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Abstract

In this work we consider a generalization of the well-studied problem of coding
for “stuck-at” errors, which we refer to as “strong stuck-at” codes. In the traditional
framework of stuck-at codes, the task involves encoding a message into a one-
dimensional binary vector. However, a certain number of the bits in this vector are
’frozen’, meaning they are fixed at a predetermined value and cannot be altered
by the encoder. The decoder, aware of the proportion of frozen bits but not their
specific positions, is responsible for deciphering the intended message. We consider
a more challenging version of this problem where the decoder does not know also the
fraction of frozen bits. We construct explicit and efficient encoding and decoding
algorithms that get arbitrarily close to capacity in this scenario. Furthermore, to
the best of our knowledge, our construction is the first, fully explicit construction
of stuck-at codes that approach capacity.
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1 Introduction

In this research, we initiate the development of strong-stuck-at codes, an advanced version
of traditional codes that have applications to stuck-at memories. Our approach considers
a storage medium analogous to a one-dimensional vector with a fixed length, containing
a certain proportion of ‘frozen’ components that cannot be altered during encoding. The
objective is to create a coding system capable of encoding the greatest possible amount
of information while ensuring the frozen components’ values and positions, known during
encoding but unknown during decoding, remain intact. Previous studies typically assume
knowledge of the maximum size of the set of frozen components at the time of encoding
and decoding, even if the set itself is not known. Our study addresses the more flexible
(yet challenging) scenario where both the specific set and the maximum size of the frozen
components are unknown at the decoding stage.

The problem of constructing codes for stuck-at memories has its roots in the early
work of Kuznetsov and Tsybakov [KT74]. Building on this, Tsybakov expanded the
scope by considering scenarios where, apart from the frozen components, the memory
might incur additional errors post-encoding [Tsy75]. This led Heegard to innovate a new
class of codes, termed partitioned linear block codes [Hee83], which he demonstrated to
meet the Shannon capacity in specific conditions [Hee85]. However, these findings are not
applicable to scenarios involving binary alphabet codes, which is the primary focus of our
study. It’s noteworthy that this issue has evolved with the advent of newer technologies
like Flash and Phase-Change Memory (PCM) and some new works on this (and similar)
settings include [LMJF10, KK13, WZY15, MV15].

A strongly related area of work is in the setting of coding for “Write-Once-Memories”
or WOM, which was originally introduced by Rivest and Shamir in 1982 [RS82]. In
this setting, memory cells are initialized to each have value 0 and, at each round of the
encoding, one is allowed to change some fraction of the cells only from 0 to 1. For the
case of two-write WOM-codes, in the first round the encoder is permitted to change any
fraction of the cells to 1. The decoding in the first round is straightforward. In the second
round, the encoder has access to the state of the memory after the first round so that it
knows which cells were set to one in the first round, but the decoder only has access to
the state of the memory after the second write and so it does not know what bits were
set to 1 in the first round. Thus, the second round of encoding/decoding represents an
instance of the defective memory with stuck-at components.

Capacity-achieving two-write WOM-codes have been known for some time starting
with the seminal work by Sphilka [Shp13] and later by Chee et al. [CKVY19]. In fact,
using this connection between two-write WOM-codes and coding for stuck at errors, it
was noted in [Shp13] that if the encoder is allowed to transmit a small amount of side
information directly to the decoder that cannot be corrupted by stuck-at errors, then a
slight variation of the encoder/decoder for his two-write WOM is equivalent to a stuck-
at code. In the work by Chee et al. [CKVY19], which leverages spreads in projective
geometry in order to guide the encoding function for the second round write, the value
of the cells matters so that it is not clear how to make their approach account for frozen
or stuck-at cells that can have value 0 or 1.

Perhaps the closest existing work to the problem of designing strong-stuck-at codes
is the work Gabizon and Shaltiel [GS12], who designed capacity-achieving stuck-at codes
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for the case where the maximum number of frozen components is known ahead of time.
Although their constructions provided the first explicit scheme with asymptotically op-
timal rate, their model permitted a randomized encoding function which was allowed
to succeed with randomized polynomial time (with respect to the block length of the
memory).

In this work, we develop almost capacity-achieving strong-stuck-at codes where the
number of frozen components is not known beforehand. Although our primary goal is the
design of explicit and efficient codes for this generalized model, our codes also have several
properties for the classical stuck-at model. Unlike the work of Gabizon and Shaltiel, our
encoding procedure is completely deterministic (see Theorem 1.5). Furthermore, we show
that in the randomized version of our algorithm which is presented in Section 3, we are
able to construct codes using fewer random bits than in previous constructions.

The rest of this paper is organized as follows. In the remainder of this section, we
formally introduce our problem setup and highlight our results. In Section 2, we present
an existential result showing that, perhaps surprisingly, it is possible to encode at virtually
the same rate as a conventional stuck-at code even when the size (or a bound on the
size) of the set of frozen components is not available to the decoder. Section 3 presents
a simplified version of our construction where we assume the encoder is provided a side
channel to convey a small amount of information to the decoder in a manner analogous to
the setting originally studied in [Shp13]. Finally Section 4 presents our main construction.

1.1 Problem setup

Denote P(i)([N ]) := {F ⊆ [N ] | |F| = i}, i.e., all the subsets of [N ] of size i. Formally,
our goal is to design

1. A sequence of pairs E := (E1,M1), (E2,M2), . . . , (EN ,MN) where the Mi’s are
sets of messages and

Ei : {0, 1}N × P(i)([N ])×Mi → {0, 1}N

are encoding maps that get as input a cover vector v ∈ {0, 1}N , a set of frozen
indices of size i, and a message to encode.

2. A decoder

D : {0, 1}N →
N⋃
i=1

Mi

that maps vectors to messages.

A strong-stuck-at-code of length N is a pair (E,D) such that for every i ∈ [N ],
v ∈ {0, 1}N , F ∈ Pi([N ]), and m ∈ Mi, the following two conditions hold:

1. Consistency:
(Ei(v,F ,m))j = vj , ∀j ∈ F .

Namely, the encoders are allowed to change only coordinates of v whose indices are
outside of F .
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2. Unique-decodability:
D(Ei(v,F ,m)) = m .

Definition 1.1. The rate of a strong-stuck-at-code at ρ-fraction defect is defined as

log (|MρN |)
N

.

Naturally, given that ρN of the bits are frozen, we can encode up to 1 − ρ fraction
of information bits. Our goal in this paper is to design codes that approach this bound.
This goal motivates the following code definition.

Definition 1.2. Let ε > 0. An ε-gapped strong-stuck-at-code of length N is a strong
stuck-at code such that for every defect fraction ρ ∈ (0, 1 − ε), the rate of the code is at
least 1− ρ− ε.

1.2 Our results

In the following theorem, we show that there are ε-gapped strong-stuck-at-code.

Theorem 1.3. For every ε > 0, there exists an N(ε) such that for every N > N(ε),
there exists an ε-gapped strong-stuck-at-code of length N .

Our next theorem presents a randomized construction of ε-gapped strong-stuck-at-
code.

Theorem 1.4. For every ε > 0, there exists an N(ε) such that for every N > N(ε),
there exists a randomized ε-gapped strong-stuck-at-code of length N such that

1. The encoder and the decoder run in O (N · poly(logN) · poly(1/ε)).

2. The number of random bits that are used by the encoder is O
(
1
ε
logN

)
and the

encoder succeeds with probability 1− o(1).

Our next theorem is a version of Theorem 1.4 that is fully deterministic. We note that
the cost of making the encoder deterministic results in much higher encoding complexity.

Theorem 1.5. For every ε > 0, there exists an N(ε) such that for every N > N(ε),
there exists an explicit ε-gapped strong-stuck-at-code of length N such that the encoder
runs in time NO(1/ε) and the decoder runs in time O (N · poly(logN) · poly(1/ε)).

1.3 Preliminaries

For an integer k, we denote [k] := {1, 2, . . . , k}. We shall denote vectors by boldface
letters such as u and sets by calligraphic letters such as F . Note that we denote an
interval of positive integers by [a, b] and a vector restricted to a set of coordinates will
be denoted by vF . In particular, a subvector of v starting from index a up to an index
b will be denoted as v[a,b]. We shall denote a concatenation of two vectors, u and v by
u ◦ v. Throughout this paper, log x will refer to the base-2 logarithm.
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We note here that in many places we drop all floors and ceilings in order to ease
notation and the analysis of the codes. However, the loss in the rate due to these roundings
is negligible and does not affect the asymptotic results.

A concept that will be useful in our construction is that of almost k-wise independent
random variables.

Definition 1.6. A random variable X = (X1, X2, . . . , Xr) ∈ {0, 1}r is said to be µ-
almost k-wise independent if for all sets of k distinct indices {i1, . . . , ik} ⊆ [r] and for all
(x1, x2, . . . , xk) ∈ {0, 1}r, we have∣∣Pr[Xi1 = x1, . . . , Xik = xk]− 2−k

∣∣ ≤ µ .

The following well-known result gives an efficient construction of a collection of µ-
almost k-wise independent random variables which can be generated from a small number
of random bits.

Lemma 1.7 ([AGHP92]). For every two positive integers r, k and every µ > 0, there

exists a function g : {0, 1}t → {0, 1}r with t = O
(
log

(
k log r

µ

))
, such that g(Ut) is a µ-

almost k-wise independent variable over {0, 1}r, where Ut denotes the uniform distribution
over {0, 1}t. Moreover, g(u) can be computed in time poly(r, 1/µ).

Remark 1.8. We shall use Lemma 1.7 with r = O (N logN), k = O (logN), and
µ = N−O(1). In this case, we have that t = O (logN). Furthermore, it can be verified
that in this case, the running time of g on an input u ∈ {0, 1}t is O (N · poly(logN)).
The details are given in the appendix.

We have the following simple claim whose proof is deferred to the appendix.

Claim 1.9. Let m < n be positive integers and

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
. . .

...
Am,1 Am,2 · · · Am,n


where (Ai,j)1≤i≤m,1≤j≤n is a µ-almost n-wise independent variable. Then, the probability
that A does not have full rank is most 2m−n + µ2m.

2 Existential result

In this section, we prove Theorem 1.3 which is restated for convenience

Theorem 1.3. For every ε > 0, there exists an N(ε) such that for every N > N(ε),
there exists an ε-gapped strong-stuck-at-code of length N .

Proof. Let L be an integer such that L ≤ 2ε−1 ≤ L + 1 and let N be an integer such

that L+ 1 divides N . For every i ∈ [L], define Mi :=
{
(i,m) | m ∈ {0, 1}

N
L+1

·i
}
. Every

Mi, i ∈ [L] can be seen as a message space of a specific length, and our encoder, based on
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the fraction of frozen symbols, will encode a message from the largest possible message
space.

Our strategy will be to randomly assign vectors from {0, 1}N into
∣∣∪L

i=1Mi

∣∣ bins where
each bin will be labeled Bi,m. Formally, every v ∈ {0, 1}N ,

Pr [v is assigned to Bi,m] =
1

L · 2
N

L+1
·i
.

Our encoder, which receives as input a vector v ∈ {0, 1}N , a set F ⊆ [N ] of size ρN
performs the following:

1. Sets j to be the largest integer such that (1− ρ)N ≥ j
L+1

N + ε
2
N .

2. Encodes a message m ∈ {0, 1}
j

L+1
N by choosing a vector u ∈ Bj,m such that

vF = uF and will store this vector in the memory.

Note that by the choice of j, we have ensured that the gap between the length of the
message and the number of unfrozen bits is at least ε/2 · N . Clearly, the decoder who
knows the partition of {0, 1}N to the sets Bi,m will correctly identify the message. Thus,
it remains to show that the consistency condition holds with high probability. Namely,
that with high probability the second step of our encoder always succeeds.

We first compute the probability for a specific F of size ρN and a cover vector v,
there is no u ∈ Bj,m for which uF = vF . Since there are 2

N−|F| vectors u ∈ {0, 1}N such
that uF = vF , the probability that none of them falls in Bj,m is at most

(
1− 1

L · 2
N

L+1
·j

)2N−|F|

≤
(
1− 1

L · 2
N

L+1
·j

)2
j

L+1
N+ ε

2N

≤ exp

(
− 1

L

)2
ε
2N

≤ exp (−ε)2
ε
2N

.

Now, the probability that there exists a vector v ∈ {0, 1}N , a set F ⊆ [N ] and a message
m (of suitable length) such that the respective set Bj,m does not contain a vector that
agrees with v on the coordinates specified by F is at most,

2N · 2N · 2N · exp (−ε)2
ε
2N

= exp
(
ln 23N − ε2

ε
2
N
)
.

Thus, since ε is constant, the probability that our partition of {0, 1}N to the sets Bi,m

indeed yields a strong-stuck-at-code is at least 1− o(1) (the term o(1) goes to zero as N
tends to infinity). For every ρ, the rate of our probabilistic construction at ρ-fraction of
defect is at least 1− ρ− 1

L+1
− ε

2
≤ 1− ρ− ε.

3 Construction with clean transmission assumption

In this section, we will assume that the encoder can transmit O
(
1
ε
logN

)
bits to the

decoder where this transmission is errorless. The decoder will use this clean metadata to
decode the original message. This construction is a first step towards our final construc-
tion which does not assume that there is a clean transmission of bits between the encoder
and the decoder. Throughout this section, we assume that C is a universal constant
(independent of N) that is known both to the encoder and the decoder. Also, we denote
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by hb(d) the function that takes as input an integer d ∈ [0, b− 1] and outputs its binary
representation using ⌈log b⌉ bits.

Our encoding algorithm is given in Algorithm 1 and the decoding algorithm is given
in Algorithm 2. In the rest of the section, we prove that

Theorem 3.1. Let ε > 0. there exists an N(ε) such that for every N > N(ε), there
exists a randomized ε-gapped strong-stuck-at-code of length N such that

1. The encoder uses O
(
1
ε
logN

)
random bits and succeeds with probability 1−O (1/ logN)

2. The encoder can transmit O
(
1
ε
logN

)
bits to the decoder in an errorless transmis-

sion.

3. The encoder and the decoder run in time O (N · poly(logN) · poly(1/ε))

Comparison with [Shp13, Theorem 7.1] Note that although our primary aim is
to design efficiently strong-stuck-at codes, our work represents an improvement over the
setup previously studied by Shpilka [Shp13, Theorem 7.1] where we assume we have
access to a small area of clean memory (equivalently, we have an errorless transmission
between the encoder and the decoder) and also the decoder knows the number of stuck-at
bits. The next theorem more precisely states the previous work by Shpilka, which will
be useful as a basis for comparison.

Theorem 3.2. [Shp13, Theorem 7.1] Let ρ < 1 and let v ∈ {0, 1}N containing ρN frozen
bits. There is a randomized encoder and a deterministic decoder such that

1. The encoder can encode (1− p− ε)N bits for any constant ε > 0.

2. The encoder transmits O
(
log3N

)
bits to the decoder using an errorless transmis-

sion.

3. The encoder runs in polynomial time in N and 1/ε.

Note that the construction presented in this section requires only O (ε−1 · log(N)) bits
to be transmitted to the decoder in the errorless transmission compared to the O

(
log3N

)
bits required by [Shp13]. 1

We present also a deterministic version of Theorem 3.1

Theorem 3.3. Let ε > 0. there exists an N(ε) such that for every N > N(ε), there
exists a explicit ε-gapped strong-stuck-at-code of length N such that

1. The encoder can transmit O
(
1
ε
logN

)
bits to the decoder in an errorless transmis-

sion.

2. The encoder runs in time NO(1/ε) and the decoder runs O (N · poly(logN)).

1We note that in fact, we could have defined B = C · log(N/ logN). In that case, the number of
random bits is O

(
1
ε · log(N/ logN)

)
at the expanse of failure probability which increases to 1−O(1/C).

We chose to present the first version for the sake of notations.
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Notations and preliminaries for Algorithm 1 The following notations are used in
Algorithm 1

• Let B = C · logN .

• We divide [N ] into M := N/B contiguous blocks.

• Let Fi ⊆ F denote the frozen elements that appear in the ith block and F i the
nonfrozen elements in the ith block.

• Denote by ρi = |Fi|/B the fraction of frozen symbols in ith block.

We proceed with a high-level description of Algorithm 1, which consists of three steps
where each of which is described in the next three paragraphs.

Our encoding algorithm will encode the message into M blocks, each of length B. At
Step 1, for each block i, we compute mi, the number of message bits we will encode in the
ith block. Note that some of the mis can be zero as it can be the case that (almost) all
the bits of a block are frozen. The total number of bits that are going to be encoded in
the ith block is denoted by mi and will contain mi, another logN bits for the position of
the next block to be decoded, and another logB bits that denote the number of encoded
message bits in the next block. If we cannot encode message bits in the ith block (this
happens if we have at most 2 logN+logB unfrozen bits in the block), then we set mi = 0.

At Step 2, we generate B · N bits that are ε-almost B-wise independent. The first
m1B bits will form the matrix A1, then the next m2B bits will form the matrix A2, etc.
Overall, at the end of this step, we have M matrices A1, . . . , AM .

At step 3, we perform the actual encoding. We only encode bits of our message in
blocks for which mi ̸= 0. For each such block, we solve the linear system

(Ai)F i
·wi = mi ◦ hlogN(i

′) ◦ hlogB(mi′)

where i′ is the next block index for which mi′ ̸= 0. We note that this step might fail since
it can be that (Ai)F i

does not have full rank. We will prove that this happens with small
probability. Finally, we concatenate all the blocks to produce our encoded cover object.
Also, we transmit to the decoder the metadata that he needs to decode the message
(recall that we assume that this transmission is errorless). This metadata includes the
string that generates the matrices A1, . . . , AM , the position of the first block that encodes
message bits, and the number of message bits that are encoded in that block.

3.1 Analysis

Rate. The number of message bits that we encode in each block i, is mi = max(B(1−
ρi)− 2 logN − logB, 0). Thus, the number of bits that we can encode is at least

M∑
i=1

mi ≥
M∑
i=1

B(1− ρi)− 2 logN − logB

= N − |F| − 2M logN −M logB
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Algorithm 1: Encoding with assumption

input : A vector v ∈ {0, 1}N , a set of frozen indices F ⊆ [N ], |F| = ρN , and

message m ∈ {0, 1}m where m ≤ N
(
1− ρ− 2

C
− log(C logN)

C logN

)
output : A vector w ∈ {0, 1}N and u ∈ {0, 1}∗.

[1] for every i ∈ [M ] do
if B(1− ρi) > 2 logN + logB then

Set mi := min (B(1− ρi)− 2 logN − logB,m)
Set mi := mi + logN + logB
Update m = m−mi

else
Set mi := 0

end
[2] Let r = B ·N , µ = N−C , k = B and let t be as given in Lemma 1.7. Sample ut

uniformly at random from {0, 1}t and apply the function g (given in Lemma 1.7)
to get a ∈ {0, 1}B·N . Use the first B ·m bits of a to construct M matrices

A1 ∈ {0, 1}m1×B, . . . , AM ∈ {0, 1}mM×B

[3] Let 1 ≤ i1 < · · · < iM ′ ≤ M be all the indices for which mij ̸= 0. Also let
iM ′+1 = 0 and miM′+1

= 0

for every j ∈ [M ′] do
if (Aij)Fij

is not full rank then

Declare failure and exit
end
Compute wij ∈ {0, 1}B such that

1. Aij ·wij = mij ◦ hN/ logN(ij+1) ◦ hB(mij+1
)

2. (wij)Fij
= (vij)Fij

end
[4] Return the string w = w1 ◦w2 ◦ · · · ◦wM and the string

u = ut ◦ hN/ logN(i1) ◦ hB(m1)

Algorithm 2: Decoding with assumption

input : A vector v ∈ {0, 1}N and u ∈ {0, 1}t+logB

output : A message m ∈ {0, 1}∗
[1] Identify from u the vector ut, and the values i and mi

[2] Compute g(ut) to get a string a ∈ {0, 1}B·N

[3] while i ̸= 0 do
Identify the matrix Ai ∈ {0, 1}mi×B from the string a
Compute Aivi to get mi and update the next i and mi

end
[4] Return m = m1 ◦ · · · ◦mM
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and therefore, the rate of the scheme is at least

1− ρ− 2

C
− log(C logN)

C logN
≥ 1− ρ− 3

C
, (1)

where the inequality follows for large enough N .
The following proposition proves the correctness of the algorithm.

Proposition 3.4. Let v ∈ {0, 1}N , F ⊆ [N ] where |F| = ρN . Let m ∈ {0, 1}m where
m ≤ N(1− ρ− 3

C
) be a message to be encoded. If we execute Algorithm 1 on v, F , and

m, then the following holds

1. The algorithm succeeds with probability at least 1 − O (1/(C logN)). Specifically,
the only step that might cause the algorithm to fail and abort is Step 3.

2. If the algorithm succeeds and outputs the vector w and the metadata u, then the
decoding algorithm, Algorithm 2, which receives w and u as input, will output m.

Proof. Recall that we denote by Fi ⊆ F the frozen elements that appear in the ith
block and by F i the nonfrozen elements that are in the ith block of v. The step that
might fail in Algorithm 1 and cause the algorithm to abort is Step 3. If one of the
matrices (A1)F1

, . . . , (AM)FM
does not have full rank, say (A1)F1

, then clearly we have
that {(A1)F1

·w | w ∈ {0, 1}B−ρ1B} ⊊ {0, 1}m1 . Thus, there exists a vector in {0, 1}m1

that cannot be encoded using this procedure. Therefore, in order to be able to encode
any message, we must require that the matrices (Ai)F i

each have full rank.
We compute the probability that (A1)F1

does not have full rank. Note that (A1)F1
∈

{0, 1}m1×(B−ρ1B) where m1 ≤ B − ρ1B − logN . Also, it is easy to see that a random
variable that is µ-almost k-wise independent, is also (2k−k′µ)-almost k′-independent for
every k′ < k. Thus, according to Claim 1.9, the probability that (A1)F1

does not have
full rank is at most

2− logN + µ · 2Bρ1 · 2B(1−ρ1)−logN =
2

N
.

Now by union bound, the probability that there exists a matrix among the matri-
ces (A1)F1

, (A2)F2
, . . . , (AM)FM

that does not have full rank is at most M · (2/N) =
2/(C logN) = O (1/(C logN)). Therefore, Step 3 can fail with probability at most
1 − O (1/(C logN)). If all the matrices are indeed full rank, then the linear equations
at Step 3 all have solutions and therefore, the encoded vector w ∈ {0, 1}N is just the
concatenation of all the wis. The second output of the encoder is a vector u which con-
catenates the string ut generated in Step 2 with the position of the minimal i ∈ [M ] for
which mi ̸= 0 and the corresponding mi. The last two values correspond to the position
of the first block that encodes message bits and the number of message bits that are
encoded in this block, respectively.

Note that the decoder, which has access to u and knows the value C can read the first
t bits to identify ut. Then, reading the following logN + logB bits, the decoder knows
the identity of the first block, i ∈ [M ], that encodes message bits and the exact number
of bits mi the block encodes. Note here that i ∈ [M ] where M = N/(C logN) and that
mi ≤ B − 2 logN − logB, therefore, logN followed by logB bits suffice in order to save
i and mi, respectively.
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Computing g(ut), the decoder identifies the matrix Ai and then simply computes
Aiwi to get mi and the position of the next block that contains information, i < j, and
the number of encoded bits in wj. The decoder continues until he reaches the last block
containing information. Note that this process stops. Indeed, when the decoder decodes
the last block, he encounters that 0 is encoded as the position of the next block that
contains information.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let C be a universal constant and define ε = 3/C. Let N be
a large enough integer (depending only on ε) and let v ∈ {0, 1}N be a cover vector,
and F ⊂ [N ] be a set of frozen sets of size ρN where ρ ∈ (1 − ε, 0). Then, according
to Proposition 3.4, we can encode any m ∈ {0, 1}(1−ρ−ε). Note that regardless of ρ, the
fraction of stuck-at bits, our decoding algorithm always succeeds in decoding the encoded
message given an encoded vector and the metadata that was generated by Algorithm 2.

The rest of the proof analyzes the complexity and the metadata size that is transferred
to the decoder using an errorless transmission. Clearly, 1 of the encoding algorithm takes
O (N) as we just scan the input cover vector and identify the sets of frozen components
in each block. The time complexity of Step 2 is the time that it takes to compute a value
of the function g which is O (N · poly(logN)). In Step 3, we solve M = O (ε ·N/ logN)
linear equation systems, each contains at most B = O (ε−1 logN) equations. Thus, this
step can be performed in O (M ·B3) = O

(
ε−2 ·N · log2N

)
time. Therefore, overall, the

encoding algorithm, Algorithm 1, runs in at most O (ε−2 ·N · poly(logN)) time.
The decoding algorithm reads the value ut and the value m1 and by applying g on

ut, it retrieves the matrices A1, . . . , AM . This step takes the time of computing g, i.e.,
O (N · poly(logN)). Then, recovering each portion of the message mi is done in O (B2)
(simple multiplication of a vector of length B with a matrix of both dimensions ≤ B).
Thus, recovering the entire message m is done in O (M ·B2) = O (ε−1 ·N · logN). Thus,
the overall running time of the decoder is O (ε−1 ·N · poly(logN)).

The number of random bits the algorithm needs is

O
(
log

(
B log(B ·N)

N−C

))
= O (C log (N)) ,

and since ε = 3/C, the total number of random bits is O (ε−1 logN). Note that metadata,
u, that is generated by Algorithm 1 is of length

O (C logN) + logN + logB = O (C logN) = O
(
ε−1 logN

)
. (2)

Remark 3.5. Note that to prove Theorem 3.3, one simply needs to change Step 2 from
sampling to a brute force search. Namely, for each one of the NO(C) vectors in the space
{0, 1}t (recall that t = O (C logN)) we will compute the function g and check if all the
matrices (Ai)Fi

, i ∈ [M ] are full rank. Doing this step now takes NO(1/ε)poly(logN) time.
Clearly, the complexity of this step dominates the complexity of the algorithm. The rest
of proof is identical to that of Theorem 3.3.

11



4 Final construction

Note that the main issue with the previous construction is that it assumes that we can
transmit the decoder the metadata u that contains the data required by the decoder
to perform the decoding. In this section, we shall overcome this problem. Intuitively
speaking, our solution will encode the message but also the metadata and location of the
metadata in our cover object. In this section, we prove Theorem 1.4 which is restated
next.

Theorem 1.4. For every ε > 0, there exists an N(ε) such that for every N > N(ε),
there exists a randomized ε-gapped strong-stuck-at-code of length N such that

1. The encoder and the decoder run in O (N · poly(logN) · poly(1/ε)).

2. The number of random bits that are used by the encoder is O
(
1
ε
logN

)
and the

encoder succeeds with probability 1− o(1).

4.1 Auxiliary claims

We start by proving two auxiliary claims that will be useful. We shall divide our cover
vector into four subvectors, v = v1 ◦ v2 ◦ v3 ◦ v4. In v1 and v3 we will encode our
message and in v2 and v4 we will make sure that we have enough unfrozen bits to
encode the metadata. The following claim makes sure that such a partition is indeed
feasible. Specifically, we will show that for any small enough δ, there exists an interval
[i · δN, (i + 1)δN − 1] (we will define v2 = v[i·δN,(i+1)δN−1]) such that it contains at most
(ρ + 2δ)δN frozen elements and that this interval does not intersect the subvector v4

which contains exactly N/ logN unfrozen bits.

Claim 4.1. Let ρ, δ ∈ (0, 1) such that 2δ < 1 − ρ and let F ⊆ [N ] be of size ρN . Let
j ∈ [N ] be the largest such that

∣∣[j + 1, N ] ∩ F
∣∣ = N/ logN . Then, there exists an integer

i ∈ [⌊1/δ⌋] such that

1. i · δN + δN − 1 ≤ j

2. |[i · δN, (i+ 1) · δN − 1] ∩ F | ≤ (ρ+ 2δ)δN

In order to encode a small number of bits, say ℓ bits, one could do the following simple
trick. Let x represent the decimal number that corresponds to our ℓ bits of information,
then, one can just flip unfrozen bits such that the weight of the resulting vector is x(mod
2ℓ). The following simple claim shows how many unfrozen bits are needed to encode
using this method.

Claim 4.2. Let v ∈ {0, 1}N and let d < N be an integer so that there are at least 2d
unfrozen bits in v. Then, we can flip at most d unfrozen bits of v to get a vector w such
that wt (w) ≡ x(mod d) for any x < d.

We can see that the rate of this encoding method is very small. Indeed, we cannot hope
to encode more than logN bits using this method. We will use this method to encode
the location of the specific intervals that contain the metadata needed for decoding the
message.

12



Figure 1: The message m is encoded using Algorithm 1 in v1 and v3. Then the metadata
u1 that is needed to decode m is encoded in v22. The metadata u2 that is needed to
decode u2 is encoded using Claim 4.2 in v21 and v23 and the locations of v2 and v22 are
encoded in v4

4.2 Encoding and decoding algorithms

We shall use the following notations throughout this section. Again, C is some universal
constant known to the encoder and the decoder.

• Let δ = 1/C and let B′ = δN . Also, assume that 2δ < 1− ρ.

• Let K be the constant implied by (2). Namely, the vector u, that is returned from
Algorithm 1 is of length K · C logN where N is the length of the cover object.

The encoding algorithm is given in Algorithm 3 and the decoding algorithm in Algo-
rithm 4.

Before delving into the details, we give a high-level overview of the encoding algorithm.
At the first step, we divide v into four contiguous parts, i.e., v = v1 ◦ v2 ◦ v3 ◦ v4 with
the premise given in Claim 4.1. Namely, |v2| = B′ where the number of frozen bits in v2

is at most (ρ+ 2δ)B′ and v4 contains exactly N/ logN unfrozen bits.
The second step invokes Algorithm 1 in order to encode the message m into v1 and

v3. We guarantee that the algorithm will encode only at these parts by adding to the set
of frozen bits all the unfrozen bits in v2 and v4. Note that this step produces a metadata
vector u1 of length at most KC logN that contains the information needed to decode
the message.

The third step first divides v2 into three contiguous parts, v2 = v21 ◦ v22 ◦ v23 such
that v22 is of length N1/2KC and contains at most (ρ + 2δ)N1/2KC frozen bits. Then,
we encode u1 in v22 using Algorithm 1. This produces a metadata vector u2 of length
KC · logN1/2KC = log

√
N which can be represented by a decimal number U ≤

√
N .

We shall encode u2 in v21 and v23 by flipping at most 2
√
N bits to make sure that

wt (v2) ≡ U(mod
√
N) (see Claim 4.2).

Finally, at the fourth step, we encode the starting position of v2 and v22. We will
see that both positions can be identified using only log(N1−1/2KC) bits. Therefore, by
Claim 4.2 we can encode this information in v4 by flipping 2N1−1/2KC bits and recall that
we have N/ logN unfrozen bits there.

4.3 Analyses

We start by analyzing the rate and then proceed to show the correctness of the algorithms.
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Algorithm 3: Encode

input : A vector v ∈ {0, 1}N , a set of frozen indices F ⊆ [N ], |F| = ρN , and
a message m, of length < (1− ρ− 5

C
)N

output : A vector w ∈ {0, 1}N .
[1] Find the maximal j ∈ [N ] such that there are at least N/ logN unfrozen

coordinates in v to the right of j. Find i ∈ [j/δN ] such that

|[i ·B′, (i+ 1) ·B′ − 1] ∩ F | ≤ (ρ+ δ)B′

and (i+ 1) · δN ≤ j. Denote v = v1 ◦ v2 ◦ v3 ◦ v4 and F = F1 ∪ F2 ∪ F3 ∪ F4

where

v1 = v[1,iB′−1] F1 = [1, iB′ − 1] ∩ F

v2 = v[i·B′,(i+1)·B′−1] F2 = [i ·B′, (i+ 1) ·B′ − 1] ∩ F

v3 = v[(i+1)·B′,j−1] F3 = [(i+ 1) ·B′, j − 1] ∩ F

v4 = v[j:N ] F4 = [j : N ] ∩ F

[2] Run Algorithm 1 with v, F1 ∪ [i ·B′, (i+ 1) ·B′ − 1] ∪ F3 ∪ [j,N ], and m = m.
Denote the first output by w1 ◦ v2 ◦w3 ◦ v4 where |w1| = |v1| and |w3| = |v3|
and second output as u1

[3] Find i′ ∈ [i ·B′, (i+ 1) ·B′ − 1] such that i is a multiple of N1/2KC and

|[i′, i′ +N1/2KC − 1] ∩ F2| ≤ (ρ+ 2δ)N1/2KC

Denote F ′
2 = |[i′, i′ +N1/2KC − 1] ∩ F2| and v2 = v21 ◦ v22 ◦ v23 where

v21 = v[i·B′,i′−1]

v22 = v[i′,i′+N1/2KC−1]

v23 = v[i′+N1/2KC ,(i+1)B′−1]

[3.1] Run Algorithm 1 with v = v22, F = F ′
2, and m = u1. Denote the output

by w22 and u2. Let U ∈ [
√
N ] be the decimal number that corresponds to u2

[3.2] Flip unfrozen bits in v21 and v23 to get w21 and w23 so that for

w2 := w21 ◦w22 ◦w23 it holds that wt (w2) ≡ U(mod
√
N)

[4] Let d = h1/δ(i) ◦ h
δ·N1− 1

2KC
(i′) and denote by d ∈

[
N1− 1

2KC

]
the integer whose

binary representation is d
Flip unfrozen bits in v4 to get the vector w4 where it holds that
wt (w1 ◦w2 ◦w3 ◦w4) ≡ d(modN1− 1

2KC )
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Algorithm 4: Decode

input : A vector v ∈ {0, 1}N
output : A message m ∈ {0, 1}∗

[1] Let d ≡ wt (v) (modN1− 1
2KC ) and from h

N
1

2KC
(d) identify i, the starting of v2,

and i′, the position inside v2 where u1 is encoded

[2] Let U ≡ wt
(
v[i,(i+1)δN−1]

)
(mod

√
N)

[3] Run Algorithm 2 with input v[i′,(i′+1)N1/2KC−1] and h√
N(U) to get u1

[4] Run Algorithm 2 with input v and u1 to get m

Rate. Our message m is encoded in Step 2 by invoking Algorithm 1 with v = v1 ◦v2 ◦
v3 ◦v4 and a set of frozen elements of size at most ρN + δN + N

logN
(We enlarge the set of

frozen elements by adding to F all the coordinates of v2 and v4). Thus, by the premises
of Algorithm 1 (see inequality (1)), for large enough N , we can encode up to

(1− ρ− δ)N − N

logN
− 3N

C
(3)

bits which implies that the rate is

1− ρ− δ − 3

C
− 1

logN
≥ 1− ρ− 5

C

where the inequality holds for large enough N and by recalling that δ = 1/C.
The correctness is given in the following proposition

Proposition 4.3. Let v ∈ {0, 1}N , F ⊆ [N ] where |F| = ρN . Let m ∈ {0, 1}m where
m ≤ N(1−ρ− 5

C
) be a message to be encoded. Then, applying Algorithm 3 on v, F , and m

succeeds with probability at least 1−O (1/ log(N)). Furthermore, if Algorithm 3 succeeds
and outputs the vector w then the decoding algorithm, Algorithm 4, which receives w as
input, will output m.

Proof. First note that Claim 4.1 guarantees that the partition that we perform in Step 1
is indeed possible.

In Steps 2, we invoke Algorithm 1. In doing that, we have to make sure that the input
we give the algorithm is valid. Specifically, if one wishes to encode a message m of length
m in a vector v of length N with a set of frozen indices F , then by (1) we need that

|m| ≤ N − |F| − 3N

C
. (4)

We already showed in (3) what is the maximal message length that can be encoded in
Step 2 and that our message length is below that threshold for large enough N .

In Step 3, we focus just on v2 = v[i·B′,i·B′−1]. We first find an index i′ ∈ [i ·B′, i ·B′−1]
that is a multiple of N1/2KC such that v22 = v[i′,i′+N1/2KC−1] has at most (p + δ)N1/2KC

frozen bits. Since v2 contains at most (ρ+ δ)B′ frozen bits, such an index must exist by
a simple averaging argument. Then, in Step 3.1, our goal is to encode u1, the metadata
that was returned at the previous step, in v22. By the proof of Theorem 3.1, the length of
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u1 is KC logN (recall that K is the constant implied by (2)). Now, since |v22| = N1/2KC

and |F ′
2| ≤ (ρ + δ)N1/2KC (F ′

2 is the set of frozen coordinates in v22), then, for large
enough N , inequality (4), holds with m = u1, F = F ′

2, and N = N1/2KC . Recall that
Algorithm 1 returns the encoded vector, which we call w22, and a metadata vector, u2,
that is needed to decode w22. The length of u2 is KC log(N1/2KC) = log(

√
N) and our

next goal it using Claim 4.1.
To encode u2 in Step 3.2, we represent it using a decimal number U which is at

most
√
N . Observe that the number of unfrozen bits in v21 and v23 is at least (1 −

ρ − 2δ)δN − N1/2KC which is greater than 2
√
N , for large enough N . Therefore, by

Claim 4.2, we can flip
√
N unfrozen bits in v21 and v23 and make sure that the resulting

weight of w2 = w21 ◦ w22 ◦ w23 will be U(mod
√
N). We now compute what is the

failure probability of Steps 2 and 3. Recall that Algorithm 1 can fail with probability
O (1/(C logN)), therefore, the failure probabilities of Step 2 and 3 are O (1/(C logN))
and O (2K/ logN).

To convince ourselves that Step 4 is feasible, we note that the maximal value i can take
is upper bounded by C and that the value of i′ is upper bounded by (N/C) ·N1/2KC =
N1−1/2KC/C. Therefore, |hC(i)◦hN1−1/2KC/C(i

′)| = logN1−1/2KC which implies that there

exists a decimal number U ′ ≤ N1−1/2KC that corresponds uniquely to the values i and
i′. Note that as the number of unfrozen bits in v4 is N/ logN > 2N1−1/2KC (where the
inequality is for large enough N), by Claim 4.2, we can flip these unfrozen bits in v4 to
make sure that the weight of w is U ′(modN1−1/2KC).

As for the decoder. Note that by computing the weight of v (in Step 1), the decoder
knows the values of i and i′. Thus, he knows that he needs to compute wt

(
v[i,i+B′−1]

)
in order to get the metadata that is needed for decoding u1 from v[i′,i′+N1/2KC−1]. Once
he extracts u1 from v[i′,i′+N1/2KC−1] in Step 3, he can proceed to Step 4 and decode the
message.

Proof of Theorem 1.4. Let C be a universal constant and define ε = 5/C. Note here that
δ = 1/C < (1 − ρ)/5 and thus our assumption that 2δ < 1 − ρ holds. Let N be a large
enough integer (depending only on ε) and let v ∈ {0, 1}N be a cover vector, and F ⊂ [N ]
be a set of frozen sets of size ρN where ρ ∈ (1−ε, 0). Then, according to Proposition 4.3,
we can encode any m ∈ {0, 1}(1−ρ−ε). Note that regardless of ρ, the fraction of stuck-at
bits, our decoding algorithm always succeeds in decoding the encoded message given an
encoded vector Algorithm 3.

We are left to show that the complexity is N ·poly(N) ·poly(1/ε) for both the encoder
and the decoder. Clearly, Step 1 can be done in O (N). Indeed, identifying a subvector
of a specific length with a maximal number of unfrozen bits requires a single scan of the
entire input vector. Steps 2 and 3 both invoke Algorithm 1, and thus their running time
is N · poly(N) · poly(1/ε). Steps 4 requires at most O (N) as we need just to compute
the weight of a vector and then flip at most N1−1/2KC bits. Note that finding the bits
that need to be flipped takes also O (N) time since we need to find the dominant symbol
in the unfrozen bits (0 or 1) and then flip the first unfrozen occurrences of that symbol.
Thus, the encoder runs in N · poly(N) · poly(1/ε) time, as desired.

We analyze now the decoder. Steps 1 and 2 run in time O (N) as we compute the
weight of a vector and perform a casting of an integer in decimal representation to binary
representation. Steps 3 and 4 invoke Algorithm 2 whose running time is N · poly(N) ·
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poly(1/ε). Thus, the total running time is again N · poly(N) · poly(1/ε).

Remark 4.4. As discussed in Remark 3.5, to prove Theorem 1.5, which is the determin-
istic version of Theorem 1.4, we change the second step in Algorithm 1 to a brute force
step. This change affects the complexity of Step 2 and 3 which now becomes NO(1/ε). The
rest of the proof is identical to the one of the randomized construction.
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A Appendix

A.1 The complexity of g from Lemma 1.7

We briefly recall the third construction given in [AGHP92].

• Let h := k log r and let A ∈ Fr×h
2 be a generating of binary code whose dual distance

is exactly k.

• Let t := log h
µ

• Let x, y ∈ F2t/2 , where F2t/2 is the finite field with 2t/2 elements. Note that x and y

can be viewed also as elements in {0, 1}t/2 as F2t/2
∼= Ft/2

2 .

The function g : {0, 1}t → {0, 1}r is defined by

g(x, y) = A ·
(
⟨x0, y⟩, ⟨x1, y⟩, . . . , ⟨xh−1, y⟩

)
where ⟨·, ·⟩ is the mod two inner product. By [AGHP92], g(Ut) is µ-wise k independent

variable over {0, 1}r where Ut is the uniform distribution over Ut.
As for the complexity of computing g. Note that ⟨xi, y⟩ can be performed in poly(t)

time and we perform this operation h times. The multiplication of the vactor by the
matrix takes O (h · r) operations. In total, we perform,

O (h · poly(t) + h · r) = O
(
k log r · poly(log k log r

µ
) + r · k log r

)
,

and since in our settings, r = O (N logN), k = O (logN), and µ = NO(1), we get that
the complexity of g is

O (poly(logN) +N · poly(logN)) = O (N · poly(logN)) .

A.2 Missing proofs

Proof of Claim 1.9. Denote by ri the ith row. The matrix A has full rank if and only if
for any i ∈ [m],

• The rows r1, . . . , ri−1 are linearly independent and,

• ri /∈ span{r1, . . . , ri−1}.

Thus,

Pr[A has full rank] =
m∏
i=1

Pr[ri /∈ span{r1, . . . , ri−1}]

≥
m∏
i=1

(
1− 2i−1(2−n + ε)

)
≥ 1− (2−n + ε) ·

m∑
i=1

2i−1

= 1− 2m−n − ε · 2m
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where the first inequality holds since ri = (Ar,1, Ar,2, . . . , Ar,n) is an ε-almost n-wise
random variable and the second inequality is a standard union bound.

Proof of Claim 4.1. Denote x = |[j + 1, N ] ∩ F| (the number of frozen bits in v4) and
note that j = N − x − N

logN
. Therefore, we have |[j] ∩ F| = ρN − x. Denote Ii :=

[i · δN, (i+ 1) · δN − 1] for all i ∈ [⌊j/δN⌋ − 1]. Assume that for all i ∈ [⌊j/δN⌋ − 1], it
holds that |Ii ∩F | > (ρ+2δ)δN . Then, |[δN · ⌊j/δN⌋]∩F | > (ρ+2δ)j− δN . Therefore,

|F| > (ρ+ 2δ) j − δN + x

= (ρ+ 2δ)N + (1− ρ− 2δ)x− (ρ+ 2δ)N

logN
− δN

= (ρ+ δ)N + (1− ρ− 2δ)x−O
(

N

logN

)
> ρN

where the last inequality follows since 2δ < 1− ρ and for large enough N .

Proof of Claim 4.2. Assume that wt (v) ≡ y(mod d) for some y < d. Since there are at
least 2d unfrozen bits, at least d of them are either 1 or 0. Assume w.l.o.g., that at least
d of them are zero. Then, we need to flip exactly x − y(mod d) bits in order to get a
vector w with wt (w) ≡ x(mod d).
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