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SUFFICIENT CONDITIONS FOR SOLVABILITY OF
OPERATORS OF SUBPRINCIPAL TYPE

NILS DENCKER

LUND UNIVERSITY

ABSTRACT. In this paper we show that condition Sub, (¥) on the subprincipal symbol
is sufficient for local solvability of pseudodifferential operators of real subprincipal type.
These are the operators having real principal symbol which vanish on an involutive
manifold where the subprincipal symbol is of principal type. This condition has been
shown in [5] and [6] to be necessary for local solvability of pseudodifferential operators
of real subprincipal type.
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1. INTRODUCTION

In this paper we shall study the local solvability of classical pseudodifferential operators
P € ¥ which are given by an asymptotic expansion p,,(x, &) + pm—1(z, &) +. .. of terms
Pm—;(x, &) homogeneous of degree m — j in € for j € N, where p,, = p is the principal
symbol. We are going to study operators which are not of principal type, i.e., when the
principal symbol p vanishes of at least order 2, in particular the sufficiency in the case
when the principal symbol is real and has involutive double characteristics. But we will
also assume that the operator is of subprincipal type, so that the subprincipal symbol of
the operator is of principal type, see Definition

The definition that P is locally solvable at a compact subset of a manifold K C X is

that the equation
(1.1) Pu=wv

has a local solution v € D'(X) in a neighborhood of K for any v € C*°(X) in a set of

finite codimension. We can also define microlocal solvability of P at any compactly based

cone K C T*X, see Definition [L.T0Ol
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For classical pseudodifferential operators P € W7} which are of principal type, local

solvability is equivalent to condition (V) on the principal symbol p, i.e.,

(1.2) Imap does not change sign from — to +

along the oriented bicharacteristics of Re ap when Reap = 0

for any 0 # a € C*°(T*X), see [3] and [9]. The oriented bicharacteristics are the positive
flow of the Hamilton vector field Hgeqp 7 0 on which Reap = 0, these are also called
semibicharacteristics of p. Observe that if condition (V) is satisfied on a set, then it is
trivially satisfied on any subset.

For operators which are not of principal type, the invariant subprincipal symbol
1
(13) Ds = Pm—1 + 5 Z 8xj8§jp
J

becomes important. There are several conditions corresponding to condition (¥) on the
subprincipal symbol, several necessary conditions for solvability are known, but not many
sufficient conditions.

One of the earliest results are by Mendoza and Uhlman [I6], who studied the case
when principal symbol is equal to a product p = pip, with p; of real principal type
with linearly independent differentials dp; and dps. Thus the double characteristic set
Yo = {p1 = po = 0} is a intersection of two transversal hypersurfaces. In this case, they
proved that P is not solvable if the imaginary part of the subprincipal symbol p, changes
sign on the bicharacteristics of p; or p, on ¥5. These are the limits of the characteristics
of the principal symbol at the double characteristic set ¥5. They proved in [I7] that P
is solvable if the imaginary part of the subprincipal symbol p, does not vanish on the
double characteristics, thus there are no sign changes.

Mendoza [I8] generalized the necessary condition to the case when the principal symbol
is real, vanishes of second order on an involutive submanifold where it has an indefinite
Hessian with rank equal to the codimension of the manifold. Then Hessian gives well-
defined limit bicharacteristis on the submanifold, and P is not solvable if the imaginary
part of the subprincipal symbol changes sign on any of these limit bicharacteristics.

There are several other necessary condition for solvability of operators that are not
of principal type corresponding to condition (W) on operators of principal type. The

following one generalizes Mendoza’s and Uhlmann’s necessary conditions for solvability.

Example 1.1. A necessary condition on the subprincipal symbol for solvability of op-

erators with real principal symbol p vanishing of at least second order on an involutive
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submanifold ¥ is condition Lim(W):
(1.4) Imps does not change sign from — to + on the limit bicharacteristics of p on X

which follows from the necessary condition (2.9) of [5].

This condition is invariant under symplectic changes of variables and multiplication
with nonvanishing real factors, since a negative factor changes both the direction of the
limit bicharacteristic and the sign of the imaginary part. Thus, it is invariant under
conjugations of the operator with Fourier integral operators with real principal symbols.

Observe that this is a condition on the sign changes of Im p; at a (possibly empty) subset
of directions on the leaves of ¥5. The sufficient conditions that we are going to use will
exclude any sign changes of Im p, on the leaves of ¥5. But even this stronger condition is
not sufficient, one also needs conditions on the imaginary part of the subprincipal symbol
in the direction of the bicharacteristics if the real part of the subprincipal symbol. For
that, the operator has to be of subprincipal type, which means that the subprincipal
symbol is of principal type, with Hamilton vector field that is tangent to ¥, at the
characteristics, see Definition 2.2 in [6] or Definition in this paper.

Example 1.2. A necessary conditions for solvability for operators of subprincipal type
for involutive 35 is given by Definition 2.4 in [6]. It is condition Sub(¥) which is Sub(¥)

on subprincipal symbol p; on X:

(1.5) Imaps does not change sign from — to +

on the oriented bicharacteristics of Re ap, when Re ap, = 0 on Xs.

for any 0 # a € C'*°. It is known that this condition is invariant under symplectic changes
of variables and multiplication with nonvanishing factors, since the subprincipal symbol

then only get multiplied with these factors.

Observe that condition (LH]) is empty if p, vanishes of second order, so for this condition
we need that the operator is of subprincipal type, see Definition [L9

A stronger necessary condition for solvability involves the sign changes on the imaginary
part of the subprincipal symbol on a larger set of curves on the double characteristic set,
actually on the limits of the bicharacteristics of the real part of the refined principal

symbol

(1.6) Pr =D+ Ds
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where pg is the subprincipal symbol given by (3], see Theorem 18.1.33 in [10]. This
symbol is invariant under conjugation with elliptic Fourier integral operators, and multi-
plication with a(z, D) € W° gives the refined principal symbol ap, modulo terms in S™*
vanishing of order 1 on ¥,. In fact, the refined principal symbol of a(x, D)P(z, D) is
apr + +Hya modulo S™2,

Example 1.3. A necessary condition for solvability for operators of subprincipal type
with principal symbol vanishing of second order on Yo is Suby(V). This condition is

given by Definition 2.6 in [7] and is condition (¥) on the symbol

(1.7) Ds2 = J*(p) + S (pm-1) = J*(p) + ps

where J?(p) equal to the 2:nd jet of p at .

This condition is invariant under symplectic changes of variables and multiplication
with nonvanishing factors by Remark 2.3 in [7], since then p; o gets multiplied with a
nonvanishing factor.

Observe that this definition gives conditions on the sign changes of Im p, 5 on the limits
of the bicharacteristics of Re p, 2 at ¥y, which are the limits of of the bicharacteristics of
Re p,, see (IL.I9). Condition Suby (V) gives (L4) and (L.5), but the directions of the limit

characteristics depend on the sign of Re py, see the following example.

Example 1.4. If p = |[&'|> — [£"|> with (£/,€") € R" x R™, then
Hy=2(§" 0w = & 0p) =2§(0- O — 0" - Opr)  |0] =1

which gives all directions in x when & — 0. If we take the limit only when p,. = 0, i.e.,
when p = — Reps, then we get the limit bicharacteristics §' - 0y — 0" - Oy with 6| > 6"
when Reps < 0, the ones with || < |0"| when Reps > 0 and all directions in R™ x R™
when Rep, = 0.

Thus, when Re p; = 0 we may obtain that the sign of Im p, » = Im p; is constant on the
leaves of ¥5 when Reps = 0, but by Example that is not enough to get solvability.
Observe that we shall assume that Re p, is constant on the leaves by (LI3).

Also observe that the necessity of the conditions in Examples [LTHL.3l only hold under
some additional conditions on the symbol, for example finite order of the sign change.
For the sufficiency, it is not enough that Sub(¥) holds when ps = 0, by the following

example.

Example 1.5. Consider the PDO

(1.8) P = (1+t)A, + D, £itD,
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with symbol (1 + t2)[¢|? + 7 it = (1 + t*)|€)* + (1 £ it)7. This operator satisfies the
condition Lim(W) by (L4) and Sub(¥) by (L) since Imps = +t7 = 0 when Reps =7 =
0. But multiplication by (144t)~' = (1F4t)/(1+t?) gives the operator D+ (1Fit)A,, and
conjugation with the Schridinger kernel exp(£itA,) gives the operator Q = Dy FitA,.
Here Q)4 is the Mizohata operator which is a standard example of an unsolvable operator,

and Q_ is solvable, since u(t, ) = zf(f exp((s*—t?)A,/2) f(s,x) ds solves Q_u = f € C5°.

Observe that the condition Lim (V) in Example [Tl does in general not imply that Im p,

has constant sign on the leaves of ¥,.

Example 1.6. If the principal symbol of P is D, ,D,,, then the leaves of o have di-
mension 2. Divide the leaves into a checkerboard and index the squares with (j, k) € Z2.
Denote the squares with index (27,2k) with S; and the ones with index (2j + 1,2k + 1)
with S_ and the rest with Sy. If Imp, > 0 in the interior of the squares in Sy, Imp, < 0
in the interior of the squares in S_ and Imp, = 0 on the squares in Sy, then Imp, has

constant sign along any x1 and xy lines, but not on the whole plane.

The conditions on P € V! in the present paper will be the following. Let p be the
real principal symbol, 3 = p~1(0) be the characteristics and ¥y = { p = |dp| = 0} be the
double characteristics. We assume that X5 is a nonradial involutive submanifold and that

p is real and vanishes of exactly second order at Y5 so that
(1.9) Hess p is nondegenerate on ¥,

This implies that p is of real principal type on ¥; = X\ 3 in a sufficiently small conical
neighborhood of Y5, since it cannot vanish of second order on ;. Also, Hessp = has
locally constant rank and index. That ¥, is nonradial means that if a function vanishes
on Y, then its Hamilton vector field does not have the radial direction on 7% X, which is

a generic condition.

Remark 1.7. The invariant condition is that p is proportional to a real function. This
means that the quotient ¢ = Imp/ Rep, which is defined where Rep # 0, can be extended

1

to a C™ function with values on the extended real line R, i.e., either ¢ or ¢~' is smooth.

In fact, if q € C* then p = (1+iq)Rep and if =+ € C* then p = (¢~' + i) Imp.

In the following, we will assume that P is on the form so that the principal symbol p
is real valued. In the case when p is not proportional to a real function, condition (V) on

the principal symbol has to be satisfied on ¥ since it is then necessary for solvability.
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Recall that the subprincipal symbol
1
(110) Ds = Pm—1 1 5 Z 8:Bj8§jp
J

is invariantly defined on Y5 under conjugation with elliptic Fourier integral operators. In

fact, p, is the value of the Weyl symbol of p + p,,_1 at 33 modulo S™ 72, see [§].

Remark 1.8. When Y5 is involutive we may choose symplectic coordinates so that > =

{& ==&, =0} and then the subprincipal symbol ps = py—1 at Xs.

In fact, since 0, € T35 we find that J,p vanishes of second order on X,. If C is
a pseudodifferential operator with principal symbol ¢ = ¢(C'), then the value of the
subprincipal symbol of the composition C'P is equal to cps + %Hpc = cps on Yy. Observe
that the subprincipal symbol is complexly conjugated when taking the adjoint of the
operator, see [10, Theorem 18.1.34].

Since we shall assume that p is real, the real and imaginary parts of py are invariant
under multiplication with elliptic pseudodifferential operators and conjugation with el-
liptic Fourier integral operators if these operators have real principal symbols. In order
to study the invariants, we need some symplectic concepts.

The symplectic annihilator to a linear space consists of the vectors that are symplec-
tically orthogonal to the space. Let 7% be the symplectic annihilator to 725, which
spans the symplectic leaves of Yy, If ¥ = {£ =01}, (z,y) € R? x R"™4, then the leaves
are spanned by 0,. Let

(111) TUEQ == TEQ/TE%
which is a symplectic space over Y. In these coordinates it is parametrized by

(1.12) 775 = { (20, 40:0,m0); (0,4;0,m)) € TXs : (y,m) € T"R"™*}
Thus the fiber is isomorphic to the symplectic manifold T*R" ¢ with (g, y0;0,70) =

wo € Y9 as a parameter.

Definition 1.9. If the principal symbol is real valued, then we say that the operator P is
of real subprincipal type if the following conditions hold:

(1.13) Hgep, C Ty

which means that d Re p =0, and

‘TL

(1.14) alReps‘T(,22 #0
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50 that Hgep, ts transversal to the leaves and we shall assume that it does not have the
radial direction. The bicharacteristics of Re ps with respect to the symplectic structure of

Yo are called the subprincipal bicharacteristics for any value of Re ps.

This definition is invariant under symplectic changes of variables and but not by mul-
tiplication with nonvanishing real factors when Rep, # 0. But it is invariant by multi-
plication with nonvanishing real factors that are constant on the leaves of ¥5. When the
coordinates are given as in ([L.I12]), we find from (LI3)) that 0, Reps = 0 on X5 and from
(LI4) that 0, Reps # 0 or 9, Rep, |fn on X,. Thus it follows that

(1.15) Re p; is of real principal type

and thus has simple zeroes. In [6l Definition 2.1] the definition was that P is of sub-
principal type if Definition hold with Re p, replaced with pg, but only when p, = 0,
which is invariant under multiplication with nonvanishing factors and symplectic changes
of variables. But in that case the principal symbol may not be proportional to a real
symbol ant then Re p; is not well defined.

We shall study the microlocal solvability of the operator P, which is given by the
following definition from [10]. Recall that H(lg)C(X ) is the set of distributions that are
locally in the L* Sobolev space Hs)(X).

Definition 1.10. If P € U7} and K C T*X s a compactly based cone, then we say that

P is microlocally solvable at K if there exists an integer N so that for every f € Hé;’\f)(X)
there exists u € D'(X) such that K YWF(Pu — f) = 0.

Observe that solvability at a compact set M C X is equivalent to solvability at T X } v
by [10, Theorem 26.4.2], and that solvability at a set implies solvability at a subset.
Also, by Proposition 26.4.4 in [I0] the microlocal solvability is invariant under conjuga-
tion by elliptic Fourier integral operators and multiplication by elliptic pseudodifferential
operators.

To prove solvability we shall use a priori estimates. Let ||u|x) be the L? Sobolev norm

of order k, u € C5°. In the following, P* will be the L? adjoint of P.

Remark 1.11. Let P € V7 (X) and K C T*X be a compactly based cone, and assume
that there exists v € R and a pseudodifferential operator A so that K (YWF(A) =0 and

(1.16) lulli-ny < C([P ullo) + [[ull(-n-n) +[[Aull)  u e CE(Y)

Then P is microlocally solvable at K and one can take this N in Definition [L.10.
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Observe that if P € U7 then there is a loss of v+m+N derivatives in the estimate (I.16])
compared with the elliptic case. One can have several operators A; in (I.I6]) by taking
A= (Ay,...) vector valued.

Definition 1.12. We say that P € U™ satisfies condition Sub,(V) if there exists a
homogeneous 0 # a € S° such that ap, has real principal symbol that vanishes of order 2
at an involutive manifold 3o with nondegenerate Hessian, ap, is of real subprincipal type
and satisfies condition (V) at the limit Xo. This means that Im ap, does not change sign

from — to + on the limits of the bicharacteristic of Reap, at X,.

The refined principal symbol is equal to p, = p + ps by (LO). Observe that this
condition gives conditions on the sign changes for any value of Re p,, and that is not the
case in Example This condition is stronger than the conditions in Examples (1)
(L3). Observe that the factor a makes this condition invariant under multiplication with
with nonvanishing factors. It is also invariant under symplectic changes of variables,
thus the conditions is invariant under conjugation with Fourier integral operators and

multiplication with elliptic pseudodifferential operators having real principal symbols.

Proposition 1.13. If P € U™ has real principal symbol that vanishes of order 2 at
an involutive manifold X9 with nondegenerate Hessian and is of real subprincipal type,
then P satisfies condition Sub,(¥) if and only if Imp, = Imp, does not change sign
on the leaves of ¥ and the sign of Imps on the leaves do not change from — to + on
the subprincipal bicharacteristics, i.e., the bicharacteristics of Reps with respect to the

symplectic structure of Yo for any value of Re ps, see Definition[1.9.

Here, the sign on the leaves is £1 if £ Imp, > 0 and Imp, # 0 on leaf L of ¥y and
equal to 0 if Imps = 0 on L, see Definition Il Thus, condition Sub,(¥) implies the
necessary conditions in Examples [Tl and [L2, and it is not hard to show that it implies
the condition Suby (V) in Example In fact, the limits at 5 of the Hamilton vector
field of the refined principal symbol only depend on the values at ¥y of the Hessian of
the principal symbol and the gradient of the subprincipal symbol, see (LL19).

Proof. By multiplying with (D)>~™ we assume that P € ¥? and we may choose sym-
plectic coordinates so that (z,y) € R x R"™ and ¥y = { £ = 0 }. By Taylor’s formula we

can write the real principal symbol as

(1.17) o,y €m) = Y ag(e, v &, m)Eié
ik
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where the Hessian {a;i(x,y;0,n)};x is nondegenerate near wy by assumption. We have
that p; = ps the subprincipal symbol on ¥y and by extending it we may assume it is
constant in &.

Now the Poisson parentheses {{,Reps} = 0, Reps = 0 on ¥y and {x,Reps} =
—0: Reps = 0. Thus 0,0 Reps = 0 which gives 9, Reps = 0. Since Re p;, is homogeneous

and of principal type, we can thus complete x, £ and 7 = Reps|., to a symplectic

‘22
homogeneous coordinate system (x,t,y;&, 7,1n) microlocally near wy € ¥5. We then

obtain that the refined principal symbol of P is equal to

(]-]-8) Z a’jk(xa ta Y; ga T, n)§]§k+7+zf(za t> Y T, 77)+C(ZL', ta Y; ga T, 77)§+P0(1'> ta Y7, ga 77)
jk

modulo terms in S~!, where C' homogeneous of degree 0 with values in R™, f is real and

homogeneous of degree 1 and p, € S°.

The Hamilton vector field of the real part of the refined principal symbol is given by
(1.19) Hgep, =2 Z ajp(z,t,y;0,7,0)§;0,, + 0 + ReC(x,t,y;0,7,1m) - 0p

jk
modulo terms with coefficients that are O((|¢|*+¢|)/A) with A = /72 + |n]? in the base
of homogeneous vector fields V' = (0, 0,, 0y, AO-, AD¢, AD,)). We get the limit at ¥o when
|€]/A — 0.

One limit is when £ — 0 for fixed A and then the limit of (I.T9]) is equal to 9;,+Re C- 0,
which gives the subprincipal bicharacteristics. We can also take 7 = A1y, n = Ang and
¢ = AV39 with |70)? + |no|? = |8] = 1. Since the coefficients a;;, and C' are homogeneous,
one can write (LI9) as
(1.20) A " ag(,t, 405 0, 70,10)0;05, + 0 + Re C(a, £,; 0,70, mp) - O,

jk

modulo vector fields in V' with coefficients that are O(A~%/3). By dividing by A'/? and
taking the limit A\ — oo we obtain the limit Hamilton vector field

(1.21) Hp, = 2Zajk(%t7yo;0,7'07770)9j3xk

jk

This vector field gives for fixed 6y = (0y,...,0,) a foliation of the leaves of ;. Let
['(¢) with £ = 06 be the flow-out of the Hamilton vector field oH,, with H,, given
by (L2I). Then the Hessian HessI'(0) is non-degenerate so the mapping £ +— I'(§) is
a diffeomorphism from || < ¢ to a neighborhood of the wy in the leaf through wy =
(x,t,9;0,79,m0). Since we can take ££ we obtain from condition Sub, (V) that there can

be no sign changes of f on the leaves of ¥y near wy.
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We can also take the limit (7,7) = A(7,m0) and £ = ¢ - 0 with |72 + |o]? = |0] = 1
and 0 < p < VA — 0o. As before, we obtain the limit Hamilton vector field
(1.22) 2 Z ajr(z,t,y0; 0, 70,10)&0x, + O + Re C(z,t,y0; 0,70, 70) - O

jk

As before, the orbits of (LI9) gives a foliation of ¥y for fixed 8. When £ = 0 the
orbit 7 of (LI9) through wy = (xo,to,v0;0,70,70) is a subprincipal bicharacteristic.
When £ = g # 0 then the orbits I'(¢, &) of (LI9) through wy with ¢ > 0 form a proper
cone in Xy with the subprincipal bicharacteristic in its interior. Now scaling gives that
the Hessian of & — I'(ot,£/0) at t = 0 is constant in ¢ > 0, so by letting o0 — 0 we find
for some ¢ > 0 that (J,_,.I'(et,§/0) for [§] < c forms a cylindrical neighborhood of the
forward subprincipal bicharacteristic. Thus, we find from condition Sub, (V) that if f 2 0
on a leaf in a neighborhood of (to, yo; 0, 70,70) then f < 0 on the leafs in a neighborhood
of (t,yo; 70, m0) for 0 <t — ty < ¢ which proves the proposition. O

Remark 1.14. The requirement that condition (V) shall hold on the refined principal
symbol for all values of the real part is only needed when f = Imp, = Imps depends
on T = Reps. In fact, if f does not depend on T, then by choosing suitable T so that
Rep,. = 0 we can get the same limits at X9 of the Hamilton vector field of Rep, as in
the proof of Proposition[1.13. One may of course eliminate the T dependence of f by the
Malgrange preparation theorem, but that would change the imaginary part of the principal

symbol p, see for example Example 1.5
The following is the main result of the paper.

THEOREM 1.15. Assume that P € V7 (X) satisfies Sub,. (V) microlocally near wy € 3o,

then P is microolocally solvable near wo with a loss of 5/2 derivatives by the a priori

estimate (L1G).

Thus, by Example condition Sub,(W¥) is both necessary (under additional condi-
tions) and sufficient for local solvability for operators of subprincipal type with principal
symbol that is real and vanishes of exactly second order at a nonradial involutive mani-
fold 3.

The solvability with a loss of 5/2 derivatives can be compared with the loss of 2
derivatives when the antisymmetric part of P is bounded. In fact, by using the normal
form (2I) with f = 0 gives a Schrodinger type operator that is symmetric modulo
bounded operators. By using a multiplier as in Lemma one can obtain L? estimates
with arbitrarily small constants. For small enough constant, these estimates may be

perturbed by any bounded term. This is similar to the case of operators of principal part,
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where the loss of derivatives is 1/2 more when the antisymmetric part if the operator is
unbounded and condition (V) is satisfied.

This paper treats subprincipal type operators with involutive characteristics having
nondegenerate second order vanishing of the principal symbol. For the noninvolutive or
degenerate cases, see [19], [20] and the references there.

To prove Theorem we shall use suitable a prior: estimate and Remark [L.TIl The

proof will occupy most of the remaining paper.

2. THE PREPARATION

As in the proof of Proposition [LT3 we may assume that the operator P € ¥%(X) is
of second order with real principal symbol, X = R" and the coordinates are chosen so
that 5 = {£ =0}, (z,9;&,1) € T*(R? x R¥™") microlocally near wy € Yo, where x
(x,90;0,70) spans the leaves of the symplectic foliation of ¥ and d is the codimension of
Y5, We may multiply P with an elliptic operator of order zero so that the refined principal
symbol satifies condition Sub, (), see Definition Thus, we have the operator on the
normal form given by (LI])

(2.1) > agi(a,t,y; &€ + o, by €, 7o) + polw, by €, 7m)
jk

modulo terms in S, where { aj; }jk is nondegenerate on X,

(2.2) pi(z oy &) =7+ if(z,ty;mon) + Cla, t,y; §,7,m) - €

with f homogeneous of degree 1, and C' and p, homogeneous of degree 0. By condition
Sub, (V) and Proposition [LT3] we find that f does not change sign on the leaves of ¥,
and the sign on the leaves do not change from — to + as t increases by Definition A1l

We shall compute the symbol modulo the error terms
(23) R:{<025,f>+C1'£+Coi CjGS_l}

These are sums of terms that are either in S* vanishing of second order on Y, in S°
vanishing on ¥, or in S~!. Observe that homogeneous vector fields that are tangent to
Yo maps R into itself.

We shall use the Weyl quantization, which has the property that symmetric operators
have real symbols. The Weyl quantization of symbols a € S'(T*R") is defined by:

(24) (a"u,v) = (2m)™" // exp (i(z — y, £))a(5Y, &) u(z)v(y) dedydé u,v € Cg°

Observe that Rea® = (Rea)" is the symmetric part and ¢ Ima® = (i Im a)™ the antisym-

metric part of the operator a. Also, if a € ST then a(z, D,) = b*(z, D,) modulo \1171’?0_2
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where
(2.5) b(x,&) = a(x, &) + Zaxjagj a(z, &)

which gives the subprincipal symbol by [10, Theorem 18.5.10]. The equality (2.5]) shows
that a € Rifand only if b€ R. 1

Now by conjugating with e? € S° having phase ¢(z,t,y;7,n) that is real and homoge-
neous of degree 0, we may obtain that Im py = 0 at X9, i.e., Impg € R. In fact, we obtain

this by solving the equation
(2.6)  Oid(x,t,y;7.n) + Re Cla,t,y;7,0,m) - 0ud(w,t, y; 7, 1) = Impo(x, ¢, y; 7,0, 1)

but this may of course change the values of Im C' and Re py.

Next, we want to reduce to the case ImC = 0 on ¥s. i.e, InC € R, but that can in
general not be done by conjugation. Instead we shall use symplectic changes of variables
given microlocally by Fourier integral operators. In the following, we shall for simplicity
include the variable ¢ in the y variables, and the variable 7 in the n variables. The
variables (y,n) will then parametrize the leaves of ¥.

Let R > 2 — x(z,y,7) € R% where y € C*, homogeneous in  and |9,x| # 0 and
let

(2.7) Fu(z,y) = (27)™" // e X@ym =0+ y=wm)y (5 ) dzdwdédny — u € CF°

which is an elliptic Fourier integral operator. This correspond to the homogeneous sym-

plectic transformation

(2,95 Oux(,y,m) - & m + Oyx(x,y,m) - §) = (X(2,9,m),y + Iyx - §:€,1)

which preserves Yo, thus || and |n| are preserved modulo multiplicative constants. In
fact, when & = 0 we get the mapping (z,y;0,17) — (x(x,y,7n),y;0,n7) which gives a
homogeneous change of = variables. We put the amplitude of F' equal to 1 to simplify
the notation, actually the amplitude only has to equal to 1 near the wave front set of the
kernel of F'.

By applying the operator P we find

(28)  PFu(a,y) = (2m)™" / / e =20 (3, y: € m)u(z, w) dzdwdgdn

so PFu = FQu, where

(29)  Qayi&m) = Y 0ROIP(w,y; 0ux - &+ Oyx - M 5(x,y;€,m) [l B!

a, BEN

with

(2.10) Mgﬁ(x’ Y €,m) = D?Dgeixz(x,y,z,w,n).f _—

w=yY
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where the phase function

(211) X2($7y7 szun) = X(szvn) - X(l’ayﬂ])
+ <Zl§' -z, axX(za Y, 77)) + <y —w, ayX(Ia Y, 77))

vanishes of second order at z = z and w = y, see [10, Th. 18.1.17| or [21, Chapter 7,
Theorem 3.1|. Thus there are no terms with |a|+ |5 = 1 in the expansion of (2.9). Since
we only need the symbols modulo terms in R it suffices to compute the first two terms

of the expansion (2.9)).
We obtain from (Z1)) by a straighforward computation that

1
ik

modulo terms that are in R. In fact, O:aj;, € S, 8?85132 — (f)(w—1|£|> if 30 and
o+ 8| > 2, and 0¢9p, € S~V if o+ B| > 2.
We shall first simplify by making a change of variables to diagonalize A = {a;}jx =

Hess ps. Since A is nondegenerate, we can use the spectral projections to obtain either

(AL O
thatA-(O A

(£A4)712 to construct real valued x(z,y, ) so that (9,x-€) Ad,x-€ = |€')>—|€"* = L(€)

has constant coefficients near wy € ¥5. Here (¢,&") = &£, and L() is the real quadratic

) or A = A., where £A, is positive definite. Then we can use

form with the polarized bilinear form L(&, £). Of course, this may also change the values
of p; for j < 2. But observe that the term homogeneous of order 0 in the expansion ([Z12)
of () is equal to

qo(x,y;&,m) = po(x,y; Ouxw (2, y,m) - &,m + Oyx(z,y,1m) - &)

modulo terms vanishing at ¥, so we find that Im go(z, y;0,7) = Im po(x,y;0,7) = 0.
Thus, we may assume that A = L is constant in the following. Next we shall do
another change of symplectic variables to make ImC = 0 at ;. Assume that xy =
(X1, - -, Xxa) Where x; is parallel to e; for the standard base ey, ..., e;s of R% so that we
can write x = (xie1,...,Xqaeq) With scalar x;. As before, we get the expansion (2.12)
with {ax };, = A= L.
In order to get the symmetric part of the operator we shall compute the Weyl symbol

of Q which is given by Q & Q + > ; Oz, 0¢,q2 modulo S” where

¢ m

(&) = L(sx - €) = 10w - § = 10wrx - £ =D (Onx - )> = Y (Ouyx - €)°

k=1 k=0+1



14 NILS DENCKER

is the principal symbol of Q, so 2.12)) gives

N & 1
(213) Q= qga+i ) <2L(8xxk, 000, X1) — _L(a:c)Xk) &k +p1(2, 950 - §,m + 9yx - €)

k=1 2
modulo S°.
Let ¢; be the terms homogeneous of order 1 in the expansion (ZI3]) of @, then we have
¢1(z,y;0,1) = p1(x,y;0,n) on Xy. We find from ([2I3)) that the & derivative of ¢; at ¥

is equal to

) 1

+ aﬁpl(za Y; 07 77) : axXk(x> Y, 77) + anpl(x> Y; Oa 77) ' aka(Zlf, Y, 77)

Here Im 9,p; = 0, f and Im J:p; = Im C on ;. Observe that the terms in ¢; vanishing
of second order at Y are in R.

By taking the imaginary part and ignoring the term 0, f - 9,x, for now, we find
O¢ Im ¢y (z,y;0,m) = 0 if for any k we have

which is a quasilinear second order system of PDE on the leaves of ¥, having real co-
efficients. Observe that this system is completely decoupled with one equation for each
Xk. As before, we we find that Imgqy(z,y;0,7) = Impo(z,y;0,7) = 0. In order to
get a suitable change of coordinates we shall solve system (2.I5) in a neighborhood of
wo = (T, Yo, Mo) with initial data y = 0 and [0, x| # 0 at wy.

Proposition 2.1. For any v, € R, 1 < k < d, the equation (Z.15) with data x;, = 0 and
O Xk = Vg at wo = (To, Yo, Mo) has a solution xi(z,y,n) € C*> in a neighborhood of wy.

Proposition 1] follows from Theorem [A.T] in Appendix [Al and shows that this initial
value problem has a C* solution x(x,y,1n) = (x1(z,y,n), x2(z,y,n)--+) near wy such
that x(xo, y0,70) = 0 and 0, x(zo, Yo, M) = Id. By restricting x(z,y,n) to the set |n| =1
and extending it by homogeneity in 7, we obtain a homogeneous change of coordinates
so that ¢ Imp; = ImC = 0 and Impy, = 0 at 3y near wy. Thus we have proved the

following result.

Proposition 2.2. Assume that P € V7 (X) satisfies the conditions in Theorem [1.1J
macrolocally near w € Yo. By conjugation with elliptic Fourier integral operators and

multiplication with symmetric elliptic pseudodifferential operators, we may assume that
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X =T*R", the coordinates are (x,t,y;&,7.1) so that X9 = {£ =0} and P is on the form
(2.16) P=D,+ A" +if
microlocally near w € ¥y modulo terms with symbols in R given by (2.3). Here A =
Ay + A1+ Ag € S%, Aj € S9, is real valued, with principal symbol Ay vanishing of second
order at o with Hess Ay nondegenerate on the normal bundle N¥s, and Ay = 0 at 3.
Also, fi = f + fo is real and homogeneous of degree 1 where f does not depend on & and
fo=0,f-r-& withr € S°. By condition Sub,(¥) we have that f = fl‘zg

sign on the leaves of Yo and the sign of f on the leaves do not change from — to + ast

does not change

increases. Here the sign of f is given by Definition [{.]]
Observe that P in (2.16) is an evolution operator and it is of subprincipal type.

Remark 2.3. The normal form of the L? adjoint P* is ([2186) with fi replaced by — fi.
Then P* satisfies condition Sub, (W) which gives the opposite conditions on sign changes

as t increases given by (3.3)).

3. THE MICROLOCAL ESTIMATE

Next, we shall microlocalize and reduce the proof of Theorem [I.15 to the semiclassical
multiplier estimate of Proposition 3.6 for a microlocal normal form of the adjoint operator.

We shall consider operators given by Proposition
(3.1) P* =D, + AY +if“(x,t,y; Dy, Dy)

modulo terms with symbols in R given by (23]). Here f; = f+ fj is real and homogeneous
of degree 1 where fo =0, f -r- & with r € S°, f does not depend on & and

(3.2) A= Z a;k €&k + Z a;&; + ao
ik J

where a;, and a; € S?,o are real and homogeneous of degree 0, and {a;i};; is symmetric
and nondegenerate.
In the following, we shall assume that P* satisfies condition Sub, (), so that the sign

of f(t,x,y;7,n) is constant in = and
(33> f(t7x07y0;7—07n0> >0 and s>t = f(svx7y0;7—07n0) > 0 Va

so that the sign on the leaves cannot change from + to — as t increases, see Defini-
tion [A.] for the definition of the sign. Observe that if x > 0 then xf also satisfies
condition Sub, (), so this condition can be microlocalized.

In order to prove Theorem we shall make a second microlocalization using the

specialized symbol classes of the Weyl calculus. We shall therefore recall the definitions



16 NILS DENCKER

of the Weyl calculus: let g, be a Riemannean metric on 7*R", w = (z,£), then we say
that ¢ is slowly varying if there exists ¢ > 0 so that g,,(w — wp) < ¢ implies gy, = Gup,
e, 1/C < gu/guw, < C. Let o be the standard symplectic form on 7*R"™, and assume
9% (w) > g(w) where g7 is the dual metric of w — g(o(w)). We say that ¢ is o temperate
if it is slowly varying and there exists C' > 0 and N € N so that

G < Cuy (14 g% (w — wp))Y YV w, wy € T*R"

Actually, o temperate metrics with g < ¢ are called Hérmander metrics. A positive real
valued function m(w) on T*R" is ¢ continuous if there exists ¢ > 0 so that g, (w—wp) < ¢
implies m(w) = m(wp). We say that m is o, g temperate if it is g continuous and there

exists C' > 0 and N € N so that
m(w) < Cm(wo)(1 + g5 (w — wp))™ YV w, wy € T*R™.
If m is o, g temperate, then m is a weight for g and we can define the symbol classes:

a€ S(m,g)if a € C*(T*R") and

D (w, Ty, ..., T;
(3.4) |a\§(w) = sup o (zf’ L 1’2 i)l
T;#0 1gw(Ti) /

which gives the seminorms of S(m, g). If a € S(m, g) then we say that the corresponding

< Cjm(w) YVweT'R" for j > 0,

Weyl operator a® € Op S(m, g). For more on the Weyl calculus, see [10, Section 18.5].

Definition 3.1. Let m be a weight for the metric g. We say that a € ST (m,q) if
a € C(T*R") and |al] < Cym for j > 1.
Observe that by the mean value theorem we find that

(3.5) |a(w)—a(wo)] < Cy sup gu,(w—wo)*m(wy) < C'm(wo)(1+ g5, (w—wo)) N1/
0€(0,1]

where wyg = 0w + (1 — 0)wy, since wy — wy = O(w — wy) for some 0 < 6 < 1 and

Gup (W — w0) S gbr, (w — wo) < giy (w — wo) (1 + g5, (w — wp))™
Thus m + |a| is a weight for g and a € S(m + |al, g), so the operator a® is well-defined.
Lemma 3.2. Assume that m; is a weight for g; = h;g* < g* = (¢°)7 < g7 < hj_lgti and
aj € ST(my,g;), j=1,2. Let g= g1 + go and h* = sup g1/g5 = sup g2/¢{ = hihs, then
(3.6) alay — (a1az)® € Op S(mimah, g)
with the usual expansion of B.0) in terms in S(mymah*, g), k > 1. We also have that
(3.7) Reayay — (a1a)” € Op S(mimah?, g)

if a; € C™ is real and |a;| < Cymy, k > 2, for j = 1, 2. In that case we have
a; € S(my + laj| + |a;ly, g5)-
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Proof. As shown after Definition 3.1l we have that m; + |a;| is a weight for ¢g; and a; €
S(m; + lajl,9;), j = 1, 2. Thus aPay € OpS((m1 + |a1])(ma + |az]), g) is given by
Proposition 18.5.5 in [10]. We find that al’ay — (a1a2)” = @™ with

(38) a(w> = E(%U(lev DU)Q))%O-(DUH’ Dw2>a1 (wl)CL?(w?)‘

w]=wa=w

where E(2) = (¢ — 1))z = [ %> df. Here 0(Da,, Duy)ar (wi)az(ws) € S(MH, G) where
M(wi,wa) = my(wi)ma(wa), Guyw,(21,22) = g1 (21) + g2u,(22) and H?(wy, wy) =
hi(w)ha(w2) = sup G, w,/GY, ., 50 that H(w,w) = h(w). The proof of Theorem 18.5.5
in [10] works when o(D,,, D,,) is replaced by 8o (D,,, Dy, ), uniformly in 0 < 6 < 1
(when 6 = 0 we just get the Poisson parenthesis %{al, as}). By integrating over 0 € [0, 1]
we obtain that a(w) has an asymptotic expansion in S(m;myh, g), which proves (B.6).

If |a;|7 < Cymyj, k > 2, then we have by Taylor’s formula as in (3.5) that

|a;(w) = a;(wo)| < gug (w — wo)""*|az | (wo) + Cy 081[110] Guy (W — wo)m(wp)

elo,1
< C'(Jay|{(wo) +m(wo)) (1 + g5, (w — wo) )+

(T, Owa;(w)) = (T, dwaj(wo))| < Co s?p]gwg(T)l/zgw@ (w — wo)"*m(wp)
0€l0,1

< O3y (1) *m(wo) (14 g, (w — wg)) N+

thus m; + |a;| + |a;|7 is a weight for g; and clearly a; € S(m; + |a;| + |a;]7, g;)-

Now if a; and ay are real, then Real’ay — (aras)” = a®* with

a(w> = Re E(%U(lev DU}Q))(%O-(DU)N Dw2))2a1 (w1>a2(w2>/2‘w1:w2:w

where 0 (D, , Dy, )?a1(wy)as(ws) € S(MH?, G), with the same E, M, G and H as before.
The proof of ([B.1) then follows in the same way as the proof of (B.6]). O

Remark 3.3. The conclusions of Lemmal3.2 also hold if a1 has values in L(By, By) and

ay in By where By and By are Banach spaces, then ayay has values in Bs.

For example, if { a; }, € S(m, g1) with values in 2, and b; € S(my, g2) uniformly in j,
then { a¥b¥ }j € Op(myma, g) with values in ¢2.

Remark 3.4. For pseudodifferential operators with the Kohn-Nirenberg quantization, we

have by Theorem 4.5 and (4.13) in [8] that a;(x, D)as(z, D) = a(x, D) with

(39) a(x, 6) = ei<D§7Dy>a1 (l’, g)al(ya 77) ‘%z%
As in the proof of Lemmal32 we find that ay(x, D)as(x, D) — a(x, D) = r(x, D) with
(3.10) r(z,§) = E(i(De, Dy>)5§al($,S)Dyal(y,ﬁ)}%zg

where E(z) = (e —1)/z = fol e df.
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To prove Theorem [L.15 we shall prove an estimate for the microlocal normal form of
the adjoint operator. Since the proof is rather long, we will take it in two steps, and the

first is microlocal estimate. For that, we shall use the symbol classes ST, and S, ; 5.

Proposition 3.5. Assume that P is as in Proposition [2.2 microlocally near wy € Yo
and that t = tg and v = xo at wy. Then there exist Ty > 0 and a real valued symbol
br € 511/271/2 with homogeneous gradient Vbr = (0,br, |C|0c:br) € 511/271/2 uniformly for
0<T<Ty, (2,¢) € T*R"™, such that for every N > 0 there exists Cy > 0 so that

(3.11)  [Ibpullf_yjz) + I Doull® + flull* < Cn (T Tm (P*u, byu) + [ullt_y,) + [[4"u”

foru € C§° having support where |t—to| < T and |x—xo| < T. Here € S?, wy ¢ WF )™
and the constants Ty, Cy and the seminorms of by only depend on the seminorms of’

the symbols in P.

Proof that Proposition giwes Theorem[1.15. We shall prove that there exists ¢ € SRO
such that ¢ > 0 and ¢ = 1 in a conical neighborhood of wy € ¥y, and R € Si/o2 with

wo ¢ WE R" so that for any N > 0 there exists Cy > 0 such that
(312)  [l6"ull < Cw (16" Pullas + IRl + Julcw)  we CF

Here ||ul|(s) is the usual L* Sobolev norm, so by Remark [T we obtain that P is solvable
with a loss of 5/2 derivatives in a conical neighborhood of wq since wy ¢ WF(1 —¢)* and
m = 2.

We may assume that m = 2 and P € ‘I’%,o is on the form in Proposition 2.2]in a conical
neighborhood of wy. Let ¢ > 0 have support in a smaller conical neighborhood such that
max ([t], |z]) < T < Tp in supp ¢, ¥ in (B.I1) vanishes on supp ¢ and ¢ = 1 in a conical
neighborhood of wy. Then by applying the estimate ([B.11) on ¢“u we obtain for any
N >0

(3.13) 670" ulli_y /) + I ull* + | Dog™ul* < Cw (TTm (P*¢"u, by u) + [|ull{_y))

where Cy > 0 and b§ € U] J2.1/2 18 symmetric with homogencous gradient Vbr € St J2.1/2-

By Cauchy-Schwarz,
(3.14) | (P*¢"u,bpo“u) | S HP*¢WUH?1/2) + HblTU¢wUH?—1/2)

and || P*¢ ull?, gy < (¢ P ull?y o) + I[P, 9*]ull?, o) Where the commutator [P*, ¢*] € U!
with wo ¢ WE[P*, ¢].
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Thus, for T" small enough, we obtain for any N > 1 the estimate

(3.15) [lo"ull® < 1Ibpe™ullt_1z) + l¢"ull* + || Dog™ul]*
< On (Tll¢" P*ullfy o) + TUP*, 6" Tullty) + lullf-n)

This gives the estimate B12) with R = T(D)/?[P* ¢*] € U2 which completes the
proof of Theorem [L.15] O

Next we shall derive a semiclassical estimate for the proof of Proposition We shall
assume that the coordinates are chosen as in Proposition so that ¥o ={&=0}. The
proof involves a second microlocalization near (to, To, Yo; 70,0,70) = (20; (o) € Lo using
the homogeneous metric g = g19. Then sup g/g” = h? < 1 are constant and [¢| S h™t =
((r,m)). We have g/h = ¢* = g121/2 where g* = (¢)7 is constant, S¥, = S(h™*, g) and
Sf/271/2 = S(h7*, g*) for k € R. Observe that now the the symbols of the error terms R
can be written (R2£, &) + Ry - € + Ry where R; € S(h, g).

Proposition 3.6. Assume that P* = D, + A + if}" with real fi = f + fy where f €
S(h™1,g) is independent of & and satisfies condition Sub, (V) in B3), fo = 0,f -r-& €
S(h™', g) with r € S(1,9) and

(3.16) A= apil+ > a + ag
Jk J

where a;, and a; € S(1,g) are real and {a;};x is symmetric and nondegenerate, here
0<h<1andg' = (¢*)° are constant. Then there exist Ty > 0 and real valued symbols
br(t,z, &) € S(h=2,¢" N SH(1, %) + S(h="2,g) uniformly for any 0 < T < Ty and
|z| < T, so that

(3.17) W2 ([1ball® + | Dull® + lul®) < CoT Tm (P*u, byu) + [0 ul|?

when u € C§° has support where |t| < T and |x| < T. Here ¥ € 5%, 3y supp¥ = 0

and Cy, Ty and the seminorms of by only depend on the seminorms of f in S(h7™,g).

Proposition will be proved at the end of Section 8

Proof of that Proposition gives Proposition[3.3. First note that in the estimate (3.11]),
P* can be perturbed by operators with symbols in R. In fact, if R = (RoDy, D) +
(Ri, D,) + Ry with R; € Wi}, then Reb¥R = (SyD,, D,) + (S1, D,) + S where S; €
Y /2,172 1S continuous on L?. Thus, this term can be estimated by the last two terms in
the left hand side of (B.I1]) for small enough 7'

As before, we shall include 7 in the variables n and use the coordinates (z,() € T*R".

For the localization, we shall take ¢ € SRO such that 0 < ¢ < 1, ¢ = 1 in a conical
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neighborhood of wy € ¥y such that ¢ is supported where |[£] < A7 ¥ =0 and P is on
the normal form (2.16). By taking ¢(z,() = ¢o(2)¢1(¢) as a product, we obtain that
0. has support where max(|t|, |z|)| > Tp for some T > 0.

Next, we shall microlocalize in ¢ = (7,£,7n) with respect to the homogeneous metric
g = g1,0 with a partition of unity {¢;(¢) }; € S7o = S(1,g) independent of z with values
in ¢ such that Zj gp? =1, 0 < p<1 and ¢, is supported where (¢) = hj_l. Then we can
get a partition of unity in a conical neighborhood of wq by putting ¢, = ¢p;, so that ¢, is
supported where [£| < hj_l, >, @7 = ¢* and 9, ,¢; has support where max([t[, |2|)| > Tp.

Since the functions ¢; are real, we find from the calculus and symmetry that > ;0707 =
¢U¢" + 1" where r € S is real valued, which gives [[¢“v[|* < 37, [|¢¥v[|* + Cllv||7_y for
v € C5° and by continuity we have Y [|¢¥v[|* < [Jv[|*>. By cutting off, we find that

(3.18) Iollt—sy S D K36y ol® + I(D) (1 — )]
J

Since the cut-off functions have values in £2 the calculus gives that the operators that we
obtain from these will have values in ¢? (or scalar values after summation) by Remark 3.3

By possibly shrinking 7 we can also choose real symbols {1, } ; € S?,O with values
in 2, such that 0 < ¢; < 1 has support in a g neighborhood of w; of radius 27} so that
Y;¢; = ¢;. If Tj is small enough, we may assume that P is on the normal form (2.16)
and g9 = g = hg is constant in supp ;, and that there is a fixed bound on number of
overlapping supports of 1;, see [10, Section 18.5]. Then we obtain that STy, = S(h;™, g;)
and S{}, | 5 = S(h;™, g*) in supp ¥; for m € R, where h; <1, g; = h;g".

The microlocalization of P is P; = Dy + AY +if}” where A; = ;A + (1 — ;) Ag; €
S((€)% g5) with Ag;(t, x,y;m,8) = Yo ane(w)&ée, frj = Uifi € S(h;l,gj) uniformly
in j satisfying condition Sub,(¥). If the support of 1), is small enough, then the Hessian
9 A; is nondegenerate at Y.

Then, by using Proposition with P; and substituting ¢}u in (B17), we obtain real
bjr € S(hj_l/z,g?) ﬂS*(l,gﬁ) + S(h;/z(g),gj) uniformly so that

(3.19) [Ibgreyull® + 165 ull* + || Doty ul?

< CoTh; " Tm (P} ¢u, b2pdu) + CnllgPull?_y,
for u € Cg° having support where max(|t], |z|) < T < Ty. We have Proy = ¢ P + QY
where
(3.20) Qf = [Dv,07] + (A7, 6] — ilfi5, 6] € Op S(hj ", g5)

Since the commutator of symmetric operators is antisymmetric, the calculus gives that

Im Q; € S(h;(£)?, g;) when max([t], |z[)| < Tp since then 0, ,¢; = 0 which gives [AY, o] =
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> wel@is, @YDy, Dy, and [Dy, ¢] = 0. This also gives D,¢Yu = ¢ D,u when u is sup-
ported where max(|t],|z])| < T,. We also have Re@; € S(1,g;) since (§) < hj_l in
supp ¢;.

By using the calculus we obtain that ¢ P = ¢} P; modulo Op S (h;v .95), VN, since

Y;0; = ¢;. We obtain for any N that

(3:21) [I5'rd5ull® + |65 ull* + |65 Doul|*
< CoT (Im (P u, BYyu) + by Im (Q;-”u,b;-‘jT¢;-”u)> +COnlIBY oY ull® Vi
if u € C§° supported where max(|t|, |z]) < T < Tp. Here
By = Peubire € Op S(hy',gf) (Op ST (%, ¢%) + Op S((€), 95)
V2 g0
and Re Q; € S(1, g;) we find that {h_1/2 Im ¢¥b%,Q¥}; € Op S((€)?, ¢*) with values in (2
when max(|t|,|z])] < Typ. Thus we may find ) € S' with support outside a conical

uniformly and by symmetry B;r is real. Since ¢¥'0% = (b;r¢;)* modulo Op S(h

neighborhood of wy so that

S0 T (Qu, b6 w) S Jull? + || Dyl + [ u

if u € C§° supported where max(|t|, |z]) < Tp.
Let b = > ;j Bjr, then by the finite bound on the overlap of the supports we find that

Zh1/2B

since (BYpu, By'ru) = 0 if [j — k[ > 1. Thus, by summing up we obtain

2 2

S ZH Grd ull® + llullty

w 2 . w W w
. —1/2) S ;U
(3:22) [[brull_1/2) = 11> ovbye

J

(3:23) [I67ullt_yyz) + lull® + [ Doull®
< C1 (T(Tm (P*u, bpa) + [Jull? + [ Doull® + 19 wl®) + ullt_y) + (1 — @) ullfy)

for v € C§° having support where max(|t|,|z|) < T < T,. Here we find that wy ¢
WFE ¢ [ JWF(1 — ¢)* which gives (811]) for small enough 7. We also have that b4 =
> h_1/2 Lo oY € \Il%/2,1/2 since ¢; € S(1,g;) is supported where (¢) ~ h;"' and b;r €
S(hy 1/2,g ). The homogeneous gradient Vbr € S}, /, since bjr € S*(1, %) and the
homogeneous gradient is equal to h~/? times the gradient in coordinates which are g*

orthonormal. This finishes the proof of Proposition 3.5 O

It remains to prove Proposition B.6] which will be done at the end of Section B The
proof involves the construction of a multiplier b7, and it will occupy most of the remaining

part of the paper.



22 NILS DENCKER

4. THE SYMBOL CLASSES

In this section we shall define the symbol classes we shall use. We shall follow Section 3
in [4] with some changes due to the different conditions and normal forms. We shall study
the subprincipal symbol p, = 7 +if; with fi = f + fo where f(t,z,y,7,17) € S(h™%,g)
and fo = 0,f -r-§ where 0,f - r € S(1,g). The metric is localized and assumed to be
constant, but the result holds in general for o temperate metrics g < h%g°.

Since we are going to study the adjoint, we shall also assume that f(¢,z,7,w) €
S(h71,g) is independent of ¢ and satisfies condition Sub,(¥) in [B.3). Here g = g1 is
the usual homogeneous metric, z € R™, (t,7) € T*R and w = (y,n) € T*R"™! as in
Section 2. We have that g = hg* where g* < (¢*)?, in the case of the homogeneous metric

we have
(4.1) gt = (dt? + |dz|? + |dy|®)/h + h(dT* + |d€)? + |dn|?)

We shall construct a metric, weight and multiplier adapted to f, so the symbols in this
section will be independent of & except for fy, which will be handled as an error term
in the estimates, see Remark [£.8. We shall suppress the ¢ variables and assume that
we have choosen ¢f orthonormal coordinates so that ¢* is the euclidean metric so that
¢t z, 7, w) = |(t,z,7,w)[2. Then we have |f/| = [£|¢ < h~V2 || = |f|§ < 1 and
|f®)| = |f|zﬁ < hT1Hk/2 < pY2 for k > 2. By decreasing h we may obtain that |f/| <
h~1/2 which we assume in what follows. Observe that after the change of coordinates
10, f| = h'/2|0, |9 < hM?|f'| < 1 and |0,f| = h='/2|0,f]9" < h™'/2|f'| < h~'. The results
in this section are uniform in the sense that they depend only on the seminorms of f
in S(h™1,g).

Since we assume that f = Imp, does not change sign on the leaves of 5, we may

have the following definition of the sign of f.

Definition 4.1. If f does not change sign on the leaves L of 35, then we define the sign

function

+1 if £f>0and f#£0 onlL
42) sgn(f):{ 0 i f=0 onlL

which is then constant on the leaves of 3o such that sgn(f)f > 0.

(4.3) X+:{(t,7,w):5|s§t, maxf(s,x,7,w)>0}

(4.4) X_:{(t,T,w):EISZt, minf(s,x,7,w)<0}.
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Observe that by the definition, X, is open in 5 and is a union of leaves of ¥,. By condi-
tion Sub,(¥) we find that +f(¢, 2, 7,w) > 0 when (¢, 7,w) € X4 and that X_ (" X, = 0.
Let Xo =35\ (X1 |JX_) which is a union of leaves and is relatively closed in Xs.

Definition 4.2. Let
(4.5) d(t,7,w) =1inf { |(t,7,w) — (s,0,2)| : (s,0,2) € Xo }

be the ¢* distance to Xy, it is constant in x and equal to +oo in the case when X, = ().

We define the signed distance function §(t,w) by
(4.6) 6 = sgn(f) min(d, h~1/?),

where d is given by ([@D]) and sgn(f) by Definition [{.1]

We say that a(t, =, 7,w) is Lipschitz continuous if it is Lipschitz with respect to the

metric gF.

Proposition 4.3. The signed distance function (t,7,w) — 6(t,7,w) given by Defini-
tion 1s Lipschitz continuous with Lipschitz constant equal to 1. We also find that
t +> 0(t, 7,w) is nondecreasing, 9§ is constant in x, 0 < &f, |0] < h™'/% and |§| = d when
|6] < h=1/2

Proof. Clearly df > 0, and by the definition we have that |§| = min(d, h~"/?) < h='/2 so
|6| = d when |§| < h~/2. Now, it suffices to show the Lipschitz continuity of (¢,7,w)
§(t, 7,w) locally, and thus locally on (X, when d < co. Then d(t, 7, w) is the distance
function to Xg so it is Lipschitz continuous with constant 1.

Next we show that ¢ — §(¢, 7, w) is nondecreasing. In fact, when ¢ increases we can
only go from X_ to Xy and from Xy to X . If (¢,7,w) € X then ¢ = 0(¢, 7, w) > 0 is the
distance to CX . If there exists € > 0 so that §(t +¢,7,w) < c then there would exists
(s,0,2) ¢ X, so that |(t+¢e,7,w) — (s,0,2)] < c. But then |(t,7,w) — (s —¢,0,2)] < ¢
where (s — €,0,z) ¢ X, which gives a contradiction. By switching ¢ to —¢, § to —§ and
X, to X_ we similarly find that 6 < 0 is nondecreasing on X_ and ¢ is of course equal

to 0 on Xj. ]

Next, we are going to define the metric that we are going to use for f.

Definition 4.4. Let

I H2 1 s /]
(4.7) + 6] + [F7]+ WA V2 + B2

and G = Hg*.



24 NILS DENCKER

Remark 4.5. We have that
(4.8) 1< HY2< 14|64+ h V42 < 3p712

since | f'| < h=Y2 and |6] < h=Y2. Moreover, |f'| < H=Y2(|f"| + h'/4| f'|'/2 + h'/2) s0 by

the Cauchy-Schwarz inequality we obtain
(49) ‘f/‘ < Q‘f//‘H—1/2 + 3h1/2H_1/2 < 02]_[—1/2.
which gives that f € ST(H™1, G), see Definition 31
Since the metric G does not depend on the values of f, we shall need a weight to define
the symbol class of f.
Definition 4.6. Let
(4.20) M = |f|+[f|[HTZ 4 [f[H + hPHTR = [+ [fIF + |5 + R H
then we have that h*/? < M < Csh™! by (&S).

In the following, we shall simplify the notation and include the variables x, t and 7 in

the w variables.

Proposition 4.7. We find that H='/? is Lipschitz continuous, G is o temperate such
that G = H*G° and

(4.11) H(w) < CoH (wo)(1 4+ Gyp(w — wyp)).

We have that M is a weight for G such that f € S(M,G) and

(4.12) M (w) < CrM (wo) (1 + Gy (w — w))*/2.

In the case when 1+ |6(wo)| < H™Y2(wp)/2 we have | f'(wo)| > h'/?,

(4.13) |F® (wo)| < Cil f'(wo) [ H'Z (wo) k> 1,

and 1/C < |f'(w)|/|f'(wo| < C when |w — wo| < cHY?(wy) for some ¢ > 0.

Remark 4.8. The term fo = 0,f -r-& € S(h™t,g) in Proposition [3.8 can be written

fo=r0-& with vy € S(IMHY2h2.G) C S(1,G) since |0,f| < b2 f'|. Now, () is not
a weight for g* near Xy but fo € S(MHY2h'2(€),Gy) where Gy is given by (T1I)).

Since G < ¢* < G° we find that the conditions (LII) and (EI2) are stronger than
the property of being o temperate (in fact, it is strongly o temperate in the sense of
[1, Definition 7.1]), and imply that G is slowly varying and M is G continuous. When
1+ 16| < H™Y2/2 we find from (EI3) that |f'| > 0 is a weight for G, f' € S(|f'|,G)

and f~1(0) is a C™ hypersurface. Since that surface does not depend on z we find that
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min, H'/? gives an upper bound on the curvature of f~!(0) by (#I3). Proposition
shows that (EI3) also holds for k = 0 when 1 + |§| < H~Y/2.

Proof. First we note that if H~/? is Lipschitz continuous, then
(4.14) H™ Y2 (wy) < H V2 (w) + Cy|w — wy

which gives ([.I1]) since G = Hg*. Next, we shall show that H, V2 g Lipschitz continuous.

Since the first terms of (4.7]) are Lipschitz continuous, we only have to prove that
LF1/QF" + R F1M2 + hY2) = EB/D

is Lipschitz continuous. Since this is a local property, it suffices to prove this when
|Aw| = |w —wp| < 1. Then we have that D(w) = D(wy), in fact D? = h+ h'/2|f/| + | f"|?
SO

D*(w) < C(D*(wo) + | f"(wo)[h'/* + h) < C"D?(wo)

when |Aw| < 1. We find that

‘ Ag‘ ) ‘E<w> _ B(wy)| _ |AB|  B(wy)AD)
D D(w) D(wg)| ~— D(w) D(w)D(wp)

Taylor’s formula gives that

(4.15) AE] < (|f"(w)] + ChY2)|Aw| < CD(w)

when |Aw| < 1. It remains to show that E(wg)|AD| < CD(w)D(wg)|Aw|, which is

trivial if E(wg) = 0. Else, we have
A[f"]] < Ch'2| Aw| < CD?(wo)|Aw|/E(wy) < C"D(wo) D(w)|| Aw]/ E(wo)
when |Aw| < 1 since h'/?2 < D?/E and D(wy) < CD(w). Finally, we have
RYALFYP) < RV AE]/ (1 (wo) |2 + | £ (w)]?)
< ChM £ (wo) 2D (w)| Awl /| f'(wo)| < CD(wo) D(w)|Aw|/E(wo)

when |Aw| <1 by (4.13), which proves the Lipschitz continuity.
Next, we study the case when 1+ [0(wg)| < H~'/2(wy)/2, then H'?(wy) < 1/2. Then
we find from (A7) that

(4.16) [f" (wo)| + R (wo) V2 + 12 < 2HY (wo) | (wo)| < |f (wo).

which gives |f/(wo)| > hY2, |f(wo)| > |f"(wo)| and that hY/? < 4H (wo)|f'(we)|. When
|w — wo| < cH™?(wy) we find from (@I6) by using Taylors formula that

| (w) = f'(wo)| < | " (wo)|cH ™ (wo) + C3h*H ™ (wo) < (c+4C5¢%)| f'(wo)]
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which gives 1/C < |f'(w)|/|f (wo| < C for small enough ¢ > 0. Now ({I3) follows
from (@.I6]) for £ = 2. When k£ > 3 we have

£ wo)| < Cub'T* < 4C,3 )/ (wo)| BT

since h'/2 < 4H|f'(wo)| by (EI06) and h*=3)/2 < 3k=3 [ *=3)/2 1y ([@F).
Finally, we shall prove that M is a weight for G. By Taylor’s formula we have

2—k
(417)  [fB )] < C D> 1 (wo)|w — wol + Cub P w —we|®F 0 <k <2,
j=0
thus we obtain that
) =G Z | (wo)l(Jw — wol + H2(w))* + C5h'2(Jw — wo| + H™'/2(w))?.

By switching w and wg in (EI4) we find H =2 (w) + |w —wo| < Co(H™Y2(wp) + |w —wpl).
Thus we obtain that

<062|f (wo) | H /2 (wo) (1 + H?(w) [w — wo])"

+ 06h1/2H 372 (wo) (1 4+ HY?(wo)|w — wo|)* < CoM (wo)(1 + Gy (w — wp))*?
which gives (@I2)). It is clear from the definition of M that |f®)| < M H*/? when k < 2,
and when k > 3 we have |f®)| < Cuh'T < Cp3F3MH?% since h'/2 < MH?? and
hk=3)/2 < 3k=3 H(k=3)/2 when k > 3. O
Proposition 4.9. We have that
(4.18) 1/C < M/(|f"\[H ' +h2H?) < C
When |§| < koH Y2 and HY? < Ky for 0 < kg < 1/4 we find that
(4.19) 1/Cy < M/|f|HY? < ¢
which implies that f € S(H™',G) by (&9).
Proof. First note that when |6| = h~/2? we have H~Y/2? = h=Y/2 which gives M = h~!

and proves (I8) in this case. If [§(wo)| < h~/2, then as before there exists w € f~1(0)
such that |w — wo| = |§(wo)| < H™Y?(wy). Since f(w) = 0, Taylor’s formula gives that

(4.20) [f (wo)| < [ f (ol [6(wo)| + [ " (wo)l|6(wo)[*/2 + ChM2|8 (wo) .
We obtain from (£20) and (£3) that
M < C(|f/|H—l/2 + |f//|H—l + h1/2H_3/2) < C' (|f//|H—1 + h1/2H_3/2) at wy,

which gives (A.I8) since the opposite estimate is trivial.
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If |§] < koH Y% < hY2 and HY? < ko with kg < 1/4 then (§) < H™Y2/2 so we we
obtain by (AI13), (£I6) and (£20) that
M <C(|f|H P+ |f"H "+ PHR) <C|f1HT? at w.

since h'/2 < 4H|f'| by (&I6). This gives (£I9) since the opposite estimate is trivial,
which completes the proof of the proposition. O

Proposition 4.10. Let H/? be given by Definition[{4 for f € S(h™',g). There exists
positive k1 and c so that if (§) =1+ |§| < ki H~'? at wy then

(4.21) f=ad when |w — wo| < cH™Y?(wy)

where 0 < a € S(MHY?,G), such that o > ki MH?, which implies that § = f/a €
S(H-2,Q).

Proof. Let kg > 0 be given by Proposition If k1 < ko and (§) < ki H~Y/? at wy then
we find that |f'(wp)| & M (wo)HY*(we) by [EIY). We may change coordinates so that
wy = 0. Let HY/? = HY/2(0) and M = M(0), w = H~'/2z and

F(z) = H'?f(H22) /| f'(0)] = f(H?2)/M € C

Now 61(2) = HY25(H~/22) is the signed distance to F~1(0) in the z coordinates which
is constant in z.

We have |F(0)| < Cy, |[F'(0)| = 1, |[F"(0)| < Cy and |F®(2)] < Cs, V2, by [@I3) in
Proposition A7l It is no restriction to assume that the coordinates z = (21, 2’) are chosen
so that 0,,F(0) = 0, and then |0,, F'(2)| > ¢ > 0 in a fixed neighborhood of the origin. If
161(0)| = |6(0)H?| < k1 < 1 then F~1(0) is a O manifold in this neighborhood, §;(z)
is uniformly C'* and 0.,6:(2) > ¢o > 0 in a fixed neighborhood of the origin.

By choosing (6;(2), 2') as local coordinates and using Taylor’s formula we find that
F(z) = ai(2)01(2) for any x since F' = 0 when 6; = 0. Here 0 < «a; € C* and
a1 > C' > 0 in a fixed neighborhood of the origin. Thus

flw) = [F(O)H 2y (H*w)o (H*w) = |f'(0)]ar (H*w)d(w)
when |w| < cH Y2, Now a(w) = |f(0)|ay(H?w) € S(MH'Y? G) with a = MH'/?
which gives the proposition. O
5. PROPERTIES OF THE SYMBOL

In this section we shall study the properties of the symbol near the sign changes.
We shall follow Section in [4] with some minor changes, and we shall start with a one-

dimensional result.
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Lemma 5.1. Assume that f(t) € C3(R) such that || f®| s = sup, |f®)(t)| is bounded. If

(1) En()f(H) >0 when o< 1] < o
for 01 > 300 > 0, then we find

(52) FO)] <3 (00f'0) + g}V /2)
(5.3) £ (O] < £(0)/ 0+ Teoll Pl /6.

Proof. By Taylor’s formula we have
0 < sgn(t)f(t) = [t|f'(0) +sgn(t)(f(0) + f"(0)*/2) + R(t) 00 < [t < 01
where |R(t)| < || f®]|«|t|>/6. We obtain that
(5.4) [£(0) +2£"(0)/2] < FO)[t] + | f P loct] /6
for any |t| € |00, 01]. By choosing |t| = go and [t| = 30, we obtain that
4051/ (0)] < 4£'(0)00 + 281 /P [l 05 /6
which gives (53). By letting |t| = 0o in (5:4) and substituting (5.3]), we obtain (52)). O

Proposition 5.2. Let f(w) € C°(R") such that || f®|| < 0o. Assume that there exists
0 < e <r/5 such that

(5.5) sgn(wy) f(w) >0 when |wy| > e+ [w'*/r and |w| < r

where w = (wy,w’). Then we obtain

(56) [£"(0)] < 33(10u, fO)I/ 0+ ell )

for any e < o <r/V/10.

Proof. We shall consider the function t — f(¢,w’) which satisfies (5.1]) for fixed w’ with
e+ [w')r = oo(w') < |t| < 01 = 3r/V/10

and |w'| < r/v/10 which we assume in what follows. In fact, then #> + |w'|> < 72 and
300(w') < 9r/10 < 3r/y/10 = p;. We obtain from (52) and (5.3)) that

(57) F0.0)] < 300, £(0, 00+ 30" 7 /4

(5.8) 105, £(0,w)] < B, F0,0)/ 0+ Toll fP]|/6

for £ + [w/|2/r < 0 < /10 and |w/| < r/v/10. By letting w’ = 0 in (5.8) we find that
(5.9 108, £(O) < D F(0)/ -+ Toll /P /6

for e < o < r/+/10. By letting o = go(w’) in (B.7) and dividing with 3go(w’)/2, we obtain
that

(5.10) 0 < Dy (0, ") + 2] f | oo "
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when ¢ < |w'| < r//10 since then go(w’) < e+ |w'| < 2|w’|. By using Taylor’s formula
for w' — Oy, f(0,w’) in (BI0), we find that

3
0 < 0, f(0) + {w', Bur (s ) (0)) + S 1P oo '
when ¢ < |w'| < r/4/10. Thus, by optimizing over fixed |w’|, we obtain that
(5.11)  [w']|0ur (0w, [)(0)] < 0w, (0) + g||f(3)||oo|7~l/|2 when ¢ < |u'| < 7/V10.

By again putting ¢ = go(w’) in (5.7), using Taylor’s formula for w’ — 0y, f(0,w’) but
this time substituting (5.11]), we obtain

(5.12) (0, w)] < 68, f(0)[w'] + 15| f D' when e < u'| < r/V10.
We may also estimate the even terms in Taylor’s formula by (5.12):
[£(0) + (05 f(0)w',w') /2| < %|f(0,w') + £(0, =) + [ fPloclw'[*/6
< 600, fO)/| + 17O el

when ¢ < |w'| < r/+/10. Thus, by using (5.7) with ¢ = ¢ and w’ = 0 to estimate |f(0)]

and optimizing over fixed |w’|, we obtain that

(5.13) |05, FO)]Jw'[?/2 < §|8w1f(0)||w'| + 16/ fP oo’

when ¢ < |w'| < r/+/10. Thus we obtain (5.6) by taking ¢ < |w'| = 0 < r/v/10 in (5.9)-

EI13). O
As before, if f € C*°(R") then we define the signed distance function of f as 6 =

sen(f)d where d is the Euclidean distance to f~1(0).

Proposition 5.3. Let f;(w) € C*(R") and 0;(w) be the signed distance functions of
fi(w), for j =1, 2. Assume that fi(w) >0 = fo(w) > 0. There exists positive cy and
c1, such that if [0;(wo)| < co, |fj(wo)| > c1, for j =1, 2, and

(514) |51(w0) — 62(w0)| =&

then there exist g* orthonormal coordinates w = (wy,w') so that wy = (1,0) with ¥, =
(51(’(1]0) and

(5.15) sgn(wy) fi(w) >0 when |wi| > (¢ + [w'|?)/co and |w| < ¢ j=1,2
(5.16) |62 (w) — 01 (w)| < (e 4 |w — wol?) /co when |w| < ¢q.
The constant ¢y only depends on the seminorms of fi and fs in a fized neighborhood of wy.

Proof. Observe that the conditions get stronger and the conclusions weaker when ¢

decreases. Assume that f; and f, are uniformly bounded in C'°° near wy. For any
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positive ¢y and ¢, there exists ¢ > 0 so that if |f}(wo)| > ¢1 and [0;(wo)| < ¢, j =1, 2
then |fi(w)[ > 0 for [w — wy| < ¢y, thus fj_l(O) is a C'™ hypersurface in |w — wy| < co.
By decreasing ¢y we obtain as in the proof of Proposition A.10] that there exists ¢3 > 0
so that w — d,;(w) € C°(R™) uniformly in |w — wy| < ¢3, 7 = 1, 2. We may also choose
2 € f;1(0) so that |6;(wg)| = |wo — 20|, and then choose g* orthonormal coordinates so
that zg = 0, wy = (01(wp),0) and 0y d1(0) = D1 (wo) = 0, w = (wy,w’). If ¢g < ¢3/3
we find that 6; € C* in |w| < ¢4 = 2¢3/3. Since sgn(fi(wg)) = sgn(d1(wp)) we find that
Ouy f1(0) > 0.

when w = wy by (5.14). This gives

(5.17) JAw)] < |A(wo)| + 10w A(wo)||w — wo| + Calw — wo*

< Cse + |w —wol?)  for |w| < ¢4

which proves (B.16]). Since |0,,01(wp)| = 0 we find that |0, da(w)]| < Cy(Ve+|w—wy|) < 1
when |w — wp| € 1 and & < 2¢g < 1. Now fo(w) = 0 for some [w] < . Thus for ¢y < 1
we obtain |0,/d2(W)| < 1, which gives that |9y, fo(W)| > ¢5|0w f2(W)| > ¢ > 0 for some
¢s > 0. Since sgn(fo(wy,0)) = 1 when wy > 0, we obtain that 0, fo(w) > 6|0y fo(w)| >
c2 when |w| < ¢g for some cg > 0.

By using the implicit function theorem, we obtain b;(w’) € C*, so that that £ f;(w) > 0
if and only if +(w; —b;(w’)) > 0 when |w| < ¢; > 0, j =1, 2. Since f1(0) = [0y f1(0)| =0
we obtain that b;(0) = [b}(0)| = 0. This gives that |b;(w’)| < Cs|w’|* and proves the
positive part of (5.15) by the sign condition. Observe that the sign condition gives that
bi(w') > bo(w'). Now [da(wp)| < [d1(wp)| + €, thus we find —e < by(W') < by (w’) for some
[w'| < Cy/e < Cv2c < ¢ for ¢y < 1. This gives by(w') < C5C?%e and |V} (w')] < Cg/e,
and we obtain as before that |b] (@) — by(W')| < C7+/e. As in (5I7), we find

lbo(w')| < Cs(e + |w' — @) < Cyle + |w'?) for |w| < ¢7

which proves the negative part of (5.I5]) and the proposition. O

6. THE WEIGHT FUNCTION

In this section, we shall define the weight m we shall use. We shall follow Section
5 in [4] with some necessary changes because of the different conditions and normal
forms. We shall use the same notation as in Section @, and let &(¢, 7, w), H=Y2(t,x, 7, w)

and M (t,z,7,w) be given by Definitions E2], £4] and &6 for f(t,z,7,w) € S(h™t, hg)
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satisfying condition Sub,(¥) given by (B.3) such that |f’| < h~/2. As before, we shall
include 7 in w but ¢ will be a parameter.

The weight m will essentially measure how much ¢ — (¢, w) changes between the
minima of ¢ + HY2(t,z,w)(5(t,w))?, which will give restrictions on the sign changes of
the symbol. As before, we assume that we have choosen g* orthonormal coordinates so
that ¢*(w) is the euclidean metric, and the results will only depend on the seminorms
of f. The following definition uses that ¢t — (¢, w) is nondecreasing and 0 is constant

in z, and assumes that H is only defined in |z| < C.
Definition 6.1. Let H(t,w) = min, H(t,z,w) and

(6.1) m(t,w) = inf {&(t2,w)— (t1,w)

11 <t<t2

+ max (Hll/z(tl, w) {8 (t, w))?, H11/2(t2> w){4(t2, w)>2)/2 }

where (8) =1+ || < H;"* = max, H™Y2. Thus m is constant on the leaves of .

This is actually Definition 5.1 in [4] with H replaced by H;. It will be important in

the proof that this weight is constant on the leaves of Y.

Remark 6.2. Whent — §(t,w) is constant for fired w, we find that t — m(t, w) is equal
to the largest quasi-conver minorant of t —» H11/2(t, w){(t,w))?/2, i.e., sup; m = supy; m

for compact intervals I C R, see [11], Definition 1.6.3].

Remark 6.3. One can also make a local definition of m by taking the infimum over
—T <t <t <ty <Tin [©I) for some 0 < T < 1. Then the results of this section
will hold when |t| < T. By making a translation in t we can of course define m in a

netghborhood of any point.

Proposition 6.4. We have that m € L, such that w — m(t,w) is uniformly Lipschitz

continous, V't, and
(6.2) hM2(8)2 /6 < m < H*(5)2)2 < HY?(8)2/2 < (5)/2.

We may choose t; < ty <ty so that

(6.3) max (5(t;,wo)) < 2 min (5(t;, wo)).
and

(6.4) H)? = max(H,{?(t1, wo), H{"(ty, wp))
satisfies

(6.5) HY? < 16mfto,wo)/(6(t;, we))>  forj=0, 1, 2.
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If m(to, wo) < 0(6(to, wo)) for 0 < 1, then we may choose g* orthonormal coordinates so
1/2

that wo = (21,0), |z1] < 2(0(to, wo)) < 320H, '°, and
(6.6) sgn(wr) f(to,w) >0 when |wi| > (m(ty, wo) + He'*|w'|?) /e
(6.7) 16(t1,w) — 8(ta, w)| < (m(to, wo) + Hy*lw — wo|?) /o

when |w| < coHo_l/z. The constant ¢y only depends on the seminorms of f.

Observe that condition (6.6) is not empty when m(to, wo) < 0(d(to, wp)) for o suffi-
ciently small since then Ho_l/2 2 (6)?/m > m by (6.0 .

Proof. If we let
F(s,t,w) = |8(s, w) — 6(t,w)| + max(H,?(s,w){(5(s, w))2, Hi*(t, w)(5(t, w))?) /2

then we find that w — F(s,t,w) is uniformly Lipschitz continuous. Now, it suffices to
show this when |Aw| = |w—wy| < 1, and we know that () and H~'/2 are uniformly Lip-
schitz continuous by Proposition F7] which gives that H; “/* = max, H~'/? is uniformly
Lipschitz continuous. The first term |d(s,w) — d(¢,w)| is obviously uniformly Lipschitz

continuous. We have for fixed ¢ that

A @] < c@am| + 1 3)]A0)

where H11/2(5> <1, |Ad| < |Aw| and |AH11/2| < C’H1|AH1_1/2| < C'H;|Aw|, which gives
the uniform Lipschitz continuity of F(s,t,w). By taking the infimum, we obtain (6.2))
and the uniform Lipschitz continuity of m. In fact, h'/2/3 < H 11 /2 by (4.8)) and since t
§(t,w) is monotone, we find that ¢ — (5(¢,w)) is quasi-convex. Thus h'/2(§(ty, we))/6 <
F(s,t,wp) when s <ty <t.

By approximating the infimum, we may choose t; < tg < ty so that F(t1,ts,wp) <
m(to, wo) + hY/2/6. Since h1/2/6 < m < H,'*(8)2/2 by ([62), we find that

(68) ‘(5@1, ’UJ(]) — 5(t2, ’UJ(])‘ < m(to, ’UJ(]) < <5(t0, U)O>>/2 and

(6.9) H{ (85, w0) (8(t;, wo))2/2 < 2m(to, we) ~ for j =1 and 2.

Since t — 0(t, wp) is monotone, we obtain ([6.3)) from (6.8)), and (6.35]) from (6.9) and (6.3)).
Next assume that m(tg, wo) < 0(d(to, wo)) for some 0 < p < 1. Then we find from (6.5])

that
(6.10) 1+ |0(t;,wo)| < 160H, "*  for j =0, 1, 2.

We may choose g* orthonormal coordinates so that w, = 0. Since §, H,, Hy and m

are constant in x, the results will hold for any x. I If we choose z; so that Hy(t;,0) =
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H(t;,z;,0) then (5(¢;,0)) < 160H Y2(t;,z;,0) for j = 1,2 by (6.I0) so we find from
Proposition [£7] that

(6.11) B <[ty 5,0)] = | [ty 5, w)| for |w| < eHy ' < cH2(t5,2;,0)
when p < 1 and j =1, 2. Since Ho_l/2 < 3h71/2 we find from (6.10) that f(t;, z;, w;) =0

for some |w;| < 16@1‘[0_1/2 by (6.10) when p < 1/48 and j = 1, 2. Thus, when 16p < ¢ we
obtain from (6.I1) for j = 1, 2 that
|£(t5, 25 w)| < C|f(t,25,0)[Hy ' when w| < cHy /2

and then (LI3) gives f(t;,z;,w) € S(|f/(tj,$j,0)|H(;l/2,Hogﬁ) since HY2(t;,2;,0) <
H&ﬂ, j =1, 2. By Proposition .10l we have that f; = ad where § € S(Ho_l/2, Hyg*) and
a € S(|f'(t;,7;,0)|, Hyg*) in a Hyg* neighborhood of (¢;,0) such that |a| = |f(t;, z;,0)]
and |§'| = 1 at (¢;,0). Now 0,0 > 0 so if 10,619 > & > 0 at (t4,0) for j = 1 or 2 then
0;0 > ceh™/? in a small H,g¢* neighborhood. The interval {(¢,0) : [t—t;| < cohl/zHl_l/2}

is contained in this neighborhood for small enough ¢y > 0. Then we find
16(to, 0) — 6(t;,0)| > ccoeHy ' (t;,0) > ccoeHy ? > ccoe(8(t;,0)) /160
by (6.10), which by (6.3]) contradicts (6.8]) for small enough p. Thus, we may assume that

|0wo| > 1/2 at (¢;,0) for j =1, 2.
Choose coordinates z = Hol/ 2w, we shall use Proposition (£.3] with
fi(2) = Hy? f(t), 25, Hy Y?2) )| £(2;,0)] € C° for j=1,2.

Let d;(2) = Hé/25(tj,H0_1/2z) € C* be the signed distance function to fj_l(O) in z
coordinates, then (6.I0) gives that [6;(0)] < 16p for = 0, 1, 2. Now |0,d;(¢;,0)| > 1/2,
which for small enough ¢ gives |0, f;(0)] > ¢o for some ¢y > 0. In fact, we have that
f; = a;0; where a; € C* is uniformly bounded and a;(0) = 1. Then we obtain that
0. f(0) = a;(0)9.6;(0) + 6,;(0)9.a;(0) > 1/2 — co. Because of condition Sub,(¥) given
by (3) we find that fi(z) >0 = f2(2) > 0. Since |9;(0)| < 160 we find that

(6.12) 161(0) — 62(0)] = £ < Hy*ml(to,0) < Hy*(8(to,0))/2 < 8p

by (€8). Thus, for sufficiently small ¢ we may use Proposition with this choice of f;
to obtain g* orthogonal coordinates (21, 2') so that wy = 2y = (y1,0), |y1| = [01(0)| and
sgn(z1)fj(z) >0 when |z;] > (e + |2']*)/co
{|51(Z) = 02(2)] < (e + ]2 = 20f*) /o
when |z| < ¢g. Let zy = HO_I/2y1 then |z;| < 2(0(t0,0)) < 32@HO_1/2 by (6.3) and (E.10).
We obtain (6.6)—(6.7) by the condition Sub, (W), since HO_I/25 < m(ty,0) by (€12). O
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Proposition 6.5. There exists C' > 0 such that
(613) m(to, ’LU) S Cm(to, 'lUQ)(l + |’lU — w0|/(5(t0, ’LUQ)>)3

thus m is a weight for g*.

Proof. Since m < (6)/2 we only have to consider the case when
(6.14) m(to, wo) < 0(d(to, wo))
for some ¢ > 0. In fact, otherwise we have by (6.2) that
m(to, w) < (5(to, w))/2 < m(to, wo)(1 + |w — wol/(d(to, wo)))/2¢
since the Lipschitz continuity of w +— (o, w) gives
(6.15) (0t w)) < (8¢, wo))(1 + |w — wol/{0(t, wo))) V.

If (6.14) holds for ¢ < 1, then Proposition gives t; <ty <ty such that (63), (6.5
and (6.7) hold when |w| < CQHO_1/2 with Hol/2 = maX(Hll/2(t1,w0), H::ll/2(t2,w0)).
Now, for fixed wy it suffices to prove (6.13]) when

(6.16) lw — wo| < oHy
for some o > 0. In fact, when |w — wy| > QHO_1/2 we obtain from (6.5]) that
[w — wol*/(d(to, wo))* > o*Hy ' /{3(to, wo))* > 0°(8(to, wo))?/256m? (to, wo)
> Q2 <5(t0, w0)>m(t0, w)/64<5(t0, w)>m(t0, ’UJ(])

since (§) > 2m. By (6.I5) we obtain that (G.I3)) is satisfied with C' = 64/0?. Thus in
the following we shall only consider w such that (6.10) is satisfied for o < 1. We find

by (6.3]) and (6.7)) that
(6.17) [6(tr, w) — 8ta, w)| < (mto, wo) + Hy'*|w — wo[*) /o
< 16m(t0, wo)(l + |’LU — 'LU0|2/<5(t0,’LUQ)>2)/CQ

when |w — wg| < ¢oH,, Y2 Now G is slowly varying, thus we find for small enough ¢ > 0

that

H?(t;,w) < CH(t;,wo)  when |w — wo| < oHy "/* < oHy " (t;,w0)
for j =1, 2. By (6.15) and (6.3) we obtain that
(6.18)  H{"(t;,w)(8(t;,w))? < ACH,?(t;,w)(d(t;, w0))*(1 + |w — wo| /(8 (to, wp)))?

when j = 1, 2, and |w — wy| < coHo_l/2. Now Hll/z(tj,wo)<(5(tj,w0))2 < 16m(to, wp)
by (6.35) for j =1, 2. Thus, by using (6.17)), (6.I8) and taking the infimum we obtain

m(to,w) S Com(t(],w(])(l + |’UJ - wo‘/<(5(t0,w0)>>2
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1/2

when |w — wy| < oH, '* for p < 1. O

The following result will be important for the proof of Proposition in Section [8
Proposition 6.6. Let M be given by Definition[].6 and m by Definition[6.1. Then there
exists Co > 0 such that
(6.19) MH?3? < Cym/(5)>.

Proof. In the proof, we shall include the t variable in the w variables. Observe that since
h/2(5)2 /6 < m we find that (6.19) is equivalent to
(6.20) [f"HY? < Cm/(6)?

by Proposition 9. First we note that if m > ¢(6) > 0, then M H3/2(5)2 < C{§) < Cm/c
since (§) < H~Y2 and M < CH~' by Proposition
Thus, we only have to consider the case m < ¢(d) at wy for some ¢ > 0 to be chosen

later. Then we may use Proposition for 0 < 1 to choose ¢g* orthonormal coordinates

so that |wg| < 2(0(wp)) < 32QH0_1/2 and f satisfies (6.6]) with

(6.21) h?/3 < HY? < 16m(wo)/(0(wo))? < 8HY?(wy)

by ([48), (€2) and (G.5). Thus it suffices to prove the estimate

(6.22) || HY? < CHy”

at wy. Now it actually suffices to prove ([6.22)) at w = 0. In fact, (LI1]) gives
(6.23) H(wg) < CoH(0)(1 4 H(wo)|wo|?) < 5CH(0)

since |wo| < 2(0(wp)) < 2H~Y2(wy). Thus Taylor’s formula gives
(6.24)
o) ) < (1F70) + Cab 2l HY2() < L/ (O1 o) + 117)

since |f®)| < C3h'/2, which gives (6.22) at w = 0 by (6.21) and (6.23).
By Definition [4.4] we find that

H2 214+ [F1/ (" + B2 4 02
> (I + 1£1+ B2 /(F7 |+ R 4 122,
thus (6.22) follows if we prove
(6.25) IS+ B B2y < C(F 17+ B2 By ado.
Since h'/2/3 < HS/ ? we obtain (6.25)) by the Cauchy-Schwarz inequality if we prove that

(6.26) F7(0)] < C(Hy " £/(0)]'/2 + h'/2).



36 NILS DENCKER
Let F(2) = Hof(Ho_l/zz), then (6.6) gives
sgn(z)F(z) >0 when |z| > e+ |[|?/r and |z| <7

where r = ¢y and

e = Hy*m(wo)/co < 16m>(wo)/co(8(wo))? < 160%/cy < co/5
by (621]) when o < ¢/ 4+/5 which we shall assume. Proposition then gives that

F'(0)] < Cy (IF/(0)] /o0 + Hy *h"20) = < 00 < co/ VIO
since [|[F®)] < 03H0_1/2h1/2. Observe that |F'(0)| < Cy since Hol/2 < 8HY?(wy) <
CHY2(0) by (621) and ([6.23), and |f'(0)| < CH~Y/2(0) by ([@&9). Choose

00 =&+ A[F'(0)]'? < ¢0/V10
with A = ¢o(v/10 — 2)/10y/C3, then we obtain that
[F"(0)] < Ca(|F"(0)"2 + h*/*m(wy))
since Hy"/? < 3072 and & = Hy*m(wp)/co.
If h'/2m(wy) < |F'(0)]*/? then we obtain ([620) since F' = Hy/>f' and F”" = f". If
|F'(0)|/2 < h'2m(wy), then we find
[F"(0)] < 2C4h**m(wo) < 4Cam (wo) /{5 (wo)).

Then ([6.20) follows from (GI3), (GI5) and (6.23) since HY2(wgy) < (§(wp))~!, which

completes the proof of the proposition. O

Next, we shall prove a convexity property of ¢ — m(t,w), which will be essential for

the proof.

Proposition 6.7. Let m be given by Definition[6.1. Then

(6.27) sup m(t,w) < 0(ta, w) — 6(ty, w) +m(ty, w) + m(te, w) Vw.

t1<t<ts

Proof. By definition we find that

(6.28) inf (\5@, w) — 8(te, w)| + HY?(t,w)(8(t, w))? /2) < mito, w).

+(t—t0)>0
Let t € [t1,t2], then by taking the independent infima, we obtain that

m(t,w) < inf  §(s,w) — 8(r,w) + Hy (s, w){(8(s,w))2/2 + H*(r,w){8(r, w))?/2

T or<t1<ta<s

< 3(tp, w) — O(tr, w) + inf <|5(t, w) — 8(ta, w)| + H (¢, w){(5(¢, w))2/2>

+ inf <|5(t,w) — St w)| + HY(t,w) (5(¢, w)>2/2) .

t<ty

By using (6.28) for ¢y = ¢y, t2, we obtain (6.27) after taking the supremum. O
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Next, we shall construct the pseudo-sign B = § + 09, which we shall use in Section [§]

to prove Proposition with the multiplier b* = BWick,

Proposition 6.8. Assume that § is given by Definition [[.2 and m is given by Defini-
tion [61l. Then for T > 0 there exists real valued or(t,w) € L™ with the property that

w — or(t,w) is uniformly Lipschitz continuous, and

(6.29) lor| < m
(6.30) TO,(5 + or) >m/2  in D'(R)
when |t| < T.

Proof. (We owe this argument to Lars Hormander [12].) Let

(6.31) or(t,w) = sup (5(s,w) / m(r,w) dr — m(s, w))

—T<s<t

for [t| < T, then
1 S
o(t,w) + or(t,w) = sup <5(8,w) — ﬁ/ m(r,w) dr — m(s,w))
0

—T<s<t
1 t
+ ﬁ/() m(r,w) dr

which immediately gives (6.30) since the supremum is nondecreasing. Since w — (¢, w)
and w — m(t,w) are uniformly Lipschitz continuous by Proposition [6.4, we find that
w — o7(t,w) is uniformly Lipschitz continuous by taking the supremum. Since (s, w) <

d(t,w) when s <t < T, we find from Proposition [6.7] that
1 t
d(s,w) —o(t,w) + ﬁ/ m(r,w)dr —m(s,w) < m(t,w) —T<s<t<T.

By taking the supremum, we obtain that —m(t,w) < or(t,w) < m(t,w) when [t| < T,
which proves the result. U

We shall also include a term in the multiplier to control the error terms involving D, u.

Lemma 6.9. Assume that A satisfies the conditions in Proposition 2.2 near wqo € .
Then there exists a matriz L and constant ¢; > 0 such that {A, (L(x —x¢),£)} > |£* — a1
macrolocally near wy € Yo, where xq is the value of x at wy. The constants only depend

on the seminorms of A.

Proof. Let w = (z,§, z), then we find from the conditions that

A(SL’,&,Z) = <02(SL’,£,Z)£,£> + <Cl(x7 Z>7£> + Co(l’, Z)
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where C; € SY is real valued, Vj, and Cy is a symmetric and nondegenerate matrix
microlocally near wy. By a translation we may assume that x = 0 at wy. If we take
L = C5(0,0,wp) then we find that

(6.32) {A (L2,€)} = (L§, 0cA) — (Lw, 0, 4) = cal¢[* — co

where ¢; = 2 at wy, since OcA = 2C2¢ + (0:C2¢,€) + C1. By continuity, we get the
estimate in a neighborhood of wy where |9:Cs¢| < 1. O

Because of the cut-off in the estimate (BI7) we will only need the lower bound in a

neighborhood of wy.

Definition 6.10. Let the multiplier symbol By = 0y + or + A1, where g = 6 is given by
Definition [{.3, or is given by Definition[6.8 for T > 0 so it is real valued and Lipschitz
continuous, satisfying |or| < m when |t| < T, with m < (by)/2 given by Definition [6],
and Ay = ehY*(L(x —0),&)/T € S(h=Y2, g) uniformly when |v — 0| < T and |¢] < h7T,
where 0 < € < 1 and L is given by Lemmal6.9, so Ar is Lipschitz continuous.

7. THE WICK QUANTIZATION

In order to define the multiplier we shall use the Wick quantization. We shall start by
recapitulating some results from Section 6 in [4] about the Wick operators. As before,
we shall assume that ¢* = (¢#)° and the coordinates chosen so that g*(w) = |w|?. For

a € L>*(T*R"™) we define the Wick quantization:
Mo Doule) = [ alyn)Sg (o DoJula) dydn we G
using the orthonormal projections ¥, (z, D) with Weyl symbol
Sya(w,€) = 7" exp(—g*(z —y, £ —n))
(see |2 Appendix B| or [13 Section 4]). We find that a'Vi*: S+ &’ so that
(7.1) a>0 = (a""*(z,D,)u,u) >0 weCy

(aVik) = (@)Wi* and ||aV* (z, D) || r2@ny) < |lall o (r+rn), which is the main advan-
tage with the Wick quantization (see [13, Proposition 4.2|).

We obtain from the definition that a"Vi* = ag where

(7.2) ag(w) = ﬂ_”/ a(z) exp(—|w — z|*) dz
T*R»
is the Gaussian regularization, thus Wick operators with real symbols have real Weyl

symbols. This convolution also maps polynomials to polynomials.

Remark 7.1. Observe that aVit = a¥ if a(x,€) is affine in x for fived & and affine in &
for fized x, for example if a(x,&) = (Lx,&) with a constant matriz L .
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Wick — qv if and only if
w—"/ (a(2) — a(w)) exp(—|w — 2[2) dz = 0
T*R»
This vanishes if a is affine in x for fixed £ and affine in & for fixed = since

CL(I, g) - a(y7 77) = CL(I, 5) - a(y7 5) + a(y7 5) - CL(y’ 7])

which are two odd integrands giving vanishing integrals.

In fact, a

In the following, we shall assume that G = Hg* < ¢* is a slowly varying metric

satisfying
(7.3) H(w) < CoH (wo)(1 + |w — wo|)™

and m is a weight for G satisfying ((T.3]) with H replaced by m, by Propositions 4.7 and [6.5
This means that G and m are strongly o temperate in the sense of [I, Definition 7.1].

Recall the symbol class ST(1, g*) given by Definition B.1l

Proposition 7.2. Assume that a € L™ such that |a| < C'm, where m is a weight for
g, then aViek = a¥ where ag € S(m,g*) is given by (T2). If a > m we obtain that
ag > com for a fized constant ¢ > 0. If a € S(M,G), where M is a weight for G,
then ay = a modulo S(mH,G). If |a| < Cm and a =0 in a fivzed G ball with center w,
then a € S(mHY ,G) at w for any N. If a is polynomial in the variable & then aqg is
polynomial in & with the same degree as a, and if a is Lipschitz continuous then we have
ap € ST(1, ¢%).

By localization we find, for example, that if |a| < Cm and a € S(m, G) in a G neighbor-
hood of wy, then ay = a modulo S(mH, G) in a smaller G neighborhood of wy. Observe
that the results are uniform in the metrics and weights. The results are well known, but

for completeness we give a proof.

Proof. Since a is measurable satisfying |a| < Cm, where m(z) < Com(w)(1 + |z — w|)N

by (Z3)), we find that aVi* = a¥ where ag = O(m) is given by (TZ). By differentiating
on the exponential factor, we find ag € S(m, ¢g*), and similarly we find that ag > m/C if
a > m since m(z) 2 m(w)/(1+ |z — w|)™.

If a =0 in a G ball of radius € > 0 and center at w, then we can write
m"ag(w) = / a(z) exp(—|w — z|?) dz = O(m(w)HN (w))
|z—w|>eH=1/2(w)

for any N even after repeated differentiation.

If @ € S(m,G) then Taylor’s formula gives

ap(w) = a(w) + W_"/O /*Rn(l — 0)(a" (w + 02)z, 2)e ¥ dzdh /2
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where a” € S(mH,G) since G = Hg*. Since m(w + 0z) < Com(w)(1 + |z|)M and
H(w + 02) < CoH(w)(1 + |2])M when || < 1, we find that ag(w) = a(w) modulo
S(mH, Q).

If a is polynomial in the variable { of degree k then Jfa = 0,V|a| > k, which gives
O¢ag = 0. Thus ag is of degree < k. The Lipschitz continuity of a means that da €
L>(T*R™). Since we have dag(w) = 77" [.n. da(z) exp(—|w — z|*) dz, we obtain the

proposition. 0]

We shall need the following result about the composition of Wick operators.

Proposition 7.3. Assume that a and b € L>. If |a] < m; and |0b] < my, where m; are
weights for g* satisfying (T3), then
(7.4) QWickpWick _ (qp\Wick 4w

with r € S(myma, ¢*). If a and b are real such that |a| < my and |0%b] < my, then
. ' 1 Wick
(7.5) Re gVickpWick — (ab — 58@ : 81)) + R"
with R € S(myma, g*). By taking the adjoints, we get these results with a and b switched.

Observe that since a € L™ and 9db is Lipschitz continuous in (ZH), we find that da - 0b
is a well-defined distribution. In fact, we can define it as da - 9b(p) = — [[ ad(pdb)dw.
Proposition [7.3] essentially follows from Proposition 3.4 in [14] and Lemma A.1.5 in [15]

but we shall for completeness give a proof.

Proof. By Proposition [[.2] we have a"VikpWick = q@pv in (T4)) where ag € S(m1,¢*) and
bo € S*(my,¢*). By Lemma B.2 we find a"ViFpWick = (q4by)® modulo Op S(myms, g*),

where

(7.6) ao(w)by(w) = 72" / / a(w + 20)b(w + z)e P12 gz dzy.

By using the Taylor formula we find that b(w + z2) = b(w + z1) + r1(w, 21, 29) where
Ir1(w, 21, 22)| < Cmg(w)(1+ |21] + |22|)Y by (Z3). Integration in 2z, then gives (7T.4).

For the proof of (ZH) we use that Rea¥b? = (agby)® modulo Op S(myms,g*) by
Lemma B.2] since ag and by are real and 9?by € S(ms, g*). We use the Taylor formula
again:

b(w+ 2z2) = b(w + 21) + Ob(w + 21) - (22 — 21) + r2(w, 21, 22)

where |ro(w, 21, 29)] < Cma(w)(1 + |21] + |22])Y. The term with 2, is odd and gives a
vanishing contribution in (Z.6). Since 8, e 11*~1=2I" = —22e711 we obtain (73) after

an integration by parts, since |ad?b| < myms. O
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Example 7.4. If a € S(H™Y2, ¢*)(S*(1,¢%) and b € S(M,G), then Rea"VickpWick =~
(ab)Vick modulo Op S(MHY?, g*).

We shall compute the Weyl symbol for the Wick operator BY* = (55 + or + Ap)Vick
given by Definition In the following, we shall suppress the T parameter.

Proposition 7.5. Let B = &y + 0o + A be given by Definition [6.10, then we have
BWick = pv where b = 6, + 01 + A is real, 01 € S(H™Y2,¢5)ST(1,¢%), and 0, €
S(m, g*) (N S*T(1,¢*) uniformly when |t| < T. Also, there exists ky > 0 so that §; = &
modulo S(HY?, G) when (&) < ko H™Y2. For any ¢ > 0 we find that |6| > eH~Y/? and
H'Y? < ¢/3 imply that |6y + 00| > cH~Y/?/3.

Proof. Let 6Viek = 6% and oVick = g Since |0o| < H; ?, |oo] < m and the symbols
are real valued, we obtain from Proposition that 8, € S(H~2,¢%) and o, € S(m, ¢*)
are real valued. Since 0y and g are uniformly Lipschitz continuous, we find that ¢; and
01 € ST(1,¢%) by Proposition 7.2, By Remark [7.1] we have \"iF = \v.

If (6p) < kH™Y/? at wy for sufficiently small x > 0, then we find by the Lipschitz conti-
nuity of § and the slow variation of G that (5) < CosH~'/? in a fixed G neighborhood
w, of wy (depending on ). For k < 1 we find that 6y € S(H~"? G) in w, by Proposi-
tion @9, which implies that d; = § modulo S(H'/?, G) near w, by Proposition after
localization.

When || > eH™Y? > ¢ > 0 at wy, then we find that
ool <m < (80)/2 < (L+ HY2/2)|80]/2.

We obtain that |go| < 2|d|/3 and |do + 00| > |60]/3 > eH~'/?/3 when H'/? < £/3, which
completes the proof. O

Let m be given by Definition 6.1], then m is a weight for ¢* according to Proposition 6.5
We are going to use the symbol classes S(mF¥, g*), k € R. The following proposition shows

that the operator m"* dominates all operators in Op S(m, g*).

Proposition 7.6. If c € S(m, g*) then there exists a positive constant Cy such that
(7.7) [{c"u, u)| < Co (m" ", u) ue CfF.

Here Cy only depends on the seminorms of ¢ € S(m, g*).

Proof. We shall use an argument by Hérmander [12]. Let 0 < o <1

(7.8) M(wo) = sup m(w)/(1+ olw — wol)”
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then m < M, < Cm/¢* and
(7.9) M,(w) < CM,(wo)(1 + olw — wp|)? uniformly in 0 < p <1

by the triangle inequality. Thus, M, is a weight for g, = 0%*¢*, uniformly in o. Take
0 < x € Cg° such that [, X(w)dw >0 and let

my(w) = 0~ / y(o(w — 2))M,(2) d=.

Then by (Z9) we find 1/Cy < m,/M, < Cy, and |0%m,| < C,0l®m, thus m, € S(m,, g,)
uniformly in 0 < o < 1. Let mZViCk = py then Proposition and (7.9) give m,/c <
Lo € S(my, g,) uniformly in 0 < p < 1. Since m = m, (depending on p) we may replace
m"Wik with mgwc'“ = py in (1) for any fixed ¢ > 0.

Let a, = ugl/z € S(mglﬂ, gg) with 0 < o <1 to be chosen later. Since g, is uniformly

o temperate, gg/gg = o4, m, is uniformly o, g, temperate, and ,u;tlﬂ € S(mzfl/2

9 gQ)
uniformly, the calculus gives that a¥(a,*)" = 147 where r,/¢* € S(1, g*) uniformly for
0 < ¢ < 1. Similarly, we find that ajuyay = 1+ s; where s,/0* € S(1, g% uniformly.

We obtain that the L? operator norms
17 222y + 11581 22y < Co® < 1/2
for sufficiently small o. By fixing such a value of ¢ we find that 1/2 < ajuyay <2 and

1 w - w
(7.10) sllell < llag (ag ) ull < 2]

-1

o 1)¥u is an homeomorphism on L?. The estimate (Z.7) then follows from

thus u — ay'(a

\(cwag(a_

)00 )] < Clay)ul? < 20 (atad (0 u, ¥, ) )

e

which holds since a¥c”a¥ € Op S(1, g*) is bounded in L?. Observe that the bounds only

depend on the seminorms of ¢ in S(m, g*), since ¢ and a, are fixed. O

We shall also need a weight to handle the calculus errors in the £ variables. Let
p = hY2(¢)? which is a weight for go(dz,d€) = |dx|> + |d€|?/(£)? so that A € S(u, go)
uniformly in h. In order to handle the compositions with A and f; we shall need the

following metric:

(7.11) Go = H|dw|* + H(dt* + |dz|*)/h + Hhdr* + |d[?/(€)*
which is strongly o temperate in the sense that

(7.12) Goz S Goz(1 + Goz(2 — 20))

but since Go/Gg £ 1 it is not o temperate. But since A and f; are linear in £ we shall

only use the calculus on ¥y, i.e., in (¢, z,w), and Go = G on Ts.
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To handle the compositions with b, = d; + 01 € S(H /2, g*) we shall use the metric:
(7.13) gb = |dw|? + (dt* + |dz|?)/h + hd7? + |dE|?/(€)?

which is strongly o temperate on X9, since gg = gti on T3,. Then A\f € S(Mhl/2 (€), Go)
and blf(] c S(MHl/2hl/2 <50><£>7 gg)

Lemma 7.7. If |C| < p then we have

(7.14) (O ru, w)] S (", u) S B2 (Da)ul® = B2 (| Doul® + Jlul®)

~Y

where Dyu = (Dyyu, Dyyu, .. .).

Proof. By taking the real and imaginary part it suffices to prove the estimate for real

valued C. We have |C| < p so £(CViky u) < (uWiky, u). Now pick = v where

~J

v e S(u, gb) by Proposition [7.2, so v = (D,)"'w*(D,)~* € Op S(h'/2, g}) which gives
(", u) = (v (Da)u, (Dy)u) S 02Dyl

which proves the result. U

8. THE MULTIPLIER ESTIMATE

In this section we shall obtain a proof of Proposition which involves giving lower
bounds on Reb%f{¥, with the multipler 6% = BY* having symbol By = & + 0o + A
given by Proposition [Z.5l Also, fi = f + fo, where f € S(M,G) and fy = 0,f - r- &£ with
r € S(1,9) so that fi € S(MHY?h'/2(¢), Gy) by Remark &8 Here G = Hg/h = Hg,
with constant ¢ < h%¢g° and H given by Definition EE4. The weight M is given by
Definition [.6] the metric Gy by (ZII)) and the weight m by Definition [6.1l The results
will only depend on the seminorms of f in S(h™!, g), and we will assume the coordinates
chosen so that t = 0 and = = 0 at wy € Xo. We shall follow Section 7 in [4] with some

necessary changes because of the different conditions, metrics and normal forms.

Proposition 8.1. Let By = 0y + 09 + A given by Definition [6.10, so 6y = & is given by
Definition [{.3, 0o = o is real valued and Lipschitz continuous, satisfying |oo| < m when
[t| < T, withm < (8)/2 given by Definition[G.1 and X = eh'/?(Lx, £))T € S(hY/2(£), Gy)
uniformly when |z| < T, where 0 < € < 1 and L is given by Lemmal6.9. Then for small
enough T we can find C € S(m, g*) + S(u, gb) so that

(8.1) Re (B?fiCkflwu, u) > (C"u, u)

if uwe C§° has support where |t| < T and |x| < T.
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Proof. In the proof we shall treat ¢ as parameter and assume the coordinates w =
(t,z,y;7,m) chosen so that ¢g*(w) = |w|?, ie., g ON coordinates on ¥,. We shall lo-
calize in w with respect to the metric G > g on X, i.e., when £ = 0, and then estimate

the localized operators. We shall include ¢ and z in w and use the neighborhoods
(8.2) Wi (€) = {w: Jw —wo| < eH 12 (wy) }

which gives that max(|t], |z|) < eHY/?(wg)h*/? < 3. Now, if &y is small enough then
H(w) and M (w) will only vary with a fixed factor in wy,(2¢0). By the uniform Lipschitz
continuity of w +— do(w) we can find ko > 0 with the following property: for 0 < k < kg

there exist positive constants ¢, and ¢, < gy so that
(8.3) |60(w)| < KHY2(w) W E Wy (2e,) or
(8.4) |00(w)| > c,iH_l/2(w) W E Wy, (264).

In fact, we have by the Lipschitz continuity that |5o(w) — do(wo)| < eHV/%(wy) when
W € wy,(e). Thus, if ¢, < k we obtain that (83) holds when |§o(wo)| < wH2(wy)
and (84) holds when |dg(wo)| > ckH ™2 (wy).

By shrinking xo we may assume that M = |f/|H~Y2 when |§| < roH~Y/? and
H'? < kg according to Proposition 9. Let #; be given by Proposition EI0, xy by
Proposition [T.5, and let ¢, and ¢, be given by ([83)-(84) for k = min(ko, K1, K2)/2.
Using Proposition with € = ¢, we find that

(8.5) sgn(f) (8o + 00) > c. H1/?/3 in wy, (2¢,)

if H'/2 < ¢,/3 and (84) holds in wy,(c,).

Choose real symbols {¢;(w) }; and {¢;(w) }; € S(1,G) with values in ¢%, such that
0 <y <1, .97 =1, Y0 = ¢ with 0 < ¥ = ¢ < 1 which gives { ¥;(w) } €
S(1,G) with values in ¢? so that
(8.6) supp ¢; C wj = wa,(€x)

We shall suppress T, writing BYVi* = b where b = §; + 0, + \ is given by Proposition [T
In the following, we shall for j € N denote A, = V¥, f;b = f;xb for k = 0, 1, and
Ar = VU fb = fib where f; should not be confused with fy and f;.

Lemma 8.2. When [t| < T and |z| < T we have Ay; € S(MH™Y2, g*) N ST(M, ¢*) +
S(MR2(€), gb) uniformly in. j,

(8.7) Re b f" = Z vy ALY modulo Op S(m, g*) + Op S(u, g5) uniformly
J

and A%, = Reb® £ modulo Op S(m, g*) + S(, gb) uniformly in j.
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Proof. Since f; = f+ fo we have Ay, = Ay + Aor and we will start with fy. First we note
that fo = ro - € with ro € S(MHY2h'2 G)(NS(1,g), which gives A*f* € OpS(u, Go)
so we can skip this term. Let by = 8, + o1 € S(H Y2,¢")(ST(1,¢%). Since b, is
constant in x we obtain Reb? f¥ = (b fo)¥ + R, where R = r¢ with r € S(h, ¢*) giving
R € Op S(u, gg). In fact, r has an asymptotic expansion in S(h*/2, %) for k > 0.

We also find that ¢ AL ¢ = (Agp?)¥ +C% with C = cy+c,€ with ¢ € S(MH?/2, g)
and ¢; € S(MH?2h'/2_g*) which gives C* € Op S(m, ¢g*) + S(i, ¢). In fact, ¢y has an
asymptotic expansion in S(MH*/? g*) for k > —1 and ¢, € S(MH*/?h'/2, g¢*) for k > 0

and any z derivative of the symbols gives the factor H'/2h=1/2,

Next, we will study f € S(M,G). In that case A f¥ = (fA—ih'/?(Lx,0,f)/2T)" since
O:f = 0, which gives Re A”f¥ = (fA\)*. We have A, € S(MH~Y2 ¢*)S*(M,¢*) +
Op S(Mh'Y2(¢), Gy) uniformly in j. Proposition gives that

(8.8) MH?*?(5,)* < Cm

so we may ignore terms in Op S(MH?/?(5,)2, g*). Since b € S(H~'/2, g") 4+ S(h'/2(€), Gy),
{r}, € S(1,G), Ay € S(MH™Y2 ¢%) + Op S(MhY/2(£), Gy) uniformly with values in (2,
RY2(€) < pand H™Y/2 < h™'/2 we find by Lemma and Remark [3.3] that the symbols
of bYf, bYf¥ and Y., Y AP have expansions in S(MHV/2 g*) + S(MH"?p, Gy).
Observe that in the domains wj;, where H'/? > ¢ > 0, we find that M < H~! < 1 so the
symbols of >, ALY, b¥ f and b* f* are in S(MH?*?, ¢*) + S(u, gg) giving the result
in this case. Thus we may assume H'/? < ky/2 in what follows. We shall consider the
neighborhoods where (8.3)) or (84]) holds.

If (84) holds then we find () = H~/2 so S(MH'Y? ¢*) C S(m,g*) in wy by BI)
and S(MHpu,Go) C S(u,Go) since M < H™'. Since by € S*(1,¢%) we find that 4, €
ST(M,g*) + S(Mpu,Gp) and the symbols of both b* f% and >, Y A¥y¥ are equal to
S VEAL 2 fbmodulo S(MHY?, g%) + S(MHpu, Gy) in wy. Similarly, we find that the
symbol of b* f is equal to A, modulo S(MH'Y? g*) + S(u, Gp), which proves the result
in this case.

Next, we consider the case when (8.3)) holds with £ = min(kg, k1, K2)/2 and HY? < ky/2
in wy,. Then (§) < koH V2 s50b=08,+01+ X € S(H V2 G)+ S(m, g*) + S(p, Go) in wy
by Proposition[7.0l Since Re AV f* = (Af)" we obtain from Lemma [3.2]that the symbol of
Reb® f*—(fb)* isin S(MH?? G)+S(MHm, g*) C S(m, g*) in wy. Similarly, we find that
AY 2 Reb” f{* modulo Op S(m, g*). Since A, € S(MH~2,G)+S(Mm, g*)+S(Mpu, Go)
uniformly in this case, we find that the symbol of ), ¥}’ A} is equal to bf modulo
S(m, g*) + S(p, Go) in wy, which proves (87) and Lemma B2l O
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In order to estimate the localized operator we shall use the following
Lemma 8.3. If Ay; = V;fib is given by Lemma 8.2 then there exists C; € S(m, g*) +
S(p, gb) uniformly when |t| < T and |x| < T, such that
(8.9) (AYju,u) > (Cf'u, u)

when u € C§°.

We obtain from (7)) and (89) that

Re (0" u,u) > Y (¢¥C¥¢Yu,u) + (Ru,u)  u€ CFF
J

where . ¢ Cy and R € Op S(m, ¢")+O0p S(u, gt), which gives Proposition 81 [

Proof of Lemma[8.3. In the following, we shall assume that max(|t|, |z|) < T. As before
we are going to consider the cases when H'/? = 1 or H'/? < 1, and when (83) or (8.4)
holds in wy,(2¢,) for £ = min(kog, K1, k2)/2. When H'Y2 > ¢ > 0 we find that Ay €
S(MH3?, g% + S(MHR'(€), g5) C S(m,g*) + S(u, g&) uniformly by (88) which gives
the lemma with C; = A;; in this case. For handling this case where H 1/2 « 1 we shall

need the following result.

Lemma 8.4. If I' € S(My,G), where My is a weight for G, and £F > 0 in wy,(2¢,)
then we have that |0,F| < Co/FMy> HYV2h? in w;.

Corollary 8.5. We obtain from Lemma[8.4] that O, f = Opando + cg0,0 = \/opr: where
r € S(MY2HY*RY2 G in w;.

In fact, we find from Lemma [8.4] that 0,0 € S(\/aogMY2HY*RY2 G since MHY? <
ap € S(MHY? @) and we have 8,5, € S(h'/?,G) in w;.

Proof of Lemma[8.4 For any w € w; we may choose g* orthogonal coordinates so that
w=0and F > 0in |n| < e, H 2h~'/2, Then by Taylor’s formula and the slow variation
there exists C,. > 0 so that

(8.10) 0+ 0,F(0)] < F(0) + CMoHhlnP

Then by choosing || = e,1/F(0)/MyHh < e, H™/2h~/? we find that

(8.11) 0,F(0)] < Cln/FO) MR

which proves the result. O
In the following, we shall assume that

(812) H1/2 < Ky = l'Ilil'l(lio, K1, Ko, H3)/2 in Wy
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with k3 = 2¢,/3 so that (8H) follows from (8.4). First, we consider the case when
H'Y? < k4 and (84) holds in w;. Since |§p(w)| > c,HY?(w), we find £f > 0 and
(0o) = H™'? in w,,(2e,). As before we may ignore terms in S(MHpu,gb) C S(u, gb)
and S(MHY? g*) C S(m, ¢*) in w; by (8F). We shall estimate A;; = A; + Ay;, starting
with A;. If By = do + 0o we find from (8.5) that fB; > 0 in wy,(2c.). We shall
only consider the case sgn(f) = sgn(B;) = 1, for the other case we may replace the
symbols by their absolute values. Since By > H~Y2? and By, € S(H™2,¢*)NS*(1, ¢*)
we find B2 € S(H='/4, g") N ST(H'*, g*) and B~Y/2 € S(HY4,g*) N ST(H?*, ¢*). Since
fi € S(M,G), we find f}’ = f]WiCk modulo Op S(M H, G) by Proposition [[.2l As before,
Re )\“’f]WiCk = (Af;)" so we find from Example [T.4] that

W Ay W LW ~AY Wick ¢Wick ~ Wick
AP = Reb"f’ = Re BY* fIVick = (f,B)

modulo Op S(m, ¢*) + Op S(u, Gy). In fact, we have b = BWiF = (B, + \)"i* and
Mj = s1-€ with s € S(MhY2,.G) so (Af;)* 2 (Af;)"** modulo Op S(u, Go).

Similarly, since fo; € S(MH'?h'?(¢),Go) is linear in ¢ we find that f§ = fJ/i*
modulo S(M H3/2hY/2(€), Gy), thus

AE)U] >~ Re bwfoujj >~ Re Bchkfg/;/zck ~ (ijB)Wick

modulo Op S(MHIY2(€), ¢%) + Op S(MH?2h(€)%, Gy) € Op S(u, g3). By Lemma B4 we
have |0, f| < V/FMY2HY2hY? in w; which gives

(8.13) |fo;B1| < ef; By + C.U,MHY?h{(E)? Ve >0

where MHY2h(€)2 < p. If € < 1/2 we find modulo S(y, gf) that

fuB 2 B2+ ) = £ (VB2 +MV2B)) — [;2/2B,

s0 (f1;B)Vik > —(f;)2/2B,)Vik € Op S(MH'2)?, gf) € Op S(u, g§)-

Finally, we consider the case when (83) holds with £ = min(ko, K1, k2)/2 and HY? <
k4 < kinw;. Then (&) < 2kH Y2 s0 we obtain from Proposition L that M = | f/|H /2
and & € S(H™'2,G) in w;. We shall estimate A;; = A; + Ay, starting with A; using
an argument of Lerner [I5]. We have that v* = (Jy + 0o + \)Vi* = BWick where
loo| < m < HY2(6)%/2 by 6.2). Also, Lemma B2 gives AY; = Reb" fi% = Re Bk i
modulo Op S(m, g*) + Op S(i, g}). As before, fij = f; + fo; and we shall start with
Reb” fi. Take x(t) € C=(R) such that 0 < x(t) < 1, [t| > 2 in supp x(t) and x(t) =1
for [t| > 3. Let xo = x(d), then xo € S(1,4%), 2 < |do| and (&) /|do| < 3/2 in supp xo,
thus

(8.14) 1+ x000/00 > 1 — x0(d0)/2|60| > 1/4.



48 NILS DENCKER

Since || < 3 in supp(1 — xo) we find by Proposition that
BWick ~ (50 + X000 + )\)chk

modulo Op S(m/(&),¢") S Op S(H"*(dy), g*) by [G.2). Since [xo00/do| < 3H"*(do) /4
and & € ST(1, ¢*) we find from (T4) that

(8.15) BVick = 53”01“3(‘]“61“ modulo Op S(H1/2(50>, gﬁ).

where By = 1 + x000/dy. Proposition gives (x000/60)" " € Op S(H?(6y), g*) and
5k = 6% where §; = &y + 7 with v € S(HY?,G) in w;. Thus Lemma gives

(8.16) B 2= gV ick pitick 4 \Wick o g Bi¥ick L X ¢ modulo Op S(H"?(4o), g")

where ¢ € S(H ™2, %) such that supp c¢(\w; = 0.
We find from Proposition that f = apdy, where MHY? < oy € S(MHY? G),
which gives o> € S(MYV2HY* G). Let

(8.17) a; = oy *0p; € S(MYV2HV4, @)
then the calculus gives
(8.18) Re a}”(aé/quj)w = f modulo Op S(M H, G).

since f; =V, f = gbff Similarly, we find that f;’c" € Op S(MH??, g*) by the expansion

and
(8.19) Re f}"6y = afay modulo Op S(MH?*?, @)
with imaginary part in Op S(MH'2 G). We obtain from (8I6) and (8I%) that
(8.20) f"B"i* = fr(65 By T+ XY + ¢+ 1)
= f;”éf)”BgViCk + f’AY +af R modulo Op S(m, )
where r € S(HY?(5), g*) which gives R; = (ozé/ngj)“’r“’ € S(MY2H3/(5,), g*). Since
Re F'B = Re(Re F')B + i[lm F, B|
when B* = B, we find from (8I9) by taking F = f*d; and B = Bj"** that
(8.21) Re f}”csg”BgViCk = Re a}”a}”BgViCk modulo Op S(m, ¢*).
In fact, since By = 1 + x000/d and (x000/%)"** € Op S(HY?(5), g*) we find
(8.22) [a®, By""] = [a", (x000/80)" "] € Op S(MH??(4y), ¢*)
when a € S(MHY? @G). Similarly, since a; € S(MY2H~1/* G) we obtain that

(8.23) a}”a}?BgViCk & a}V(BgViCkaf + 5%) modulo Op S(m, ¢*)
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where s; € S(MY2H3/*(5), g*). We also have
(8.24) Re AWk fv = Re f¥A" 2 (f;\)” & Rea?(ay/*A\g;)"
modulo Op S(y, Gp) where o> A¢; € S(MYZHYARY2(¢), Gy). Since By > 1/4 we find
from (B20)—(&24) that

1
(8.25) Re BV f1 > 4a;”a;” + Reaj' SY modulo Op S(m, ¢*) + Op S(u, Go)

where S; € S(MY2H3/*(8y), g*) + S(MYV2HYARY2(¢), Gy).

We are going to complete the square in (8.25]), but before that we must handle the
term Re B fir = Re b fgi. As before, we find that A" f& € Op S(u, Gp) uniformly
since we have MHY2h'2(€)X < pi. For the term Re BV f¢ with By = 6y + 0o we need

the following result.

Lemma 8.6. For any ¢ > 0 there exists R. € S(m, g*) + S(u, g3) so that

(8.26) | Re(BY""* fiu, u)| < e{a¥au,u) + (R¥u,u)  we CF°

By using (8.25]) and (8.26) we obtain for ¢ < 1/12 that

’ 1
(8.27) Re BV f1 > .
where S; € S(MY2H3/*(50), g*) + S(MY2HY*hY/2(£), Gy). By completing the square, we

find

~a%¥a¥ +Rea¥S¥  modulo Op S(m, ¢*) + Op S(u, g5)

W~ w ic 1 w w\* [ w w
AY = Re f*B"" k56(aj +357)" (af +3S}") > 0
modulo Op S(m, g*) + Op S(u, Go). In fact, (S¥)*Sy € Op S(m, g*) + Op S(u, Gy) since
we have M H?*?2(5)?> < m and MHY?h(¢)? < p. This gives (89) and the lemma in this

case. This completes the proof of Lemma B3] OJ

Proof of Lemma[8.8. First, we note that B{"** = (5§ + 00)"V** = (§0By)"** modulo
S(HY?, g*), where (6oBy)"i* € Op S*(1,¢*). Thus by Propositions [7.2 and [.3] we find
that Re B}Vik fio o Re BJVick flick = ( .5, B,)"Wi* modulo Op S(y, g§).

Now since ¥; = gbj and fo; = V;0,f -7 - & we can factor the symbol fy;j60By = AB,
where A = 8nféoBoM_1/2H_1/4h_1/2¢j and B = MY2HY4p/?r.¢¢;. Then Corollary B3]
gives |A| < \/ap|do|¢; and Proposition [7.2] gives

AWick Op S(Ml/2H1/4 ﬂ Op S+ M1/2H1/4 )

and BVick = Wik D with B € S(M1/2H1/4h1/2 G) C S(h'*,G).
By Proposition [73 we have (AB)Wi* = Re AWiek BWick modulo Op S(p, gi). Thus, it

suffices to estimate

(8.28) Re(AWick pWicky, 4) < || AVi%q||? + C.|| BY *u)? u e Cy°
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where we have || BWikqy||2 < ||h/Dyul|? < (u*u,u). We shall prove (8286]) by estimating
A? S abie? = fooW; = a?. Here a; = \/agdop; € S(MY?H™Y* G) is given by BIT).
We may then estimate AWi* < a¥Vick where o)V = o + ry with ry € S(M'2H¥4,G).

Thus we obtain

(8.29) (AW < (a¥ + 1Y) (a¥ +78) Sa¥al +riay +afry < 2afal
modulo (r¥)? € Op S(m, g*), which gives (8.26) and Lemma O

We shall finish the paper by giving a proof of Proposition 3.6

Proof of Proposition[3.8. By the assumptions in Proposition 3.6 we have
(8.30) P*= D+ AY +ify modulo R

microlocally near wy € ¥, here
(8.31) A= apbi&+ Y aé; + ag
Jk J

where aj; and a; € S(1,g) are real and {a;;};; is symmetric and nondegenerate, f; =
f + fo where f € S(h71,g) is real valued satisfying condition Sub,(¥) in (3.3) and
fo=0,f-r-& Observe that P* in (BI7) can be perturbed by r* for r € R since by €
S(h=12,g%), so |(b%rvu, u)| < h'/2||(D,)ul|? since b%s” € Op S(h'/2, g*) when s € S(h, g).

Let By = &y + or + Ar be given by Definition 610, where A\ = eh'/?(L(x — x0), &) /T
given by Lemma with xg being the value of z at wg and 0 < € < 1, g + or is the
Lipschitz continuous pseudo-sign for f given by Proposition for 0 < T <1, so that
lor| < m < (dp)/2 when |t| < T. Proposition [6.8 also gives that

(8.32) 000 + or) > m/2T  when |t| <T

We have BYick — 5% where by(t,w) € S(H™/2,¢")(S*(1,¢*) + S(u, g5) uniformly by
Proposition when max(|t[,|z|]) < T. In the following we shall assume that u € C§°
has support where max(|t], |z]) < T.

We are going to consider

(8.33) Im (P*u, By "*u) =i ([D; + A", By "*u, ) /2 + Re (f{"u, By **u)
We find by (1)) and (832) that
(8.34) i ([Dy, BY *“*u,u) /2 = (0,BY *“*u,u) /2 > (m" Py, u) /AT

when u € C§°. By Proposition B], we find that

(8.35) Re (BY“* fPu,u) > (C*u,u) u€ C®
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with C' € S(m, ¢*) + S(u, g%). Propositions and [7.7] gives Cy > 0 so that
(8.36) | (C¥u,u) | < Co((m" ™ u,u) + (p""u,u)) u e Cy°
By Lemma [6.9 and (6.2)), there exist ¢; > 0 so that when [{] < h™! we have
(8.37) i ([AY, BY *Mu,u) /2 > (€ — 2e1T) (uu, w) /2T — 3coe (m"*Fu, u) /2T
for u € Cg°. In fact, h'/? < 6m by (6.2) and since b; is constant in = we have [AY, b¥] =
(s¥D,, D,) + sV D, + s¥ with s; € S(h1/2, gh).
We find from (8.34)-(8.30) that we can find ¥ € S? such that 35 (supp ¥ = @) and
(8.38) Im (P*u, By '"*u) > <i — 6Gege — COT) (m"**u,u) /T
+ (e — 2CoT — 2e1T)) (u*u,w)) /2T — || V™ ul|?/T
for u € C§°. By taking first € and then 7" small enough we find
(8.39) Im (P*u, BY *“*u) + | O u|?/T Z (m"**u,u) /T + (0 u,u))/T

for u € C§°.

Since |do + or| < |So] +m < 3(00)/2, h/?*(60)? < m by (6.2) and |\ < hY4ut/2, we find
|Br| < A YAmM2 4 BVAUM2 . Thus hY2(BYi9)2 1) € Op S(m, g*) + Op S(h'/2p, ¢f) so
Propositions [7.6] and [7.7] give

(840)  BA(IBY M ul* + |lul® + | Doul?) S (m"*Fuu) + (nuw)  we CFF
Summing up, we obtain that
(841) A2(BF “Full® + ||ull® + | Doull?) < Cy ((m"*u,u) + (1w, )

< Cy (T'Im (Pu, BY**u) + [|[¥*u]?)

if u € C§° has support where max(|¢|,|z|) < T which completes the proof of Proposi-
tion O

APPENDIX A. PROOF OF PROPOSITION 2.1

In this appendix, we are going give a proof of Proposition[2.2/in Section2l Let f(z,w) €

C*>°(R™™) be real valued and consider the equation
(A.1) P(Oyu, x,w,0,)u = f, u(xg,wy) =ug € R, dpu(zg, w) =u; € R"

where P is a quasilinear second order PDO in the x variables with real C* coefficients

having w € R™ as parameter such that

(A.2) P(v,z,w,0,) = pa(v, z,w,0;) + p1(x, w)0, + po(z,w)
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with v(z,w) € C*(R"™ R"), p1(x,w) € C°(R"™ R") and po(z,w) € C°(R"™ R).
We assume that the principal symbol vanishes of second order, so that
(A.3) p2(v,2,w,0;) = > Lj(v, 2,w)0,,0n,
k=1

where the real quadratic form
(A.4) L(u1, o, wo) = { Ljk(u1, 2o, wo) },;, has maximal rank n

which then holds in a neighborhood of (uy, zg, wp) so that P is of real principal type.

THEOREM A.1l. Let P be given by (A2) so that conditions (A3) and (A4) hold, then
for any real valued f € C°(R™™), ug € R and u; € R™ there exists a neighborhood U of
(w0, wo) so that (AJ)) has a real valued solution u € C°(R™*™) in U. The neighborhood U
will only depend on the bounds on ug, uy, f and the coefficients of P.

Observe that the solution is not unique, for uniqueness one needs hyperbolicity of
P and initial values at a noncharacteristic surface. Since the system (2.17) is on the

form (A.2)—([A4) we obtain Proposition 2] from Theorem [AT]
We shall first reduce to the case with vanishing data by changing the dependent variable

(A.5) w(zr,w) =v(r,w)+ug+u -z

in ([A.T)), then we obtain the following equation for v:

(A.6) Pov = P(Ov+uy,z,w,0)v = f(x,w)—pi(x,w)u; —po(x,w)(up+us-x) = folzr,w)
with v(zg, wg) = 0 and 9,v(xg, wy) = 0. Now the right hand side of (A.6)) depends linearly
on both f, uy and u; and we have that (A.4]) holds when u; = 0.

Renaming the operator, for the proof of Theorem [A.T] we shall solve the linear equation
(A.7) Pv(z,w),z,w, d)u(z,w) = folz,w) u(xg, wp) =0 Opu(xg, wo) =0

which is a second order real linear PDE with w € R™ and v(x,w) € C*°(R"™™ R") as
parameters such that v(zg,wy) = 0. By using iteration and compactness we shall obtain
a solution to ([A.Il), the proof of Theorem [A.1] will be at the end of the appendix.

To solve the linear equation (A.7)) we shall microlocalize using pseudodifferential equa-
tions. In the following we will say that an pseudodifferential operator (or Fourier integral
operator) a(v, z, D) depends C'™ on a parameter v(z) € C* if any seminorm of the sym-
bol (and phase function) is bounded by a finite number of seminorms of v. For operators
with symbols in S7*° this means that the C'*° kernel is a C'*° function of v. Observe that

compositions and adjoints of such operators also depend C* on v, see Lemma, [A.§ and

Remark [A 0]
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Next, we shall microlocalize in cones in the ¢ variables. In the following, we will use

the classical Kohn-Nirenberg quantization having classical symbol expansions.

Definition A.2. For any e > 0 and & € R" such |&| = 1 we let

(A.8) Peoe = { € 16/181 =&l <&}

which is a conical neighborhood of &.
Recall that a partition of unity is a set {¢; }, such that 0 < ¢; € C* and }_;¢; = 1.

Remark A.3. For any e > 0 small enough we can find a partition of unity on S*R"™ and
extend it by homogeneity in & to get a partition of unity { ¢;(§) }; on T*R™\ 0 such that
0 < ¢; € SY is homogeneous and supported in T¢, . for some |§;| = 1. We can also find
{7, }j such that 0 < 1; € S° is homogeneous and supported in T¢, . so that 1; = 1 on
supp ¢;.

We shall also localize when |§] > 0 > 1 by x,(§) = x(|¢|/0) € C*, where x € C*(R)
such that 0 < x <1, x(t) = 0 when t <1 and equal to 1 when t > 2. Let @;, = X,p;
and V;, = X 0; then ¢ — ;, and ¥; —1;, are in ST, Vj and Vo > 1. We also have
that ox, € S* uniformly in 0 > 1, V.

In fact, since 0 < x, < 1 and ¢ < [{| in the support of this symbol, we find that
loxo(€)] < [€]. Taking ¢ derivatives of the symbol gives a factor o' together with a
symbol supported where |£| < o < 2[¢].

Next, we have to prepare the linear operator P microlocally with respect to this par-
tition of unity. We will then use microlocal pseudodifferential operators which may give
complex solutions. But since P is a real PDO, we may take the real part of the solution

to the linear equation. In the following we shall use the notation (D) = (1 + |D|?)/2.

Proposition A.4. Let P be giwen by (A2)-(A4) with real v(x,w) € C*> such that
v(zo,wp) =0, and let T' = T¢, . be defined by (A8) for |&| =1, 0 < e <ey. Then for eg
small enough there exists real valued 0 # a(v,z,w,&) € S°, 0 < c(&)"1 < b(&) € S7! and

orthonormal variables (t,z) € R x R"™! so that

(A.9) P(v,t,z,w, D)b(D) = a(v,t,z,w, D)Q(v,t,z,w, D)+ R(v,t, z,w, D)
where
n—1
(A]'O) Q('Ua t> €, w, D) = Dt + Z Aj(va ta x,w, D:(:)ij + AO('Ua t> €, w, Dx)
j=1

Here a, A; and R are operators that depend C™ on v(x,w), A; € C°(R,S°) is real
valued when j > 0 and R = Ry + Ry € W' where Ry € ¥~ and WF R, Ty = 0,
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Lo = (0,20, wp) X L'y c. The seminorms of A;, R and the constant ¢y only depend on the

seminorms of v and the coefficients of P.

Observe that since a # 0 we have by the calculus that a 'a = aa™! = Id modulo ¥~

Proof. For the proof, it is important that compositions of operators that depend C'*
on v also depend C* on v, see Lemma [A.8 By taking an ON base of eigenvectors of
L(0, zg, wp) and choosing ON variables z, we may assume that ps(0, g, wo, &) = Zj cjff-
for 0 # ¢; € R. Choose j so that §; # 0 at &, thus in a conical neighborhood of Iy if € is
small enough. By an ON change of variables we may take j = 1, then ¢; = — L1 (0, xq, wy).
Letting b(¢) = &' near Ty N {|£] > 1} we may extend b(£) to a symbol in S~! so that
b(€) = (£)~". Then Pb(D) has a symbol expansion with p;b € S~ and

pQ(U, x,w, £>b(£) = - Z ij(’U, T, w)ngk(g)

where By (§) = &b(€) € S° . Since Bj(D)Dy = By(D)D;, we find from (A2)-(A3) that

Pb(D) = zm: A;(v,z,w,D)D; + Ay(v, z,w, D)
j=1
where Ay = (p10 + po)b(D), Ay (v, x,w, &) = — L1 (v, z,w)B1(£) # 0 near Ty and A; € S°
is real valued when j > 0. Observe that Bi(§) = 1 near I'o(){|{| > 1} so it may be
extended to be equal to 1 everywhere modulo terms having wave front set outside Ty.
This gives that Ay = —Ly; # 0 near (0,z9,wp) thus we can extend a = A; so that
0 # a(v,xz,w) € C*. Replacing A; with a='A; we find that Pb(D) = a(v,z,w)Q € V!

where the symbol of @ is equal to & + > A;(v, 2, w, )& + Ao(v, z,w, &) modulo ¥*

i>1
and terms having wave front set outside I'y.
To obtain that A; is independent of &; for j > 0, we shall use the Malgrange preparation

theorem. If £ = (&;1,&) we find by homogeneity for small enough £y > 0 that

(A11) S+ Ai(v w08 = (v, z,w,8) (G + (v, 2,w,£))
j>1

in a conical neighborhood of I'y, where ¢ > 0 is homogeneous and 7 is real, homogeneous of
degree 1 and vanishes when ¢’ = 0. Then we can extend ¢ > 0 to a homogeneous symbol
by a cut-off, observe that the symbols depend C* on v. This replaces a by 0 # aq € S°,
and by using Taylor’s formula we find that r(v,z,w,&') = 3., (v, 2, w,§)§; with r;
homogeneous in ¢’. This gives that Pb(D) = aq(v, z, w, D)Q where @ is equal to (A.10Q)
modulo ¥’ and terms having wave front set outside I'y. The composition aq(v,z,w, D)

with @Q also gives lower order terms in ¥° which can be included in Aj.
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Now the term Ay € U0 of Q can be replaced by aq(v, x, w, D) Ry modulo ¥~! where the
symbol Ry = Ag/aq € S°. To make the term Ry independent of £&; we may use Malgrange

division theorem and homogeneity for small enough £9 > 0 to obtain that

(A.12) Ro(v,z,w, &) = qo(v, x,w,&) (& + (v, z,w, &) + ro(v, 2, w, &)

in a conical neighborhood of Ty, where gy € S™! and ry € S° by homogeneity. Cutting
of qo we may replace Ry(v,z,w,D) with qo(v,z,w, D)Q + ro(v, z,w, D) modulo ¥*
near I'g. Since Ry = (1 + qo) Ry modulo ¥~! we obtain (A.9)-(AI0) with a replaced
by aq(l + qo). Cutting off gy where |[£| > 1 only changes the operator with terms in
U= but gives that 1+ go > 0 making aq(1+ go) # 0. The composition of aq(v, z,w, D)
with qo(v, 2z, w, D)Q will also give lower order terms in W~! which can be included in
R together with any cut-off terms. This gives the proposition after putting ¢ = x; and

x=2a. O

Proposition [A.4] shows that the linerarized equation P(v,z,w,D)u = f may after
ON changes of variables be microlocally be reduced to the system Q;(v,z,w,D)u; =
a;l(v,x,w,D)fj where f; = ¢;(D)f with ¢; given by Remark [A.3] Observe that u =
>_; bi(D)u; where u; also has to be microlocalized.

Now, the reduction and the calculus will give terms S € ¥~>° which have smooth
kernels. The errors Sf(z) = [[ S(z,y)f(y)dy can be made small if f has support in a
sufficiently small neighborhood of x by cutting off the kernel S. Let ¢5(z) = ¢((x—x¢)/9)
where 0 < 0 < 1 and ¢ € C§°(R") such that 0 < ¢ < 1, has support where |z| < 2 and
is equal to 1 when |z| < 1, so that ¢(z/0) € C§°(Buyas) if Byys ={x : |z —xo| <0 }.

Lemma A.5. Let S(x,y) € C™ and Ss(x,y) = ¢s(x)S(x,y)ds(y) € C3°(Buy26 X Bug.26)-
The mapping Ss : C™ +— C§°(Bygas) s given by Ssf(x) = [[ Ss(x,y)f(y)dy, and for
f € C§°(Byy,s) we have Ssf(x) = Sf(x) when |z| <. For é small enough, 1d+Ss has
the inverse (Id+S5) ™t = 322 ,(—Ss)? = Id modulo operators with kernels in C§°(By, 25 X

7=0
BZ‘O726) .

Proof. We may assume that zq = 0, clearly Ssf(x) = Sf(x) if fos = f and ¢s(x) = 1. If
f € C*® then L™ norm is ||S5f|lcc < n2"0™(|S]|oo|| flloo- By induction we get

(A.13) 157 flloo < €n2"6"[1SslloollSF " flloo < 278 S Ll flloe 5> 1

where the kernels of Sg are in C§°(Byas X Boas). Thus the series Z;.;O(—Sg)j converges
on L™ if ¢,2"6"||S||oc < 1. Derivation of the terms in the series will only give fac-
tors O(671) so the convergence is in C§°(Bpas X Boas). Then the inverse (Id+S5)~! =
Id + Zj‘;l(—s(;)j = Id modulo operators with kernels in C§°(By,26 X Bag,26)- O
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Next, we shall solve the microlocalized equations Q;u; = aj_l fi= aj_lgoj f with u; =0
when ¢t = 0. Here ¢; is given by Remark [A.3] @Q; is given by (A.IQ) near I'¢, . with
0 # a; € SY given by Proposition[A.4] but we shall treat terms R € W' as perturbations.
In the case when A; = 0, we would then find that Q;u; = Dyu; = aj_lfj, which has the
approximate solution u; = f(f aj_1 f;j dt. By using Fourier integral operators one can reduce
to this case.

We shall use denote by I* classical Fourier integral operators of order k& with homoge-
nous phase functions and classical symbol expansions depending C'*° on v. But we shall
also use operators F' € C*®(R, I*) which are FIOs F(t) € I* in 2 depending C* on t
and v, (t,z) € R x R"™!. Observe that ¥DOs of order k in  depending C* on ¢ and v
are also in C*°(R, I*¥) and that C>=(R, I*) C I*. By multiplying I* by I™ we obtain
operators in I**™ by Remark [A.9

As before, we shall use ON coordinates (¢, z) € R x R"~! and suppress the dependence
on v and w. But the operators will depend C'* on v and w having symbols and phase

functions that are uniformly bounded if v € C* and w € R™ are bounded.

Proposition A.6. Assume that QQ = Dy + a1 (t, x,w, D,) + ao(t,z,w, D,) depend C* on
v € C°, where a; € C*°(R, ¥') is real and homogeneous of degree 1 and ay € C*(R, ¥°).
Then there exists elliptic Fourier integral operator Fy(t) and Fy(t) € C*°(R,, I°) such that
Fo(t)Fi(t) 2 1d and QFy(t) = Fy(t) Dy modulo C=(R, I7). If f € C5° then we have that

t
(A.14) u(t,x) = iFo(t) / Fi(s)f(s,x)ds =Ff(t,z)
0
solves the initial value problem
(A.15) Qu= (Id+9)f e C™ u(0,2) =0

where S € C®(R,I7') and F € I°. Here Fy(t), Fi(t) and F have wave front sets close
to the diagonal when |t| < 1. In fact, the canonical transformations given by Fy(t) and

Fi(t) maps bicharacteristics of Dy + a1 to t lines and vice versa.

Corollary A.7. Ifc; € U* j =1, 2, and suppci (\suppca = 0, then ¢ Fy(t)Fi(s)es €

I=%° having a smooth kernel for small enough s and t.

Proof. 1t is a classical result that there exists elliptic Fourier integral operators Fy(t)
and Fi(t) € C*(R, I°) with the properties in the proposition. The construction of the
homogeneous phase function of the FIO involves solving the Hamilton-Jacobi equations,
which depend on the derivatives of the principal symbol 74 a; of (). Then the amplitude

is given by the transport equations depending on the lower order term ay of () modulo
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terms in C*°(R, S™!). For the approximate inverse, one takes the phase function for the

inverse canonical relation and the inverse amplitude.

If f € Cg° and u = iFy(t)v with v = [} F1(s)f(s,2) ds as in (A1), then we find
(A.16) Qu = iQFy(t)v = (iFy(t)Dy + So)v = Fy(t)Fy(t) f + Sov
:f+51f+Sov:f—l—Slf—i—SO/OtFl(s)fds:f—l—Sf
where Sy, S and S € C®(R, 7). O

The approximate solution u in (A:14]) depends C* on the data f and v, but we shall

need stronger estimates. For that we shall use the L? Sobolev norms:

(A17) lelity = KDY oll® v e CF

We shall use the following estimates, were we shall suppress the parameter w.

Lemma A.8. If a(u,x, D) € VY depends C™ on u(z) € C* then there exists { € N so
that for any k € N there exists Ci(t) € C*°(Ry) so that

(A.18) la(u, z, D)ellw < Cr(lulle)llelw Ve e G

If a(u,z, D) € ¥™ and b(u, x, D) € V™ depend C* on u(x) then a(u,z, D)b(u,x, D) €
Umtme glso depends C™ on u(x). Then there exists { € N so that for any k there exists
Ci(t) € C*(Ry) so that

(A19)  |[la(u, =, D), b(u, z, D)ol < Crlllullo)llllgtmitme-1y Yo € G
If a(u,z, D) € ™ depends C*° on u(zx) having real valued symbol modulo S™' then
(A.20) Tm a(u, z, D)ellw < Crllulle)llel@wm-—y Ve e G5
where 2ilm a(u, z, D) = a(u,z, D) — a*(u,x, D) also depends C* on u.
Proof. First we note that by definition any seminorm of a(u,x,£) € S™ is bounded by
|lullcx when [£] = 1 for some k € N. By the Sobolev embedding theorem, the C* norm
of u can be bounded by by the norm ||u| 4, with s > n/2.

If a(u,z,&) € S™ and b(u,x,§) € S™ then a(u,z, D)b(u,z, D) = c(u,x, D) is given
by
(A21) C(U, Z, 5) = ei<D€’Dy>a<u7 Z, g)b(uu Y, TI) ‘yzﬂg

’]7:

The mapping a, b — c is weakly continuous on the symbol classes S™ so that any semi-
norm of ¢ only depends on some seminorms of @ and b, see [10, Th. 18.4.10°]. (Here weak

continuity means that the restriction to a bounded set is continuous.) Thus if a(u, z, D)

and b(u, z, D) depend C* on u € C*° then c(u, z, D) also does. Observe that the number
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of seminorms that is needed does not depend on the symbol classes S*, it only depends
on the symbol metric and the dimension.

We may reduce the estimate (AIS8) to the case kK = 0 by replacing a(u,z, D) with
A(z, D) = (D)*a(u,z, D){D)~* € ¥° and ¢ with (D)*y. Then the L? norm of A(z, D)
depends on a fixed seminorm of A(z,§), see [10, Th. 18.6.3]. This seminorm in turn
depends on a fixed seminorm of a(u, z, ) which gives (A.ISg).

Any seminorm of the symbol of the commutator [a(u,z, D),b(u,z, D)] € Smtmz=1
depends on the same seminorm of the symbols of the compositions a(u,z, D)b(u, z, D)
and b(u, x, D)a(u, z, D). These seminorms in turn depend on some seminorms of a(u, , &)
and b(u, x,€). Thus we obtain (A19)) from (A.18) for some ¢ and C.

If @ € S™ then the adjoint a*(u,z, D) is given by

(A.22) a*(u,z,8) = ei<Df’Dz>6(u,x,£)

which is weakly continuous in the symbol class S™ by [10, Th. 18.1.7]. If a is real modulo
S™=1 then Ima(u,z, D) € ¥™~'. Thus any seminorm of the symbol of Im a(u,z, D) is

bounded by some seminorms of a(u, z, ), which gives (A.20) for some Cj. O

Remark A.9. The results of Lemma [A.8 also holds for the WDOs V™ depending C™
on u composed by FIOs I* depending C> on u, e.g., the FIO given by Proposition [A.8.

Operators in I~°° have smooth kernels which are C*° functions of u.

In fact, Theorem 9.1 in [8] shows that the conjugation of WDOs with FIOs gives symbol
expansions similar to (A.21]) after change of variables, see for example (9.2)” in [8]. This
result is about Weyl operators, but by Theorem 4.5 in [8] it can be extended to operators
having the Kohn-Nirenberg quantization. This gives a calculus with symbol expansions
of classical homogeneous FIOs with homogeneous phases and symbols, see pages 441-442
in [§]. For example, if a € U™ and F € I* then we have ||aFul|? = (F*a*aFu,u) where
F*a*aF = b € W2"%) and similar result holds for || Faul|?.

For S € I the C* dependence means that for any k we have S € I~* depending
C* on u. Since the kernel is obtained by taking the Fourier transform in £ of the symbol,
we find that the kernel of S is smooth and a is C'*° function of w.

Next, we are going to prove estimates for the microlocalized operators. Then we will

use ON coordinates (,27) € R x R"! and for k € N and T > 0 define the local norms
(A.23) e W HOL e
t|<T

and [l¢[|xsr = [{De)eller, ¥V € Zo, with [|ol[i(t) = [[ [(Da)*o(t, 2)|? da.
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Proposition A.10. Let v, f € C5° and uw € C* be a solution to
(A.24) Q(v,t,z,w, D)u = O+ Z Aj(v,t,z,w, Dy) 0y, u

J=1

+ Ap(v,t,x,w, Dy)u = f u(0,z,w) =0

where A; € C=(R, ¥Y) depends C* on v,V j, and A; is real valued modulo S~ for j > 0.
Then there exists ¢ € N so that for any k € N there ezists Cy(r) € C*(Ry) so that

(A.25) lpulltyy < Crlllvll) 1117
if o € C3° has support where |t| < 1. The estimate only depends on the seminorms of the

symbol of Q) and ¢.

Thus, for any & € N we get uniform local bounds on ||u||x) when [[v|) is uniformly
bounded. Now @) is a differential operator in ¢t but a ¥DO in z, so in the proof we shall

use Lemma [A.§in the x variables.
Proof. Let A0, = 77| AjOy; and (u, u)x(t) = |lul|7(t) be the sesquilinear form, then
(A.26) Ollulli(t) = 2Re(Osu, u)p(t) = 2 Re(f, u)x(t)
— 2Re(Adyu, u)k(t) — 2 Re(Agu, u)p(t)

Conjugating with e~ gives
(A27) (™ [[ulli(t)) = ™" (2Re(f, u)(?)

— 2Re(Ad,u, u)i(t) — 2Re(Aou, u)i(t) — C|lull; (1))
where
(A.28) 2Re(Adu, u)i(t) = 2Re([(Dy)*, A0, (Dy) ™ w, w)o(t)

+ ([Re A4, 0, Jw, w)o(t) + 2 Re(i Im A0, w, w)o(t) = (Rv, v)o(t)
where [Re 4, 9,] and Im A9, € C*(R, ¥°) and w = (D,)*u. The calculus gives that the
operator [(D,)*, Al0,(D,)™% € C>°(R, V), so that R € C*(R, ¥°) depends C* on v.

Since ||w|lo = |Ju||x we find by using Lemma [A.§ that
(A.29) [{(Rw, w)o(t)] < Cr(l[vlle(®)llwllo(®) = Crlllvlle() lulli()
for some ¢ € N and Cy(t) € C*(R), and clearly
(A.30) [{(Fw)k(®] < AR + llulli@)
We also obtain from Lemma [A.8 that

(A.31) [{Aow, uhi(t)] < Cr(l[vlle())llullz(t)
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where in the following we will take the maximum of ¢ and Cy(¢). Summing up, we have
(A32)  Oue™ullZ() < e ((Crllvlle(®)) + 1 = O)lulli(2) + Crlllolle@)IL 1))

Now, we may replace Ci(t) by a nondecreasing function. Then we put

t|<T

C = max Cg(||v]|¢(t)) + 1 < Cy (ﬂlil% ||U]|g(t)) +1

where [|v][,(t) < Collv||e+1) Yt by Sobolev’s inequality. Since [ju||,x(0) = 0 we find by
integrating that

(A.33) e~ ulli(®) < e Culllvlle) et € =TT

for some Cy(t). Integrating again over [—7', 7] we obtain that

(A.34) lull r < 2T T Crll[oll 1) 1117

By replacing 27 Ci(||v||¢+1)) by Ck(||v|l(e+1)) and changing ¢ we obtain
(A.35) lullir < Cellvlle)f IRy YE>0

Next, we shall estimate ||ul| ;r when j > 0, for j = 1 it suffices to estimate ||Oyul|; 7.
Now QOyu = 0;f + Bu where B = [Q, 0] = —0,A40, — 0;Ay € C*°(R, ¥') is an ¥DO in
x depending on C* on v and t. By applying (A.35]) on d;u we obtain that

(A.36) 10aliZr < Cullollo) (19712 + | Bullir) V>0

where || Bull; p < Cp.([[v]l@)|llk+1,0 by Lemma [A8 By estimating [|ul[x41,r by (A35)
and using that || f{|xjr < ||f|l(k+;) we obtain Cy1(t) € C*(R) so that

10culli.r < Crallvll) I IGsry VR >0

Next, we proceed by induction. Thus,, we assume that we have proved that for a fixed

j > 0 we have for i < j the estimate
(A.37) lo,ullir < Crallol)f Gy YE=0

for some Cj;(t). Then Q3w = /™" f + [Q, /" |u where [Q,0/1'] = > o<i<; Bid; with
Bi(t,z, D,) € C*(R, V') being a ¥DO in x depending C* on t and v. We obtain that

(A.38) 107 i < Crlllvll o) <H8§+1f!|i,T + ) HBiaZuHiT) Vk=0

0<i<j
by using (A.33). As before, || Bidjullip < Cp(l[vll0)l|0jullgs1,r for i < j which we can
use ([A.37) to estimate. This gives (A.37) with i replaced by j + 1, so induction over j
gives this estimate for any .

Finally, we shall show that

(A.39) lgulltyy < Crlllvllw) £ 1
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if ¢ € C™ is supported where |t| < 1. To estimate ||¢u||%k) it suffices to estimate
| DEDipul| for |a| + j < k. We have that

[D2D{, ¢| = > Bs.DID;

181<lal
1<j
where Bg; € C™ has support where |¢| < 1. Thus, (A37) gives that
(A.40) IDED]pull < C Y IDjull—ir < > Crmsalllvll) £ 15
0<i<j 0<i<j
which completes the proof. O

Next, we shall solve the IVP for the linearized equation
(A.41) P(z,w),z,w,Nu(z,w) = f(z,w)

where f and v € C®(R™" R") with v(zg,wg) = 0 and P is on the form (A.2)) satisfy-
ing (A.3) and (A.4) with wy = 0. In the following, we shall suppress the parameters v

and w, the preparation will only depend on the bounds on these parameters.

To solve equation (A.41]), we shall assume that zop = 0 and use the microlocal normal
forms given by Proposition[A.4l In fact, for any small enough € > 0 we can by Remark[A.3]
find a partition of unity {¢;(£)}; with ¢; € S° supported in cones I'¢, . and ON variables
(x1,2") so that Pb; = a;Q; + Rj satisfies the conditions in Proposition [A.4l with 'y =
(0,0,wp) x T, o after the change of variables. Here 0 # a; € S°, (§)7' < b;(§) € 57!
and Q; = D,, + A;D, + Ay ; satisfies the conditions in Proposition [A.6l The operator
R; € U has symbol in S~ in a conical neighborhood of T'y. I Ignoring the operator R;,
which will be handled as a perturbation, we obtain from Proposition that if f € C*°
then u; = Fja]fl(pjf solves
(A42) Qju; = (Id+s;)a; o f = (a;' + 1) f  wj|,_g =0
where s; and r; € 1.

But u; may not be localized near I'y. To handle the localization and the error term R;
we shall microlocalize u; depending on parameters. Let ®r(z) = ®(2/T) with0 < T <1
and ®(z) € C§°(R™) such that 0 < & < 1, ® has support where |z| < 1 and is equal to 1
when |z] < 1/2. We shall also use the cut-off ¢; ,(£) = 1;(£)x,(§) given by Remark [A.3]
with ¢ > 1 such that 0 < x, < 1 has support where [£| > o, ¥;¢; = ¢, and suppy; €
[¢, . Since u; = ®pu; + (1 — ®r)u; we find that

(A.43) uj = P, Pruj + (1 — ) Pruj + (1 — P)uj = ujor + Sjorf

where w1 = 1, @ru; and Sj,r = (1 — ;) ®rFja; ;4 (1 — &7)Fja; 'p; € I° since
Fja]flgoj € I°. Thus we find that S;,7f(z) depends on the values of f(y) when y; is in



62 NILS DENCKER

the interval between 0 and ;. Since ¥;p; = ¢; we find that (1 — ¢;,)e; = (1 — Xx,)p;

which gives
Si.or = CDTFjaj_l(l Xo)®i — [Wje; CDTF]Q ]SOJ' +(1— q)T)Fjaj_lSpj

where (1 —yx,) € V"> and 1 — &7 = 0 when |z| < T'/2. Since v;, does not depend on =
we find from (38) in the proof of Lemma B2 that [¢;,, ®7F;a; '] has symbol

(A.44) E(i{De, Dy))340(€) Dy®r(y)Fja; " (y, m)i=

where E(z) = (e — 1)/z = fol e??df. Since 0;0%;, = p;0°x, ¥V a, we find that all the
terms in the expansion of the commutator have support where || = p and 1/2 < |z| < 1.
Thus S, € I7>° has a C* kernel depending on ¢ and 7.

Since a; # 0 we have aja;' = Id+B; with B; € W~'. We find from (A.9), (A.42)

and (A.43) that

(A45) ijUj@T = anj(Uj - Sj7Q7Tf) + RjUj7Q7T
= ((Id+B; + a;r;)¢; — ;Q;Sjer + Rjor) |
where a;Q;S; , 7 € I~ when |z| < T/2,a;r; € 7' and R ,7 = ijjvgchIFja;lgpj el
when T < 1 since the symbol R;v;, € S7! for |z| < 1 by Proposition [A4l Here Q € I*
in the open set Q C T*R" means that Q = Qo + Q; where Q; € I* and WFQ, Q2 = 0.
Since ot; , € S* uniformly by Remark [A-3] we find oR; ,7 € I° uniformly for 7' < 1.
Now we define
(A.46) U7 (T Z b; (D) (D) Pruj(x) = > bi(D)ujor(x)
J
where 0b;1;, € S° unlformly when ¢ > 1. Since Pb; = a;Q; + R; we obtain from (A.45)
and (A.40)) that
(A.47) Puyr = f+ Y ((Bj+a;m)¢; + Rjor — 4;Q; ;1) f = (1d+Ror) f
J
where Ryr = 3 :(B; +a;r;)pj+ Rjor —ajQ;Sjor € 17" when |z| < T/2 < 1. We shall
localize the first terms in & by writing B; 4 a;r; = (B; + a;r;)(1 — x,) + (Bj + a;7;)x,
which gives
(A.48) Ror = Roro+ Rora
with Ry 10 = > ;(Bjta;r;)e;(1=X,) —a;Q;Sjer € I7 and Ry 1y = 3 (Bjta;r;)ej0+
Rj,r € I™' when |z| < T/2 < 1. This gives that oR, 71 € I° uniformly when ¢ > 1 and
|z| < T/2 < 1, where we assume 7T fixed in the following.

Since we are only need local solutions, we may cut off near x = 0. To solve the

equation near z = 0 it is enough that ®sPu,r = Psf for small enough 0 < § < T'/2.
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Here ®5(x) = ®(z/6) with the same ¢ € C§° as before, then ®sP7 = ds. If f has support
where |z| < §/2 then we obtain that ®sPu,r = ®s(Id +R,7)Psf = (Id+Rs 1) f where
Rsor = PsR,17Ps. By (A48)) we have

(A.49) Rsor = Rs 10+ Rs 11

with Rs,1; = ®sR, 1 ;Ps. For fixed 0 < § < T/2 we have pRs,71 € I° uniformly when
0>1and Rs,70 € I~°° having C*° kernel depending on ¢ and 9.

It remains to invert the term Id+Rs,7 in order solve equation (A4I]). This will
be done in two steps, first making Rs, 71 small by taking large enough o. This may
increase the seminorms of R, 70, but this term can then be made small by localizing in
a sufficiently small neighborhood of x = 0.

Since oR;,71 € IY uniformly when o > 1, we find by Remark [A.0] that there exists
05,0 > 1 so that if o > o57 we have ||Rs,71f|0) < || fll©0)/2 for f € S. Then we find
that (Id+Rs,71)" " = Id—l—zk>0(—R5,Q,T71)k € I° uniformly. Observe that (—Rs,7.1)"
has kernel supported where |z| < ¢ and |y| < §. If we then solve

(A.50) Qjuj = aj_lgpj(ld +Rsor1) M f uj} =0

z1=0

for f supported where |x| < §/2, then the earlier reduction gives
(A51) ®5PUQ7T = (Id +R57Q7T) (Id —I—R57Q7T,1)_1f = (Id +R5,Q,T72)f

where Rs,19 = Rspro(Id+Rs,71)" " € I7°° with C* kernel supported where |z] < ¢
and |y| < §. Observe that we have uniform bounds for fixed 6 and 7" when ¢ > g5 and
these bounds depend on the bounds on the symbol of P and the parameters v € C"*° and
w. We shall later put more restraints on the lower bound of ¢ because of conditions on
the estimates, see ([A.64)), and the values of u,7(x) and du, (o), see (A.68).

Now we have to shrink the support of R, 12 to lower the norm of the kernel without
changing Rs,r1. With fixed 0 < § <T'/2 and g5 > 1, we assume ¢ > g5 r and multiply
the equation ([A.51l) with @5, with 0 < dy < 0/2 < T'/4 so that &5 = 1 on supp Ps,. If f
is supported where |z| < §p/2 < T'/8, then we obtain as before that

(A.52) Q50 Puyr = (Id+Rs0 012) f

where Rs, 12 = Ps,Rso12Ps,- By Lemma [AF there exists 0 < dy < §/2 so that
(Id+Rsy or2(2, D)) = 370 (= Rspm2(x, D))’ = Id modulo an operator in I~ with
Cg° kernel supported where |z| < dp and |y| < &. By replacing f in (A50) by
(Id +Rs, o12) ' f we obtain the first part of the following result.

Proposition A.11. Let ¢; be given by Remark[A.3, Pb; = a;Q;+ R; by Proposition[A.4)]
and Rs 11 and Rs, , 12 be given by (A49) and (A52) depending C*° on v and w. Then



64 NILS DENCKER

there exist 0 < T < 1,0 <6 < T/2 and gs7 > 1 so that if o > o571, 0 < dp < /2 is

small enough, f € C§° has support where ®s5, = 1 and u; € Cg° solves

(A.53) Qju; = aj_lgoj(ld +Rsor1) t(Ad +Rsy o2) " f U/j‘ =0 Vj

21 =0
then upr(z) = ;b Pruj(z) solves

(A.54) Pu,r = f

when |x| < 60/2 <T/8 and |w —wo| < 1. We also have that

(A.55) upr(0) = co(f)  Ougr(0) = dy(f)

where pc, and od, € D" uniformly when o > 1 independently on 6 and d.

Proof. In only remains to prove the statement about the values at xy. Since u,r =

Zj bju; . it suffices to consider the terms bju; , v = b;1; ,Pruj, Vj. By Proposition [A.6]
we have that u; = IE'jaj_lgojf, which gives that

(A.56) bj15,0(D)Pru;(0) = bj1h; o(D)PrFja; ;£ (0)

which does not depend on 0 and dy. Now we shall use the following result.

Lemma A.12. Let ¢, € S* uniformly and supported where || > o > 1, then for any
u € Cg° and x we find that

(A57) Bu(@)] < o™ ull nszess)

where the constant only depends on the seminorms of ¢.

Proof of Lemma[A 12 Since ¢, € S* uniformly and is supported where |£] > o, we find
that op, € S*! uniformly when ¢ > 1. This gives by the Sobolev embedding theorem

and continuity that
(A.58) |0dou(x)] < Cllogoull(nry < Collull (nizmsy
which gives the result. 0

Since v, € S° uniformly and supported where [£| > ¢ > 1 we find from Lemmas [A.§
and [A.12] and continuity that (A.56) is a distribution ¢;, such that gc;, € D' uniformly
when ¢ > 1. By replacing b; by 0b; in (A.56]) we find od; , € D’ uniformly when o > 1. [

Proof of Theorem[A 1l To solve (A we may first assume zp = 0 and make the re-
duction ([A.H) to the case with vanishing data. Then we find that f is replaced by

fo=f—(p1+po-x)us —poug, P = Py is given by (A.6) depending on u; and (A.4) holds
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with u; = 0. Since we only need a local solutions, it is no restriction to assume that f, pg

and p; have compact support. Starting with v° = 0 we shall solve the linearized equation
(A.59) P(0v! (z,w), 2, w, O/ (z,w) = folz,w)  Vj>0

with real valued solution v/*1 such that v/*!(zg, wo) and 9,v7"! (¢, we) = O(p™') de-
pending linearly on fy. Since we are going to construct local solutions near x = 0, we
may cut off Jv/ with ® € C§° such that 0 < ® < 1, ® is supported where |z| < 1 and
equal to 1 when |z| < 1/2. This will give a solution to ([A.59) when |z| < 1/2. As before,
we shall use ®5(x) = &(x/6), 6 > 0, to cut off.

To microlocalize, we use Propositions [A4l and [A. Tl to find 0 < T'< 1,0 < § < T/2
and g5 > 1 so that if p > gsr and 0 < 09 < §/2 < 1/4 is small enough and f; has
support where ®s; = 1, then ([A.59) reduces to the coupled system of equations given

by (A.53):
(A.60)  Qu(®0v’(x),z, D)v]™ = a; ' or(Id +Rs o) *(Id 4+ Ry pr2) 'fo 1<k<N

where v/ () = Re Y20, bty o(D)®vi (x) € C* with gbgi)y, € S° uniformly when ¢ > 1.
If one cuts off f, with @, /» this would give a solution to (A.59) when |z| < dy/4. Observe
that a; ', (1+ RY,7,)"" and (1+ R} ,7,)7" € I° uniformly depending C* on ®9v’(x)
and w.

By Proposition [A.TT] we find that solving (A.60) using Proposition [A.f] will give a
solution to (A59) when |z| < 8/2 < §/4 < T/8 such that v} ' (x0) and d,v] ™" () are
distributions of fy which are O(o™!) as ¢ — oco. We are going to prove that the solutions
v/ to (AB9) are uniformly bounded in C* near x = 0, so we can use the Arzela-Ascoli
theorem to get convergence of a subsequence to a solution to the nonlinear equation (A.6)).

First we obtain from Lemmas [A.8 and Remark [A.9] that there exists £ € N so that for
any m € N there exists C,,(t) € C>*°(R) so that

(A.61) llag " or(Id +Rs o 1) (Id 4Ry 0m2) " follimy < Cn(120V7 [l (0)) |l foll

since the operators are in I° depending C* on ®Jv’(z).

By (A.60), (A.61)) and Proposition [A. 10l we also find that there exists £ € N such that
for any m € N there exists C,,(t) € C*°(R) so that

(A.62) 120l 12,y < Cunlll @0V 1)1 folIE)

since @ € C§° has support when |z| < 1. Now g®dbi1)y,, € VO uniformly when o > 1
and || Rew||(m) < ||ul|gm) for u € S, which gives

(A.63) 19007 [my < 07C >~ [90flly  YmEN Vo1

1<k<N
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By using this for m = ¢ we find that

N
(A64) chv;“n%m)scm<g—2cle|<I>vzr|m> 1ol ¥meN Vo>1
k=1

Here we may replace C,,(t) with a nondecreasing function for any m.
Thus, for any m € N we will obtain uniform bounds on [|®v] || if we have uniform

bounds when m = /. Since v;;' = 0, Vk, we find by taking m = ¢ in (A62) that
(A.65) [PvR1IZ) < Ce(0) follfyy

where Cy(0) < Cy(1) since Cy(t) is nondecreasing. If we assume for some j > 0 that
(A.66) 1@u]lIy < Ce(1)llfollF

then by choosing ¢* > NagCg(l)HfOH%g) we obtain that ||®vit!| ) < 1/C,N. Then (A.64)
with m = ¢ gives that (A.66]) holds with j replaced by j + 1. Since this is true for
j = 0 we obtain by induction that (A.6G) holds for any j. By (A.64) we obtain for
any m uniform bounds on || ®v] || for any j, k, which by (AG3) gives that [|[®v7 | is
uniformly bounded for any j.

By the Arzela-Ascoli theorem there exists a subsequence {v’7+}; that converges in C™
to a real valued limit v on ®~1(1), i.e., |x] < 1/2, as jp — oco. By taking the limit of the
equation ([A.59)) we find by continuity that

(A.67) P(Ov(z,w),z,w,d)v(x,w) = fo(x,w)

when |z| < dp/4 < 1/16. We also obtain by taking the limit that v(xg, wo) = ¢,(fy) € R
and 0,v(xg, wo) = d,(fo) € R™ where gc, and od, € D’ uniformly when o > 1.

This means that we have a solution the original equation (Al when |z| < dy/4 with
fo replaced by f— (p1+pox) - us — poug by ([A.Gl) and v replaced by v+ wug+wu; -z by (A5,
which gives by linearity that v(0,wo) = ug + ¢,(f) — co(po)uo — co(p1 + poz) - uy and
0,v(0,wo) = uy +do(f) — dy(po)uo — dp(p1 +pox) - uy. If we replace u; with indeterminate

w; for j = 1 and 2, then we obtain the linear system

( ) v(0,wp) = (1 + 0 ta,)we + 0 b, - wi + 0 e, = ug
A.68
8,v(0,w0) = 0~ 'dgwo + (Idy +0 'ep)wr + 07" f = wa
where the coefficients a,, ..., f, are uniformly bounded when ¢ > 1. Observe that b, is a

1xn,d, and f, are nx 1 and e, is an n x n matrix. This is a linear (n+1) x (n+1) system
in (wp,w;) which converges to the identity when ¢ — oco. Thus, there exists g;, > 1 so
that ([A.G8) has a unique solution wy, w; that is uniformly bounded when ¢ > g;,. By
solving (A.6) with u; replaced by w;, j = 1, 2, when ¢ > p;,, we get a solution to (A.I)
which finishes the proof of Theorem [A. 1l O
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