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Abstract

We show how the spectrum of normal discrete short-range infinite-volume operators can be
approximated with two-sided error control using only data from finite-sized local patches. As a
corollary, we prove the computability of the spectrum of such infinite-volume operators with the
additional property of finite local complexity and provide an explicit algorithm. Such operators
appear in many applications, e.g. as discretizations of differential operators on unbounded
domains or as so-called tight-binding Hamiltonians in solid state physics. For a large class
of such operators, our result allows for the first time to establish computationally also the
absence of spectrum, i.e. the existence and the size of spectral gaps. We extend our results to
the ε-pseudospectrum of non-normal operators, proving that also the pseudospectrum of such
operators is computable.
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1 Introduction

The computation of spectra of linear operators is a fundamental problem that has been studied
at various levels of generality. For finite-dimensional matrices, the theorem of Abel and Ruffini
shows that there is no closed-form solution [1, 86], but the eigenvalues can be approximated
numerically [99,50,88]. The approximation error can be bounded using statements such as the
Gershgorin and Bauer-Fike theorems [49, 6, 93], and there are also algorithms that compute
validated intervals for the eigenvalues, thus providing rigorous error control [102–104].

Operators on infinite-dimensional spaces are usually studied by restriction to a finite-
dimensional subspace. Rigorous upper bounds on the eigenvalues can be derived from finite-
dimensional approximations using the Rayleigh-Ritz method [85, 83]. A number of methods
have been proposed over the years to compute complementary lower bounds on the eigenval-
ues [100, 63, 101, 7–9, 17, 18, 41]. These methods usually assume that the spectrum in a certain
energy window consists of a finite number of eigenvalues [83]. Thus, they are applicable for
example to differential operators on compact domains. For this setting, e.g. finite element
methods with error control are available [30,29,79,60].

In this paper, we consider the problem of computing spectra with rigorous and explicit
error control for short-range infinite volume operators, a class of operators for which the known
methods do not apply and which are at the same time very relevant for applications. We say
that a bounded operator H on a separable Hilbert space H is a short-range infinite volume
operator, if there is a basis (ex)x∈Γ indexed by a uniformly discrete subset Γ ⊂ Rn for some
n ∈ N, such that the matrix elements Hxy := ⟨ex, Hey⟩ of H fulfill the short-range condition

|Hxy| ≤ C
1

d(x, y)n+ε

for some C, ε > 0 and all x, y ∈ Γ. Here d denotes the maximum distance on Rn, cf. (8).
Important examples of such short-range infinite volume operators are discretizations of dif-
ferential operators on infinite domains and so-called tight-binding models from solid state
physics. In Section 2.3 we briefly discuss examples of operators arising from applications for
which computability of the spectrum was not previously known and to which our algorithm
can be applied.

Since there is an extensive mathematical literature dealing with the spectral problem for
infinite volume operators, we will briefly comment on some recent results. The easiest method
to implement is probably the finite section method, which is not only widely used in practice,
but has also been studied theoretically from various perspectives [4, 28, 32, 74, 75, 31]. The
finite section HΛ of H on a finite subset Λ ⊂ Γ is just the square matrix (Hxy)x,y∈Λ. For
certain classes of operators, sequences of finite sections can be found such that their spectra
are provably convergent. However, the occurrence of spectral pollution at the boundaries makes
it difficult to achieve good error control for general operators using finite sections [42,73].
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Another popular approach to computing the spectrum of infinite-volume operators with
strong error control is based on approximating aperiodic operators by periodic ones, e.g. [16,
15, 33]. Bounding the approximation error of such periodic approximations has motivated a
number of results proving the Lipschitz or Hölder continuity of the spectrum in the coefficients
for a large class of operators connected to dynamical systems [21,14]. Because there are easily
computable bounds on the Lipschitz constants, these continuity results can be used to provide
error control for the convergence of the approximant spectra in Hausdorff distance.

To make practical use of these bounds, however, suitable periodic approximations are re-
quired. To use the Lipschitz continuity of the spectrum, the periodic approximant has to have
the same set of local patches as the infinite-volume operator at a certain scale. While the exis-
tence of such periodic approximations for substitution systems is increasingly well-understood
in one dimension [12,38,94] the situation in higher dimensions is more complex and under active
investigation [13, 5]. In both cases, there are important examples of operators that cannot be
approximated periodically, such as the jump potential in one dimension, or the two-dimensional
Penrose tiling, for which the local matching rules force an aperiodic pattern [82]. Therefore,
while the dynamical systems method provides strong error control, it requires the construction
of periodic approximants, which is not always possible and for which no general algorithm is
known.

A different way to compute spectra is the recently proposed method of uneven sections
[36, 33], in which the operator H is approximated by a rectangular matrix (Hxy)x∈Λ′,y∈Λ for
some finite Λ ⊂ Λ′ ⊂ Γ. In addition to effectively reducing spectral pollution compared to the
finite section method, this method also provides one-sided error control [36].

A central object in the following discussions is the so-called lower norm function

ρH(λ) =

{∥∥(H − λ)−1
∥∥−1

for λ /∈ Spec(H)

0 otherwise .
(1)

For normal operators H it satisfies ρλ(H) = d(λ,Spec(H)) and for general operators it can
serve as a defintion of the ε-pseudospectrum, cf. (11).

The method from [36] implies (cf. Theorem 22 below) that for every patch size L > 0
and center point x ∈ Rn the smallest singular value εL,λ,x ≥ 0 of the rectangular matrix
(Hyz)y∈BL+m(x),z∈BL(x) satisfies

ρH(λ) ≤ εL,λ,x (2)

and thus, for normal H, also

d(λ,Spec(H)) ≤ εL,λ,x . (3)

Here BL(x) ⊂ Rn denotes the hypercube around x with side length 2L and m is a fixed finite
number.

This form of error control is only one-sided, however, as there is no lower bound for ρH(λ).
In fact, the authors of [36] prove that no algorithm giving a lower bound on ρH(λ) can exist
as long as the operator is given solely by its matrix elements [52]. The impossibility of a lower
bound implies that only the existence of spectrum in a certain interval can be shown, while the
absence of spectrum (a spectral gap) can not be rigorously established in this general setting.
This also implies that it is not possible to give a bound on the Hausdorff distance to the
infinite-volume spectrum, as for example in the periodic approximation approach of [16,15].

However, for many applications involving infinite volume operators the existence and size
of spectral gaps is of central improtance. In a previous paper, we have shown that the no-go
theorem which rules out a lower bound on ρH(λ) can be circumvented in most cases of physical
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interest, and have given a practical algorithm to compute validated spectral gaps of an infinite-
volume system by considering all subsystems of a given size [57]. In the present work, we
expand on this by giving a general algorithm to compute the spectrum of operators with finite
local complexity (flc) with full error control. The primary insight making this possible is that
for finite range operators knowledge of the infimum of εL,λ,x over all centers x ∈ Rn is sufficient
to provide a quantitative lower bound on ρH(λ). More precisely, for

εL,λ := inf
x∈Rn

εL,λ,x ,

we prove the following theorem.

Theorem 1. Let H be a discrete operator with finite range m > 0. Then for every λ ∈ C and
L > m it holds that

ρH(λ) ≥ εL,λ
√
1− δL − ∥H − λ∥

√
δL , (4)

where εL,λ := infx∈Rn εL,λ,x, with εL,λ,x defined in (24), and

δL :=
n

⌊L/m⌋ . (5)

The practical significance of Theorem 1 lies in the observation that for flc operators, the
infimum εL,λ can be computed by evaluating εL,λ,x for a finite number of suitably chosen centres
x ∈ Rn. We show that combining (2) and (4) then leads to a general algorithm for computing
the spectrum of flc operators with error control. That is, given any short-range, discrete,
normal, flc operator H and k ∈ N, our algorithm computes an approximation Γk(H) ⊆ C such
that

dH(Spec(H),Γk(H)) ≤ 2−k , (6)

where dH is the Hausdorff distance on subsets of C. Thus the algorithm is able to compute the
spectrum of flc infinite-volume operators to any given precision in Hausdorff distance.

For non-normal operators, we can use Theorem 1 to show the computability of the ε-
pseudospectrum [71,98, 58, 96] Specε(H). Again, we provide an algorithm which computes for
any ε > 0 an approximation Γk(H, ε) such that

dH(Specε(H),Γk(H, ε)) ≤ 2−k . (7)

The existence of algorithms fulfilling (6) and (7) should be viewed in the context of previous
results about the computability of the general infinite-dimensional spectral problem [52]. In
extending the theory of computability from discrete computations to analytical and numerical
problems [97, 27, 26], the solvability complexity index (SCI) is a very useful classification of
computational problems by the number of limits required for their solution [52]. The spectral
problem for operators on infinite-dimensional spaces has been a particular focus of investigation
for determining the SCI [43,53,54,35,55,23,34,87].

If a general infinite-volume operator is given by its matrix entries, it has been shown that it
is impossible to compute the spectrum with error control [36]. But it is possible to compute the
spectrum via a series of convergent estimates (without error control), which places the general
spectral problem for self-adjoint operators in the SCI = 1 class, which require one limit to
solve [52]. The precise SCI has also been determined for many spectral problems differing in
the conditions placed onH [22]. The possibility of one-sided error control by an upper bound on
the distance to spectrum has also inspired an intermediate SCI class Σ1 that is in between the
classes ∆1 and ∆2, the classes of SCI = 1 with and without error control, respectively [35,22].
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The authors of this no-go theorem have stressed, however, that the SCI of a given compu-
tation can be lowered through additional structure and conditions on the general problem [22].
This is precisely what we achieve here by introducing the structure of finite local complexity.
It turns out that by adding this requirement, the spectrum becomes computable and the flc
spectral problem is therefore in class ∆1 (full error control), instead of the class ∆2 (SCI = 1)
or Σ1 (one-sided error control), which contains the general spectral problem. This lowering of
the SCI is especially interesting in light of the fact the flc is a rather general condition that is
fulfilled by most operators that occur in practice.

2 Definitions of computational problems

To prove the computability of the spectrum for operators of finite local complexity, we require
a clear notion of computational problems and their solvability. Following [22], we define a
computational problem by the following data:

Definition 2. A computational problem is a tuple (Ω,Λ, (M, d),Ξ), where

• Ω is a set (the “set of problems”);

• Λ is a family of functions Λ = (fi)i∈I, indexed by a countable set I, where each fi is a
function fi : Ω→ R (the “evaluation functions”);

• (M, d) is a metric space (the metric space of “possible solutions”);

• Ξ is a function Ω→M (the “problem function”).

In this definition, the set Ω is the set of concrete problems that an algorithm has to be able to
solve. For spectral problems, this would correspond to a certain set of operators. The exact
solution of the problem is given by the function Ξ, which takes values in the metric space
(M, d). For the spectral case, we would choose Ξ(A) = Spec(A) for any A ∈ Ω, and M would
be the power set of C. Because we approximate the spectrum and pseudospectrum in Hausdorff
distance, we equip M with the Hausdorff distance dH . The functions fi ∈ Λ, finally, define how
the algorithm can get information about the concrete problem. For the spectral problem as
defined in [36], for example, the evaluation functions would return the matrix elements of the
operator in a certain basis, for example. We would like to stress that the choice of evaluation
functions fi ∈ Λ can be decisive for the solvability or unsolvability of a computational problem.

Computational problems can be solved by algorithms. The solvability of course depends
on what kinds of computations one allows the algorithm to perform (for example, whether
only algebraic or more general computations are allowed) [22]. Unless otherwise noted, in the
following we will understand computability to refer to algorithms that can be executed by BSS
machines [27, 26], a classical framework for computations with real numbers. In Appendix B,
we describe our model of computation in more detail, including what it means for the BSS al-
gorithm to sequentially access information about the computational problem via the evaluation
functions fi ∈ Λ.

In this paper, we consider the spectral and pseudospectral problem with the additional
structure of finite local complexity (flc). We can thus circumvent the impossibility result
of [36] by using a restricted set Ω. But the resulting class of flc operators is still very general,
and can accomodate many if not most physical situations, including all examples from [36].
We show that the spectral problem becomes computable when considering operators of finite
local complexity. In addition to restricting the problem set Ω, the set of evaluation functions
Λ must be augmented in order to allow the algorithm to make use of the flc structure.

Definition 3. A subset Γ ⊆ Rn is called uniformly discrete if there exists a constant q > 0
such that d(x, y) > q for all x, y ∈ Γ with x ̸= y.
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In the above definition, and for the rest of this paper, we define the distance d(x, y) on Rn
as the maximum distance

d((x1, . . . , xn), (y1, . . . , yn)) = max
k=1,...,n

|xk − yk| . (8)

We also define Br(x), for x ∈ Rn and r > 0, as the open ball using this distance; that is, the
set Br(x) is a hypercube with side length 2r centered at x.

Definition 4. We define a discrete operator H in dimension n ∈ N as a bounded operator on a
separable Hilbert space H, together with an orthonormal basis (ei)i∈Γ indexed by a uniformly
discrete subset Γ ⊂ Rn. We define the matrix elements at points x, y ∈ Γ as Hxy = ⟨ex, Hey⟩.

In the following, we will always represent discrete operators H with respect to the special
basis (ei)i∈Γ and use the basis isomorphism to identify H with ℓ2(Γ). Furthermore, for any
x ∈ Rn and L > 0, the finite dimensional subspace HBL(x) ⊂ H is defined by HBL(x) :=
span{ex |x ∈ BL(x)}, and the orthogonal projection onto HBL(x) is denoted by 1BL(x).

We now define our two main conditions on H, short-range and finite local complexity.

Definition 5. Let H be a discrete operator in dimension n. Then H is called short-range if
there exist C and ε > 0 such that

|Hxy| ≤ C d(x, y)−(n+ε) .

for all x, y ∈ Γ. H is said to have finite range if there is a number m > 0 (the maximal hopping
length) such that Hxy = 0 whenever d(x, y) > m.

The condition of finite local complexity is usually defined for point sets [68–70, 24]. Very
succintly, a uniformly discrete set Γ ⊂ Rn is defined to have flc iff Γ−Γ is discrete. This turns
out to be equivalent to the set of finite patches {Γ ∩ BL(x) |x ∈ Γ}, falling into finitely many
equivalence classes under translation [24] for each L > 0. To extend this concept to operators,
we require that there are finitely many equivalence classes on which, additionally, the operator
H acts in the same way, which we define precisely as follows.

Definition 6. A discrete operator H is said to have equivalent action on two subsets A,B ⊆ Γ
if there is a t ∈ Rn such that B = t+A and if there exist U(z) ∈ S1 ⊆ C for every z ∈ A such
that for any a1, a2 ∈ A we have

Hb1b2 = U(a1)Ha1a2U(a2)
∗ ,

where b1 = a1 + t, b2 = a2 + t.

Remark 7. It is clear that for any operator H, equivalent action of H defines an equivalence
relation on subsets of Γ. The complex phases U(a1) and U(a2) can often be set to unity, but
they are necessary as gauge transformations for certain operators, in particular for discrete
Schrödinger operators with magnetic fields.

Definition 8. A discrete operator H is said to have finite local complexity if for any L > 0,
the set {Γ ∩ BL(x) |x ∈ Rn } is contained in finitely many equivalence classes with respect to
equivalent action of H.

Remark 9. More explicitly, H has finite local complexity if for any L > 0 there are finitely
many x1, . . . , xs ∈ Rn such that for any y ∈ Rn, there is a k ∈ {1, . . . , s} such that H has
equivalent action on Γ ∩BL(y) and Γ ∩BL(xk).

We now define the spectral and pseudospectral problems for operators of finite local com-
plexity. The main goal of this paper is to show that these problems are solvable with error
control. We will consider the spectral problem only for normal operators. The spectral problem
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for non-normal operators is intractable because the spectrum of non-normal operators is not
Hausdorff-continuous in the matrix entries, even for flc operators [96]. Instead, we show the
that the ε-pseudospectrum is computable for non-normal operators, for all ε > 0.

To define the spectral problem for operators of finite local complexity, some work has to
be done to define suitable evaluation functions which will allow the algorithm to make use of
the flc structure. There are multiple ways to do this; for example, it would be sufficient to
give the algorithm access to the repetitivity function, which gives a radius in which all patches
of size L occur [24]. However, to stay closer to the way actual implementations are likely to
operate, we here define the evaluation so as to allow the algorithm to enumerate all local patches
of a given size and to access the matrix elements and site locations for any given patch. It is
expected that for concrete applications, special-purpose algorithms for the enumeration of local
patches will be used. We have demonstrated this for the case of cut-and-project quasicrystals
in [57, 56]. Because the exact definition of the evaluation functions is a bit tedious, it is given
in Appendix C. We now define the flc version of the spectral computational problem as follows.

Definition 10. The flc spectral problem is the computational problem (Ω,Λ, (M, dH),Ξ),
where

• Ω is the set of normal discrete operators with finite local complexity and short-range;

• Λ is a family of functions (fi)i∈I satisfying Conditions 35 in Appendix C;

• M comprises all compact subsets of C, and dH is the Hausdorff distance;

• Ξ is the function which assigns to every operator H its spectrum, Ξ(H) = Spec(H).

One of the main results in this paper is that the flc spectral problem is solvable with error
control in Hausdorff distance.

Theorem 11. Let (Ω,Λ, (M, dH),Ξ) be the flc spectral problem. Then for every k ∈ N there ex-
ists a Blum-Shub-Smale (BSS) algorithm Γk : Ω→M, using the family of evaluation functions
Λ, such that

dH(Γk(H),Ξ(H)) ≤ 2−k

for all H ∈ Ω.

The proof of this Theorem is given in Sections 6 and 7.

2.1 The pseudospectrum

For non-normal operators, we cannot compute the spectrum itself, but it is still possible to
compute the ε-pseudospectrum for ε > 0. The pseudospectrum may be defined in terms of the
lower norm function ρH : C→ R+ [77], which is defined as

ρH(λ) =

{∥∥(H − λ)−1
∥∥−1

for λ /∈ Spec(H)

0 otherwise .
(9)

The lower norm function is not a norm, but it can be given a variational definition that is
similar to the operator norm:

ρH(λ) = inf
ψ∈H\{0}

∥(H − λ)ψ∥
∥ψ∥ . (10)

Moreover, ρH is Lipschitz continuous with Lipschitz constant 1 (see, for example, [76], Lemma
2.1). The ε-pseudospectrum is defined as the closed ε-sublevel set of ρH :

Specε(H) := {z ∈ C | ρH(z) ≤ ε} . (11)
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Some authors also define the pseudospectrum as the open set Spec◦ε(H) = {z ∈ C | ρH(z) < ε},
using a strict inequality. This has no influence on the computability, however, because Specε(H)
is the closure of Spec◦ε(H) [96], and thus Specε(H) and Spec◦ε(H) have Hausdorff distance zero.
Consequently, any algorithm computing Specε(H) with error control, according to Equation
(7), also computes Spec◦ε(H) in this sense and vice versa.

For normal operators, we have

ρH(λ) = d(λ, Spec(H)) , (12)

thus the ε-pseudospectrum of a normal operator H is just the ε-fattenig of its spectrum. For
non-normal operators, we still have

ρH(λ) ≤ d(λ, Spec(H)) .

Thus the ε-pseudospectrum always contains the ε-fattening of Spec(H). A computational
problem for the ε-pseudospectrum can be defined similarly as for the spectrum:

Definition 12. The flc pseudospectral problem is the computational problem (Ωps,Λps, (M, dH),Ξps),
where

• Ωps is the set of all tuples (H, ε), whereH is a discrete operator with finite local complexity
and short-range (but not necessarily normal), and ε > 0;

• Λps consists of the same evaulation functions of Definition 10, applied to H, and one
additional evaluation function which returns ε;

• (M, dH) is as in Definition 10;

• Ξps(H, ε) = Specε(H).

The following theorem states that the ε-pseudospectrum, for ε > 0, is computable with
error control, just like the spectrum for normal operators.

Theorem 13. Let (Ωps,Λps, (M, d),Ξps) be the flc pseudospectral problem. Then for every
k ∈ N there exists a Blum-Shub-Smale (BSS) algorithm Γk : Ωps → M, using the family of
evaluation functions Λps, such that

d(Γk(H, ε),Ξps(H, ε)) ≤ 2−k

for all H ∈ Ωps.

The proof of Theorem 13 is given in Section 8.

Remark 14. The computation of the (pseudo-) spectrum in systems of finite local complexity
can be performed practically by our method. In [57], we have already described an algorithm
to prove spectral gaps using an edge state criterion on finite patches. For this we used Dirichlet
boundary conditions and computed an edge state criterion to provably avoid spectral pollution.
While this method could be used to prove the computability of the spectrum [56], here we
instead use the method of uneven sections [36], which enables us to give a unified treatment
of the computation of the spectrum and pseudospectrum. Although it is not as efficient as
the Dirichlet-based method of [57] for higher-dimensional system, we can use this approach to
compute gap bounds for the ε-pseudospectrum. Figure 1 shows a computation of the spectral
inclusion and spectral gap bounds for the pseudospectrum of a non-Hermitian Hamiltonian
with Fibonacci-like potential [48, 40,61].
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Figure 1: Exact computation of the ε-pseudospectrum of a non-Hermitian Hamiltonian with
a cut-and-project potential for ε = 0.5. The Hamiltonian is defined by Hψ(n) = −ψ(n− 1)+
V (n)ψ(n)−ψ(n+1). The chosen potential has the form V (n) = (1+i)1(αn < 1/α), where we
chose α = 1.66 (For α = (1+

√
5)/2, this construction gives the Fibonacci quasicrystal, but we

chose α = 1.66 because it creates a less uniform potential leading to a slower convergence and
thus a more pronounced effect of increasing L in the pictures.). The left and right column
show the same computation with L = 20 and L = 300, respectively. The uppermost row
shows the lower, spectral gap bound on ρH , while the row below shows the upper bound
on ρH from [36]. If the lower bound is positive, the associated point is known to be in the
complement of the pseudospectrum; if the upper bound is negative, the point is known to be
inside the pseudospectrum. This gives a decomposition of the plane into three sets R,U, and
S of points, where it is known that S ⊆ Specε(H), that R∩Specε(H) = ∅, and no statement
can be made about U . This is very similar to the sets Sτ , Rτ and Uτ in Section 8, except
that here we have fixed L instead of τ and we do not vary the spacing of the grid on which
ρ̃H(λ, τ) is evaluated.
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2.2 Proof strategy

Our proof of Theorems 11 and 13 is based on the spectral detectability result, Theorem 1. We
have formulated Theorem 1 for finite-range as opposed to short-range operators because this
simplifies the statement considerably. In Section 3, we show that the computational spectral
and pseudospectral problems for short-range flc operators can be reduced to that for finite
range operators.

In Section 4, we recall the upper bound εL,λ,x on ρH(λ) from [36], adapted to our setting
and finite range interactions. The corresponding lower bound on ρH(λ) that as formulated
in Theorem 1 is our most important novel contribution. The proof is given in Section 5 and
combines the method of uneven sections with the new notion of n-disjoint subsets. In Section 6,
we apply Theorem 1 to show that ρH(λ) is computable at every λ ∈ C.

In Section 7, we show how to apply the computability of ρH(λ) at any λ ∈ C to show
the computability of the spectrum (Theorem 11). The computability of the ε-pseudospectrum
(Theorem 13) is shown in Section 8.

2.3 Examples

Infinite-volume operators which are discrete and of finite local complexity, as described in
Definitions 4, 5, and 8, occur frequently in physics. For example, a so-called discrete Schrödinger
operator on ℓ2(Zn) [64,95,72] is of the form

(Hψ)(x) = (2n+ V (x))ψ(x) −
∑
y∈Zn

d(x,y)=1

ψ(y)

and can be obtained as the discretization of a Schrödinger operator on Rn. Here the function
V : Zn → R is called the potential. Despite its simple structure, the spectral problem for
discrete Schrödinger operators is an area of active research [44,84,78].

The spectrum of a discrete Schrödinger operator with periodic potential V (x) can be com-
puted using the Bloch-Floquet transform. In this case, the spectrum consists of finitely many
intervals separated by so called gaps. A more general class of operators is obtained when
V (x) is defined via a substitution rule. Such operators are of high interest in mathematical
physics due to their connection to quasicrystals. For example, V (x) may be the Fibonacci po-
tential [66, 40, 61] or the Thue-Morse sequence [19]. Important mathematical questions about
these operators concern the nature and fractal dimension of their spectrum [92,37] and the gap
labelling [20,65].

Despite many results on the fractal nature of the spectrum, for numerical investigation the
spectrum is usually approximated by reverting to periodic approximants [39]. While good error
bounds on the spectrum of such approximations exist [11,16] and can be computed in concrete
cases, their application requires specialized analysis to find suitable periodic approximations
and compute the constants in the bound [10]. In contrast, our method only requires the enu-
meration of local patches of a given size, and therefore provides the first immediately applicable
algorithm to compute the spectrum of discrete Schrödinger operators with potentials given by
substitution rules.

The Schrödinger operator can also be discretized when a magnetic field is present. In
the case of a constant magnetic field in a two-dimensional square lattice, this leads to the
Hofstadter model [59,89], which is famous for the self-similar, fractal structure of its spectrum
as a function of the magnetic field (Hofstadter butterfly). The spectrum of the Hofstater
model is usually approximated using periodic approximations; however, this is only possible
for rational fluxes [59]. For general fluxes, our method is to our knowledge the first that allows
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computing the spectrum with error control to arbitrary precision in the infinite Hofstadter
model.

The Hofstadter model has also been investigated on quasiperiodic lattices like Ammann-
Beenker and Rauzy tilings, which lead to a butterfly structure that depends on the quasiperi-
odicity [66, 46, 62, 47, 45]. Our method is the first to allow computing the spectrum of such
systems with error control, which we have also implemented for concrete examples in [57].

A different generalization is to consider Schrödinger operators on arbitrary graphs [91, 67].
Because we do not presuppose that our operators are defined on a grid, or the existence of a
groupoid structure as in [16], our algorithm can be readily applied to any Schrödinger operator
on arbitrary geometrically embedded infinite graphs as long as their local structure is known.

2.4 Random operators

Our method can also be applied to random operators, which play an important role in physics
as models of noise and impurities [3, 51, 2]. For example, choosing Γ = Zn, a random operator
may be defined as a weakly measurable function defined on a probability space (Ω,A,P) which
assigns to every ω ∈ Ω a bounded operator Hω acting on the common Hilbert space H. If the
action T of the translation group Zn on Ω is measure preserving and ergodic, and such that
HTxω is unitarily equivalent to Hω for every x ∈ Zn, then it can be shown that the spectrum
Spec(Hω) is almost surely constant [2].

For ergodic random operators, the almost sure spectrum can be computed using our method
by enumerating all local patches that occur in Hω with non-zero proabability. The ergodicity
implies that all such patches occur with probability one. We can thus compute the almost
sure spectrum of random operators in a completely deterministic manner, without sampling
random potentials, by enumerating all possible local patches. This procedure would have to be
optimized for practical use however, because the number of local patches grows exponentially
in L for most random models.

3 Reduction to finite range operators

In the problem statements in Definitions 10 and 12, we have assumed H to be of short range,
meaning that its matrix elements Hxy decay with a sufficient power of the distance d(x, y).
The statements needed for the computation of the spectrum and pseudospectrum, however,
are much easier to prove if we assume H to have finite range. In this section, we show that if
we can compute the spectrum for operators of finite range, we can extend this to short-range
operators by simply cutting of the operator H at a sufficiently large hopping length.

Let H be a discrete operator on H, and let m > 0. Then we define the trimmed operator
Gm by its matrix elements

Gmxy =

{
Hxy for d(x, y) ≤ m,

0 otherwise .
(13)

The trimmed operator Gm, which is also an operator on H, always has finite range m.
As a first step, we show that Gm → H converges in norm for short-range operators H. We

can prove this using the Schur test, which provides a bound on the operator norm of a linear
operator based on its matrix elements [90]. A convenient formulation of the Schur test for
discrete operators is the following Proposition [2, Proposition 10.6]:
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Proposition 15. Let B be a discrete operator on Γ satisfying

∥B∥1,1 := sup
y∈Γ

∑
x∈Γ

|Bxy| <∞ ,

∥B∥∞,∞ := sup
x∈Γ

∑
y∈Γ

|Bxy| <∞ .

Then B is bounded by ∥B∥ ≤
√
∥B∥1,1∥B∥∞,∞.

We will also need the following bound of the sum of d(x, y)−(n+ε), when summing only over
points with a given minimum distance m from x.

Lemma 16. Let ε > 0 and Γ be a subset of Rn which is uniformly discrete with distance l.
Then there is a constant C, depending only on n and l, such that∑

y∈Γ
d(x,y)>m

d(x, y)−(n+ε) ≤ C · 1

mε
. (14)

Furthermore, the constant C can be computed by a BSS algorithm from n, ε and l.

The proof of this lemma is given in Appendix A. We can now combine Lemma 16 with
Proposition 15 to prove the norm convergence Gm → H.

Lemma 17. Let H be a short-range discrete operator. Then for every δ > 0, there exists an
m > 0 such that

∥H −Gm∥ ≤ δ . (15)

The number m is a computable function of δ, the dimension n, and the decay constant C of
Definition 5.

Proof. Let Bm = H −Gm. The entries of Bm fulfill the opposite relation to (13):

Bmxy =

{
Hxy for d(x, y) > m ,

0 otherwise .

By the short-range property of H, there is a constant C > 0 such that

|Hxy| ≤ Cd(x, y)−(n+ε)

for all x, y ∈ Γ. For any x ∈ Γ, we can therefore bound∑
y∈Γ

|Bmxy| =
∑
y∈Γ

d(x,y)>m

|Hxy| ≤ C
∑
y∈Γ

d(x,y)>m

d(x, y)−(n+ε) .

By Lemma 16, there is a constant C2 > 0, which obviously does not depend on H, such that
this sum is bounded by ∑

y∈Γ
d(x,y)>m

|Hxy| ≤ C · C2 ·
1

mε
.

The same bound clearly applies when summing over x. In the language of Proposition 15, this
means that

∥B∥1,1 ≤ C · C2 ·
1

m2
and ∥B∥∞,∞ ≤ C · C2 ·

1

mε
.
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Therefore Proposition 15 bounds the operator norm of Bm by

∥H −Gm∥ = ∥Bm∥ ≤ C · C2 ·
1

mε
.

It follows that Equation (15) is fulfilled for any m ≥
(
C·C2
δ

)1/ε
, proving the Lemma. It is also

clear that a suitable m can be computed by a BSS algorithm, since it is given by a simple
formula in C,C2 and δ.

Having shown the convergence Gm → H in norm, we can now proceed to show how the
spectrum of any short-range operator H may be computed from that of a suitable trimming
Gm. This is quite simple in the normal case, but somewhat more involved for non-normal
operators.

3.1 Normal case

Lemma 17 is sufficient to reduce the computational problem for short-range operators to
that for finite range operators. Define the finite range flc spectral problem as tuples (Ω ∩
Ωfr,Λ ∪ Λfr, (M, dH),Ξ) and the finite range flc pseudospectral problem as (Ωps ∩ Ωfr,Λps ∪
Λfr, (M, dH),Ξps), where Ωfr is the set of all operators with finite range and Λfr contains just
one additional evaluation function that associates to any finite-range operator H the minimal
m such that Hxy = 0 whenever d(x, y) > m. Then we have the following proposition:

Proposition 18. If the finite range flc spectral problem (Ω∩Ωfr,Λ∪Λfr, (M, dH),Ξ) is solvable,
then so is the short-range flc spectral problem (Ω,Λ, (M, dH),Ξ).

Proof. Suppose that the finite range flc spectral problem is solvable. To solve the short-range
flc spectral problem, let H ∈ Ω be given, and let k ∈ N be arbitrary. Then by Lemma 17, we
can find a cutoff distance m such that ∥H−Gm∥ ≤ 2−(k+1). Because we have a solution of the
finite range flc spectral problem, we can then apply that solution to the finite range operator
Gm to produce an approximation A to the spectrum of Gm such that

dH(A,Spec(H)) < 2−(k+1) .

But because ∥H −Gm∥ ≤ 2−(k+1), we also have

dH(Spec(H),Spec(Gm)) ≤ 2−(k+1) .

The triangle inequality then implies that dH(A,Spec(H)) ≤ 2−k. Thus, we can always compute
a set A such that dH(A,Spec(H)) ≤ 2−k, solving the short-range flc spectral problem.

3.2 Non-normal case

For normal operators, we have used that a perturbation of size δ only changes the spectrum
by at most δ in Hausdorff distance in order to prove that the spectral problem can be reduced
to the case of finite range. For non-normal operators, however, a small perturbation can cause
arbitrarily large changes in the ε-pseudospectrum. However, we still have for any perturbation
R of norm ∥R∥ ≤ τ < ε the inclusions

Specε−τ (H) ⊆ Specε(H +R) ⊆ Specε+τ (H) . (16)
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Equation (16) follows immediately from the following equivalent characterization of the ε-
pseudospectrum as union of perturbed spectra [96, Equation 4.4]:

Specε(H) =
⋃

B∈L(H)
∥B∥≤ε

Spec(H +B) .

To show that the inclusions (16) are sufficient to bound the pseudospectrum ofH+R arbitrarily
well, we need the following lemma, which shows the continuity of the ε-pseudospectrum in the
level ε.

Lemma 19. Let H be a bounded operator and ε > 0. Then for every δ > 0, there exists a
τ > 0 so that

dH(Specε−τ (H), Specε+τ (H)) ≤ δ . (17)

In other words, the function ε→ Specε(H) is continuous in ε if the codomain is equipped with
the Hausdorff distance.

Proof. Because Specε−τ (H) is a subset of Specε+τ (H), the Hausdorff distance is just

dH(Specε−τ (H),Specε+τ (H)) = sup
x∈Specε+τ (H)

d(x,Specε−τ (H)) .

Equation (17) is therefore fulfilled if and only if for every x ∈ Specε+τ (H), there is a y ∈
Specε−τ (H) with |x− y| < δ.

Suppose for the sake of contradition that there is no τ > 0 fulfilling the conditions of the
Lemma. Then for every τj = 1/j, j ∈ Jε,δ := {n ∈ N |n ≥ max{

⌈
2
ε

⌉
,
⌈
2
δ

⌉
}}, we can find an

xj ∈ Specε+1/j(H) such that

Bδ(xj) ∩ Specε−1/j(H) = ∅ . (18)

Because all the xj are contained in Specε+1(H), which is a compact set (see [96], Theorem
2.4), the sequence (xj)j∈Jε,δ has a convergent subsequence. Without loss of generality, we can
assume that xj converges, say to x∗ ∈ C, and that |xj − x∗| < 1/j. The latter then implies
|xj − x∗| < δ/2 for all j ∈ Jε,δ. Combined with (18), this implies that

Bδ/2(x∗) ∩ Specε−1/j(H) = ∅ (19)

for all j ∈ Jε,δ. Since all sets Specε+1/j(H) are closed sets, we also have that

x∗ ∈ Specε+1/j(H) (20)

for all j ∈ Jε,δ. In terms of the function ρH , condition (20) means that

ρH(x∗) ≤ ε+ 1/j

for all for all j ∈ Jε,δ, while condition (19) is equivalent to

ρH(z) > ε− 1/j

for all z ∈ Bδ/2(x∗) and all for all j ∈ Jε,δ. Taking j →∞, we conclude that x∗ must be a strict
local minimum of ρH and thus a strict local maximum of ρ−1

H . This is impossible, however,
because ρ−1

H is subharmonic and therefore fulfills a maximum principle [96, Theorem 4.2].
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Lemma 19 will also be useful to prove the computability of the pseudospectrum for finite
range operators in Section 8. Here we use it to prove that the computation of the pseudospec-
trum can be reduced to the case of finite range operators instead of short-range ones using the
inclusions (16).

Proposition 20. If the finite range flc pseudospectral problem (Ωps∩Ωfr,Λps∪Λfr, (M, d),Ξps)
is solvable, then the short-range problem (Ωps,Λps, (M, d),Ξps) is solvable.

Proof. Assume that the finite range problem is solvable. Let (H, ε) ∈ Ωps ∩ Ωfr be a concrete
short-range spectral problem and fix the allowed margin of error δ := 2−k. In order to ap-
proximate the ε-pseudospectrum of H, we proceed as follows: Iterate over τ = 1, 1

2
, 1
4
, . . . . For

each τ , trim H to an operator Gm such that ∥H −Gm∥ ≤ τ . A cut-off length m fulfilling that
inequality can be found in a computable way by Lemma 17. We have assumed that the finite
range problem has a solution, so we can now apply that solution to construct subsets A and B
such that

dH(A,Specε−τ (G
m)) ≤ δ/6 (21)

dH(B,Specε+τ (G
m)) ≤ δ/6 . (22)

Then, if we have dH(A,B) ≤ δ/2, we terminate with A as our approximation to Specε(H),
otherwise we continue with the next τ in our sequence.

Now if the algorithm terminates because the condition dH(A,B) ≤ δ/2 is fulfilled, then the
result A will be an approximation of Specε(H) with Hausdorff distance less than δ. We can
show this using the triangle inequality and the inclusions (16) as follows:

dH(A,Specε(H)) ≤ dH(A,Specε−τ (G
m)) + dH(Specε−τ (G

m),Specε(H))

≤ dH(A,Specε−τ (G
m)) + dH(Specε−τ (G

m), Specε+τ (G
m))

≤ dH(A,Specε−τ (G
m)) + dH(Specε−τ (G

m), A)

+ dH(A,B) + dH(B,Specε+τ (G
m))

≤ 3 δ
6
+ δ

2
= δ .

In the last step, we have combined the cut-off bounds (21) and (22) with the condition dH(A,B).
It remains to show that the described algorithm does always terminate. That is, we need to

show that the condition dH(A,B) ≤ δ/2 will be fulfilled for τ small enough and A,B as above.
According to Lemma 19 there exists a τ ′ > 0 such that

dH(Specε−τ ′(H),Specε+τ ′(H)) ≤ δ/6 .

This does not imply a way of computing τ ′, but because our algorithm descends to arbitrarily
small τ , it will eventually come to a τ such that τ < τ ′/2. Assuming this, the algorithm will
then choose Gm such that ∥Gm −H∥ < τ , and we can use (16) to conclude

Specε−τ ′(H) ⊆ Specε−τ (G
m) ⊆ Specε(H) ⊆ Specε+τ (G

m) ⊆ Specε+τ ′(H) , (23)

where we have used 2τ < τ ′. We can now apply Lemma 33 twice to the inclusions in (23) to
see that

dH(Specε+τ (G
m), Specε−τ (G

m)) ≤ dH(Specε+τ (G
m), Specε−τ ′(H))

≤ dH(Specε−τ ′(H), Specε+τ ′(H))

≤ δ/6 .
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It then follows from (21) and (22) that

dH(A,B) ≤ dH(A,Specε−τ (G
m)) + dH(Specε−τ (G

m), Specε+τ (G
m)) + dH(Specε+τ (G

m), B)

≤ 3
δ

6
= δ/2 .

We have thus shown that the algorithm terminates at the latest when τ becomes smaller than
τ ′/2.

We have thus established the reduction of the spectral and pseudospectral problems to finite
range operators. In the rest of the paper, we restrict ourselves to finite range operators when
describing how to solve the flc spectral and pseudospectral problems, since by Propositions 18
and 20, the same algorithms can then also be applied to the short-range flc problems by using
a suitable cut-off.

4 The pseudospectral inclusion bound

In this section, we formulate and prove the pseudospectral inclusion bound from [36] for our
setting. Moreover, we also show that the bound is computable.

4.1 Formulation of the pseudospectral inclusion bound

A bound showing the inclusion of a complex number in the ε-pseudospectrum for a certain ε,
or in other words an upper bound on ρH , has been described in [36]. In the following we
describe the bound using the singular value decomposition (SVD) of a rectangular matrix A,
while in [36], the eigenvalues of ATA are used, which are just the squares of the singular values
of A.

Definition 21. Let H be a discrete operator with finite range m, let x ∈ Rn be any point and
L > 0, λ ∈ C. The uneven section for these data is the linear operator

QL,λ,x : HBL(x) → HBL+m(x)

QL,λ,x(ψ) = 1BL+m(x)(H − λ)1BL(x)ψ .

Recall that HBL(x) := span{ey | y ∈ BL(x) ∩ Γ} and 1BL(x) denotes the orthogonal projec-
tion ontoHBL(x). Because Γ is uniformly discrete, HBL(x) andHBL+m(x) are finite dimensional,
so that QL,λ,x can be respresented as a rectangular matrix.

Theorem 22. Let H be a discrete operator with finite range m > 0, and let λ ∈ R, L > 0,
and x ∈ Rn be arbitrary. Let

εL,λ,x = s1(QL,λ,x) (24)

be the smallest singular value of QL,λ,x. Then λ is contained in the εL,λ,x-pseudospectrum
of H:

ρH(λ) ≤ εL,λ,x . (25)

Proof. The singular value decomposition (SVD) of QL,λ,x decomposes QL,λ,x as a product

QL,λ,x = USV ∗
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where U and V are unitary and S is a rectangular diagonal matrix. We can also write this
matrix product as

QL,λ,x =

n∑
i=1

|ui⟩si⟨vi|

where (ui)i=1,...,n are the first n columns of U , (vi)i=1,...,n are the columns of V , and (si)i=1,...,n

are the diagonal elements of S. We assume that the (si)i=1,...,n are sorted in ascending order
so that s1 = εL,λ,x.

Then v1, considered as a vector in H via the canonical inclusion ι : HBL(x) → H, is an
εL,λ,x-quasimode for H. Indeed, we have

(H − λ)v1 = (H − λ)1BL(x)v1 (since v1 is supported on BL(x))

= 1BL+m(x)(H − λ)1BL(x)v1 (by the finite range of H)

= QL,λ,xv1

= s1u1

and therefore ∥(H − λ)v1∥ = s1∥u1∥ = s1. We conclude that ∥(H − λ)v1∥ ≤ s1 = εL,λ,x,
and thus v1 is an εL,λ,x-quasimode, which implies λ ∈ SpecεL,λ,x

(H) by definition of the

pseudospectrum [96].

For normal operators, Equation (25) corresponds to an upper bound on the distance to the
spectrum of H.

4.2 Computability of the pseudospectral inclusion bound

In order to derive statements about computability from the existence of the pseudospectral
inclusion bound, we need to relate it to our model of computation and show that the bound is
actually computable from our problem definition. The following Lemma shows the computabil-
ity of εL,λ,x for a fixed x ∈ Rn. We recall that a short review on BSS algorithms is given in
Appendix B.

Lemma 23. For every k ∈ N and ε > 0 there exists a BSS algorithm Γε,k such that Γε,k(QL,λ,x) ∈
R and

d(Γε,k(QL,λ,x), εL,λ,x) ≤ 2−k . (26)

Proof. First, let us note that in [36] the authors describe a method for approximating εL,λ,x
using finitely many arithmetic operations. In short, to compute a bound on the distance to
the spectrum using Proposition 22, one can use that εL,λ,x is the square root of the smallest
eigenvalue of QTL,λ,xQL,λ,x. This implies that, for any t ∈ R,

t < εL,λ,x ⇔ QTL,λ,xQL,λ,x − t2 is positive definite.

Whether a symmetric matrix is positive definite can be decided using finitely many rational
computations using the Cholesky decomposition. Recall that the Cholesky decomposition is
a method of factorizig positive semidefinite matrices A in the form L∗L, where L is a lower
triangular matrix. If the matrix is not positive semidefinite, this will lead to the square root
of a negativ number being computed in the algorithm. Thus, we can approximate εL,λ,x with
finitely many operations.

In view of this, the formulation of the BSS method Γε,k is simple because for every t,
testing whether t < εL,λ,x is computable using a finite number of additions, multiplications
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A2

A3

A1

Figure 2: In dimension n = 2, the sets A1 to A3, which are defined as the edges of three
overlapping grids, form a 2-disjoint grid, meaning that every intersection of three of the sets
is empty. In general, we need (n+ 1) grids in n dimensions to construct a similar set out of
boxes. A decomposition like this can be used to show the dectability of bulk ε-quasimodes.

and divisions. To define Γε,k, let S = {2−j | j ∈ N}. The algorithm Γε,k can then simply check
for each t ∈ S successively whether QTL,λ,xQL,λ,x − t2 is positive definite or not, terminating
with the smallest t ∈ S for which this is not the case. (Since εL,λ,x is a real number, there must
certainly be a t ∈ S with t ≥ εL,λ,x.) We take this t as the result of the BSS algorithm Γε,k.
Since t− 1/k < εL,λ,x ≤ t, we know that |t− εL,λ,k| < ε, proving that (26) is satisfied.

5 Spectral gap bound

It was proven in [36] that the pseudospectral inclusion bound εL,λ,x always converges to ρH(λ)
as L→∞, at least for normal, short-range operators. However, the convergence is not uniform
in the operator H, and thus cannot be used to provide a lower bound on ρH(λ). As described
in the introduction, we can work around this by instead using εL,λ, which is defined as the
infimum of εL,λ,x over all x ∈ Rn. In this section, we prove Theorem 1, which is restated below
for convenience.

Theorem 1. Let H be a discrete operator with finite range m > 0. Then for every λ ∈ C and
L > m it holds that

ρH(λ) ≥ εL,λ
√
1− δL − ∥H − λ∥

√
δL , (4)

where εL,λ := infx∈Rn εL,λ,x, with εL,λ,x defined in (24), and

δL :=
n

⌊L/m⌋ . (5)

Theorem 1 is a general statement about the locality of the (pseudo-)spectrum. It says that
any (pseudo-)spectrum of can be detected in some local patch of a size L, where L can be
explicitly determined from the following data: the range m of H, an upper bound on the norm
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of ∥H − λ∥, and the desired accuracy. We will show in Corollary 28 how this statement can be
used to compute ρH(λ) to any desired accuracy for flc operators.

To prove Theorem 1, we tile the space Rn with disjoint boxes {BL+m(x) |x ∈ Z}, where Z
is some discrete subset of Rn. For the boxes to be disjoint, Z must be uniformly discrete with
length 2(L+m). In each of the boxes, we can then compute εL,λ,x to approximate ρH(λ).

However, this simple decomposition approach might fail for quasimodes of H that have a
large part of their ℓ2 mass concentrated in the edges of the boxes BL+m(x)\BL(x). Such states
ψ can be quasimodes of the infinite-volume operator H, while none of their restrictions ψBL(x)

for x ∈ Z are quasimodes.
We overcome this problem by considering several overlapping disjoint decompositions of Rn

into boxes, corresponding to different uniformly discrete subsets Zi ⊆ Rn. It is possible to
choose a set of such overlapping decompositions in such a way that no quasimode ψ can have
a large part of its ℓ2 mass near the edges for every decomposition. An example with three
overlapping decompositions is shown in Figure 2. Because, in that figure, no point is in the
edges of all three decompositions simultaneously, no state ψ can have more that 2/3 of its ℓ2

mass concentrated in the colored edges for all three grids.
To implement this approach in general, we will first, in Section 5.1, give the exact condition

which the overlapping decompositions have to fulfill to guarantee that at least one of the
decompositions has low ℓ2 mass in the edges for any ψ ∈ H. We will also show how to construct
decompositions of Rn which fulfill this condition, and detail how the mass in the edges can
be lowered arbitrarily by increasing L. In Section 5.2, we then apply this result to prove
Theorem 1, by showing that if the ℓ2 mass of a quasimode ψ in the edges of a decomposition
is small enough, the restriction of this bulk quasimode to one of the BL(x) must again be a
quasimode. This then implies that the bounds εL,λ,x can be used to bound ρH(λ) from below,
as in inequality (4).

5.1 Construction of n-disjoint grids

We will now construct a set of r n-dimensional grids, similar to the one shown in Figure 2,
such that no function ψ can have a large part of its mass concentrated in all the r grids
simultaneously.

We start by defining the notion of n-disjoint sets.

Definition 24. A set (Ai)i=1,...,r of subsets Ai ⊆ Rn is called n-disjoint if every point x ∈ Rn
is contained in at most n of the sets.

As one can see from Figure 2, the tree grids A1, A2 and A3 are 2-disjoint: even though they
have nonempty pairwise intersections, the intersection of all three is empty. The next Lemma
shows that any set of grid-shaped sets is actually n-disjoint.

Lemma 25. Let n ∈ N and r ∈ N. Let (Ji)i=1,...,r be a set of mutually disjoint subsets of R.
Define

Ai :=

n⋃
j=1

(
Rj−1 × Ji × Rn−j

)
⊂ Rn . (27)

Then the sets Ai, i ∈ {1, . . . , r} are n-disjoint.

Proof. For any point p ∈ Rn to be in Ai, at least one of its n coordinates must lie in Ji, but
then that coordinate cannot lie in any other Jj . Thus, p can lie in at most n different Ai.

If r, the number of subsets, is large enough, n-disjointness is already sufficient to bound
the minimum of the ℓ2 masses in any Ai, which is shown in the following Lemma. To simplify
notation, in the following we denote by ∥ψ∥X = ∥ψ1X∩Γ∥ the ℓ2 mass of ψ in X, for any subset
X ⊆ Rn.
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Lemma 26. Let (Ai)i=1,...,r be a set of r subsets of Rn which are n-disjoint. Then for any
ψ ∈ H there exists an i ∈ {1, . . . , r} such that

∥ψ∥2Ai
≤ n

r
∥ψ∥2 .

Proof. Consider what happens if we take the sum over all ∥ψ∥2Ai
, for 1 ≤ i ≤ r. Each squared

norm can be written as a sum over points in Γ:

r∑
i=1

∥ψ∥2Ai
=

n∑
i=1

∑
x∈Γ∩Ai

|ψ(x)|2 .

Because the Ai are n-disjoint, every x ∈ Γ is contained in at most n of the sets Ai. Thus, every
term |ψ(x)|2, for x ∈ Γ, occurs at most n times in the above double sum. Thus we have

r∑
i=1

∥ψ∥2Ai
≤

∑
x∈Γ

n|ψ(x)|2 = n∥ψ∥2 .

Dividing this inequality by r, we obtain that the average of all the ∥ψ∥2Ai
is at most n

r
∥ψ∥2.

Because at least one of the numbers must be smaller or equal to the average, there is an
i ∈ {1, . . . , r} such that

∥ψ∥2Ai
≤ n

r
∥ψ∥2 .

For our purposes we use grid-shaped sets, as the ones in (27), that form a regular mesh
in Rn. Moreover, we also need to control the ”thickness” of the grid. Let us be more explicit.
Consider r ∈ N, L > 0 and m > 0. For every i ∈ {1, . . . , r} we define the set

Ji := [−m,m] + 2(L+m)

(
Z+

i

r
+

1

2

)
⊂ R . (28)

If L > (r−1)m, the sets Ji, with i = 1, . . . , r, are mutually disjoint, thus, by using (27), we get
a set of n-disjoint sets (Ai)i=1,...,r. Furthermore, the mesh formed by each of the Ai, namely
Aci , is just the union of the boxes BL(x) with centers

x ∈ Zi := 2(L+m)

(
Zn +

i

r
(1, 1, . . . , 1)

)
. (29)

In other words, we have

Aci =
⋃
x∈Zi

BL(x) . (30)

5.2 Proof of Theorem 1

Let L, M , m, and n be given, and define

r :=

⌊
L

m

⌋
.

Consider the set of r sets (J)i=1,...,r defined in (28). Since L ≥ rm > (r − 1)m, the sets
(Ai)i=1,...,r defined in (27) are n-disjoint. It then follows from Lemma 26 that for any ψ ∈ H,
there exists an i ∈ {1, . . . , r} such that

∥ψAi∥
2 ≤ n

r
∥ψ∥2 .
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Hence, for the orthogonal decomposition

ψ = 1Aiψ + 1Ac
i
ψ =: ψAi + ψAc

i

and writing δL := n/r, we have

∥ψAi∥
2 ≤ δL∥ψ∥2 and ∥ψAc

i
∥2≥ (1− δL)∥ψ∥2 . (31)

The inverse triangle inequality implies

∥(H − λ)ψ∥ ≥ ∥(H − λ)ψAc
i
∥ − ∥(H − λ)ψAi∥ . (32)

For the Ai term, we find with (31) that

∥(H − λ)ψAi∥ ≤ ∥H − λ∥∥ψAi∥ ≤
√
δL∥H − λ∥∥ψ∥ . (33)

To obtain a lower bound for the Aci term, we note that the decomposition

Aci =
⋃
x∈Zi

BL(x) ,

described in (30) is disjoint and hence

(H − λ)ψAc
i
=

∑
x∈Zi

(H − λ)ψBL(x) .

For each x ∈ Zi, we have by definition

∥(H − λ)ψBL(x)∥ = ∥QL,λ,xψBL(x)∥ ≥ εL,λ,x∥ψBL(x)∥ ≥ εL,λ∥ψBL(x)∥ . (34)

Because H has finite range m, every vector (H − λ)ψBL(x) is supported in BL+m(x). Because
the sets Zi are uniformly discrete with distance 2(L+m), the hypercubes BL+m(x) for x ∈ Zi
are pairwise disjoint. Hence, by summing Equation (34) over all x ∈ Zi, and combining it
with (31), we obtain that

∥(H − λ)ψAc
i
∥ ≥ εL,λ∥ψAc

i
∥ ≥ εL,λ

√
1− δL∥ψ∥ . (35)

Now, we can insert the bounds (35) and (33) into the inverse triangle inequality (32), and
obtain

∥(H − λ)ψ∥ ≥
(
εL,λ
√
1− δL − ∥H − λ∥

√
δL

)
∥ψ∥ . (36)

Recalling the definition of the lower norm function (10), this proves the theorem.

6 Computability of ρH
In this section, we show that the lower norm function ρH(λ) can be computed with error control,
for any flc operator H and λ ∈ C. We prove this by combining Theorem 1 and Theorem 22.
We will need the following Lemma:

Lemma 27. Let H be a finite range discrete operator. For any fixed λ ∈ C, the value of
εL,λ is nonincreasing in L. Similarly, for any fixed λ ∈ C and x ∈ Rn, the value of εL,λ,x is
nonincreasing in L.

The proof of Lemma 27 is given in Appendix A. The computability of ρH(λ) is encapsulated
in the following Corollary, which shows the existence of a computable approximation ρ̃H(λ, τ)
with guaranteed error control.
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Corollary 28. Let H be any flc discrete operator with finite range m. Define the function

ρ̃H(λ, τ) := εLH (τ),λ , (37)

using the quantities εL,λ from Theorem 1, for any λ ∈ C and τ > 0. Here the function
LH(τ) determines a patch size sufficient to approximate ρH(·) to precision τ . Its value at any
given τ > 0 can be computed from H via the evaluation functions Λ of Definition 10 by a
BSS algorithm. Then the function ρ̃H(λ, τ) fulfills

|ρH(λ)− ρ̃H(λ, τ)| ≤ τ . (38)

for any λ ∈ C, τ > 0.

Remark 29. Because ρ̃H(λ, τ) can be computed from H via the evaluation functions Λ of
Definition 10 by a BSS algorithm, the function ρ̃(λ, τ) is also computable in this sense.

Proof of Corollarly 28. Recall from Theorems 1 and 22 that, for any L > m, we have

εL,λ
√
1− δL −M

√
δL ≤ ρH(λ) ≤ εL,λ , (39)

where δL is defined as
δL =

n

⌊L/m⌋ ,

and M := ∥H − λ∥.
We write the difference between upper and lower bounds in formula (39) using the function

f(ε, δ) = ε(1−
√
1− δ) +M

√
δ . (40)

for general ε > 0 and δ ∈ (0, 1). Then formula (39) implies that

|εL,λ − ρH(λ)| < f(εL,λ, δL) (41)

for all L > m.
As a first step, set L0 = m+1 and compute ε0 = εL0,λ. Lemma 23 shows that computing ε0

is possible using a BSS algorithm from the evaluation functions Λ of Definition 10. Then by
Lemma 27, we have

f(εL,λ, δL) ≤ f(ε0, δL) (42)

for all L ≥ L0, because εL,λ ≤ ε0, and f(ε, d) is increasing in ε.
Now for any τ > 0, because f(ε, δ) is increasing in δ for δ ∈ (0, 1) and limδ→0 f(ε, δ) = 0, a

value δ′τ > 0 can be computed, for example using the bisection method, such that

f(ε0, δ
′
τ ) < τ . (43)

We now choose our value of LH(τ) such that

LH(τ) > max(L0,m⌈n/δ′τ⌉) . (44)

This definition of LH(τ) fulfills the computability requirements because the right hand side of
the inequality is computable. Furthermore, we have δLH (τ) ≤ δ′τ . Then, by using (41), (42)
and (43), we get∣∣εLH (τ),λ − ρH(λ)

∣∣ < f(εLH (τ),λ, δLH (τ)) ≤ f(εLH (τ),λ, δ
′
τ ) ≤ f(ε0, δ′τ ) < τ ,

thus (38) holds.

Our algorithms for computing the spectrum and ε-pseudospectrum of flc operators H will
be based on approximating ρH(λ) at different points λ ∈ C. In fact, the computability of
approximations ρ̃H(λ, τ) fulfilling (38) are all that we use about the operator H in showing the
computability of the (pseudo-) spectrum. The same methods could therefore also be applied to
show the computability of the (pseudo-) spectrum with Hausdorff error control for any other
class of operators where the lower norm function ρH(λ) can be approximated with error control.
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7 Computability of the spectrum for normal opera-
tors

In this section, we will prove Theorem 11, the computability of the spectrum for normal op-
erators. Our proof will be based on Corollary 28, the computability of ρH(λ). Note that the
normal spectral problem is not a special case of the pseudospectral problem because we can
only compute the ε-pseudospectrum for ε > 0. In addition to normal operators, the method
described below could easily be extended, as in [36], to classes of operators fulfilling a bound
of the form

ρH(λ) ≥ g(d(λ,Spec(H))) (45)

for some strictly increasing continuous function g.

Proof of Theorem 11. Let the operator H and k ∈ N be given. We define the desired accuracy
as τ := 2−k.

We know that H is bounded, and the algorithm can access a bound on the norm of H via
the evaluation function f5 ∈ Λ (see Definition 35). Let M := f5(H) be this bound and define
the restricted square grid

Tτ := BM (0) ∩
(τ
4

√
2 · Z2

)
⊆ C , (46)

where we use the natural identification R2 ≃ C. The side length of the rectangular grid is
chosen such that Tτ has covering radius τ/4 inside BM (0). We will approximate the spectrum
by a subset of Tτ .

For every λ ∈ Tτ , we can use the algorithm of Corollary 28 to compute an approximation
ρ̃H(z, τ/4) to ρH(z). We define our approximation Γ̃(H, τ) of the spectrum as

Γ̃(H, τ) :=
{
λ ∈ Tτ

∣∣∣ ρ̃H(λ, τ/4) < τ/2
}
. (47)

We will now show that dH(Γ̃(H, τ),Spec(H)) ≤ τ in Hausdorff distance.
First, let λ ∈ Spec(H). Then ρH(λ) = 0. Because we have chosen Tτ to have covering

radius τ/4 inside BM (0), there exists a point λ′ ∈ Tτ with |λ − λ′| < τ/4. Because ρH is
Lipschitz continuous with Lipschitz constant 1 (see, for example, [76], Lemma 2.1), it follows
that |ρH(λ) − ρH(λ′)| < τ/4. By Corollary 28, we have |ρH(λ′) − ρ̃H(λ′, τ/4)| < τ/4. The
triangle inequality thus implies

ρ̃H(λ′, τ/4) ≤
∣∣ρ̃H(λ′, τ/4)− ρH(λ′)

∣∣+ ∣∣ρH(λ′)− ρH(λ)
∣∣+ ρH(λ) < τ/2 ,

where we have used ρH(λ) = 0. Hence, λ′ ∈ Γk(H). Because λ was arbitrary, we have
d(λ, Γ̃(H, τ)) ≤ τ/2 for any λ ∈ Spec(H).

On the other hand, for any λ ∈ Γ̃(H, τ), the condition ρ̃H(λ, τ/4) < τ/2 in (47) implies
that ρH(λ) < τ by Corollary 28. But for normal operators, ρH(λ) = d(λ,Spec(H)), so we have
d(λ, Spec(H)) ≤ τ .

Summing up, for any λ ∈ Spec(H) we have d(λ, Γ̃(H, τ)) ≤ τ/4 and for any λ′ ∈ Γ̃(H, τ)
we have d(λ′,Spec(H)) ≤ τ . Thus, we have shown that dH(Γ̃(H, τ), Spec(H)) ≤ τ . The proof
of Theorem 11 then follows simply by choosing Γk(H) := Γ̃(H, 2−k).
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8 Computability of the pseudospectrum

In this section, we will prove Theorem 13, the computability of the ε-pseudospectrum for
potentially non-normal operators and for ε > 0. A related result about pseudospectra is [76],
in which it is shown that the pointwise convergence of the lower norm and the lower norm
of the adjoint implies the convergence of the ε-pseudospectrum in Hausdorff distance. In the
following, we show an analogous result about computability, namely that the ε-pseudospectrum
can be computed in Hausdorff distance if arbitrarily extact estimates of the lower norm are
possible. We do not require computation of the lower norm of the adjoint. In another related
result [14], the constancy of the spectrum in minimal dynamical systems has also been extended
to pseudospectra, which might provide an alternative avenue for computing pseudospectra
rigorously.

As in the proof of Theorem 11, we will choose a sufficiently fine grid Tτ on which to
compute the approximations ρ̃H(λ, τ). However, in the non-normal case, the scale τ cannot
be determined a priori. Instead, we will simultaneously decrease the maximum error τ of the
approximation ρ̃H(λ, τ) and the spacing of the grid Tτ on which it is computed until a certain
condition is met.

As a first step, Proposition 30 in Subsection 8.1 will show that a certain easily computable
criterion is sufficient to guarantee that the spectrum is approximated well enough for a given τ .

8.1 Approximating the pseudospectrum

To compute the ε-pseudospectrum, we will evaluate ρ̃H(λ, τ) for all λ ∈ Tτ , where Tτ is the
following lattice:

Tτ := τ
√
2Z2 ∩ BM+ε(0) ⊆ C . (48)

This definition is very close to (46), except that the factor 1
4
is not necessary in the present

case. We then decompose Tτ into the following three disjoint sets:

Sτ := {λ ∈ Tτ | ρ̃H(λ, τ) < ε− τ } , (49)

Rτ := {λ ∈ Tτ | ρ̃H(λ, τ) > ε+ 2τ } , (50)

Uτ := Tτ \ (Sτ ∪Rτ ) . (51)

It is easy to see, using Corollary 28, that all points Sτ are certainly in Specε(H), while all
points in Rτ are certainly not in Specε(H). The following proposition shows a simple condition
on Sτ , Rτ and Uτ that, if fulfilled, guarantees that Sτ will be a good approximation of the
spectrum.

Proposition 30. Let H be an flc operator and δ, τ > 0. Let Sτ and Uτ be the sets defined in
(49) and (51). Then, if

d(λ, Sτ ) < δ − τ for all λ ∈ Uτ , (52)

we have

dH(Sτ , Specε(H)) < δ .

Proof. By definition of Sτ , we have Sτ ⊆ Specε(H). Thus, the inequality for the Hausdorff
distance reduces to showing that d(λ, Sτ ) ≤ δ for all λ ∈ Specε(H).

Let λ ∈ Specε(H) be given. It is easy to show that λ ∈ BM+ε(0). The lattice Tτ was chosen
to have covering radius τ in BM+ε(0), so we can find a λ′ ∈ Tτ with d(λ, λ′) ≤ τ . Consider
now the additional set Rτ defined in (50). It is clear from the definitions of Sτ , Rτ and Uτ ,
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(49), (50) and (51) respectively, that they are a disjoint decomposition of Tτ . Thus, λ′ must
be in exactly one of these sets.

Of the three options, λ′ ∈ Rτ is actually impossible. That is because we have λ ∈ Specε(H),
so ρH(λ) ≤ ε. The Lipschitz continuity of ρH implies that ρH(λ′) ≤ ε+ τ . From Corollary 28,
we then get ρ̃H(λ′, τ) ≤ ε+ 2τ . This means λ′ /∈ R′

τ .
If we have λ′ ∈ Sτ , then d(λ, Sτ ) ≤ τ . But the algorithm always chooses τ ≤ δ, so we have

d(λ, Sτ ) ≤ δ in this case.
Finally, suppose that λ′ ∈ Uτ . By the hypothesis (52), we have d(λ′, Sτ ) < δ− τ . Moreover

d(λ, λ′) ≤ τ , thus we have d(λ, Sτ ) ≤ δ also in this case. Therefore d(λ, Sτ ) ≤ δ is fulfilled for
every λ ∈ Specϵ(H).

8.2 The computational algorithm

Because the sets Sτ and Uτ are always finite, condition (52) from Proposition 30 can be checked
in finite time, given the sets. Because this condition is sufficient to show that Sτ is within
distance δ of Specε(H), we can compute the ε-pseudospectrum by simply checking smaller and
smaller τ > 0, as in the following algorithm.

Algorithm 31 (Approximate the ε-pseudospectrum of H with maximum error δ).

Compute an upper bound M on the norm of H
Compute the lattice Tτ := τ

√
2Z2 ∩ BM+ε(0)

for j ← 1, 2, 3, . . . do
Set τ = 2−j · δ
compute Sτ and Uτ according to Equations (49) and (51)
if condition (52) holds then

return Sτ
end if

end for

Proposition 30 shows that if Algorithm 31 terminates, the result fulfills dH(Sτ , Specε(H)) <
δ. To complete the proof of Theorem 13 it remains to show that Algorithm 31 always terminates.
In other words, we need to show that for any flc operator H, as well as ε and δ, condition (52)
is fulfilled for τ small enough. This will be proven in the following subsection.

8.3 Proof that the algorithm terminates

Lemma 32. Let an flc operator H and ε, δ > 0 be given. Then there exists a τ ′ > 0 such
that for all 0 < τ < τ ′, the sets Sτ and Uτ defined in equations (49) and (51) fulfill the
condition (52) in Proposition 30.

Proof. By Lemma 19, there exists a τ ′ > 0 such that for all 0 < τ < τ ′,

dH(Specε−3τ ′(H), Specε+3τ ′(H)) < δ . (53)

(We can choose a smaller δ in Lemma 19 to obtain the strict inequality.)
Now let λ ∈ Uτ be arbitrary. By definition of Uτ , we have

ρ̃H(λ, τ) ≤ ε+ 2τ , (54)

because otherwise we would have λ ∈ Rτ . From Corollary 28, we can deduce

ρH(λ) < ε+ 3τ . (55)
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Now by (53), we know that there exists a λ′′ ∈ Specε−3τ (H) with d(λ, λ′′) < δ. This λ′′ hence
fulfills

ρH(λ′′) ≤ ε− 3τ . (56)

Now we will set

λ′ = λ′′ + τ
λ− λ′′

|λ− λ′′| . (57)

The point λ′ lies on the line connecting λ and λ′′, at a distance τ from λ′′ in the direction of
λ. Clearly, we have

d(λ′, λ) < δ − τ , (58)

because d(λ, λ′′) < δ. On the other hand, because ρH is Lipschitz continuous with constant
≤ 1 and d(λ′, λ′′) = τ , we have

ρH(λ′) ≤ ρH(λ′′) + τ ≤ ε− 2τ . (59)

where we used (56) in the second inequality. Corollary 28 again gives

ρ̃H(λ′, τ) ≤ ε− τ . (60)

It follows that λ′ ∈ Sτ . We have shown d(λ′, λ) < δ − τ in (58), so d(λ, Sτ ) < δ − τ . But
λ ∈ Uτ was arbitrary, proving the Lemma.

Proof of Theorem 13. The solution to the computational problem (Ωps, Λps, (M, d), Ξps) is
given by the BSS algorithm Γk(H, ε) that is just the application of Algorithm 31 to the given
H, ε and δ = 2−k.

By Lemma 32, there exists a τ ′ > 0 such that condition (52) is fulfilled for all 0 < τ < τ ′.
Thus, Algorithm 31 will terminate after at most log2(max(1, δ/τ ′)) iterations. After the algo-
rithm has terminated, the sets Sτ and Uτ fulfill condition (52), and therefore, by Proposition 30,
we have

dH(Γk(H, ε),Ξps(H, ε)) = dH(Sτ , Specε(H)) < δ = 2−k .

This completes the proof of Theorem 13.
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Tübingen, where this work initiated. M.M. gratefully acknowledges the support of PNRR
Italia Domani and Next Generation EU through the ICSC National Research Centre for High
Performance Computing, Big Data and Quantum Computing and the support of the MUR
grant Dipartimento di Eccellenza 2023–2027. S.T. acknowledges financial support by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 352 – Project-
ID 470903074.

26



A Elementary lemmas

This Appendix collects several Lemmas with simple proofs that have been moved here to
shorten the main text.

In proving the reduction to finite range in Section 3, we used the following lemma, which
provides a bound on the sum of polynomially decaying hoppings starting at a given distance.

Lemma 16. Let ε > 0 and Γ be a subset of Rn which is uniformly discrete with distance l.
Then there is a constant C, depending only on n and l, such that∑

y∈Γ
d(x,y)>m

d(x, y)−(n+ε) ≤ C · 1

mε
. (14)

Furthermore, the constant C can be computed by a BSS algorithm from n, ε and l.

Proof. Without loss of generality, we can assume that m > l. To compute the sum in (14),
we use the Cauchy-Maclaurin criterion adapted to our setting in same spirit as in [80]. The
main idea is to estimate the sum from above by using an integral. First, notice that d(x, y) ≤
∥x− y∥2 ≤ d(x, y)

√
n where ∥ · ∥2 denotes the usual Euclidean norm in Rn. Then, the function

Rn ∋ y 7→ d(x, y)−(n+ε) is such that d(x, y)−(n+ε) ≤ n(n+ε)/2∥x − y∥−(n+ε)
2 . For every y ∈ Γ

such that d(x, y) > m, let B̃
(x)

l/4(y) be a closed (possibly rotated) hypercube of side length l/2

such that y sits on one of its corner and for every z ∈ B̃(x)

l/4(y) it holds that ∥x−z∥2 ≤ ∥x−y∥2.
Furthermore, by hypothesis on the uniform discreteness of Γ we have that B̃

(x)

l/4(y) ∩ Γ = {y}
for every y ∈ Γ and B̃

(x)

l/4(y) ∩ B̃
(x)

l/4(z) = ∅ if y ̸= z. Thus we have∑
y∈Γ

d(x,y)>m

d(x, y)−(n+ε) ≤ n(n+ε)/2(l/2)−n
∑
y∈Γ

d(x,y)>m

(l/2)n∥x− y∥−(n+ε)
2

≤ n(n+ε)/2(l/2)−n
∑
y∈Γ

d(x,y)>m

∫
B̃

(x)
l/4

(y)

dnz ∥x− z∥−(n+ε)
2

≤ n(n+ε)/2(l/2)−n
∫
∥y−x∥2>m

4

dnz ∥x− z∥−(n+ε)
2

≤ n(n+ε)/2(l/2)−n(2π)n−1

∫ +∞

m
4

dr rn−1r−(n+ε) .

where in the last integral we used the n-spherical coordinates. By explicit integration, the
proofs is concluded.

We also needed the following Lemma, which shows that εL,λ,x is nonincreasing in L.

Lemma 27. Let H be a finite range discrete operator. For any fixed λ ∈ C, the value of
εL,λ is nonincreasing in L. Similarly, for any fixed λ ∈ C and x ∈ Rn, the value of εL,λ,x is
nonincreasing in L.

Proof. It is clear that the statement about εL,λ directly follows from the statement about
εL,λ,x, because the infimum of a set of nonincreasing functions is again nonincreasing.

Let 0 < L1 < L2 be two values of L. Now the bound εL1,λ,x is defined as the lower
norm of QL1,λ,x, which is the rectangular section of H going from HBL1

(x) to HBL1+m(x). It

follows that we can find a sequence (ψn)n∈N with ψn ∈ HBL1
(x) and ∥ψn∥ = 1, such that

∥QL1,λ,xψn∥ → εL1,λ,x.
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Because BL1(x) ⊆ BL2(x), we have canonical inclusions

ι : HBL1
(x) → HBL2

(x) and ιm : HBL1+m(x) → HBL2+m(x) .

Clearly, we have the commutation relation

ιmQL1,λ,xψn = QL2,λ,xιψn ,

because H has finite range m. Furthermore, ∥ιϕ∥BL2
(x) = ∥ϕ∥BL1

(x) for all ϕ ∈ HBL1
(x).

Thus, we obtain
∥QL1,λ,xιψn∥ = ∥QL2,λ,xψn∥ .

Thus ιψn is a sequence of states in HBL2
(x) with ∥QL1,λ,xιψn∥ → εL1,λ,x. Because εL2,λ,x is

defined as the lower norm of QL2,λ,x, this implies that

εL2,λ,x ≤ εL1,λ,x .

The following is a sort of “Sandwich Lemma” for the Hausdorff distance. It proves that if
a set B is sandwiched between two sets A and C, then from the perspective of any reference
set X, the intermediate set B cannot be farther away than both of the extremal sets A and C.

Lemma 33. Let A,B,C,X be four subsets of a metric space (M, d) such that A ⊆ B ⊆ C.
Then the Hausdorff distance dH fulfills

dH(X,B) ≤ max (dH(X,A), dH(X,C)) .

Proof. By definition, we have

dH(X,B) = max

(
sup
x∈X

d(x,B), sup
b∈B

d(b,X)

)
.

Now because A ⊆ B, we have

d(x,B) ≤ d(x,A) ≤ dH(X,A),

and from B ⊆ C, we get

sup
b∈B

d(b,X) ≤ sup
c∈C

d(c,X) ≤ dH(C,X).

Thus we obtain dH(X,B) ≤ max(dH(X,A), dH(X,C)) =M .

B Definition of BSS algorithms

Computational problems can be solved by algorithms. One can define classes of algorithms
corresponding to different models of computation [22]. In the following, we will use Blum-
Shub-Smale (BSS) machines to define the computational steps of our algorithms [27,26,25,81].
BSS machines are similar to Turing machines [97] but can store arbitrary real numbers (or
elements of any other ring) on their tape. A BSS machine is characterized by a certain set of
states and rules. Any such machine defines a mapping

fBSS : R∞ → { no-halt } ∪ R∞ ,

where R∞ = R0 ∪̇R1 ∪̇R2 ∪̇ . . . is the set of finite real sequences and no-halt is a special
symbol. To determine the value of the function fBSS at a specific x ∈ R∞, the elements of x
are written on the tape, and the value of the function fBSS will be the numbers on the tape

after the machine halts, or no-halt if the machine does not halt on the given inputs. We say

that a BSS machine always halts if f(A) ̸= no-halt for all A ∈ R∞.

28



Definition 34. Let (Ω,Λ, (M, d),Ξ) be a computational problem and let Fembed : R∞ → M

be a function with dense image. (The function Fembed is used to parameterize the solution
space.) Furthermore, suppose that Λ is countable and (fi)i∈N is an enumeration of Λ.

A BSS algorithm Γ for the problem (Ω,Λ, (M, d),Ξ) can be described by a sequence of BSS
functions (ck)k∈N0 : Rk → R∞, all of which halt on any input. Furthermore, we require that
for any x ∈ Rk, the vector a := ck(x) has at least one element, and furthermore

• If a0 ̸= 0, then a ∈ R2, and a1 is an integer.

• If a0 = 0, then a has an odd number of elements.

The purpose of these conditions on a is that we wish to reserve the first number of the result
a0 to indicate whether the algorithm has terminated in step k or whether a further evaluation
is requested. If a0 ̸= 0, then a1 ∈ Z shall determine the evaluation function that is requested.
If a0 = 0, then the execution terminates, and the following pairs of numbers shall determine
the endpoints of the intervals whose union is the result of the computation, parameterized via
Fembed.

To evaluate a BSS algorithm on a value x ∈ Ω, we define a series of functions

dk : Ω→M ∪̇Rk+1, k ∈ N .

which follow the instructions given by ck(x). As a first step, we let

d0(A) = c0 ,

where c0 ∈ R∞ since c0 has zero arguments.
Now for all k > 0, the value of dk(A) depends on the value of dk−1(A). If dk−1(A) ∈ Rk,

then the algorithm has not terminated yet, but has evaluated (k+ 1) evaluation functions. To
decide how to proceed in the next step, we then use the function ck. Let

a = (a0, . . . , am) = ck(dk−1(A)) .

If a0 ̸= 0, then ck has determined that another evaluation is necessary. In that case, m = 1,
and a1 contains the index of the function to be evaluated. Therefore, in this case, we let

dk(A) = (b1, . . . , bk, fa1(A)) .

where (b0, . . . , bk−1) = dk−1(A), thus appending the result of the requested evaluation to the
previous ones.

If on the other hand a0 ̸= 0, then ck has determined that the previous evaluations were
sufficient to estimate the result, and the values a1, . . . , aN contain a representation of the result.
In this case, therefore, we let

dk(A) = Fembed(a1, . . . , aN ) .

Finally, if dk−1(A) ∈ M, then a result has already been found in a previous step, so that
we have to perform no further computation and can simply define

dk(A) = dk−1(A) .

Again, we say that the algorithm terminates for an argument A ∈ Ω if dk(A) ∈M for some
k ∈ N. If an algorithm terminates for all A ∈ Ω, we can define a map Γ : Ω→M by mapping
A to dk(A) for the first k ∈ N for which dk(A) ∈ M. If we speak of an algorithm Ω → M in
the following, we always mean an algorithm that terminates for all A ∈ Ω, and we will usually
identify the algorithm with its associated map Γ : Ω→M.
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C Evaluation functions for flc operators

In this section, we will describe how to augment the set of evaluation functions Λ in a way
that allows algorithms to make use of the flc structure for the flc spectral and pseudospectral
problems defined in Definitions 10 and 12.

The evaluation functions have to represent a given flc operator by a set of real functions.
Let H be an flc discrete operator. As a first step, for every L ∈ N, let (xL,i)i=1,...,npatch(L) be
an enumeration of the local patches at scale L, so that for every y ∈ Rn, there is exactly one
n ∈ {1, . . . , npatch(L)} such that H has equivalent action on BL(y) and BL(xL,i).

Now for every local patch BL(xm), since Γ is uniformly discrete, the set BL(xm)∩Γ is finite.
For any L > 0, m ∈ {1, . . . , npatch(L)}, let (pL,m,k) be the k-th point in BL(xm), according to
some enumeration of the points. Using these definitions, we can now define our conditions on
a set of evaluation functions that captures the finite local complexity structure.

Condition 35. Let

I := ({1} × N) ∪̇ ({2} × N× N) ∪̇ ({3} × N× N× N× N)
∪̇ ({4} × N× N× N× N) .

Then a family of functions (fi)i∈I fulfills our conditions for a set of evaluation functions if:

• f1,L(H) is the number of local patches, up to equivalent action, of H at scale L, defined
above as npatch(L).

• f2,L,m(H) is the number of points in Γ ∩BL(xm), defined above as npoint(L,m).

• f3,L,m,k,l(H) is the matrix element ⟨pk, HBL(xm)pl⟩, where pk and pl are the points in
Γ ∩BL(xm) according to the above enumeration.

• f4,L,n,k,i(H) is i-th coordinate of pL,n,k, defined above as the k-th point in the m-th patch
at scale L, or zero if n > npatch(L) or i > n or k > npatch(L).

• f5(H) is a bound on the norm of H.

• f6(H) =: C and f7(H) =: ε are real numbers such that

|Hxy| ≤ C d(x, y)−(n+ε) ,

for all x, y ∈ Γ, as in Definition 5.

The evaluation functions f2,L,m(H), f3,L,m,k,l(H), and f4,L,m,k,i(H) are defined to be zero if
any index is out of bounds, that is if m > npatch(L) or k > npoint(L,m) or l > npoint(L,m) or
i > n.
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and
Werner Reichardt Centre for Integrative Neuroscience,
Otfried-Müller-Str. 25, 72076 Tübingen, Germany
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