |a| ≤ Cm and a = 0 in a fixed G ball with center w,

then a ∈ S(mHN , G) at w for any N . If a is polynomial in the variable ξ then a0 is

polynomial in ξ with the same degree as a, and if a is Lipschitz continuous then we have

a0 ∈ S+(1, g♯).

By localization we find, for example, that if |a| ≤ Cm and a ∈ S(m,G) in a G neighbor-

hood of w0, then a0 ∼= a modulo S(mH,G) in a smaller G neighborhood of w0. Observe

that the results are uniform in the metrics and weights. The results are well known, but

for completeness we give a proof.

Proof. Since a is measurable satisfying |a| ≤ Cm, where m(z) ≤ C0m(w)(1 + |z − w|)N0

by (7.3), we find that aWick = aw0 where a0 = O(m) is given by (7.2). By differentiating

on the exponential factor, we find a0 ∈ S(m, g♯), and similarly we find that a0 ≥ m/C if

a ≥ m since m(z) & m(w)/(1 + |z − w|)N0.

If a = 0 in a G ball of radius ε > 0 and center at w, then we can write

πna0(w) =

∫

|z−w|≥εH−1/2(w)

a(z) exp(−|w − z|2) dz = O(m(w)HN(w))

for any N even after repeated differentiation.

If a ∈ S(m,G) then Taylor’s formula gives

a0(w) = a(w) + π−n

∫ 1

0

∫

T ∗Rn

(1− θ)2〈a′′(w + θz)z, z〉e−|z|2 dzdθ/2
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where a′′ ∈ S(mH,G) since G = Hg♯. Since m(w + θz) ≤ C0m(w)(1 + |z|)N0 and

H(w + θz) ≤ C0H(w)(1 + |z|)N0 when |θ| ≤ 1, we find that a0(w) ∼= a(w) modulo

S(mH,G).

If a is polynomial in the variable ξ of degree k then ∂αξ a ≡ 0,∀|α| > k, which gives

∂αξ a0 ≡ 0. Thus a0 is of degree ≤ k. The Lipschitz continuity of a means that ∂a ∈
L∞(T ∗

R
n). Since we have ∂a0(w) = π−n

∫
T ∗Rn ∂a(z) exp(−|w − z|2) dz, we obtain the

proposition. �

We shall need the following result about the composition of Wick operators.

Proposition 7.3. Assume that a and b ∈ L∞. If |a| ≤ m1 and |∂b| ≤ m2, where mj are

weights for g♯ satisfying (7.3), then

(7.4) aWickbWick = (ab)Wick + rw

with r ∈ S(m1m2, g
♯). If a and b are real such that |a| ≤ m1 and |∂2b| ≤ m2, then

(7.5) Re aWickbWick =

(
ab− 1

2
∂a · ∂b

)Wick

+Rw

with R ∈ S(m1m2, g
♯). By taking the adjoints, we get these results with a and b switched.

Observe that since a ∈ L∞ and ∂b is Lipschitz continuous in (7.5), we find that ∂a · ∂b
is a well-defined distribution. In fact, we can define it as ∂a · ∂b(ϕ) = −

∫∫
a∂(ϕ∂b)dw.

Proposition 7.3 essentially follows from Proposition 3.4 in [14] and Lemma A.1.5 in [15]

but we shall for completeness give a proof.

Proof. By Proposition 7.2 we have aWickbWick = aw0 b
w
0 in (7.4) where a0 ∈ S(m1, g

♯) and

b0 ∈ S+(m2, g
♯). By Lemma 3.2 we find aWickbWick ∼= (a0b0)

w modulo OpS(m1m2, g
♯),

where

(7.6) a0(w)b0(w) = π−2n

∫∫
a(w + z1)b(w + z2)e

−|z1|2−|z2|2 dz1dz2.

By using the Taylor formula we find that b(w + z2) = b(w + z1) + r1(w, z1, z2) where

|r1(w, z1, z2)| ≤ Cm2(w)(1 + |z1|+ |z2|)N by (7.3). Integration in z2 then gives (7.4).

For the proof of (7.5) we use that Re aw0 b
w
0

∼= (a0b0)
w modulo OpS(m1m2, g

♯) by

Lemma 3.2, since a0 and b0 are real and ∂2b0 ∈ S(m2, g
♯). We use the Taylor formula

again:

b(w + z2) = b(w + z1) + ∂b(w + z1) · (z2 − z1) + r2(w, z1, z2)

where |r2(w, z1, z2)| ≤ Cm2(w)(1 + |z1| + |z2|)N . The term with z2 is odd and gives a

vanishing contribution in (7.6). Since ∂z1e
−|z1|2−|z2|2 = −2z1e

−|z1|2 we obtain (7.5) after

an integration by parts, since |a∂2b| ≤ m1m2. �
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Example 7.4. If a ∈ S(H−1/2, g♯)
⋂
S+(1, g♯) and b ∈ S(M,G), then Re aWickbWick ∼=

(ab)Wick modulo OpS(MH1/2, g♯).

We shall compute the Weyl symbol for the Wick operator BWick
T = (δ0 + ̺T + λT )

Wick

given by Definition 6.10. In the following, we shall suppress the T parameter.

Proposition 7.5. Let B = δ0 + ̺0 + λ be given by Definition 6.10, then we have

BWick = bw where b = δ1 + ̺1 + λ is real, δ1 ∈ S(H−1/2, g♯)
⋂
S+(1, g♯), and ̺1 ∈

S(m, g♯)
⋂
S+(1, g♯) uniformly when |t| ≤ T . Also, there exists κ2 > 0 so that δ1 ∼= δ0

modulo S(H1/2, G) when 〈δ0〉 ≤ κ2H
−1/2. For any ε > 0 we find that |δ0| ≥ εH−1/2 and

H1/2 ≤ ε/3 imply that |δ0 + ̺0| ≥ εH−1/2/3.

Proof. Let δWick
0 = δw1 and ̺Wick

0 = ̺w1 . Since |δ0| ≤ H
−1/2
1 , |̺0| ≤ m and the symbols

are real valued, we obtain from Proposition 7.2 that δ1 ∈ S(H−1/2, g♯) and ̺1 ∈ S(m, g♯)

are real valued. Since δ0 and ̺0 are uniformly Lipschitz continuous, we find that δ1 and

̺1 ∈ S+(1, g♯) by Proposition 7.2. By Remark 7.1 we have λWick = λw.

If 〈δ0〉 ≤ κH−1/2 at w0 for sufficiently small κ > 0, then we find by the Lipschitz conti-

nuity of δ0 and the slow variation of G that 〈δ0〉 ≤ C0κH
−1/2 in a fixed G neighborhood

ωκ of w0 (depending on κ). For κ ≪ 1 we find that δ0 ∈ S(H−1/2, G) in ωκ by Proposi-

tion 4.9, which implies that δ1 ∼= δ0 modulo S(H1/2, G) near w0 by Proposition 7.2 after

localization.

When |δ0| ≥ εH−1/2 ≥ ε > 0 at w0, then we find that

|̺0| ≤ m ≤ 〈δ0〉/2 ≤ (1 +H1/2/ε)|δ0|/2.

We obtain that |̺0| ≤ 2|δ0|/3 and |δ0 + ̺0| ≥ |δ0|/3 ≥ εH−1/2/3 when H1/2 ≤ ε/3, which

completes the proof. �

Let m be given by Definition 6.1, then m is a weight for g♯ according to Proposition 6.5.

We are going to use the symbol classes S(mk, g♯), k ∈ R. The following proposition shows

that the operator mWick dominates all operators in OpS(m, g♯).

Proposition 7.6. If c ∈ S(m, g♯) then there exists a positive constant C0 such that

(7.7) |〈cwu, u〉| ≤ C0

(
mWicku, u

)
u ∈ C∞

0 .

Here C0 only depends on the seminorms of c ∈ S(m, g♯).

Proof. We shall use an argument by Hörmander [12]. Let 0 < ̺ ≤ 1

(7.8) M̺(w0) = sup
w
m(w)/(1 + ̺|w − w0|)3
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then m ≤M̺ ≤ Cm/̺3 and

(7.9) M̺(w) ≤ CM̺(w0)(1 + ̺|w − w0|)3 uniformly in 0 < ̺ ≤ 1

by the triangle inequality. Thus, M̺ is a weight for g̺ = ̺2g♯, uniformly in ̺. Take

0 ≤ χ ∈ C∞
0 such that

∫
T ∗Rn χ(w) dw > 0 and let

m̺(w) = ̺−2n

∫
χ(̺(w − z))M̺(z) dz.

Then by (7.9) we find 1/C0 ≤ m̺/M̺ ≤ C0, and |∂αm̺| ≤ Cα̺
|α|m̺ thus m̺ ∈ S(m̺, g̺)

uniformly in 0 < ̺ ≤ 1. Let mWick
̺ = µw

̺ then Proposition 7.2 and (7.9) give m̺/c ≤
µ̺ ∈ S(m̺, g̺) uniformly in 0 < ̺ ≤ 1. Since m ∼= m̺ (depending on ̺) we may replace

mWick with mWick
̺ = µw

̺ in (7.7) for any fixed ̺ > 0.

Let a̺ = µ
−1/2
̺ ∈ S(m

−1/2
̺ , g♯̺) with 0 < ̺ ≤ 1 to be chosen later. Since g̺ is uniformly

σ temperate, g̺/g
σ
̺ = ̺4, m̺ is uniformly σ, g̺ temperate, and µ

±1/2
̺ ∈ S(m

±1/2
̺ , g̺)

uniformly, the calculus gives that aw̺ (a
−1
̺ )w = 1+ rw̺ where r̺/̺

2 ∈ S(1, g♯) uniformly for

0 < ̺ ≤ 1. Similarly, we find that aw̺ µ
w
̺ a

w
̺ = 1 + sw̺ where s̺/̺

2 ∈ S(1, g♯) uniformly.

We obtain that the L2 operator norms

‖rw̺ ‖L(L2) + ‖sw̺ ‖L(L2) ≤ C̺2 ≤ 1/2

for sufficiently small ̺. By fixing such a value of ̺ we find that 1/2 ≤ aw̺ µ
w
̺ a

w
̺ ≤ 2 and

(7.10)
1

2
‖u‖ ≤ ‖aw̺ (a−1

̺ )wu‖ ≤ 2‖u‖

thus u 7→ aw̺ (a
−1
̺ )wu is an homeomorphism on L2. The estimate (7.7) then follows from

|〈cwaw̺ (a−1
̺ )wu, aw̺ (a

−1
̺ )wu〉| ≤ C‖(a−1

̺ )wu‖2 ≤ 2C〈µw
̺ a

w
̺ (a

−1
̺ )wu, aw̺ (a

−1
̺ )wu〉

which holds since aw̺ c
waw̺ ∈ OpS(1, g♯) is bounded in L2. Observe that the bounds only

depend on the seminorms of c in S(m, g♯), since ̺ and a̺ are fixed. �

We shall also need a weight to handle the calculus errors in the ξ variables. Let

µ = h1/2〈ξ〉2 which is a weight for g0(dx, dξ) = |dx|2 + |dξ|2/〈ξ〉2 so that λ ∈ S(µ, g0)

uniformly in h. In order to handle the compositions with λ and f0 we shall need the

following metric:

(7.11) G0 = H|dw|2 +H(dt2 + |dx|2)/h+Hhdτ 2 + |dξ|2/〈ξ〉2

which is strongly σ temperate in the sense that

(7.12) G0,z . G0,z0(1 +G0,z0(z − z0))

but since G0/G
σ
0 6. 1 it is not σ temperate. But since λ and f0 are linear in ξ we shall

only use the calculus on Σ2, i.e., in (t, x, w), and G0 = G on TΣ2.
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To handle the compositions with b1 = δ1 + ̺1 ∈ S(H−1/2, g♯) we shall use the metric:

(7.13) g♯0 = |dw|2 + (dt2 + |dx|2)/h+ hdτ 2 + |dξ|2/〈ξ〉2

which is strongly σ temperate on Σ2, since g♯0 = g♯ on TΣ2. Then λf ∈ S(Mh1/2〈ξ〉, G0)

and b1f0 ∈ S(MH1/2h1/2〈δ0〉〈ξ〉, g♯0).

Lemma 7.7. If |C| . µ then we have

(7.14) |〈CWicku, u〉| . 〈µWicku, u〉 . h1/2‖〈Dx〉u‖2 = h1/2(‖Dxu‖2 + ‖u‖2)

where Dxu = (Dx1
u,Dx2

u, . . . ).

Proof. By taking the real and imaginary part it suffices to prove the estimate for real

valued C. We have |C| . µ so ±〈CWicku, u〉 . 〈µWicku, u〉. Now µWick = νw where

ν ∈ S(µ, g♯0) by Proposition 7.2, so νw0 = 〈Dx〉−1νw〈Dx〉−1 ∈ OpS(h1/2, g♯0) which gives

〈µWicku, u〉 = 〈νw0 〈Dx〉u, 〈Dx〉u〉 . h1/2‖〈Dx〉u‖2

which proves the result. �

8. The multiplier estimate

In this section we shall obtain a proof of Proposition 3.6 which involves giving lower

bounds on Re bwT f
w
1 , with the multipler bwT = BWick

T having symbol BT = δ0 + ̺0 + λ

given by Proposition 7.5. Also, f1 = f + f0, where f ∈ S(M,G) and f0 = ∂ηf · r · ξ with

r ∈ S(1, g) so that f1 ∈ S(MH1/2h1/2〈ξ〉, G0) by Remark 4.8. Here G = Hg/h = Hg♯,

with constant g ≤ h2gσ and H given by Definition 4.4. The weight M is given by

Definition 4.6, the metric G0 by (7.11) and the weight m by Definition 6.1. The results

will only depend on the seminorms of f in S(h−1, g), and we will assume the coordinates

chosen so that t = 0 and x = 0 at w0 ∈ Σ2. We shall follow Section 7 in [4] with some

necessary changes because of the different conditions, metrics and normal forms.

Proposition 8.1. Let BT = δ0 + ̺0 + λ given by Definition 6.10, so δ0 = δ is given by

Definition 4.2, ̺0 = ̺ is real valued and Lipschitz continuous, satisfying |̺0| ≤ m when

|t| ≤ T , with m ≤ 〈δ0〉/2 given by Definition 6.1 and λ = ǫh1/2〈Lx, ξ〉/T ∈ S(h1/2〈ξ〉, G0)

uniformly when |x| ≤ T , where 0 < ǫ ≤ 1 and L is given by Lemma 6.9. Then for small

enough T we can find C ∈ S(m, g♯) + S(µ, g♯0) so that

(8.1) Re
(
BWick

T fw
1 u, u

)
≥ (Cwu, u)

if u ∈ C∞
0 has support where |t| ≤ T and |x| ≤ T .
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Proof. In the proof we shall treat ξ as parameter and assume the coordinates w =

(t, x, y; τ, η) chosen so that g♯(w) = |w|2, i.e., g♯ ON coordinates on Σ2. We shall lo-

calize in w with respect to the metric G ≥ g on Σ2, i.e., when ξ = 0, and then estimate

the localized operators. We shall include t and x in w and use the neighborhoods

(8.2) ωw0
(ε) =

{
w : |w − w0| < εH−1/2(w0)

}

which gives that max(|t|, |x|) < εH−1/2(w0)h
1/2 ≤ 3ε. Now, if ε0 is small enough then

H(w) and M(w) will only vary with a fixed factor in ωw0
(2ε0). By the uniform Lipschitz

continuity of w 7→ δ0(w) we can find κ0 > 0 with the following property: for 0 < κ ≤ κ0

there exist positive constants cκ and εκ ≤ ε0 so that

|δ0(w)| ≤ κH−1/2(w) w ∈ ωw0
(2εκ) or(8.3)

|δ0(w)| ≥ cκH
−1/2(w) w ∈ ωw0

(2εκ).(8.4)

In fact, we have by the Lipschitz continuity that |δ0(w) − δ0(w0)| ≤ εH−1/2(w0) when

w ∈ ωw0
(ε). Thus, if εκ ≪ κ we obtain that (8.3) holds when |δ0(w0)| ≪ κH−1/2(w0)

and (8.4) holds when |δ0(w0)| ≥ cκH−1/2(w0).

By shrinking κ0 we may assume that M ∼= |f ′|H−1/2 when |δ0| ≤ κ0H
−1/2 and

H1/2 ≤ κ0 according to Proposition 4.9. Let κ1 be given by Proposition 4.10, κ2 by

Proposition 7.5, and let εκ and cκ be given by (8.3)–(8.4) for κ = min(κ0, κ1, κ2)/2.

Using Proposition 7.5 with ε = cκ we find that

(8.5) sgn(f)(δ0 + ̺0) ≥ cκH
−1/2/3 in ωw0

(2εκ)

if H1/2 ≤ cκ/3 and (8.4) holds in ωw0
(εκ).

Choose real symbols {ψj(w) }j and {φj(w) }j ∈ S(1, G) with values in ℓ2, such that

0 ≤ ψj ≤ 1,
∑

k ψ
2
j ≡ 1, ψjΨj = ψj with 0 ≤ Ψj = φ2

j ≤ 1 which gives {Ψj(w) }j ∈
S(1, G) with values in ℓ2 so that

(8.6) suppφj ⊆ ωj = ωwj
(εκ)

We shall suppress T , writing BWick = bw where b = δ1+̺1+λ is given by Proposition 7.5.

In the following, we shall for j ∈ N denote Ajk = Ψkfjb = fjkb for k = 0, 1, and

Ak = Ψkfb = fkb where fk should not be confused with f0 and f1.

Lemma 8.2. When |t| ≤ T and |x| ≤ T we have A1j ∈ S(MH−1/2, g♯)
⋂
S+(M, g♯) +

S(Mh1/2〈ξ〉, g♯0) uniformly in j,

(8.7) Re bwfw
1
∼=
∑

j

ψw
k A

w
1kψ

w
k modulo OpS(m, g♯) + OpS(µ, g♯0) uniformly

and Aw
1k

∼= Re bwfw
1k modulo OpS(m, g♯) + S(µ, g♯0) uniformly in j.
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Proof. Since f1 = f + f0 we have A1k = Ak+A0k and we will start with f0. First we note

that f0 = r0 · ξ with r0 ∈ S(MH1/2h1/2, G)
⋂
S(1, g), which gives λwfw

0 ∈ OpS(µ,G0)

so we can skip this term. Let b1 = δ1 + ̺1 ∈ S(H−1/2, g♯)
⋂
S+(1, g♯). Since b1 is

constant in x we obtain Re bw1 f
w
0 = (b1f0)

w + Rw, where R = rξ with r ∈ S(h, g♯) giving

Rw ∈ OpS(µ, g♯0). In fact, r has an asymptotic expansion in S(hk/2, g♯) for k ≥ 0.

We also find that ψw
k A

w
0kψ

w
k = (A0kψ

2
k)

w+Cw with C = c0+c1ξ with c0 ∈ S(MH3/2, g♯)

and c1 ∈ S(MH3/2h1/2, g♯) which gives Cw ∈ OpS(m, g♯) + S(µ, g♯0). In fact, c0 has an

asymptotic expansion in S(MHk/2, g♯) for k ≥ −1 and c1 ∈ S(MHk/2h1/2, g♯) for k ≥ 0

and any x derivative of the symbols gives the factor H1/2h−1/2.

Next, we will study f ∈ S(M,G). In that case λwfw = (fλ−ih1/2〈Lx, ∂xf〉/2T )w since

∂ξf ≡ 0, which gives Reλwfw = (fλ)w. We have Ak ∈ S(MH−1/2, g♯)
⋂
S+(M, g♯) +

OpS(Mh1/2〈ξ〉, G0) uniformly in j. Proposition 6.6 gives that

(8.8) MH3/2〈δ0〉2 ≤ Cm

so we may ignore terms in OpS(MH3/2〈δ0〉2, g♯). Since b ∈ S(H−1/2, g♯)+S(h1/2〈ξ〉, G0),

{ψk }k ∈ S(1, G), Ak ∈ S(MH−1/2, g♯)+OpS(Mh1/2〈ξ〉, G0) uniformly with values in ℓ2,

h1/2〈ξ〉 ≤ µ and H−1/2 . h−1/2, we find by Lemma 3.2 and Remark 3.3 that the symbols

of bwfw, bwfw
k and

∑
k ψ

w
k A

w
k ψ

w
k have expansions in S(MHj/2, g♯) + S(MHk/2µ,G0).

Observe that in the domains ωk where H1/2 ≥ c > 0, we find that M . H−1 . 1 so the

symbols of
∑

k ψ
w
k A

w
k ψ

w
k , bwfw

k and bwfw are in S(MH3/2, g♯) + S(µ, g♯0) giving the result

in this case. Thus we may assume H1/2 ≤ κ2/2 in what follows. We shall consider the

neighborhoods where (8.3) or (8.4) holds.

If (8.4) holds then we find 〈δ0〉 ∼= H−1/2 so S(MH1/2, g♯) ⊆ S(m, g♯) in ωk by (8.8)

and S(MHµ,G0) ⊆ S(µ,G0) since M . H−1. Since b1 ∈ S+(1, g♯) we find that Ak ∈
S+(M, g♯) + S(Mµ,G0) and the symbols of both bwfw and

∑
k ψ

w
k A

w
k ψ

w
k are equal to

∑
k ψ

2
kAk

∼= fb modulo S(MH1/2, g♯) + S(MHµ,G0) in ωk. Similarly, we find that the

symbol of bwfw
k is equal to Ak modulo S(MH1/2, g♯) + S(µ,G0), which proves the result

in this case.

Next, we consider the case when (8.3) holds with κ = min(κ0, κ1, κ2)/2 andH1/2 ≤ κ2/2

in ωk. Then 〈δ0〉 ≤ κ2H
−1/2 so b = δ1 + ̺1 + λ ∈ S(H−1/2, G) +S(m, g♯) +S(µ,G0) in ωk

by Proposition 7.5. Since Reλwfw = (λf)w we obtain from Lemma 3.2 that the symbol of

Re bwfw−(fb)w is in S(MH3/2, G)+S(MHm, g♯) ⊆ S(m, g♯) in ωk. Similarly, we find that

Aw
k
∼= Re bwfw

k modulo OpS(m, g♯). Since Ak ∈ S(MH−1/2, G)+S(Mm, g♯)+S(Mµ,G0)

uniformly in this case, we find that the symbol of
∑

k ψ
w
k A

w
k ψ

w
k is equal to bf modulo

S(m, g♯) + S(µ,G0) in ωk, which proves (8.7) and Lemma 8.2. �
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In order to estimate the localized operator we shall use the following

Lemma 8.3. If A1j = Ψjf1b is given by Lemma 8.2 then there exists Cj ∈ S(m, g♯) +

S(µ, g♯0) uniformly when |t| ≤ T and |x| ≤ T , such that

(8.9)
(
Aw

1ju, u
)
≥
(
Cw

j u, u
)

when u ∈ C∞
0 .

We obtain from (8.7) and (8.9) that

Re (bwfwu, u) ≥
∑

j

(
ψw
j C

w
j ψ

w
j u, u

)
+ (Rwu, u) u ∈ C∞

0

where
∑

j ψ
w
j C

w
j ψ

w
j and Rw ∈ OpS(m, g♯)+OpS(µ, g♯0), which gives Proposition 8.1. �

Proof of Lemma 8.3. In the following, we shall assume that max(|t|, |x|) ≤ T . As before

we are going to consider the cases when H1/2 ∼= 1 or H1/2 ≪ 1, and when (8.3) or (8.4)

holds in ωwj
(2εκ) for κ = min(κ0, κ1, κ2)/2. When H1/2 ≥ c > 0 we find that A1j ∈

S(MH3/2, g♯) + S(MHh1/2〈ξ〉, g♯0) ⊆ S(m, g♯) + S(µ, g♯0) uniformly by (8.8) which gives

the lemma with Cj = A1j in this case. For handling this case where H1/2 ≪ 1 we shall

need the following result.

Lemma 8.4. If F ∈ S(M0, G), where M0 is a weight for G, and ±F ≥ 0 in ωwj
(2εκ)

then we have that |∂ηF | ≤ Cκ

√
FM

1/2
0 H1/2h1/2 in ωj.

Corollary 8.5. We obtain from Lemma 8.4 that ∂ηf = ∂ηα0δ0 + α0∂ηδ =
√
α0r1 where

r1 ∈ S(M1/2H1/4h1/2, G) in ωj.

In fact, we find from Lemma 8.4 that ∂ηα0 ∈ S(
√
α0M

1/2H1/4h1/2, G) since MH1/2 .

α0 ∈ S(MH1/2, G) and we have ∂ηδ0 ∈ S(h1/2, G) in ωj.

Proof of Lemma 8.4. For any w ∈ ωj we may choose g♯ orthogonal coordinates so that

w = 0 and F ≥ 0 in |η| < εκH
−1/2h−1/2. Then by Taylor’s formula and the slow variation

there exists Cκ > 0 so that

(8.10) |η · ∂ηF (0)| ≤ F (0) + CκM0Hh|η|2

Then by choosing |η| = εκ
√
F (0)/M0Hh . εκH

−1/2h−1/2 we find that

(8.11) |∂ηF (0)| ≤ C ′
κ

√
F (0)M0Hh

which proves the result. �

In the following, we shall assume that

(8.12) H1/2 ≤ κ4 = min(κ0, κ1, κ2, κ3)/2 in ωj
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with κ3 = 2cκ/3 so that (8.5) follows from (8.4). First, we consider the case when

H1/2 ≤ κ4 and (8.4) holds in ωj . Since |δ0(w)| ≥ cκH
−1/2(w), we find ±f ≥ 0 and

〈δ0〉 ∼= H−1/2 in ωwj
(2εκ). As before we may ignore terms in S(MHµ, g♯0) ⊆ S(µ, g♯0)

and S(MH1/2, g♯) ⊆ S(m, g♯) in ωj by (8.8). We shall estimate A1j = Aj + A0j , starting

with Aj . If B1 = δ0 + ̺0 we find from (8.5) that fB1 ≥ 0 in ωwj
(2εκ). We shall

only consider the case sgn(f) = sgn(B1) = 1, for the other case we may replace the

symbols by their absolute values. Since B1 & H−1/2 and B1 ∈ S(H−1/2, g♯)
⋂
S+(1, g♯)

we find B1/2 ∈ S(H−1/4, g♯)
⋂
S+(H1/4, g♯) and B−1/2 ∈ S(H1/4, g♯)

⋂
S+(H3/4, g♯). Since

fj ∈ S(M,G), we find fw
j
∼= fWick

j modulo OpS(MH,G) by Proposition 7.2. As before,

ReλwfWick
j = (λfj)

w so we find from Example 7.4 that

Aw
j
∼= Re bwfw

j
∼= ReBWickfWick

j
∼= (fjB)Wick

modulo OpS(m, g♯) + OpS(µ,G0). In fact, we have bw = BWick = (B1 + λ)Wick and

λfj = s1 · ξ with s ∈ S(Mh1/2, G) so (λfj)
w ∼= (λfj)

Wick modulo OpS(µ,G0).

Similarly, since f0j ∈ S(MH1/2h1/2〈ξ〉, G0) is linear in ξ we find that fw
0j

∼= fWick
0j

modulo S(MH3/2h1/2〈ξ〉, G0), thus

Aw
0j

∼= Re bwfw
0j
∼= ReBWickfWick

0j
∼= (f0jB)Wick

modulo OpS(MHh1/2〈ξ〉, g♯0)+OpS(MH3/2h〈ξ〉2, G0) ⊂ OpS(µ, g♯0). By Lemma 8.4 we

have |∂ηf | .
√
fM1/2H1/2h1/2 in ωj which gives

(8.13) |f0jB1| ≤ εfjB1 + CεΨjMH1/2h〈ξ〉2 ∀ ε > 0

where MH1/2h〈ξ〉2 . µ. If ε ≤ 1/2 we find modulo S(µ, g♯0) that

f1jB & fj(B1/2 + λ) = fj

(√
B1/2 + λ/

√
2B1

)2
− fjλ

2/2B1

so (f1jB)Wick ≥ −(fjλ
2/2B1)

Wick ∈ OpS(MH1/2λ2, g♯0) ⊂ OpS(µ, g♯0).

Finally, we consider the case when (8.3) holds with κ = min(κ0, κ1, κ2)/2 and H1/2 ≤
κ4 ≤ κ in ωj . Then 〈δ0〉 ≤ 2κH−1/2 so we obtain from Proposition 4.9 that M ∼= |f ′|H−1/2

and δ0 ∈ S(H−1/2, G) in ωj. We shall estimate A1j = Aj + A0j , starting with Aj using

an argument of Lerner [15]. We have that bw = (δ0 + ̺0 + λ)Wick = BWick, where

|̺0| ≤ m ≤ H1/2〈δ0〉2/2 by (6.2). Also, Lemma 8.2 gives Aw
1j

∼= Re bwfw
1j = ReBWickfw

1j

modulo OpS(m, g♯) + OpS(µ, g♯0). As before, f1j = fj + f0j and we shall start with

Re bwfw
j . Take χ(t) ∈ C∞(R) such that 0 ≤ χ(t) ≤ 1, |t| ≥ 2 in suppχ(t) and χ(t) = 1

for |t| ≥ 3. Let χ0 = χ(δ0), then χ0 ∈ S(1, g♯), 2 ≤ |δ0| and 〈δ0〉/|δ0| ≤ 3/2 in suppχ0,

thus

(8.14) 1 + χ0̺0/δ0 ≥ 1− χ0〈δ0〉/2|δ0| ≥ 1/4.
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Since |δ0| ≤ 3 in supp(1− χ0) we find by Proposition 7.5 that

BWick ∼= (δ0 + χ0̺0 + λ)Wick

modulo OpS(m/〈δ0〉, g♯) ⊆ OpS(H1/2〈δ0〉, g♯) by (6.2). Since |χ0̺0/δ0| ≤ 3H1/2〈δ0〉/4
and δ0 ∈ S+(1, g♯) we find from (7.4) that

(8.15) BWick
1

∼= δWick
0 BWick

0 modulo OpS(H1/2〈δ0〉, g♯).

where B0 = 1 + χ0̺0/δ0. Proposition 7.2 gives (χ0̺0/δ0)
Wick ∈ OpS(H1/2〈δ0〉, g♯) and

δWick
0 = δw1 where δ1 = δ0 + γ with γ ∈ S(H1/2, G) in ωj. Thus Lemma 3.2 gives

(8.16) BWick ∼= δWick
0 BWick

0 +λWick ∼= δw0 B
Wick
0 +λw+ cw modulo OpS(H1/2〈δ0〉, g♯)

where c ∈ S(H−1/2, g♯) such that supp c
⋂
ωj = ∅.

We find from Proposition 4.9 that f = α0δ0, where MH1/2 . α0 ∈ S(MH1/2, G),

which gives α
1/2
0 ∈ S(M1/2H1/4, G). Let

(8.17) aj = α
1/2
0 δ0φj ∈ S(M1/2H−1/4, G)

then the calculus gives

(8.18) Re awj (α
1/2
0 φj)

w ∼= fw
j modulo OpS(MH,G).

since fj = Ψjf = φ2
jf . Similarly, we find that fw

j c
w ∈ OpS(MH3/2, g♯) by the expansion

and

(8.19) Re fw
j δ

w
0
∼= awj a

w
j modulo OpS(MH3/2, G)

with imaginary part in OpS(MH1/2, G). We obtain from (8.16) and (8.18) that

(8.20) fw
j B

Wick ∼= fw
j (δ

w
0 B

Wick
0 + λw + cw + rw)

∼= fw
j δ

w
0 B

Wick
0 + fw

j λ
w + awj R

w
j modulo OpS(m, g♯)

where r ∈ S(H1/2〈δ0〉, g♯) which gives Rj = (α
1/2
0 φj)

wrw ∈ S(M1/2H3/4〈δ0〉, g♯). Since

ReFB = Re(ReF )B + i[ImF,B]

when B∗ = B, we find from (8.19) by taking F = fw
j δ

w
0 and B = BWick

0 that

(8.21) Re fw
j δ

w
0 B

Wick
0

∼= Re awj a
w
j B

Wick
0 modulo OpS(m, g♯).

In fact, since B0 = 1 + χ0̺0/δ0 and (χ0̺0/δ0)
Wick ∈ OpS(H1/2〈δ0〉, g♯) we find

(8.22) [aw, BWick
0 ] = [aw, (χ0̺0/δ0)

Wick] ∈ OpS(MH3/2〈δ0〉, g♯)

when a ∈ S(MH1/2, G). Similarly, since aj ∈ S(M1/2H−1/4, G) we obtain that

(8.23) awj a
w
j B

Wick
0

∼= awj (B
Wick
0 awj + swj ) modulo OpS(m, g♯)



SUFFICIENT CONDITIONS 49

where sj ∈ S(M1/2H3/4〈δ0〉, g♯). We also have

(8.24) ReλWickfw
j = Re fw

j λ
w ∼= (fjλ)

w ∼= Re awj (α
1/2
0 λφj)

w

modulo OpS(µ,G0) where α
1/2
0 λφj ∈ S(M1/2H1/4h1/2〈ξ〉, G0). Since B0 ≥ 1/4 we find

from (8.20)–(8.24) that

(8.25) ReBWickfw
j &

1

4
awj a

w
j + Re awj S

w
j modulo OpS(m, g♯) + OpS(µ,G0)

where Sj ∈ S(M1/2H3/4〈δ0〉, g♯) + S(M1/2H1/4h1/2〈ξ〉, G0).

We are going to complete the square in (8.25), but before that we must handle the

term ReBWickfw
0j = Re bwfw

0j . As before, we find that λWickfw
0j ∈ OpS(µ,G0) uniformly

since we have MH1/2h1/2〈ξ〉λ . µ. For the term ReBWick
1 fw

0j with B1 = δ0 + ̺0 we need

the following result.

Lemma 8.6. For any ε > 0 there exists Rε ∈ S(m, g♯) + S(µ, g♯0) so that

(8.26) |Re〈BWick
1 fw

0ju, u〉| ≤ ε〈awj awj u, u〉+ 〈Rw
ε u, u〉 u ∈ C∞

0

By using (8.25) and (8.26) we obtain for ε ≤ 1/12 that

(8.27) ReBWickfw
j ≥ 1

6
awj a

w
j + Re awj S

w
j modulo OpS(m, g♯) + OpS(µ, g♯0)

where Sj ∈ S(M1/2H3/4〈δ0〉, g♯)+S(M1/2H1/4h1/2〈ξ〉, G0). By completing the square, we

find

Aw
j
∼= Re fw

j B
Wick &

1

6

(
awj + 3Sw

j

)∗ (
awj + 3Sw

j

)
≥ 0

modulo OpS(m, g♯) + OpS(µ,G0). In fact, (Sw
j )

∗Sw
j ∈ OpS(m, g♯) + OpS(µ,G0) since

we have MH3/2〈δ0〉2 . m and MH1/2h〈ξ〉2 . µ. This gives (8.9) and the lemma in this

case. This completes the proof of Lemma 8.3. �

Proof of Lemma 8.6. First, we note that BWick
1 = (δ0 + ̺0)

Wick ∼= (δ0B0)
Wick modulo

S(H1/2, g♯), where (δ0B0)
Wick ∈ OpS+(1, g♯). Thus by Propositions 7.2 and 7.3 we find

that ReBWick
1 fw

0j
∼= ReBWick

1 fWick
0j

∼= (f0jδ0B0)
Wick modulo OpS(µ, g♯0).

Now since Ψj = φ2
j and f0j = Ψj∂ηf · r · ξ we can factor the symbol f0jδ0B0 = AB,

where A = ∂ηfδ0B0M
−1/2H−1/4h−1/2φj and B =M1/2H1/4h1/2r ·ξφj. Then Corollary 8.5

gives |A| . √
α0|δ0|φj and Proposition 7.2 gives

AWick ∈ OpS(M1/2H1/4〈δ0〉, g♯)
⋂

OpS+(M1/2H1/4, g♯)

and BWick = B̃WickDx with B̃ ∈ S(M1/2H1/4h1/2, G) ⊂ S(h1/4, G).

By Proposition 7.3 we have (AB)Wick ∼= ReAWickBWick modulo OpS(µ, g♯0). Thus, it

suffices to estimate

(8.28) Re〈AWickBWicku, u〉 ≤ ε‖AWicku‖2 + Cε‖BWicku‖2 u ∈ C∞
0
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where we have ‖BWicku‖2 . ‖h1/4Dxu‖2 ≤ 〈µwu, u〉. We shall prove (8.26) by estimating

A2 . α0δ
2
0φ

2
j = fδ0Ψj = a2j . Here aj =

√
α0δ0φj ∈ S(M1/2H−1/4, G) is given by (8.17).

We may then estimate AWick . aWick
j where aWick

j = awj + rw2 with rw2 ∈ S(M1/2H3/4, G).

Thus we obtain

(8.29) (AWick)2 ≤
(
awj + rw2

) (
awj + rw2

)
. awj a

w
j + rw2 a

w
j + awj r

w
2 . 2awj a

w
j

modulo (rw2 )
2 ∈ OpS(m, g♯), which gives (8.26) and Lemma 8.6. �

We shall finish the paper by giving a proof of Proposition 3.6.

Proof of Proposition 3.6. By the assumptions in Proposition 3.6 we have

(8.30) P ∗ ∼= Dt + Aw + ifw
1 modulo R

microlocally near w0 ∈ Σ2, here

(8.31) A =
∑

jk

ajkξjξk +
∑

j

ajξj + a0

where ajk and aj ∈ S(1, g) are real and {ajk}jk is symmetric and nondegenerate, f1 =

f + f0 where f ∈ S(h−1, g) is real valued satisfying condition Subr(Ψ) in (3.3) and

f0 = ∂ηf · r · ξ. Observe that P ∗ in (3.17) can be perturbed by rw for r ∈ R since bT ∈
S(h−1/2, g♯), so |〈bwT rwu, u〉| . h1/2‖〈Dx〉u‖2 since bwT s

w ∈ OpS(h1/2, g♯) when s ∈ S(h, g).

Let BT = δ0 + ̺T + λT be given by Definition 6.10, where λT = ǫh1/2〈L(x− x0), ξ〉/T
given by Lemma 6.9 with x0 being the value of x at w0 and 0 < ǫ ≤ 1, δ0 + ̺T is the

Lipschitz continuous pseudo-sign for f given by Proposition 6.8 for 0 < T ≤ 1, so that

|̺T | ≤ m ≤ 〈δ0〉/2 when |t| ≤ T . Proposition 6.8 also gives that

(8.32) ∂t(δ0 + ̺T ) ≥ m/2T when |t| ≤ T

We have BWick
T = bwT where bT (t, w) ∈ S(H−1/2, g♯)

⋂
S+(1, g♯) + S(µ, g♯0) uniformly by

Proposition 7.5 when max(|t|, |x|) ≤ T . In the following we shall assume that u ∈ C∞
0

has support where max(|t|, |x|) ≤ T .

We are going to consider

(8.33) Im
(
P ∗u,BWick

T u
)
= i
(
[Dt + Aw, BWick

T ]u, u
)
/2 + Re

(
fw
1 u,B

Wick
T u

)

We find by (7.1) and (8.32) that

(8.34) i
(
[Dt, B

Wick
T ]u, u

)
/2 =

(
∂tB

Wick
T u, u

)
/2 ≥

(
mWicku, u

)
/4T

when u ∈ C∞
0 . By Proposition 8.1, we find that

(8.35) Re
(
BWick

T fwu, u
)
≥ (Cwu, u) u ∈ C∞

0
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with C ∈ S(m, g♯) + S(µ, g♯0). Propositions 7.6 and 7.7 gives C0 > 0 so that

(8.36) | (Cwu, u) | ≤ C0(
(
mWicku, u

)
+
(
µWicku, u

)
) u ∈ C∞

0

By Lemma 6.9 and (6.2), there exist cj > 0 so that when |ξ| ≪ h−1 we have

(8.37) i
(
[Aw, BWick

T ]u, u
)
/2 ≥ (ǫ− 2c1T ) (µ

wu, u) /2T − 3c0ǫ
(
mWicku, u

)
/2T

for u ∈ C∞
0 . In fact, h1/2 ≤ 6m by (6.2) and since b1 is constant in x we have [Aw, bw1 ] =

〈sw2Dx, Dx〉+ sw1Dx + sw0 with sj ∈ S(h1/2, g♯0).

We find from (8.34)–(8.36) that we can find Ψ ∈ S2 such that Σ2

⋂
suppΨ = ∅ and

(8.38) Im
(
P ∗u,BWick

T u
)
≥
(
1

4
− 6c0ǫ− C0T

)(
mWicku, u

)
/T

+ (ǫ− 2C0T − 2c1T )) (µ
wu, u))/2T − ‖Ψwu‖2/T

for u ∈ C∞
0 . By taking first ǫ and then T small enough we find

(8.39) Im
(
P ∗u,BWick

T u
)
+ ‖Ψwu‖2/T &

(
mWicku, u

)
/T + (µwu, u))/T

for u ∈ C∞
0 .

Since |δ0+ ̺T | ≤ |δ0|+m ≤ 3〈δ0〉/2, h1/2〈δ0〉2 . m by (6.2) and |λ| . h1/4µ1/2, we find

|BT | . h−1/4m1/2 + h1/4µ1/2. Thus h1/2((BWick
T )2 +1) ∈ OpS(m, g♯) +OpS(h1/2µ, g♯0) so

Propositions 7.6 and 7.7 give

(8.40) h1/2(‖BWick
T u‖2 + ‖u‖2 + ‖Dxu‖2) .

(
mWicku, u

)
+ (µwu, u) u ∈ C∞

0

Summing up, we obtain that

(8.41) h1/2(‖BWick
T u‖2 + ‖u‖2 + ‖Dxu‖2) ≤ C1

((
mWicku, u

)
+ (µwu, u)

)

≤ C2

(
T Im

(
Pu,BWick

T u
)
+ ‖Ψwu‖2

)

if u ∈ C∞
0 has support where max(|t|, |x|) ≤ T which completes the proof of Proposi-

tion 3.6. �

Appendix A. Proof of Proposition 2.1

In this appendix, we are going give a proof of Proposition 2.2 in Section 2. Let f(x, w) ∈
C∞(Rn+m) be real valued and consider the equation

(A.1) P (∂xu, x, w, ∂x)u = f, u(x0, w0) = u0 ∈ R, ∂xu(x0, w0) = u1 ∈ R
n

where P is a quasilinear second order PDO in the x variables with real C∞ coefficients

having w ∈ R
m as parameter such that

(A.2) P (v, x, w, ∂x) = p2(v, x, w, ∂x) + p1(x, w)∂x + p0(x, w)
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with v(x, w) ∈ C∞(Rn+m,Rn), p1(x, w) ∈ C∞(Rn+m,Rn) and p0(x, w) ∈ C∞(Rn+m,R).

We assume that the principal symbol vanishes of second order, so that

(A.3) p2(v, x, w, ∂x) =

n∑

j,k=1

Ljk(v, x, w)∂xj
∂xk

where the real quadratic form

(A.4) L(u1, x0, w0) = {Ljk(u1, x0, w0) }jk has maximal rank n

which then holds in a neighborhood of (u1, x0, w0) so that P is of real principal type.

Theorem A.1. Let P be given by (A.2) so that conditions (A.3) and (A.4) hold, then

for any real valued f ∈ C∞(Rm+n), u0 ∈ R and u1 ∈ R
n there exists a neighborhood U of

(x0, w0) so that (A.1) has a real valued solution u ∈ C∞(Rm+n) in U . The neighborhood U

will only depend on the bounds on u0, u1, f and the coefficients of P .

Observe that the solution is not unique, for uniqueness one needs hyperbolicity of

P and initial values at a noncharacteristic surface. Since the system (2.17) is on the

form (A.2)–(A.4) we obtain Proposition 2.1 from Theorem A.1.

We shall first reduce to the case with vanishing data by changing the dependent variable

(A.5) u(x, w) = v(x, w) + u0 + u1 · x

in (A.1), then we obtain the following equation for v:

(A.6) P0v = P (∂v+u1, x, w, ∂)v = f(x, w)−p1(x, w)u1−p0(x, w)(u0+u1 ·x) = f0(x, w)

with v(x0, w0) = 0 and ∂xv(x0, w0) = 0. Now the right hand side of (A.6) depends linearly

on both f, u0 and u1 and we have that (A.4) holds when u1 = 0.

Renaming the operator, for the proof of Theorem A.1 we shall solve the linear equation

(A.7) P (v(x, w), x, w, ∂x)u(x, w) = f0(x, w) u(x0, w0) = 0 ∂xu(x0, w0) = 0

which is a second order real linear PDE with w ∈ R
m and v(x, w) ∈ C∞(Rn+m,Rn) as

parameters such that v(x0, w0) = 0. By using iteration and compactness we shall obtain

a solution to (A.1), the proof of Theorem A.1 will be at the end of the appendix.

To solve the linear equation (A.7) we shall microlocalize using pseudodifferential equa-

tions. In the following we will say that an pseudodifferential operator (or Fourier integral

operator) a(v, x,D) depends C∞ on a parameter v(x) ∈ C∞ if any seminorm of the sym-

bol (and phase function) is bounded by a finite number of seminorms of v. For operators

with symbols in S−∞ this means that the C∞ kernel is a C∞ function of v. Observe that

compositions and adjoints of such operators also depend C∞ on v, see Lemma A.8 and

Remark A.9.
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Next, we shall microlocalize in cones in the ξ variables. In the following, we will use

the classical Kohn-Nirenberg quantization having classical symbol expansions.

Definition A.2. For any ε > 0 and ξ0 ∈ R
n such |ξ0| = 1 we let

(A.8) Γξ0,ε = { ξ : |ξ/|ξ| − ξ0| < ε }

which is a conical neighborhood of ξ0.

Recall that a partition of unity is a set {φj }j such that 0 ≤ φj ∈ C∞ and
∑

j φj ≡ 1.

Remark A.3. For any ε > 0 small enough we can find a partition of unity on S∗
R

n and

extend it by homogeneity in ξ to get a partition of unity {ϕj(ξ) }j on T ∗
R

n \ 0 such that

0 ≤ ϕj ∈ S0 is homogeneous and supported in Γξj ,ε for some |ξj| = 1. We can also find

{ψj }j such that 0 ≤ ψj ∈ S0 is homogeneous and supported in Γξj ,ε so that ψj = 1 on

supp φj.

We shall also localize when |ξ| ≥ ̺ ≥ 1 by χ̺(ξ) = χ(|ξ|/̺) ∈ C∞, where χ ∈ C∞(R)

such that 0 ≤ χ ≤ 1, χ(t) = 0 when t ≤ 1 and equal to 1 when t ≥ 2. Let ϕj,̺ = χ̺ϕj

and ψj,̺ = χ̺ψj then ϕj − ϕj,̺ and ψj − ψj,̺ are in S−∞, ∀ j and ∀ ̺ ≥ 1. We also have

that ̺χ̺ ∈ S1 uniformly in ̺ ≥ 1, ∀ j.

In fact, since 0 ≤ χ̺ ≤ 1 and ̺ ≤ |ξ| in the support of this symbol, we find that

|̺χ̺(ξ)| ≤ |ξ|. Taking ξ derivatives of the symbol gives a factor ̺−1 together with a

symbol supported where |ξ| ≤ ̺ ≤ 2|ξ|.
Next, we have to prepare the linear operator P microlocally with respect to this par-

tition of unity. We will then use microlocal pseudodifferential operators which may give

complex solutions. But since P is a real PDO, we may take the real part of the solution

to the linear equation. In the following we shall use the notation 〈D〉 = (1 + |D|2)1/2.

Proposition A.4. Let P be given by (A.2)–(A.4) with real v(x, w) ∈ C∞ such that

v(x0, w0) = 0, and let Γ = Γξ0,ε be defined by (A.8) for |ξ0| = 1, 0 < ε ≤ ε0. Then for ε0

small enough there exists real valued 0 6= a(v, x, w, ξ) ∈ S0, 0 < c〈ξ〉−1 ≤ b(ξ) ∈ S−1 and

orthonormal variables (t, x) ∈ R×R
n−1 so that

(A.9) P (v, t, x, w,D)b(D) = a(v, t, x, w,D)Q(v, t, x, w,D) +R(v, t, x, w,D)

where

(A.10) Q(v, t, x, w,D) = Dt +
n−1∑

j=1

Aj(v, t, x, w,Dx)Dxj
+ A0(v, t, x, w,Dx)

Here a, Aj and R are operators that depend C∞ on v(x, w), Aj ∈ C∞(R, S0) is real

valued when j > 0 and R = R0 + R1 ∈ Ψ1 where R0 ∈ Ψ−1 and WFR1

⋂
Γ0 = ∅,
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Γ0 = (0, x0, w0)× Γξ0,ε. The seminorms of Aj, R and the constant ε0 only depend on the

seminorms of v and the coefficients of P .

Observe that since a 6= 0 we have by the calculus that a−1a ∼= aa−1 ∼= Id modulo Ψ−1.

Proof. For the proof, it is important that compositions of operators that depend C∞

on v also depend C∞ on v, see Lemma A.8. By taking an ON base of eigenvectors of

L(0, x0, w0) and choosing ON variables x, we may assume that p2(0, x0, w0, ξ) =
∑

j cjξ
2
j

for 0 6= cj ∈ R. Choose j so that ξj 6= 0 at ξ0, thus in a conical neighborhood of Γ0 if ε is

small enough. By an ON change of variables we may take j = 1, then c1 = −L11(0, x0, w0).

Letting b(ξ) = ξ−1
1 near Γ0 ∩ { |ξ| ≥ 1 } we may extend b(ξ) to a symbol in S−1 so that

b(ξ) & 〈ξ〉−1. Then Pb(D) has a symbol expansion with pjb ∈ Sj−1 and

p2(v, x, w, ξ)b(ξ) = −
∑

jk

Ljk(v, x, w)ξjBk(ξ)

where Bk(ξ) = ξkb(ξ) ∈ S0 . Since Bj(D)Dk = Bk(D)Dj, we find from (A.2)–(A.3) that

Pb(D) =
m∑

j=1

Aj(v, x, w,D)Dj + A0(v, x, w,D)

where A0 = (p1∂ + p0)b(D), A1(v, x, w, ξ) = −L11(v, x, w)B1(ξ) 6= 0 near Γ0 and Aj ∈ S0

is real valued when j > 0. Observe that B1(ξ) = 1 near Γ0

⋂ { |ξ| ≥ 1 } so it may be

extended to be equal to 1 everywhere modulo terms having wave front set outside Γ0.

This gives that A1 = −L11 6= 0 near (0, x0, w0) thus we can extend a = A1 so that

0 6= a(v, x, w) ∈ C∞. Replacing Aj with a−1Aj we find that Pb(D) = a(v, x, w)Q ∈ Ψ1

where the symbol of Q is equal to ξ1 +
∑

j>1Aj(v, x, w, ξ)ξj +A0(v, x, w, ξ) modulo Ψ−1

and terms having wave front set outside Γ0.

To obtain that Aj is independent of ξ1 for j > 0, we shall use the Malgrange preparation

theorem. If ξ = (ξ1, ξ
′) we find by homogeneity for small enough ε0 > 0 that

(A.11) ξ1 +
∑

j>1

Aj(v, x, w, ξ)ξj = q(v, x, w, ξ) (ξ1 + r(v, x, w, ξ′))

in a conical neighborhood of Γ0, where q > 0 is homogeneous and r is real, homogeneous of

degree 1 and vanishes when ξ′ = 0. Then we can extend q > 0 to a homogeneous symbol

by a cut-off, observe that the symbols depend C∞ on v. This replaces a by 0 6= aq ∈ S0,

and by using Taylor’s formula we find that r(v, x, w, ξ′) =
∑

j>1 rj(v, x, w, ξ
′)ξj with rj

homogeneous in ξ′. This gives that Pb(D) = aq(v, x, w,D)Q where Q is equal to (A.10)

modulo Ψ0 and terms having wave front set outside Γ0. The composition aq(v, x, w,D)

with Q also gives lower order terms in Ψ0 which can be included in A0.
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Now the term A0 ∈ Ψ0 of Q can be replaced by aq(v, x, w,D)R0 modulo Ψ−1 where the

symbol R0 = A0/aq ∈ S0. To make the term R0 independent of ξ1 we may use Malgrange

division theorem and homogeneity for small enough ε0 > 0 to obtain that

(A.12) R0(v, x, w, ξ) = q0(v, x, w, ξ) (ξ1 + r(v, x, w, ξ′)) + r0(v, x, w, ξ
′)

in a conical neighborhood of Γ0, where q0 ∈ S−1 and r0 ∈ S0 by homogeneity. Cutting

of q0 we may replace R0(v, x, w,D) with q0(v, x, w,D)Q + r0(v, x, w,Dx′) modulo Ψ−1

near Γ0. Since R0
∼= (1 + q0)R0 modulo Ψ−1, we obtain (A.9)–(A.10) with a replaced

by aq(1 + q0). Cutting off q0 where |ξ| ≫ 1 only changes the operator with terms in

Ψ−∞, but gives that 1+ q0 > 0 making aq(1+ q0) 6= 0. The composition of aq(v, x, w,D)

with q0(v, x, w,D)Q will also give lower order terms in Ψ−1 which can be included in

R together with any cut-off terms. This gives the proposition after putting t = x1 and

x = x′. �

Proposition A.4 shows that the linerarized equation P (v, x, w,D)u = f may after

ON changes of variables be microlocally be reduced to the system Qj(v, x, w,D)uj ∼=
a−1
j (v, x, w,D)fj where fj = ϕj(D)f with ϕj given by Remark A.3. Observe that u ∼=
∑

j bj(D)uj where uj also has to be microlocalized.

Now, the reduction and the calculus will give terms S ∈ Ψ−∞ which have smooth

kernels. The errors Sf(x) =
∫∫

S(x, y)f(y) dy can be made small if f has support in a

sufficiently small neighborhood of x0 by cutting off the kernel S. Let φδ(x) = φ((x−x0)/δ)
where 0 < δ ≤ 1 and φ ∈ C∞

0 (Rn) such that 0 ≤ φ ≤ 1, has support where |x| < 2 and

is equal to 1 when |x| ≤ 1, so that φ(x/δ) ∈ C∞
0 (Bx0,2δ) if Bx0,δ = {x : |x− x0| ≤ δ }.

Lemma A.5. Let S(x, y) ∈ C∞ and Sδ(x, y) = φδ(x)S(x, y)φδ(y) ∈ C∞
0 (Bx0,2δ ×Bx0,2δ).

The mapping Sδ : C∞ 7→ C∞
0 (Bx0,2δ) is given by Sδf(x) =

∫∫
Sδ(x, y)f(y) dy, and for

f ∈ C∞
0 (Bx0,δ) we have Sδf(x) = Sf(x) when |x| ≤ δ. For δ small enough, Id+Sδ has

the inverse (Id+Sδ)
−1 =

∑∞
j=0(−Sδ)

j ∼= Id modulo operators with kernels in C∞
0 (Bx0,2δ×

Bx0,2δ).

Proof. We may assume that x0 = 0, clearly Sδf(x) = Sf(x) if fφδ = f and φδ(x) = 1. If

f ∈ C∞ then L∞ norm is ‖Sδf‖∞ ≤ cn2
nδn‖S‖∞‖f‖∞. By induction we get

(A.13) ‖Sj
δf‖∞ ≤ cn2

nδn‖Sδ‖∞‖Sj−1
δ f‖∞ ≤ cjn2

jnδjn‖S‖j∞‖f‖∞ j > 1

where the kernels of Sj
δ are in C∞

0 (B0,2δ × B0,2δ). Thus the series
∑∞

j=0(−Sδ)
j converges

on L∞ if cn2
nδn‖S‖∞ < 1. Derivation of the terms in the series will only give fac-

tors O(δ−1) so the convergence is in C∞
0 (B0,2δ × B0,2δ). Then the inverse (Id+Sδ)

−1 =

Id+
∑∞

j=1(−Sδ)
j ∼= Id modulo operators with kernels in C∞

0 (Bx0,2δ × Bx0,2δ). �
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Next, we shall solve the microlocalized equations Qjuj = a−1
j fj = a−1

j ϕjf with uj = 0

when t = 0. Here ϕj is given by Remark A.3, Qj is given by (A.10) near Γξj ,ε with

0 6= aj ∈ S0 given by Proposition A.4, but we shall treat terms R ∈ Ψ−1 as perturbations.

In the case when Aj ≡ 0, we would then find that Qjuj ∼= Dtuj = a−1
j fj , which has the

approximate solution uj ∼=
∫ t

0
a−1
j fj dt. By using Fourier integral operators one can reduce

to this case.

We shall use denote by Ik classical Fourier integral operators of order k with homoge-

nous phase functions and classical symbol expansions depending C∞ on v. But we shall

also use operators F ∈ C∞(R, Ik) which are FIOs F (t) ∈ Ik in x depending C∞ on t

and v, (t, x) ∈ R×R
n−1. Observe that ΨDOs of order k in x depending C∞ on t and v

are also in C∞(R, Ik) and that C∞(R, Ik) ⊂ Ik. By multiplying Ik by Im we obtain

operators in Ik+m by Remark A.9.

As before, we shall use ON coordinates (t, x) ∈ R×R
n−1 and suppress the dependence

on v and w. But the operators will depend C∞ on v and w having symbols and phase

functions that are uniformly bounded if v ∈ C∞ and w ∈ R
m are bounded.

Proposition A.6. Assume that Q = Dt + a1(t, x, w,Dx) + a0(t, x, w,Dx) depend C∞ on

v ∈ C∞, where a1 ∈ C∞(R,Ψ1) is real and homogeneous of degree 1 and a0 ∈ C∞(R,Ψ0).

Then there exists elliptic Fourier integral operator F0(t) and F1(t) ∈ C∞(R, I0) such that

F0(t)F1(t) ∼= Id and QF0(t) ∼= F0(t)Dt modulo C∞(R, I−1). If f ∈ C∞
0 then we have that

(A.14) u(t, x) = iF0(t)

∫ t

0

F1(s)f(s, x) ds = Ff(t, x)

solves the initial value problem

(A.15) Qu = (Id+S)f ∈ C∞ u(0, x) ≡ 0

where S ∈ C∞(R, I−1) and F ∈ I0. Here F0(t), F1(t) and F have wave front sets close

to the diagonal when |t| ≪ 1. In fact, the canonical transformations given by F0(t) and

F1(t) maps bicharacteristics of Dt + a1 to t lines and vice versa.

Corollary A.7. If cj ∈ Ψk, j = 1, 2, and supp c1
⋂

supp c2 = ∅, then c1F0(t)F1(s)c2 ∈
I−∞ having a smooth kernel for small enough s and t.

Proof. It is a classical result that there exists elliptic Fourier integral operators F0(t)

and F1(t) ∈ C∞(R, I0) with the properties in the proposition. The construction of the

homogeneous phase function of the FIO involves solving the Hamilton-Jacobi equations,

which depend on the derivatives of the principal symbol τ +a1 of Q. Then the amplitude

is given by the transport equations depending on the lower order term a0 of Q modulo
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terms in C∞(R, S−1). For the approximate inverse, one takes the phase function for the

inverse canonical relation and the inverse amplitude.

If f ∈ C∞
0 and u = iF0(t)v with v =

∫ t

0
F1(s)f(s, x) ds as in (A.14), then we find

(A.16) Qu = iQF0(t)v = (iF0(t)Dt + S0)v = F0(t)F1(t)f + S0v

= f + S1f + S0v = f + S1f + S0

∫ t

0

F1(s)f ds = f + Sf

where S0, S1 and S ∈ C∞(R, I−1). �

The approximate solution u in (A.14) depends C∞ on the data f and v, but we shall

need stronger estimates. For that we shall use the L2 Sobolev norms:

(A.17) ‖ϕ‖2(k) = ‖〈D〉kϕ‖2 ϕ ∈ C∞
0

We shall use the following estimates, were we shall suppress the parameter w.

Lemma A.8. If a(u, x,D) ∈ Ψ0 depends C∞ on u(x) ∈ C∞ then there exists ℓ ∈ N so

that for any k ∈ N there exists Ck(t) ∈ C∞(R+) so that

(A.18) ‖a(u, x,D)ϕ‖(k) ≤ Ck(‖u‖(ℓ))‖ϕ‖(k) ∀ϕ ∈ C∞
0

If a(u, x,D) ∈ Ψm1 and b(u, x,D) ∈ Ψm2 depend C∞ on u(x) then a(u, x,D)b(u, x,D) ∈
Ψm1+m2 also depends C∞ on u(x). Then there exists ℓ ∈ N so that for any k there exists

Ck(t) ∈ C∞(R+) so that

(A.19) ‖ [a(u, x,D), b(u, x,D)]ϕ‖(k) ≤ Ck(‖u‖(ℓ))‖ϕ‖(k+m1+m2−1) ∀ϕ ∈ C∞
0

If a(u, x,D) ∈ Ψm depends C∞ on u(x) having real valued symbol modulo Sm−1 then

(A.20) ‖ Im a(u, x,D)ϕ‖(k) ≤ Ck(‖u‖(ℓ))‖ϕ‖(k+m−1) ∀ϕ ∈ C∞
0

where 2i Im a(u, x,D) = a(u, x,D)− a∗(u, x,D) also depends C∞ on u.

Proof. First we note that by definition any seminorm of a(u, x, ξ) ∈ Sm is bounded by

‖u‖Ck when |ξ| = 1 for some k ∈ N. By the Sobolev embedding theorem, the Ck norm

of u can be bounded by by the norm ‖u‖(k+s) with s > n/2.

If a(u, x, ξ) ∈ Sm1 and b(u, x, ξ) ∈ Sm2 then a(u, x,D)b(u, x,D) = c(u, x,D) is given

by

(A.21) c(u, x, ξ) = ei〈Dξ,Dy〉a(u, x, ξ)b(u, y, η)
∣∣y=x
η=ξ

The mapping a, b 7→ c is weakly continuous on the symbol classes Sm so that any semi-

norm of c only depends on some seminorms of a and b, see [10, Th. 18.4.10’]. (Here weak

continuity means that the restriction to a bounded set is continuous.) Thus if a(u, x,D)

and b(u, x,D) depend C∞ on u ∈ C∞ then c(u, x,D) also does. Observe that the number
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of seminorms that is needed does not depend on the symbol classes Sk, it only depends

on the symbol metric and the dimension.

We may reduce the estimate (A.18) to the case k = 0 by replacing a(u, x,D) with

A(x,D) = 〈D〉ka(u, x,D)〈D〉−k ∈ Ψ0 and ϕ with 〈D〉kϕ. Then the L2 norm of A(x,D)

depends on a fixed seminorm of A(x, ξ), see [10, Th. 18.6.3]. This seminorm in turn

depends on a fixed seminorm of a(u, x, ξ) which gives (A.18).

Any seminorm of the symbol of the commutator [a(u, x,D), b(u, x,D)] ∈ Sm1+m2−1

depends on the same seminorm of the symbols of the compositions a(u, x,D)b(u, x,D)

and b(u, x,D)a(u, x,D). These seminorms in turn depend on some seminorms of a(u, x, ξ)

and b(u, x, ξ). Thus we obtain (A.19) from (A.18) for some ℓ and Ck.

If a ∈ Sm then the adjoint a∗(u, x,D) is given by

(A.22) a∗(u, x, ξ) = ei〈Dξ ,Dx〉a(u, x, ξ)

which is weakly continuous in the symbol class Sm by [10, Th. 18.1.7]. If a is real modulo

Sm−1 then Im a(u, x,D) ∈ Ψm−1. Thus any seminorm of the symbol of Im a(u, x,D) is

bounded by some seminorms of a(u, x, ξ), which gives (A.20) for some Ck. �

Remark A.9. The results of Lemma A.8 also holds for the ΨDOs Ψm depending C∞

on u composed by FIOs Ik depending C∞ on u, e.g., the FIO given by Proposition A.6.

Operators in I−∞ have smooth kernels which are C∞ functions of u.

In fact, Theorem 9.1 in [8] shows that the conjugation of ΨDOs with FIOs gives symbol

expansions similar to (A.21) after change of variables, see for example (9.2)” in [8]. This

result is about Weyl operators, but by Theorem 4.5 in [8] it can be extended to operators

having the Kohn-Nirenberg quantization. This gives a calculus with symbol expansions

of classical homogeneous FIOs with homogeneous phases and symbols, see pages 441–442

in [8]. For example, if a ∈ Ψm and F ∈ Ik then we have ‖aFu‖2 = 〈F ∗a∗aFu, u〉 where

F ∗a∗aF = b ∈ Ψ2(m+k), and similar result holds for ‖Fau‖2.
For S ∈ I−∞ the C∞ dependence means that for any k we have S ∈ I−k depending

C∞ on u. Since the kernel is obtained by taking the Fourier transform in ξ of the symbol,

we find that the kernel of S is smooth and a is C∞ function of u.

Next, we are going to prove estimates for the microlocalized operators. Then we will

use ON coordinates (t, x) ∈ R×R
n−1 and for k ∈ N and T > 0 define the local norms

(A.23) ‖ϕ‖2k,T =

∫

|t|≤T

‖ϕ‖2k(t) dt ϕ ∈ C∞
0

and ‖ϕ‖k,j,T = ‖〈Dt〉jϕ‖k,T , ∀ j ∈ Z+, with ‖ϕ‖2k(t) =
∫∫

|〈Dx〉kϕ(t, x)|2 dx.
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Proposition A.10. Let v, f ∈ C∞
0 and u ∈ C∞ be a solution to

(A.24) Q(v, t, x, w,D)u = ∂tu+

n∑

j=1

Aj(v, t, x, w,Dx)∂xj
u

+ A0(v, t, x, w,Dx)u = f u(0, x, w) = 0

where Aj ∈ C∞(R,Ψ0) depends C∞ on v, ∀ j, and Aj is real valued modulo S−1 for j > 0.

Then there exists ℓ ∈ N so that for any k ∈ N there exists Ck(r) ∈ C∞(R+) so that

(A.25) ‖φu‖2(k) ≤ Ck(‖v‖(ℓ))‖f‖2(k)
if φ ∈ C∞

0 has support where |t| ≤ 1. The estimate only depends on the seminorms of the

symbol of Q and φ.

Thus, for any k ∈ N we get uniform local bounds on ‖u‖(k) when ‖v‖(ℓ) is uniformly

bounded. Now Q is a differential operator in t but a ΨDO in x, so in the proof we shall

use Lemma A.8 in the x variables.

Proof. Let A∂x =
∑n

j=1Aj∂xj
and 〈u, u〉k(t) = ‖u‖2k(t) be the sesquilinear form, then

(A.26) ∂t‖u‖2k(t) = 2Re〈∂tu, u〉k(t) = 2Re〈f, u〉k(t)

− 2Re〈A∂tu, u〉k(t)− 2Re〈A0u, u〉k(t)

Conjugating with e−Ct gives

(A.27) ∂t(e
−Ct‖u‖2k(t)) = e−Ct

(
2Re〈f, u〉k(t)

− 2Re〈A∂xu, u〉k(t)− 2Re〈A0u, u〉k(t)− C‖u‖2k(t)
)

where

(A.28) 2Re〈A∂xu, u〉k(t) = 2Re〈[〈Dx〉k, A]∂x〈Dx〉−kw,w〉0(t)

+ 〈[ReA, ∂x, ]w,w〉0(t) + 2Re〈i ImA∂xw,w〉0(t) = 〈Rv, v〉0(t)

where [ReA, ∂x] and ImA∂x ∈ C∞(R,Ψ0) and w = 〈Dx〉ku. The calculus gives that the

operator [〈Dx〉k, A]∂x〈Dx〉−k ∈ C∞(R,Ψ0), so that R ∈ C∞(R,Ψ0) depends C∞ on v.

Since ‖w‖0 = ‖u‖k we find by using Lemma A.8 that

(A.29) |〈Rw,w〉0(t)| ≤ Ck(‖v‖ℓ(t))‖w‖20(t) = Ck(‖v‖ℓ(t))‖u‖2k(t)

for some ℓ ∈ N and Ck(t) ∈ C∞(R), and clearly

(A.30) |〈f, u〉k(t)| ≤ ‖f‖2k(t) + ‖u‖2k(t)

We also obtain from Lemma A.8 that

(A.31) |〈A0u, u〉k(t)| ≤ Ck(‖v‖ℓ(t))‖u‖2k(t)
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where in the following we will take the maximum of ℓ and Ck(t). Summing up, we have

(A.32) ∂t(e
−Ct‖u‖2k(t)) ≤ e−Ct

(
(Ck(‖v‖ℓ(t)) + 1− C)‖u‖2k(t) + Ck(‖v‖ℓ(t))‖f‖2k(t)

)

Now, we may replace Ck(t) by a nondecreasing function. Then we put

C = max
|t|≤T

Ck(‖v‖ℓ(t)) + 1 ≤ Ck

(
max
|t|≤T

‖v‖ℓ(t)
)
+ 1

where ‖v‖ℓ(t) ≤ C0‖v‖(ℓ+1) ∀ t by Sobolev’s inequality. Since ‖u‖k(0) = 0 we find by

integrating that

(A.33) e−Ct‖u‖2k(t) ≤ eCTCk(‖v‖(ℓ+1))‖f‖2k,T t ∈ [−T, T ]

for some Ck(t). Integrating again over [−T, T ] we obtain that

(A.34) ‖u‖2k,T ≤ 2Te2CTCk(‖v‖(ℓ+1))‖f‖2k,T
By replacing 2Te2CTCk(‖v‖(ℓ+1)) by Ck(‖v‖(ℓ+1)) and changing ℓ we obtain

(A.35) ‖u‖2k,T ≤ Ck(‖v‖(ℓ))‖f‖2k,T ∀ k ≥ 0

Next, we shall estimate ‖u‖k,j,T when j > 0, for j = 1 it suffices to estimate ‖∂tu‖k,T .

Now Q∂tu = ∂tf + Bu where B = [Q, ∂t] = −∂tA∂x − ∂tA0 ∈ C∞(R,Ψ1) is an ΨDO in

x depending on C∞ on v and t. By applying (A.35) on ∂tu we obtain that

(A.36) ‖∂tu‖2k,T ≤ Ck(‖v‖(ℓ))
(
‖∂tf‖2k,T + ‖Bu‖2k,T

)
∀ k ≥ 0

where ‖Bu‖2k,T ≤ C ′
k(‖v‖(ℓ))‖u‖k+1,T by Lemma A.8. By estimating ‖u‖k+1,T by (A.35)

and using that ‖f‖k,j,T ≤ ‖f‖(k+j) we obtain Ck,1(t) ∈ C∞(R) so that

‖∂tu‖2k,T ≤ Ck,1(‖v‖(ℓ))‖f‖2(k+1) ∀ k ≥ 0

Next, we proceed by induction. Thus„ we assume that we have proved that for a fixed

j > 0 we have for i ≤ j the estimate

(A.37) ‖∂itu‖2k,T ≤ Ck,i(‖v‖(ℓ))‖f‖2(k+i) ∀ k ≥ 0

for some Ck,i(t). Then Q∂j+1
t u = ∂j+1

t f + [Q, ∂j+1
t ]u where [Q, ∂j+1

t ] =
∑

0≤i≤j Bi∂
i
t with

Bi(t, x,Dx) ∈ C∞(R,Ψ1) being a ΨDO in x depending C∞ on t and v. We obtain that

(A.38) ‖∂j+1
t u‖2k,T ≤ Ck(‖v‖(ℓ))

(
‖∂j+1

t f‖2k,T +
∑

0≤i≤j

‖Bi∂
i
tu‖2k,T

)
∀ k ≥ 0

by using (A.35). As before, ‖Bi∂
i
tu‖2k,T ≤ C ′

k(‖v‖(ℓ))‖∂itu‖k+1,T for i ≤ j which we can

use (A.37) to estimate. This gives (A.37) with i replaced by j + 1, so induction over j

gives this estimate for any i.

Finally, we shall show that

(A.39) ‖φu‖2(k) ≤ Ck(‖v‖(ℓ))‖f‖2(k)
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if φ ∈ C∞ is supported where |t| ≤ 1. To estimate ‖φu‖2(k) it suffices to estimate

‖Dα
xD

j
tφu‖ for |α|+ j ≤ k. We have that

[Dα
xD

j
t , φ] =

∑

|β|≤|α|
i≤j

Bβ.iD
β
xD

i
t

where Bβ.i ∈ C∞ has support where |t| ≤ 1. Thus, (A.37) gives that

(A.40) ‖Dβ
xD

j
tφu‖ ≤ C

∑

0≤i≤j

‖Di
tu‖k−i,T ≤

∑

0≤i≤j

Ck−i,i(‖v‖(ℓ))‖f‖2(k)

which completes the proof. �

Next, we shall solve the IVP for the linearized equation

(A.41) P (v(x, w), x, w, ∂)u(x, w) = f(x, w)

where f and v ∈ C∞(Rm+n,Rn) with v(x0, w0) = 0 and P is on the form (A.2) satisfy-

ing (A.3) and (A.4) with u1 = 0. In the following, we shall suppress the parameters v

and w, the preparation will only depend on the bounds on these parameters.

To solve equation (A.41), we shall assume that x0 = 0 and use the microlocal normal

forms given by Proposition A.4. In fact, for any small enough ε > 0 we can by Remark A.3

find a partition of unity {ϕj(ξ)}j with ϕj ∈ S0 supported in cones Γξj ,ε and ON variables

(x1, x
′) so that Pbj = ajQj + Rj satisfies the conditions in Proposition A.4 with Γ0 =

(0, 0, w0) × Γξj ,ε after the change of variables. Here 0 6= aj ∈ S0, 〈ξ〉−1 . bj(ξ) ∈ S−1

and Qj = Dx1
+ AjDx′ + A0,j satisfies the conditions in Proposition A.6. The operator

Rj ∈ Ψ1 has symbol in S−1 in a conical neighborhood of Γ0. I Ignoring the operator Rj ,

which will be handled as a perturbation, we obtain from Proposition A.6 that if f ∈ C∞

then uj = Fja
−1
j ϕjf solves

(A.42) Qjuj = (Id+sj)a
−1
j ϕjf = (a−1

j + rj)ϕjf uj
∣∣
t=0

= 0

where sj and rj ∈ I−1.

But uj may not be localized near Γ0. To handle the localization and the error term Rj

we shall microlocalize uj depending on parameters. Let ΦT (x) = Φ(x/T ) with 0 < T ≤ 1

and Φ(x) ∈ C∞
0 (Rn) such that 0 ≤ Φ ≤ 1, Φ has support where |x| ≤ 1 and is equal to 1

when |x| ≤ 1/2. We shall also use the cut-off ψj,̺(ξ) = ψj(ξ)χ̺(ξ) given by Remark A.3

with ̺ ≥ 1 such that 0 ≤ χ̺ ≤ 1 has support where |ξ| ≥ ̺, ψjϕj = ϕj and suppψj ∈
Γξj ,ε. Since uj = ΦTuj + (1− ΦT )uj we find that

(A.43) uj = ψj,̺ΦTuj + (1− ψj,̺)ΦTuj + (1− ΦT )uj = uj,̺,T + Sj,̺,Tf

where uj,̺,T = ψj,̺ΦTuj and Sj,̺,T = (1 − ψj,̺)ΦTFja
−1
j ϕj + (1 − ΦT )Fja

−1
j ϕj ∈ I0 since

Fja
−1
j ϕj ∈ I0. Thus we find that Sj,̺,Tf(x) depends on the values of f(y) when y1 is in
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the interval between 0 and x1. Since ψjϕj = ϕj we find that (1 − ψj,̺)ϕj = (1 − χ̺)ϕj

which gives

Sj,̺,T = ΦTFja
−1
j (1− χ̺)ϕj − [ψj,̺,ΦTFja

−1
j ]ϕj + (1− ΦT )Fja

−1
j ϕj

where (1− χ̺) ∈ Ψ−∞ and 1−ΦT = 0 when |x| ≤ T/2. Since ψj,̺ does not depend on x

we find from (3.8) in the proof of Lemma 3.2 that [ψj,̺,ΦTFja
−1
j ] has symbol

(A.44) E(i〈Dξ, Dy〉)∂ψj,̺(ξ)DyΦT (y)Fja
−1
j (y, η)

∣∣y=x
η=ξ

where E(z) = (ez − 1)/z =
∫ 1

0
eθz dθ. Since ϕj∂

αψj,̺ = ϕj∂
αχ̺ ∀α, we find that all the

terms in the expansion of the commutator have support where |ξ| ∼= ̺ and 1/2 ≤ |x| ≤ 1.

Thus Sj,̺,T ∈ I−∞ has a C∞ kernel depending on ̺ and T .

Since aj 6= 0 we have aja
−1
j = Id+Bj with Bj ∈ Ψ−1. We find from (A.9), (A.42)

and (A.43) that

(A.45) Pbjuj,̺,T = ajQj(uj − Sj,̺,Tf) +Rjuj,̺,T

= ((Id+Bj + ajrj)ϕj − ajQjSj,̺,T +Rj,̺,T ) f

where ajQjSj,̺,T ∈ I−∞ when |x| < T/2, ajrj ∈ I−1 and Rj,̺,T = Rjψj,̺ΦTFja
−1
j ϕj ∈ I−1

when T ≪ 1 since the symbol Rjψj,̺ ∈ S−1 for |x| ≪ 1 by Proposition A.4. Here Q ∈ Ik

in the open set Ω ⊂ T ∗
R

n means that Q = Q0 +Q1 where Q1 ∈ Ik and WFQ0

⋂
Ω = ∅.

Since ̺ψj,̺ ∈ S1 uniformly by Remark A.3, we find ̺Rj,̺,T ∈ I0 uniformly for T ≪ 1.

Now we define

(A.46) u̺,T (x) =
∑

j

bj(D)ψj,̺(D)ΦTuj(x) =
∑

j

bj(D)uj,̺,T (x)

where ̺bjψj,̺ ∈ S0 uniformly when ̺ ≥ 1. Since Pbj = ajQj +Rj we obtain from (A.45)

and (A.46) that

(A.47) Pu̺,T = f +
∑

j

((Bj + ajrj)ϕj +Rj,̺,T − ajQjSj,̺,T ) f = (Id+R̺.T )f

where R̺.T =
∑

j(Bj + ajrj)ϕj +Rj,̺,T − ajQjSj,̺,T ∈ I−1 when |x| < T/2 ≪ 1. We shall

localize the first terms in ξ by writing Bj + ajrj = (Bj + ajrj)(1 − χ̺) + (Bj + ajrj)χ̺

which gives

(A.48) R̺.T = R̺,T,0 +R̺,T,1

with R̺,T,0 =
∑

j(Bj+ajrj)ϕj(1−χ̺)−ajQjSj,̺,T ∈ I−∞ and R̺,T,1 =
∑

j(Bj+ajrj)ϕj,̺+

Rj,̺,T ∈ I−1 when |x| < T/2 ≪ 1. This gives that ̺R̺,T,1 ∈ I0 uniformly when ̺ ≥ 1 and

|x| < T/2 ≪ 1, where we assume T fixed in the following.

Since we are only need local solutions, we may cut off near x = 0. To solve the

equation near x = 0 it is enough that ΦδPu̺,T = Φδf for small enough 0 < δ < T/2.
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Here Φδ(x) = Φ(x/δ) with the same Φ ∈ C∞
0 as before, then ΦδΦT = Φδ. If f has support

where |x| ≤ δ/2 then we obtain that ΦδPu̺,T = Φδ(Id+R̺,T )Φδf = (Id+Rδ,̺,T )f where

Rδ,̺,T = ΦδR̺,TΦδ. By (A.48) we have

(A.49) Rδ,̺,T = Rδ,̺,T,0 +Rδ,̺,T,1

with Rδ,̺,T,j = ΦδR̺,T,jΦδ. For fixed 0 < δ < T/2 we have ̺Rδ,̺,T,1 ∈ I0 uniformly when

̺ ≥ 1 and Rδ,̺,T,0 ∈ I−∞ having C∞ kernel depending on ̺ and δ.

It remains to invert the term Id+Rδ,̺,T in order solve equation (A.41). This will

be done in two steps, first making Rδ,̺,T,1 small by taking large enough ̺. This may

increase the seminorms of Rδ,̺,T,0, but this term can then be made small by localizing in

a sufficiently small neighborhood of x = 0.

Since ̺Rδ,̺,T,1 ∈ I0 uniformly when ̺ ≥ 1, we find by Remark A.9 that there exists

̺δ,T ≥ 1 so that if ̺ ≥ ̺δ,T we have ‖Rδ,̺,T,1f‖(0) < ‖f‖(0)/2 for f ∈ S. Then we find

that (Id+Rδ,̺,T,1)
−1 = Id+

∑
k>0(−Rδ,̺,T,1)

k ∈ I0 uniformly. Observe that (−Rδ,̺,T,1)
k

has kernel supported where |x| ≤ δ and |y| ≤ δ. If we then solve

(A.50) Qjuj = a−1
j ϕj(Id+Rδ,̺,T,1)

−1f uj
∣∣
x1=0

= 0

for f supported where |x| ≤ δ/2, then the earlier reduction gives

(A.51) ΦδPu̺,T = (Id+Rδ,̺,T )(Id+Rδ,̺,T,1)
−1f = (Id+Rδ,̺,T,2)f

where Rδ,̺,T,2 = Rδ,̺,T,0(Id+Rδ,̺,T,1)
−1 ∈ I−∞ with C∞ kernel supported where |x| ≤ δ

and |y| ≤ δ. Observe that we have uniform bounds for fixed δ and T when ̺ ≥ ̺δ,T and

these bounds depend on the bounds on the symbol of P and the parameters v ∈ C∞ and

w. We shall later put more restraints on the lower bound of ̺ because of conditions on

the estimates, see (A.64), and the values of u̺,T (x0) and ∂u̺,T (x0), see (A.68).

Now we have to shrink the support of Rδ,̺,T,2 to lower the norm of the kernel without

changing Rδ,̺,T,1. With fixed 0 < δ < T/2 and ̺δ,T ≥ 1, we assume ̺ ≥ ̺δ,T and multiply

the equation (A.51) with Φδ0 with 0 < δ0 ≤ δ/2 < T/4 so that Φδ = 1 on suppΦδ0 . If f

is supported where |x| ≤ δ0/2 < T/8, then we obtain as before that

(A.52) Φδ0Pu̺,T = (Id+Rδ0,̺,T,2) f

where Rδ0,̺,T,2 = Φδ0Rδ,̺,T,2Φδ0 . By Lemma A.5 there exists 0 < δ0 ≤ δ/2 so that

(Id+Rδ0,̺,T,2(x,D))−1 =
∑

j≥0(−Rδ0,̺,T,2(x,D))j ∼= Id modulo an operator in I−∞ with

C∞
0 kernel supported where |x| ≤ δ0 and |y| ≤ δ0. By replacing f in (A.50) by

(Id+Rδ0,̺,T,2)
−1f we obtain the first part of the following result.

Proposition A.11. Let ϕj be given by Remark A.3, Pbj = ajQj+Rj by Proposition A.4

and Rδ,̺,T,1 and Rδ0,̺,T,2 be given by (A.49) and (A.52) depending C∞ on v and w. Then
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there exist 0 < T ≤ 1, 0 < δ < T/2 and ̺δ,T ≥ 1 so that if ̺ ≥ ̺δ,T , 0 < δ0 ≤ δ/2 is

small enough, f ∈ C∞
0 has support where Φδ0 = 1 and uj ∈ C∞

0 solves

(A.53) Qjuj = a−1
j ϕj(Id+Rδ,̺,T,1)

−1(Id+Rδ0,̺,T,2)
−1f uj

∣∣
x1=0

= 0 ∀ j

then u̺,T (x) =
∑

j bjϕj,̺ΦTuj(x) solves

(A.54) Pu̺,T = f

when |x| ≤ δ0/2 ≤ T/8 and |w − w0| ≪ 1. We also have that

(A.55) u̺,T (0) = c̺(f) ∂u̺,T (0) = d̺(f)

where ̺c̺ and ̺d̺ ∈ D′ uniformly when ̺ ≥ 1 independently on δ and δ0.

Proof. In only remains to prove the statement about the values at x0. Since u̺,T =
∑

j bjuj,̺,T it suffices to consider the terms bjuj,̺,T = bjψj,̺ΦTuj, ∀ j. By Proposition A.6

we have that uj = Fja
−1
j ϕjf , which gives that

(A.56) bjψj,̺(D)ΦTuj(0) = bjψj,̺(D)ΦTFja
−1
j ϕjf(0)

which does not depend on δ and δ0. Now we shall use the following result.

Lemma A.12. Let φ̺ ∈ Sk uniformly and supported where |ξ| ≥ ̺ ≥ 1, then for any

u ∈ C∞
0 and x we find that

(A.57) |φ̺u(x)| ≤ C̺−1‖u‖(n+2k+3

2 )

where the constant only depends on the seminorms of φ.

Proof of Lemma A.12. Since φ̺ ∈ Sk uniformly and is supported where |ξ| ≥ ̺, we find

that ̺φ̺ ∈ Sk+1 uniformly when ̺ ≥ 1. This gives by the Sobolev embedding theorem

and continuity that

(A.58) |̺φ̺u(x)| ≤ C‖̺φ̺u‖(n+1

2 ) ≤ C0‖u‖(n+2k+3

2 )

which gives the result. �

Since ψj,̺ ∈ S0 uniformly and supported where |ξ| ≥ ̺ ≥ 1 we find from Lemmas A.8

and A.12 and continuity that (A.56) is a distribution cj,̺ such that ̺cj,̺ ∈ D′ uniformly

when ̺ ≥ 1. By replacing bj by ∂bj in (A.56) we find ̺dj,̺ ∈ D′ uniformly when ̺ ≥ 1. �

Proof of Theorem A.1. To solve (A.1) we may first assume x0 = 0 and make the re-

duction (A.5) to the case with vanishing data. Then we find that f is replaced by

f0 = f − (p1+ p0 ·x)u1−p0u0, P = P0 is given by (A.6) depending on u1 and (A.4) holds
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with u1 = 0. Since we only need a local solutions, it is no restriction to assume that f , p0

and p1 have compact support. Starting with v0 ≡ 0 we shall solve the linearized equation

(A.59) P (∂vj(x, w), x, w, ∂)vj+1(x, w) = f0(x, w) ∀ j ≥ 0

with real valued solution vj+1 such that vj+1(x0, w0) and ∂xv
j+1(x0, w0) = O(̺−1) de-

pending linearly on f0. Since we are going to construct local solutions near x = 0, we

may cut off ∂vj with Φ ∈ C∞
0 such that 0 ≤ Φ ≤ 1, Φ is supported where |x| ≤ 1 and

equal to 1 when |x| ≤ 1/2. This will give a solution to (A.59) when |x| < 1/2. As before,

we shall use Φδ(x) = Φ(x/δ), δ > 0, to cut off.

To microlocalize, we use Propositions A.4 and A.11 to find 0 < T ≤ 1, 0 < δ < T/2

and ̺δ,T ≥ 1 so that if ̺ ≥ ̺δ,T and 0 < δ0 ≤ δ/2 < 1/4 is small enough and f0 has

support where Φδ0 = 1, then (A.59) reduces to the coupled system of equations given

by (A.53):

(A.60) Qk(Φ∂v
j(x), x,D)vj+1

k = a−1
k ϕk(Id+Rδ,̺,T,1)

−1(Id+Rδ0,̺,T,2)
−1f0 1 ≤ k ≤ N

where vj(x) = Re
∑N

k=1 bkψk,̺(D)Φvjk(x) ∈ C∞ with ̺bkψk,̺ ∈ S0 uniformly when ̺ ≥ 1.

If one cuts off f0 with Φδ0/2 this would give a solution to (A.59) when |x| < δ0/4. Observe

that a−1
k , (1 + Rk

δ,̺,T,1)
−1 and (1 +Rk

δ0,̺,T,2
)−1 ∈ I0 uniformly depending C∞ on Φ∂vj(x)

and w.

By Proposition A.11 we find that solving (A.60) using Proposition A.6 will give a

solution to (A.59) when |x| < δ0/2 ≤ δ/4 ≤ T/8 such that vj+1
k (x0) and ∂xv

j+1
k (x0) are

distributions of f0 which are O(̺−1) as ̺→ ∞. We are going to prove that the solutions

vj+1 to (A.59) are uniformly bounded in C∞ near x = 0, so we can use the Arzela-Ascoli

theorem to get convergence of a subsequence to a solution to the nonlinear equation (A.6).

First we obtain from Lemmas A.8 and Remark A.9 that there exists ℓ ∈ N so that for

any m ∈ N there exists Cm(t) ∈ C∞(R+) so that

(A.61) ‖a−1
k ϕk(Id+Rδ,̺,T,1)

−1(Id+Rδ0,̺,T,2)
−1f0‖(m) ≤ Cm(‖Φ∂vj‖(ℓ))‖f0‖(m)

since the operators are in I0 depending C∞ on Φ∂vj(x).

By (A.60), (A.61) and Proposition A.10 we also find that there exists ℓ ∈ N such that

for any m ∈ N there exists Cm(t) ∈ C∞(R+) so that

(A.62) ‖Φvj+1
k ‖2(m) ≤ Cm(‖Φ∂vj‖(ℓ))‖f0‖2(m)

since Φ ∈ C∞
0 has support when |x| ≤ 1. Now ̺Φ∂bkψk,̺ ∈ Ψ0 uniformly when ̺ ≥ 1

and ‖Reu‖(m) ≤ ‖u‖(m) for u ∈ S, which gives

(A.63) ‖Φ∂vj‖(m) ≤ ̺−2C̃m

∑

1≤k≤N

‖Φvjk‖(m) ∀m ∈ N ∀ ̺ ≥ 1
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By using this for m = ℓ we find that

(A.64) ‖Φvj+1
k ‖2(m) ≤ Cm

(
̺−2C̃ℓ

N∑

k=1

‖Φvjk‖(ℓ)
)
‖f0‖2(m) ∀m ∈ N ∀ ̺ ≥ 1

Here we may replace Cm(t) with a nondecreasing function for any m.

Thus, for any m ∈ N we will obtain uniform bounds on ‖Φvjk‖(m) if we have uniform

bounds when m = ℓ. Since v−1
k = 0, ∀ k, we find by taking m = ℓ in (A.62) that

(A.65) ‖Φv0k‖2(ℓ) ≤ Cℓ(0)‖f0‖2(ℓ)

where Cℓ(0) ≤ Cℓ(1) since Cℓ(t) is nondecreasing. If we assume for some j ≥ 0 that

(A.66) ‖Φvjk‖2(ℓ) ≤ Cℓ(1)‖f0‖2(ℓ)

then by choosing ̺2 ≥ NC̃ℓCℓ(1)‖f0‖2(ℓ) we obtain that ‖Φvj+1
k ‖(ℓ) ≤ 1/C̃ℓN . Then (A.64)

with m = ℓ gives that (A.66) holds with j replaced by j + 1. Since this is true for

j = 0 we obtain by induction that (A.66) holds for any j. By (A.64) we obtain for

any m uniform bounds on ‖Φvjk‖(m) for any j, k, which by (A.63) gives that ‖Φvj‖(m) is

uniformly bounded for any j.

By the Arzela-Ascoli theorem there exists a subsequence {vjk}jk that converges in C∞

to a real valued limit v on Φ−1(1), i.e., |x| ≤ 1/2, as jk → ∞. By taking the limit of the

equation (A.59) we find by continuity that

(A.67) P (∂v(x, w), x, w, ∂)v(x, w) = f0(x, w)

when |x| < δ0/4 < 1/16. We also obtain by taking the limit that v(x0, w0) = c̺(f0) ∈ R

and ∂xv(x0, w0) = d̺(f0) ∈ R
n where ̺c̺ and ̺d̺ ∈ D′ uniformly when ̺ ≥ 1.

This means that we have a solution the original equation (A.1) when |x| < δ0/4 with

f0 replaced by f− (p1+p0x) ·u1−p0u0 by (A.6) and v replaced by v+u0+u1 ·x by (A.5),

which gives by linearity that v(0, w0) = u0 + c̺(f) − c̺(p0)u0 − c̺(p1 + p0x) · u1 and

∂xv(0, w0) = u1+ d̺(f)−d̺(p0)u0−d̺(p1+ p0x) ·u1. If we replace uj with indeterminate

wj for j = 1 and 2, then we obtain the linear system

(A.68)

{
v(0, w0) = (1 + ̺−1a̺)w0 + ̺−1b̺ · w1 + ̺−1c̺ = u0

∂xv(0, w0) = ̺−1d̺w0 + (Idn +̺
−1e̺)w1 + ̺−1f̺ = u1

where the coefficients a̺, . . . , f̺ are uniformly bounded when ̺ ≥ 1. Observe that b̺ is a

1×n, d̺ and f̺ are n×1 and e̺ is an n×n matrix. This is a linear (n+1)×(n+1) system

in (w0, w1) which converges to the identity when ̺ → ∞. Thus, there exists ̺iv ≥ 1 so

that (A.68) has a unique solution w0, w1 that is uniformly bounded when ̺ ≥ ̺iv. By

solving (A.6) with uj replaced by wj, j = 1, 2, when ̺ ≥ ̺iv we get a solution to (A.1)

which finishes the proof of Theorem A.1. �
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