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Abstract—This study investigates how machine learning (ML)
models can predict hospital readmissions for diabetic patients
fairly and accurately across different demographics (age, gender,
race). We compared models like Deep Learning, Generalized
Linear Models, Gradient Boosting Machines (GBM), and Naive
Bayes. GBM stood out with an F1-score of 84.3% and accuracy of
82.2%, accurately predicting readmissions across demographics.
A fairness analysis was conducted across all the models. GBM
minimized disparities in predictions, achieving balanced results
across genders and races. It showed low False Discovery Rates
(FDR) (6-7%) and False Positive Rates (FPR) (5%) for both
genders. Additionally, FDRs remained low for racial groups, such
as African Americans (8%) and Asians (7%). Similarly, FPRs
were consistent across age groups (4%) for both patients under
40 and those above 40, indicating its precision and ability to
reduce bias. These findings emphasize the importance of choosing
ML models carefully to ensure both accuracy and fairness for
all patients. By showcasing effectiveness of various models with
fairness metrics, this study promotes personalized medicine and
the need for fair ML algorithms in healthcare. This can ultimately
reduce disparities and improve outcomes for diabetic patients of
all backgrounds.

Index Terms—Predictive and diagnostic analytics, Machine
learning, Artificial intelligence, Hyperglycemia, Health disparity,
Accuracy.

I. INTRODUCTION

Health disparities denote the substantial and preventable dif-

ferences in health outcomes or healthcare service access across

various population groups. These disparities arise from mul-

tifaceted influences, including socioeconomic, environmental,

and cultural factors, leading to inequitable health experiences

and outcomes among diverse communities. Manifestations of

health disparities are observable across several health indi-

cators, such as disease prevalence, morbidity, mortality, and

access to healthcare and preventive services [1]–[3].

In the realm of ML , the concept of "fairness" pertains to the

ethical and equitable consideration of individuals or groups in

the development, deployment, and utilization of ML models

[4]. Achieving fairness in ML involves mitigating bias and

discrimination within algorithmic decision-making processes

[5], a crucial step to prevent adverse impacts on specific

demographic groups and ensure equitable outcomes. Fairness

in ML encompasses various dimensions, including algorithmic

fairness, data fairness, fair treatment of individuals, and the

principles of explainability and transparency [6]–[8].

The role of big data in health science is increasingly

recognized as critical, especially as ML algorithms, developed

from vast datasets, have the potential to perpetuate or introduce

new health disparities [9]. Bias in ML is generally identified in

relation to the dataset or model, with specific concerns around

labeling, sample selection, data retrieval, scaling, imputation,

or model selection biases [10]. Addressing these biases is

crucial at three distinct stages of the software development

lifecycle: early (pre-processing), mid (in-processing), and late

(post-processing) [10], [11].

The early stage involves reducing bias by manipulating

the training data before algorithm training [12]. The mid-

stage focuses on debiasing the model itself, often through

optimization problem-solving [13]. The late stage aims to

minimize biases by adjusting the output predictions post-

training [14]. It is noted that failing to identify and address

biases early can limit the effectiveness of bias mitigation

strategies later in the ML pipeline [15], [16]. For instance,

research suggests that analyzing historical diabetes care trends

in hospitalized patients can improve patient safety [17], and

studies have shown that HbA1c measurements are linked to

lower hospital readmission rates [18].

Fairness in ML is a crucial subject, aiming to develop

unbiased models that treat all individuals or groups equitably,

without discrimination based on sensitive attributes like gen-

der, race, age, or ethnicity. This focus is driven by ethical

considerations, social impact, and the need for trust and

accountability in ML applications. Thus, ensuring fairness is

essential for the integrity of ML models.

The interest in bias and fairness in ML has surged among

researchers, sparking numerous studies addressing this issue,

its challenges, and potential solutions. Despite these efforts, a

comprehensive understanding of fairness-aware ML remains

elusive. This work aims to bridge this gap by examining

racial/ethnic disparities that may affect hospitalization rates,

specifically aiming to reduce readmission disparities among
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diabetic patients by considering factors such as gender, race,

and ethnicity.

This paper contributions are twofold: 1. We examine dis-

parities in ML model outputs concerning diabetic patient

readmission rates. 2. We conduct a thorough analysis based

on sensitive demographic groups—age, gender, and race—to

highlight key findings and implications.

Following this exploration, we aim to advance the under-

standing of fairness in ML within the healthcare domain,

particularly focusing on mitigating health disparities among di-

abetic patients. Our research explores the intricate mechanisms

through which ML models may unintentionally exacerbate or

magnify discrepancies in hospital readmission rates, particu-

larly focusing on the influence of sensitive attributes like age,

gender, and race. Through the identification and rectification of

these disparities, we aim to advance the creation of healthcare

models and algorithms that prioritize equity.

II. RELATED WORK

Pagano et al. [19] delve into bias and unfairness within

ML models, highlighting a focus on identification methods

alongside existing metrics, tools, datasets, and bias mitigation

techniques aimed at fairness. Giovanola, B. et al. [20] con-

ceptualize fairness in AI ethics by integrating insights from

moral philosophy, thus redefining fairness in healthcare ML

algorithms. Gohar, U., et al. [21] provide a comprehensive

review of intersectional fairness, establishing a taxonomy

for fairness concepts and mitigation strategies, identifying

challenges, and offering guidelines for future research.

Chen, Z et al. [22] conduct an empirical study on bias

mitigation methods for ML classifiers, using a wide array

of performance and fairness metrics to assess the trade-offs

in various software decision-making contexts. Their findings

indicate that while bias mitigation often leads to performance

trade-offs, it can also paradoxically reduce fairness in some

scenarios. Pessach, D. et al. [23] offer an overview of algo-

rithmic fairness, discussing bias origins, fairness definitions,

and mitigation mechanisms, alongside a comparative analysis

of these mechanisms across different scenarios, enhancing

understanding of their applicability.

Pagano, T. P., et al. [24] explore bias and fairness metrics

with a focus on gender sensitivity in ML applications across

computer vision, natural language processing, and recommen-

dation systems, underscoring the importance of context in

fairness metrics. Wan, M., et al. [25] review fairness mitigation

techniques, distinguishing between explicit methods, which

integrate fairness metrics into training objectives, and implicit

methods, which refine latent representations, highlighting on-

going challenges and encouraging further research.

Yang, J., et al. [26] introduce an adversarial training frame-

work aimed at mitigating biases from data collection, show-

casing its effectiveness in improving fairness in COVID-19

predictions while maintaining clinical efficacy. Wang, R., et al.

[27] provide evidence that well-trained ML models can exhibit

unbiased performance across various subgroups, suggesting

that comprehensive training can overcome bias under multiple

fairness metrics.

Wang, Z., et al. [28] propose a novel counterfactual ap-

proach to address bias at its root, combining performance and

fairness optimization to achieve optimal outcomes in both do-

mains. Their evaluation across benchmark tasks and real-world

datasets demonstrates the method’s ability to enhance fair-

ness without compromising performance. Collectively, these

studies illuminate the multifaceted challenges and solutions

in advancing fairness and bias mitigation in ML, underscoring

the necessity of ongoing research and innovation in this critical

area.

Health Disparity: Health disparities, defined as systematic,

preventable differences in health outcomes that persist between

distinct population groups, have been a subject of consider-

able concern in public health research [1]. These disparities

manifest across various dimensions, including socioeconomic

status, race, ethnicity, gender, and geographical location. A

considerable body of literature underscores the role of social

determinants of health in driving disparities. Socioeconomic

factors, such as income, education, and employment, con-

tribute significantly to differential access to healthcare services

and health outcomes [29]. Research has consistently demon-

strated pronounced health disparities among racial and ethnic

groups. Studies highlight disparities in chronic diseases, access

to preventive care, and maternal and child health outcomes

among different racial and ethnic communities [3]. Gender-

based health disparities have also been well-documented.

Women and men often experience differences in the prevalence

and management of various health conditions. For example,

studies reveal disparities in cardiovascular health and mental

health outcomes between genders [30]. Geographical location

plays a crucial role in health outcomes. Rural populations,

in particular, face challenges related to limited access to

healthcare facilities, healthcare workforce shortages, and so-

cioeconomic disparities [31]. The literature emphasizes the

need for targeted interventions and policy measures to address

health disparities. Community-based interventions, culturally

competent healthcare, and policy initiatives focusing on the

social determinants of health are identified as essential strate-

gies [32]. Recent research explores the role of technology

in mitigating health disparities. Telehealth and mobile health

applications, for instance, have shown promise in improving

healthcare access, particularly for underserved populations

[33].

In conclusion, the literature underscores the multifaceted na-

ture of health disparities and the imperative for comprehensive,

interdisciplinary approaches to address them. Future research

should continue to explore innovative strategies and interven-

tions to reduce and ultimately eliminate health disparities.

III. METHODOLOGY

A. Problem Definition

This research is primarily focused on investigating the

equity of predictions generated by ML models across various

demographic categories, with a specific emphasis on age,



gender, and race. The study seeks to evaluate whether these

predictive models exhibit fairness and impartiality in their

outcomes or if there are disparities that disproportionately im-

pact certain demographic groups. By analyzing the predictive

performance across different demographic strata, the research

aims to pinpoint potential biases and inequalities in model

predictions, thereby contributing to the development of more

equitable and unbiased ML algorithms.

The research question we aim to address is: Are the predic-

tions of the models equitable across diverse demographics,

including age, gender, and race?

B. Predictive Models

In this research, we conduct a comprehensive evaluation of

the predictive performance of various ML models, alongside

a detailed analysis of their fairness concerning demographic

attributes such as age, gender, and race. Our methodology

involves the strategic selection of four distinct ML models,

each renowned for its specific capabilities and compatibility

with the unique facets of our dataset and overarching research

goals. The models under scrutiny include Deep Learning

(DL), Gradient Boosting Machine (GBM), Generalized Linear

Model (GLM), and Naive Bayes (NB), chosen for their diverse

strengths in handling complex data and analytical challenges.

Table I summarizes the hyperparameter configurations for the

used models.

Naive Bayes is a simple probabilistic classifier based on

Bayes’ theorem with the assumption of independence among

features. It’s commonly used in machine learning for clas-

sification tasks, especially in text categorization and spam

filtering. Despite its simplicity and the naive assumption of

feature independence, Naive Bayes often performs well in

practice and is efficient in both training and prediction.

Generalized Linear Model : GLM is a statistical frame-

work used for modeling relationships between a dependent

variable and one or more independent variables. It extends

the ordinary linear regression model to accommodate various

types of response variables, including continuous, binary,

count, and categorical data. GLM incorporates a link function

to connect the linear predictor to the response variable, al-

lowing for flexible modeling of non-normal distributions. It is

widely used in fields such as epidemiology, biology, and social

sciences for analyzing and interpreting data while accounting

for different types of distributions and relationships between

variables.

Gradient Boosting Machine: GBM is a type of ML model

that works by combining multiple weak learners, typically

decision trees, sequentially to improve predictive performance.

It builds these trees in a stepwise manner, with each tree

correcting the errors made by the previous ones, ultimately

producing a strong predictive model. GBM is known for its

effectiveness in handling structured data and is widely used in

predictive modeling tasks such as classification and regression.

Deep learning is a subset of ML that involves training

artificial neural networks with multiple layers to learn intricate

patterns from data. Multilayer Perceptron (MLP) is a versatile

neural network architecture commonly used in DL for captur-

ing complex data patterns through its layered structure.

TABLE I
HYPERPARAMETER CONFIGURATIONS FOR PREDICTIVE MODELS

Model Detailed Hyperparameters

Naive Bayes Smoothing parameter (alpha): 1.0, Fit prior: True, Class prior:
None

Generalized Linear Model Regularization type: Elastic Net, Regularization strength (al-
pha): 0.01, L1 ratio: 0.5, Convergence tolerance: 1e-4

Gradient Boosting Machine Learning rate: 0.1, Max tree depth: 5, Number of estimators:
100, Subsample: 0.8, Loss function: deviance

Multilayer Perceptron- MLP model Neurons per layer: [128, 64, 32] (indicating three hidden
layers), Activation function: ReLU, Learning rate: 0.001,
Optimization method: Adam, Batch size: 32, Epochs: 100

1) Evaluation Strategy: Our evaluation strategy is mul-

tifaceted, beginning with an assessment of predictive per-

formance through key accuracy metrics and progressing to

a thorough fairness analysis to ensure equitable predictions

across different demographic groups.

Performance metrics [34] : In measuring model accuracy,

we consider four critical metrics. Precision is essential in

scenarios where the cost of false positives is high, as it

measures the accuracy of positive predictions. Recall, or

sensitivity, is crucial for identifying the majority of actual

positives, significant where missing a positive case could be

detrimental. The F1 Score, a harmonic mean of precision and

recall, offers a balanced metric, particularly useful in situations

with imbalanced datasets. Lastly, overall model accuracy

provides a general indication of performance, accounting for

both positive and negative predictions.

Fairness metrics: Our fairness analysis employs a compre-

hensive suite of metrics aimed at uncovering any bias. The

Disparate Impact Ratio examines outcome disparities to high-

light potential discrimination. The Predicted Positive Rate

(PPR) and Predicted Positive Group Rate (PPGR) assess

the distribution of positive predictions, aiding in detecting

biases. Additionally, the analysis includes the False Discovery

Rate (FDR) and False Positive Rate (FPR), focusing on the

accuracy of positive predictions, alongside the False Omission

Rate (FOR) and False Negative Rate (FNR), which evaluate

the accuracy of negative predictions. The Group Size Ratio

(GSR) ensures proportional representation of various groups

within the predictions.

Equity across these fairness metrics is our goal, aiming for

lower error rates (FDR, FPR, FOR, FNR) to indicate minimal

inaccuracies and higher values for PPR and PPGR, reflecting

fair positive prediction distribution. An ideal GSR value should

be close to 1, indicating balanced group representation.

Our evaluation strategy is as:

• Model Prediction Generation: Initiate the process by

generating predictions from the model for the entire

dataset.

• Accuracy Assessment: Evaluate the model’s predictive

performance using critical accuracy metrics, including

Precision, Recall, F1 Score, and overall Accuracy.



• Sub-group Fairness Analysis:Employ fairness metrics

such as Disparate Impact and Equality of Opportunity

to uncover any potential biases, ensuring the model’s

predictions are equitable across different demographics.

• Sub-group Accuracy Evaluation: Within the fairness

analysis framework, also examine the accuracy metrics

for each sub-group.

2) Experimental setting: Our experimental setup consists

of a Windows 11 computing system with an Intel Core i9

processor, complemented by 8.00 GB of RAM, ensuring robust

performance for our research tasks. On the software front,

Python 3.8 was used as programming language, supported by

a suite of libraries pivotal for ML: scikit-learn (0.24.2) for a

variety of algorithms, TensorFlow (2.6.0) and PyTorch (1.9.0)

for advanced deep learning models, alongside pandas (1.3.3),

NumPy (1.21.2), matplotlib (3.4.3), and seaborn (0.11.2) for

data handling and visualization.

C. Cohort Selection

In this study, we utilized the diabetes dataset [35], providing

a depiction of clinical care across 130 US hospitals and

integrated delivery networks spanning from 1999 to 2008. The

primary classification objective involves predicting whether

a patient is likely to be readmitted within 30 days. Dataset

Features: Comprising data from 101,766 patients, the dataset

encompasses 50 attributes, including 10 numerical, 7 binary,

and 33 categorical features. The attributes encounter_id and

patient_nbr are excluded from the learning tasks as they

serve as patient identifiers. Additionally, attributes such as

weight, payer_code, and medical_specialty are excluded due

to containing at least 40% missing values. Furthermore, we

eliminate missing values in the race, diag_1, diag_2, and

diag_3 columns. The class label "readmitted" initially contains

54,864 rows with the designation "no record of readmission";

consequently, these rows are excluded as well. Following

these data processing steps, the refined dataset consists of

45,715 records. Class Attribute: The class attribute is the

"readmitted" attribute, denoted as ’< 30’ and ’> 30,’ indicating

whether a patient is likely to be readmitted within 30 days. The

positive class is represented by "< 30." The dataset exhibits

an imbalance with an Imbalance Ratio (IR) of 1:3:13 for the

positive class to negative classes.

IV. RESULTS

A. Quantifying overall model performance

Our study assesses ML models on a diabetes dataset,

analyzing impacts by race, gender, and age. We start with

model predictions, evaluating accuracy through metrics like

accuracy, precision, recall, and F1 score. We then proceed

to a fairness analysis using metrics like GSR, PPR, PPGR,

FDR, FPR, FOR, and FNR. Additionally, we examine sub-

group accuracy to ensure equitable performance. Through this

process, we iteratively refine our models to enhance both

accuracy and fairness, aiming to improve ML applications in

healthcare, with a focus on equitable diabetes care.

TABLE II
COMPARATIVE ANALYSIS OF MACHINE LEARNING MODEL

PERFORMANCE

Model name Precision Recall F1 Accuracy

NB 0.778 0.989 0.772 0.740
GLM 0.797 0.989 0.830 0.809
GBM 0.815 0.998 0.843 0.822

MLP 0.792 0.998 0.839 0.819

Our evaluation of machine learning model performance,

detailed in Table II, revealed GBM as the most comprehensive

performer across the employed metrics (precision, recall, F1-

score, and accuracy). Notably, GBM achieved a well-balanced

F1-score of 84.3%, demonstrating its proficiency in correctly

identifying positive cases and capturing true positive cases.

This balanced performance is further validated by GBM’s

accuracy of 82.2%, indicating its ability to make accurate

predictions. While other models exhibited strengths in specific

areas, they presented trade-offs. For instance, MLP achieved

a high precision of 79.2%, suggesting its effectiveness in

minimizing false positives. However, this strength came at the

cost of a lower overall accuracy compared to GBM. Similarly,

GLM and NB demonstrated competitive recall, indicating their

ability to identify true positive cases. However, their lower

accuracy (80.9% for GLM and 74% for NB) suggests potential

limitations in correctly predicting positive cases overall.

B. Quantifying model performance disparities across gender

groups

Table III provides a gender-wise (male, female) comparison

of classifiers, assessing their performance through key fairness

metrics. This analysis aims to highlight each model’s ability to

achieve fairness and accuracy across genders, offering insights

into their effectiveness in minimizing bias and maintaining

equitable predictions.

TABLE III
MODEL PERFORMANCE METRICS ACROSS GENDER CATEGORIES

Group Metrics

Gender Model GSR↑ PPR↑ PPGR↑ FDR↓ FPR↓ FOR↓ FNR↓

Female

NB 0.54 0.56 0.37 0.18 0.13 0.31 0.40
GBM 0.54 0.54 0.37 0.07 0.05 0.25 0.32
GLM 0.55 0.54 0.39 0.09 0.07 0.24 0.29
MLP 0.54 0.53 0.37 0.08 0.06 0.25 0.31

Male

NB 0.46 0.44 0.35 0.18 0.12 0.31 0.42
GBM 0.46 0.46 0.37 0.06 0.05 0.23 0.30
GLM 0.45 0.46 0.40 0.10 0.08 0.24 0.29
MLP 0.46 0.47 0.39 0.10 0.07 0.23 0.29

All models reflected the dataset’s inherent gender balance

(GSR close to 0.5 for both genders), ensuring the models were

not skewed by disproportionate representation. However, there

were some variations in how models treated the two groups for

positive predictions. The NB model exhibited a bias towards

females, with a higher PPR for females (56%) compared to

males (44%). This could be due to bias in the model or reflect



real trends in the data. The MLP model maintained a balanced

approach with a slightly higher PPGR for males (1.05) than

females, suggesting the model considers gender in positive

predictions.

To evaluate overall accuracy and minimize errors, metrics

like FDR and FPR were analyzed. The GBM model achieved

the lowest error rates (FDR: 7% females, 6% males; FPR: 5%

for both genders), demonstrating its accuracy in minimizing

false positives and correctly identifying negative cases. On

the other hand, metrics like FOR and FNR measured how

well models identified true positives. The GLM performed

better for females with a lower FOR (24%) and FNR (29%),

suggesting its efficiency in identifying true positives for fe-

males. However, the NB model indicated it might be missing

important information when making predictions about females.

(highest FOR: 31% females highest FNR: 40% females),

C. Quantifying model performance disparities across race

groups

Table IV provides a race- wise comparison of classifiers,

assessing their performance through different fairness metrics.

This analysis is crucial for understanding each model’s ability

to deliver fairness and accuracy across different racial groups

(agrican-american, caucasian, hispanic, asian), highlighting

their effectiveness in minimizing bias and ensuring equitable

predictions.

TABLE IV
MODEL PERFORMANCE METRICS ACROSS RACIAL GROUPS

Group Metrics

Race Model GSR↑ PPR↑ PPGR↑ FDR↓ FPR↓ FOR↓ FNR↓

African American

NB 0.19 0.20 0.36 0.20 0.14 0.31 0.40
GBM 0.19 0.19 0.37 0.08 0.05 0.23 0.30
GLM 0.19 0.19 0.39 0.11 0.08 0.24 0.29
MLP 0.19 0.20 0.38 0.11 0.08 0.23 0.29

Asian

NB 0.01 0.01 0.36 0.00 0.00 0.48 0.46
GBM 0.01 0.01 0.58 0.00 0.00 0.20 0.12
GLM 0.01 0.01 0.41 0.06 0.05 0.27 0.29
MLP 0.01 0.01 0.56 0.00 0.00 0.25 0.17

Caucasian

NB 0.77 0.77 0.36 0.18 0.13 0.31 0.41
GBM 0.77 0.76 0.36 0.07 0.05 0.24 0.32
GLM 0.77 0.77 0.39 0.09 0.07 0.24 0.29
MLP 0.77 0.76 0.37 0.08 0.06 0.24 0.30

Hispanic

NB 0.02 0.02 0.34 0.15 0.11 0.39 0.47
GBM 0.02 0.02 0.39 0.04 0.04 0.28 0.32
GLM 0.02 0.02 0.39 0.10 0.08 0.31 0.35
MLP 0.02 0.02 0.38 0.13 0.11 0.35 0.39

Other

NB 0.01 0.01 0.45 0.09 0.11 0.40 0.35
GBM 0.01 0.02 0.50 0.08 0.11 0.34 0.27
GLM 0.01 0.01 0.41 0.16 0.13 0.30 0.34
MLP 0.01 0.02 0.50 0.08 0.11 0.34 0.27

While all models reflected the dataset’s inherent racial bal-

ance, some variations emerged in positive predictions. The NB

model exhibited a tendency towards slightly higher positive

predictions for certain groups, such as African Americans

(20% PPR), compared to other groups like Caucasians (19%

PPR in both MLP and GBM models). This suggests a po-

tential bias in NB’s positive prediction behavior. Conversely,

the GBM model demonstrated a more balanced approach,

maintaining similar PPGR across racial groups.

GBM was a better performer in comparison to other models.

It achieved the lowest error rates, indicated by a low FDR

of 8% for African Americans and 7% for Caucasians. Addi-

tionally, GBM effectively identified negative cases with a low

FPR of 5% for both racial groups. In contrast, the NB model

exhibited higher error rates, particularly for African Americans

(FDR of 20%), suggesting a higher proportion of incorrect

positive predictions. This trend continued with identifying true

positives. GBM performed well for African Americans with

a lower FOR of 23% and FNR of 30%. Conversely, the NB

model exhibited the most difficulty in accurately classifying

true positives for African Americans, evident from its higher

FOR (31%) and FNR (40%).

D. Quantifying model performance disparities across age

groups

Table V summarizes the age-wise performance of classi-

fiers, evaluating their effectiveness through different fairness

metrics. This analysis seeks to shed light on how well each

model manages to ensure accuracy and fairness across age

groups (<40 and 40-99), pinpointing their capacity to avoid

bias and promote equitable outcomes.

TABLE V
MODEL PERFORMANCE METRICS ACROSS DIFFERENT AGE GROUPS

Group Metrics

Age Group Model GSR PPR PPGR FDR FPR FOR FNR

<40

MLP 0.11 0 0 undefined 0 0.27 1
GBM 0.11 0.01 0.04 0.54 0.03 0.26 0.93
GLM 0.11 0.05 0.19 0.65 0.17 0.28 0.78
NB 0.11 0.10 0.32 0.69 0.30 0.25 0.62

40-59

MLP 0.27 0.27 0.38 0.18 0.12 0.20 0.29
GBM 0.27 0.22 0.29 0.07 0.04 0.24 0.38
GLM 0.28 0.19 0.27 0.04 0.02 0.23 0.40
NB 0.27 0.21 0.27 0.16 0.08 0.29 0.47

60-79

MLP 0.35 0.61 0.66 0.06 0.13 0.21 0.11
GBM 0.35 0.64 0.66 0.07 0.14 0.21 0.11
GLM 0.35 0.60 0.66 0.07 0.14 0.23 0.11
NB 0.35 0.52 0.53 0.09 0.16 0.44 0.30

80-99

MLP 0.26 0.11 0.16 0.00 0.00 0.27 0.58
GBM 0.26 0.13 0.19 0.03 0.01 0.26 0.54
GLM 0.26 0.16 0.24 0.07 0.03 0.24 0.45
NB 0.26 0.17 0.23 0.18 0.07 0.26 0.52

All models reflected a balanced representation of age groups

in the data (similar GSR across models for each age group).

However, variations emerged in PPR).The NB model tended to

under-predict positive outcomes for younger individuals (<40

years old, with a PPR of 10%), while GBM tended to predict

more positives for older adults (64% PPR in the 60-79 age

group). This trend is further supported by PPGR. Both MLP

and GBM showed high PPGR values for the 60-79 age group

(around 66%), suggesting a bias towards positive predictions

for older individuals.

Accuracy varied across models and age groups. MLP did

not make any positive predictions for the youngest age group,

resulting in an undefined FDR. Conversely, the GLM achieved

a low FDR of 4% in the 40-59 age group, indicating high

accuracy in positive predictions for middle-aged adults. Inter-

estingly, MLP showed perfect accuracy in identifying negative

cases for the oldest age group (80-99 years old) with a FPR

of 0



However, these findings also reveal potential shortcomings.

The high FOR of 44% for NB in the 60-79 age group

suggests it misses many true positive cases among older adults.

Similarly, the high FNR of 58% for MLP in the 80-99 age

group indicates a tendency to overlook true positives in the

oldest individuals.

TABLE VI
BEST PERFORMING MODELS ACROSS CATEGORIES

Category Group Better Performance Model PPGR

Gender
Female GLM 39%
Male GBM 40%

Race

African American GLM 39%
Asian GBM 58%
Caucasian GLM 39%
Hispanic GBM, GLM 39%
Other MLP, GBM 50%

Age

40-59 MLP 38%
60-79 MLP, GBM, GLM 66%
80-99 GLM 24%
<40 NB 32%

Summary: Table VI presents an overview of the highest-

performing models across various categories under study. In

our analysis, the GLM emerged as a top performer across

several groups, achieving a PPGR of 39% in both gender

categories (female and male) and in the racial categories

of African American, Caucasian, and Hispanic. Furthermore,

GLM demonstrated better performance in comparison to other

model, in the age groups of 60-79 and 80-99, with PPGRs of

66% and 24%, respectively, highlighting its broad applicability

and effectiveness across diverse demographic segments. The

GBM, on the other hand, showed better performance in the

race categories of Asian, Hispanic, and Other, with PPGRs

of 58%, 39%, and 50%, respectively, and also excelled in the

60-79 age group with a PPGR of 66%. MLP was identified as

the top model in the ’Other’ race category with a 50% PPGR

and in the age categories of 40-59 and 60-79, with PPGRs

of 38% and 66%, respectively, underscoring its effectiveness

in handling complex patterns in diabetes data. NB stood out

in the age group of under 40 with a PPGR of 32%, indicat-

ing its potential in early diabetes detection among younger

populations.

African American and Hispanic groups are affected by

higher FDR and FPR rates across several models, resulting

in a higher likelihood of receiving false-positive diagnoses.

Notably, the NB model demonstrates a marked increase in

FDR and FPR for African Americans, raising concerns about

the accuracy of positive predictions for this demographic.

While the Hispanic group encounters somewhat lower FDR

overall, models like MLP still exhibit relatively higher FDR

and FPR levels for this group, which may contribute to biased

treatment outcomes.

The GBM model excels in delivering fair outcomes across

diverse demographic segments. It exhibits consistently low

rates of FDR and FPR for most racial and gender categories,

alongside maintaining competitive predictive power as mea-

sured by the PPGR. Notably, when focusing on age, GBM,

along with MLP and GLM, presents a well-balanced approach.

This is particularly evident within the 60-79 age demographic,

where it achieves a high PPGR, underscoring its efficiency and

fairness in forecasting diabetes-related results for a wide range

of patients.

Therefore, GBM emerges as the most equitable model over-

all, demonstrating a consistent ability to minimize biases and

ensure fair treatment across different racial, gender, and age

groups. This analysis underscores the importance of choosing

and refining ML models that not only perform accurately but

also uphold the principles of fairness and equity in healthcare

predictions and treatments.

V. DISCUSSION

Our study emphasizes the crucial role of ML in advanc-

ing the diagnosis, treatment, and management of diabetes, a

significant global health challenge. Through our evaluation,

GBM emerged as the most effective model across a variety of

performance metrics, including precision, recall, F1-score, and

accuracy. GBM’s balanced F1-score and commendable accu-

racy rate underscore its proficiency in accurately identifying

positive cases and making precise predictions across different

demographics.

This standout performance of GBM, however, is part of

a larger narrative that includes the differential efficacy of

models such as GLM, GBM, and MLP across diverse groups.

For example, GLM shows enhanced performance for women

and African Americans, while GBM excels with Asians and

Hispanics. Such variations in model performance underscore

the absence of a one-size-fits-all solution and highlight the

critical need for selecting and tailoring models based on

specific demographic groups to ensure accurate and equitable

predictions.

The PPGR, a key finding of our study, further stresses

the imperative for fairness in ML predictions. The variance

in PPGR across models and demographics, especially with

the lowest PPGR observed for the youngest age group by

NB, suggests areas for improvement in equitable disease

identification across age groups.

By identifying which models yield more accurate predic-

tions for specific demographic groups, healthcare providers

can better customize care, moving closer to the ideal of

personalized medicine. The improved performance of GLM

for certain groups, for instance, suggests its potential for

developing targeted screening tools, thereby enhancing early

diagnosis and treatment effectiveness. Similarly, the effective-

ness of GBM with other groups could inform the creation of

intervention programs that are more likely to engage patients

and improve outcomes.

Moreover, the general superiority of GBM across most met-

rics and groups, particularly in gender and racial categoriza-

tions, affirms its robustness for accurate and fair classification.

This highlights the importance of model selection and tuning

to avoid bias and ensure equitable treatment, significantly

contributing to the advancement of personalized medicine



and tailoring interventions to individual patient profiles for

improved healthcare outcomes.

The gender-based analysis of ML models for diagnosing

diabetes highlights significant progress in achieving both tech-

nical accuracy and clinical fairness, particularly through the

use of GBM. GBM’s excellent performance, characterized by

low error rates and well-balanced fairness metrics for both gen-

ders, demonstrates its effectiveness in providing accurate and

unbiased predictions critical for the diagnosis and treatment of

diabetes. This is in contrast to the NB model, which exhibited

higher error rates, indicating challenges in maintaining both

accuracy and fairness and underscoring the vital importance

of precise model selection and calibration.

For women, GBM’s outstanding performance is marked by

the lowest FDR and FPR, showcasing its technical superiority

in minimizing incorrect positive diagnoses. This high level

of precision has direct clinical implications, leading to more

dependable screenings and diagnoses for women, which is

crucial for reducing the risk of misdiagnosis and ensuring

fair and accurate care. GBM’s balanced PPR and PPGR

further highlight its effectiveness in providing equitable care,

contributing to the reduction of gender disparities in healthcare

outcomes. The contrast with the higher error rates of the

NB model for women underscores the ongoing challenges

in achieving fairness, highlighting the need for meticulous

model selection and tuning in healthcare applications focused

on women.

For men, GBM again demonstrates superior performance

through minimal FDR and FPR, underscoring its ability to

accurately classify male patients and reduce false positives.

Such accuracy is essential for ensuring that men receive ap-

propriate and timely care for diabetes, which has a significant

impact on clinical outcomes by preventing both over-treatment

and under-treatment. GBM’s notable balance in PPGR and

PPR metrics for males illustrates its capacity to maintain

fairness, ensuring that diagnostic and treatment decisions are

free from gender bias. Meanwhile, the increased likelihood

of misclassification by the NB model in the male category

indicates potential biases, emphasizing the importance of

utilizing models like GBM that consistently exhibit high levels

of precision and fairness across genders.

Our race-based examination in the context of diabetes

care with ML models illuminates the critical importance of

selecting models that cater well to specific racial groups,

thereby enhancing both accuracy and fairness in healthcare

outcomes. GLM and GBM stand out for their suitability

across different racial demographics, illustrating how strategic

model choice can contribute to reducing racial disparities in

diabetes care. This approach underscores a movement toward

a healthcare system that is equitable, by leveraging models that

offer precision and fairness tailored to diverse racial groups.

For African Americans, the adept performance of GLM,

indicated by its ability to effectively capture the unique

healthcare needs of this demographic, underscores the model’s

potential in facilitating targeted and efficient diabetes interven-

tions. This tailored approach can significantly improve clinical

outcomes through early detection and management strategies

that are sensitive to the distinct risk profiles prevalent within

the African American community.

The Asian demographic benefits from the high predictive

accuracy of GBM, highlighting the model’s capability in ad-

dressing the specific healthcare requirements of Asians. Such

accuracy is vital for creating diabetes care programs that are

both culturally attuned and medically precise, thereby fostering

better patient engagement and adherence to treatment.

In the case of Caucasians, GLM’s adaptability, demonstrated

by its effective performance, plays a crucial role in fine-tuning

diabetes care to align with the epidemiological trends and

healthcare needs of Caucasian patients. This adaptability is key

to advancing personalized healthcare, enhancing the relevance

and effectiveness of diabetes interventions.

The Hispanic demographic showcases the dual effectiveness

of both GBM and GLM, each achieving notable performance.

This reflects the diversity within the Hispanic community and

signals the need for a healthcare approach that blends data-

driven insights with cultural sensitivity to optimize diabetes

care outcomes.

Lastly, the category labeled "Other" emphasizes the signifi-

cance of inclusivity and representation in healthcare data. The

substantial performance of both MLP and GBM models for

this group points to the necessity of ensuring ML models

are trained on diverse datasets. This is crucial for minimizing

biases and improving the models’ capacity to deliver equitable

and accurate predictions across all racial groups, further advo-

cating for the use of data to foster a more inclusive healthcare

environment

The age-based analysis of ML models for diabetes care

reveals significant insights into how different models can op-

timize healthcare delivery across various age groups, demon-

strating the importance of selecting age-appropriate models

to enhance accuracy and fairness in treatment. This analysis

brings to light models like MLP, GLM, GBM, and NB for

their distinct effectiveness across different age brackets.

For the younger population (under 40), the NB model stands

out for its efficacy, despite higher FDR and FPR compared

to other age groups. This effectiveness in predicting diabetes

outcomes for younger individuals accentuates the challenge of

maintaining fairness and underscores the need for model re-

finement to minimize bias and ensure that younger individuals

receive equitable healthcare attention.

In the middle-aged group (40-59), MLP models shine

with their high PPGR, balanced by relatively even FDR and

FPR. These metrics suggest that MLP models offer not only

effectiveness but also fairness in identifying diabetes-related

outcomes among middle-aged individuals, highlighting the

importance of bias-free models that accurately reflect diabetes

prevalence and ensure inclusive, targeted interventions.

For older adults (60-79), the combined performance of MLP,

GBM, and GLM models, as indicated by their PPGR and fair-

ness metrics (FDR and FPR), showcases their ability to achieve

both high accuracy and fairness. This dual achievement is

essential for minimizing the risks of over- or under-diagnosing



diabetes in older adults, suggesting that these models can sig-

nificantly contribute to fair and effective diabetes management

strategies for an age group that is particularly vulnerable to

diabetes complications.

The eldest cohort (80-99) sees GLM as particularly effec-

tive, marked by high accuracy and a low FNR, complemented

by favorable fairness metrics (lower FDR and FPR). This

indicates that GLM provides a fair assessment of diabetes

risk among the elderly, crucial for avoiding unnecessary in-

terventions or missing treatment opportunities. This balance

of accuracy and fairness is vital for supporting the healthcare

needs of the elderly, ensuring interventions are both efficacious

and equitable.

Overall, the age category conclusions reveal MLP and GLM

as the most effective models in two out of four age groups,

specifically for the 40-59 and 60-79 age brackets. GBM and

NB each excel in one age group, with GBM suited for

individuals in the 60-79 age range and NB for those under 40.

This differentiation underscores the nuanced nature of model

selection based on age, pushing towards a healthcare paradigm

that emphasizes personalized care and mitigates age-related

disparities in diabetes outcomes.

The broader implications of these findings underscore the

practical impact of fairness analysis in ML models, ranging

from promoting equity and equitable decision-making, miti-

gating bias, ensuring legal compliance, enhancing trust, and

fostering positive societal outcomes. It highlights the critical

role of ethical considerations in the development and deploy-

ment of AI technologies, reinforcing the need for careful

model selection and customization to meet the diverse needs

of patients across all age groups.

a) Limitations: Our study offers a detailed examination

but has some limitations worth noting. First, the reliance

on conventional ML models may not capture the full com-

plexity of diabetes-related health outcomes across different

demographic groups, potentially oversimplifying the nuanced

interplay of biological, environmental, and social determinants

of health. Additionally, the fairness metrics used, though

insightful, may not fully account for all dimensions of bias and

equity, particularly in the context of intersectionality where

multiple demographic factors overlap. The generalizability of

findings is also limited by the specific dataset and metrics

employed, which may not be representative of broader popu-

lations or encompass all relevant outcomes and predictors of

diabetes.

b) Future directions: Future work should aim to address

these limitations through the incorporation of more advanced

techniques, such as advanced deep learning architectures and

ensemble methods, which may offer a more nuanced under-

standing of the patterns and predictors of diabetes across

diverse populations. Further exploration into comprehensive

fairness metrics and methodologies is also critical, including

the development of models that can account for and mitigate

multiple, intersecting biases. Expanding datasets to include

a wider range of demographic, socio-economic, and health-

related variables would enhance the robustness and applica-

bility of findings. Lastly, integrating patient and clinician per-

spectives could offer invaluable insights into the practicality,

acceptability, and ethical considerations of implementing ML

models in clinical settings, ensuring that future advancements

not only push the boundaries of technical feasibility but also

align with the principles of patient-centered and equitable care.

VI. CONCLUSION

Our study reveals GBM as a standout in applying ML

to diabetes care. Notably, GBM demonstrates equitable per-

formance across demographic lines. Both GBM and GLM

excel in delivering accurate and fair predictions, leading to

improved outcomes for patients of different genders, races,

and ages. This progress moves us closer to reducing disparities

in diabetes care. However, challenges remain, particularly

for African American and Hispanic groups who experience

higher false positive rates. This highlights the importance

of precise model selection. The success of GBM and GLM

underscores the potential for more personalized and impactful

healthcare interventions. Achieving this necessitates an inter-

disciplinary healthcare approach. Merging ML with broader

medical expertise can deepen our understanding of diabetes

and ensure a healthcare system that is both fair and responsive

to all patients’ needs. Our findings advocate for refining

these technological tools to ensure they contribute positively

to healthcare. Here, fairness and personalization should be

emphasized to guide future research towards a more equitable

healthcare model for diabetes.

REFERENCES

[1] P. Braveman and L. Gottlieb, “The social determinants of health: It’s
time to consider the causes of the causes,” Public Health Reports,
vol. 129, no. 1_suppl2, p. 19–31, Jan. 2014. [Online]. Available:
http://dx.doi.org/10.1177/00333549141291S206

[2] “The Root Causes of Health Inequity — ncbi.nlm.nih.gov,”
https://www.ncbi.nlm.nih.gov/books/NBK425845/, [Accessed 04-
03-2024].

[3] D. R. Williams and S. A. Mohammed, “Discrimination and racial
disparities in health: evidence and needed research,” J. Behav. Med.,
vol. 32, no. 1, pp. 20–47, Feb. 2009.

[4] S. Raza, P. O. Pour, and S. R. Bashir, “Fairness in machine learning
meets with equity in healthcare,” in Proceedings of the AAAI Symposium

Series, vol. 1, no. 1, 2023, pp. 149–153.
[5] S. Raza and S. R. Bashir, “Auditing icu readmission rates in an clinical

database: An analysis of risk factors and clinical outcomes,” in 2023

IEEE 11th International Conference on Healthcare Informatics (ICHI).
IEEE, 2023, pp. 722–726.

[6] D. R. Williams and S. A. Mohammed, “Racism and health i:
Pathways and scientific evidence,” American Behavioral Scientist,
vol. 57, no. 8, p. 1152–1173, May 2013. [Online]. Available:
http://dx.doi.org/10.1177/0002764213487340

[7] A. D. Selbst, D. Boyd, S. A. Friedler, S. Venkatasubramanian,
and J. Vertesi, “Fairness and abstraction in sociotechnical systems,”
in Proceedings of the Conference on Fairness, Accountability, and

Transparency, ser. FAT* ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 59–68. [Online]. Available:
https://doi.org/10.1145/3287560.3287598

[8] B. Berendt and S. Preibusch, “Toward accountable discrimination-aware
data mining: The importance of keeping the human in the loop—and
under the looking glass,” Big Data, vol. 5, no. 2, p. 135–152, Jun.
2017. [Online]. Available: http://dx.doi.org/10.1089/big.2016.0055

[9] S. Reddy, S. Allan, S. Coghlan, and P. Cooper, “A governance model
for the application of ai in health care,” Journal of the American

Medical Informatics Association, vol. 27, no. 3, p. 491–497, Nov.
2019. [Online]. Available: http://dx.doi.org/10.1093/jamia/ocz192

http://dx.doi.org/10.1177/00333549141291S206
https://www.ncbi.nlm.nih.gov/books/NBK425845/
http://dx.doi.org/10.1177/0002764213487340
https://doi.org/10.1145/3287560.3287598
http://dx.doi.org/10.1089/big.2016.0055
http://dx.doi.org/10.1093/jamia/ocz192


[10] Aileen Nielsen, “Practical Fairness — oreilly.com,”
https://www.oreilly.com/library/view/practical-fairness/9781492075721/,
[Accessed 05-03-2024].

[11] S. Raza, “Connecting fairness in machine learning with public health
equity,” in 2023 IEEE 11th International Conference on Healthcare

Informatics (ICHI). IEEE, 2023, pp. 704–708.

[12] F. Kamiran and T. Calders, “Data preprocessing techniques for
classification without discrimination,” Knowledge and Information

Systems, vol. 33, no. 1, p. 1–33, Dec. 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10115-011-0463-8

[13] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viegas,
and J. Wilson, “The what-if tool: Interactive probing of
machine learning models,” IEEE Transactions on Visualization

and Computer Graphics, p. 1–1, 2019. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2019.2934619

[14] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger,
“On fairness and calibration,” 2017.

[15] L. Dixon, J. Li, J. Sorensen, N. Thain, and L. Vasserman, “Measuring
and mitigating unintended bias in text classification,” in Proceedings of

the 2018 AAAI/ACM Conference on AI, Ethics, and Society, ser. AIES
’18. New York, NY, USA: Association for Computing Machinery, 2018,
p. 67–73. [Online]. Available: https://doi.org/10.1145/3278721.3278729

[16] K. Holstein, J. Wortman Vaughan, H. Daumé, M. Dudik, and H. Wallach,
“Improving fairness in machine learning systems: What do industry
practitioners need?” in Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, ser. CHI ’19. ACM, May
2019. [Online]. Available: http://dx.doi.org/10.1145/3290605.3300830

[17] Mayo Clinic, “Hyperglycemia in diabetes-Hyperglycemia in
diabetes - Symptoms & causes - Mayo Clinic — mayoclinic.org,”
https://www.mayoclinic.org/diseases-conditions/hyperglycemia/symptoms-causes/syc-20373631,
[Accessed 04-03-2024].

[18] B. Strack, J. P. DeShazo, C. Gennings, J. L. Olmo, S. Ventura,
K. J. Cios, and J. N. Clore, “Impact of hba1c measurement on
hospital readmission rates: Analysis of 70, 000 clinical database patient
records,” BioMed Research International, vol. 2014, p. 1–11, 2014.
[Online]. Available: http://dx.doi.org/10.1155/2014/781670

[19] T. P. Pagano, R. B. Loureiro, F. V. N. Lisboa, G. O. R. Cruz, R. M.
Peixoto, G. A. de Sousa Guimarães, L. L. dos Santos, M. M. Araujo,
M. Cruz, E. L. S. de Oliveira, I. Winkler, and E. G. S. Nascimento,
“Bias and unfairness in machine learning models: a systematic literature
review,” 2022.

[20] B. Giovanola and S. Tiribelli, “Beyond bias and discrimination: redefin-
ing the ai ethics principle of fairness in healthcare machine-learning
algorithms,” AI & SOCIETY, vol. 38, no. 2, p. 549–563, May 2022.
[Online]. Available: http://dx.doi.org/10.1007/s00146-022-01455-6

[21] U. Gohar and L. Cheng, “A survey on intersectional fairness in
machine learning: Notions, mitigation, and challenges,” in Proceedings

of the Thirty-Second International Joint Conference on Artificial

Intelligence, ser. IJCAI-2023. International Joint Conferences on
Artificial Intelligence Organization, Aug. 2023. [Online]. Available:
http://dx.doi.org/10.24963/ijcai.2023/742

[22] Z. Chen, J. M. Zhang, F. Sarro, and M. Harman, “A comprehensive
empirical study of bias mitigation methods for machine learning classi-
fiers,” 2023.

[23] D. Pessach and E. Shmueli, “Algorithmic fairness,” 2020.

[24] T. P. Pagano, R. B. Loureiro, F. V. N. Lisboa, G. O. R. Cruz, R. M.
Peixoto, G. A. d. S. Guimarães, E. L. S. Oliveira, I. Winkler, and
E. G. S. Nascimento, “Context-based patterns in machine learning bias
and fairness metrics: A sensitive attributes-based approach,” Big Data

and Cognitive Computing, vol. 7, no. 1, 2023. [Online]. Available:
https://www.mdpi.com/2504-2289/7/1/27

[25] M. Wan, D. Zha, N. Liu, and N. Zou, “In-processing modeling
techniques for machine learning fairness: A survey,” ACM Transactions

on Knowledge Discovery from Data, vol. 17, no. 3, p. 1–27, Mar.
2023. [Online]. Available: http://dx.doi.org/10.1145/3551390

[26] J. Yang, A. A. S. Soltan, D. W. Eyre, Y. Yang, and
D. A. Clifton, “An adversarial training framework for mitigating
algorithmic biases in clinical machine learning,” npj Digital

Medicine, vol. 6, no. 1, Mar. 2023. [Online]. Available:
http://dx.doi.org/10.1038/s41746-023-00805-y

[27] R. Wang, P. Chaudhari, and C. Davatzikos, “Bias in machine
learning models can be significantly mitigated by careful training:
Evidence from neuroimaging studies,” Proceedings of the National

Academy of Sciences, vol. 120, no. 6, Jan. 2023. [Online]. Available:
http://dx.doi.org/10.1073/pnas.2211613120

[28] Z. Wang, Y. Zhou, M. Qiu, I. Haque, L. Brown, Y. He, J. Wang, D. Lo,
and W. Zhang, “Towards fair machine learning software: Understanding
and addressing model bias through counterfactual thinking,” 2023.

[29] Public Health Agency of Canada, “Social determinants of
health and health inequalities - Canada.ca — canada.ca,”
https://www.canada.ca/en/public-health/services/health-promotion/population-health/what
[Accessed 05-03-2024].

[30] L. Mosca, E. Barrett-Connor, and N. K. Wenger, “Sex/gender differences
in cardiovascular disease prevention: what a difference a decade makes,”
Circulation, vol. 124, no. 19, pp. 2145–2154, Nov. 2011.

[31] D. Hartley, “Rural health disparities, population health, and rural cul-
ture,” Am. J. Public Health, vol. 94, no. 10, pp. 1675–1678, Oct. 2004.

[32] H. K. Koh, G. Graham, and S. A. Glied, “Reducing racial and ethnic
disparities: the action plan from the department of health and human
services,” Health Aff. (Millwood), vol. 30, no. 10, pp. 1822–1829, Oct.
2011.

[33] L. López, A. R. Green, A. Tan-McGrory, R. King, and J. R. Betancourt,
“Bridging the digital divide in health care: the role of health information
technology in addressing racial and ethnic disparities,” Jt. Comm. J.

Qual. Patient Saf., vol. 37, no. 10, pp. 437–445, Oct. 2011.
[34] P. Saleiro, B. Kuester, L. Hinkson, J. London, A. Stevens, A. Anisfeld,

K. T. Rodolfa, and R. Ghani, “Aequitas: A bias and fairness audit
toolkit,” 2019.

[35] B. Strack, J. DeShazo, C. Gennings, J. Olmo, S. Ventura,
K. Cios, and J. Clore, “UCI machine learning repository:
Diabetes 130-US hospitals for years 1999–2008 dataset,”
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008,
2014.

https://www.oreilly.com/library/view/practical-fairness/9781492075721/
http://dx.doi.org/10.1007/s10115-011-0463-8
http://dx.doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.1145/3278721.3278729
http://dx.doi.org/10.1145/3290605.3300830
https://www.mayoclinic.org/diseases-conditions/hyperglycemia/symptoms-causes/syc-20373631
http://dx.doi.org/10.1155/2014/781670
http://dx.doi.org/10.1007/s00146-022-01455-6
http://dx.doi.org/10.24963/ijcai.2023/742
https://www.mdpi.com/2504-2289/7/1/27
http://dx.doi.org/10.1145/3551390
http://dx.doi.org/10.1038/s41746-023-00805-y
http://dx.doi.org/10.1073/pnas.2211613120
https://www.canada.ca/en/public-health/services/health-promotion/population-health/what-determines-health.html
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008

	Introduction
	Related Work
	Methodology
	Problem Definition
	Predictive Models
	Evaluation Strategy
	Experimental setting

	Cohort Selection

	Results
	Quantifying overall model performance 
	Quantifying model performance disparities across gender groups 
	Quantifying model performance disparities across race groups 
	Quantifying model performance disparities across age groups 

	Discussion
	Conclusion
	References

