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GENESIS-RL: A reinforcement learning framework to progressively manipulate the environment (weather
conditions for the visual scene in this example) for an autonomous system (autonomous vehicle in this case)

to systematically synthesize natural edge cases that may lead to system-level safety issues (collision in this case).

Abstract— In the rapidly evolving field of autonomous sys-
tems, the safety and reliability of the system components are
fundamental requirements. These components are often vulner-
able to complex and unforeseen environments, making natural
edge-case generation essential for enhancing system resilience.
This paper presents GENESIS-RL, a novel framework that
leverages system-level safety considerations and reinforcement
learning techniques to systematically generate naturalistic edge
cases. By simulating challenging conditions that mimic the
real-world situations, our framework aims to rigorously test
entire system’s safety and reliability. Although demonstrated
within the autonomous driving application, our methodology is
adaptable across diverse autonomous systems. Our experimen-
tal validation, conducted on high-fidelity simulator underscores
the overall effectiveness of this framework.

I. INTRODUCTION
Scenario-based testing is one of the key approaches for

the validation of autonomous systems, especially those that
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incorporate learning-enabled components, that are known
to be susceptible to rare, unexpected (potentially out-of-
distribution) scenarios [1]. This testing approach is vital
not only for ensuring the safety and reliability of these
systems but also for enabling them to identify and rec-
tify potential failures in diverse, unforeseen situations. In
this context, identifying and preparing for challenging or
edge-case scenarios becomes critical. Synthesizing realistic
edge-case samples and incorporating these into the training
process [2], [3] can significantly enhance the resilience of
learning-enabled modules against adversarial conditions. By
exposing the learning modules to these pessimistic samples,
systems gain the opportunity to learn from challenging data
and better generalize across a spectrum of real-world condi-
tions. However, given the vast amount of possible scenarios,
manual creation of every scenario is infeasible, making
automated edge-case generation crucial for scalability and
effectiveness [4].

In this regard, traditional adversarial attacks on machine
learning models explore the vulnerability of the models
by injecting imperceptible noise into the inputs [5], [6].
These input perturbation methods, while effective in degrad-
ing the model performance, typically generates unnatural
and unrealistic samples, diverging from genuine real-world
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scenarios. Furthermore, these adversarial approaches usually
target specific components of an autonomous system rather
than assessing the system as a whole. This narrow focus
can overlook the holistic behavior of the system, where,
for instance, a failure in the perception module might be
compensated by the system’s control mechanisms, thus not
leading to a failure at the system level. On the other hand,
if the control system is not able to compensate, a relatively
small error in the perception module may lead to a catas-
trophic system-level failure. This highlights the limitation of
focusing solely on component-level vulnerabilities without
considering the integrated operation of the entire system.

Generative models have been used to synthesize edge
cases that are more realistic [7]. However, they are known
to produce samples with artifacts that compromise their
realism. These models, including generative adversarial net-
works (GANs) [8], diffusion models [9], and more re-
cently, text-to-image generation models such as DALLE [10],
CogView [11], can suffer from issues such as unnatural
distributions [12], distinct artifacts and unstable training [13],
[14], and slow inference rates, limiting their effectiveness in
producing realistic and natural scenarios [15], [16].

In this paper, we aim to alleviate these challenges, by
performing edge-case generation with system-level safety
objectives while maintaining the naturalness of the gener-
ated scenarios. We employ the rulebook formalism [17] to
precisely specify system-level safety objectives and leverage
the capabilities of Reinforcement Learning (RL) to guide the
generation of scenarios that not only challenge the system
across all its components but also resemble real-world condi-
tions closely. By focusing on the end-to-end vulnerability of
autonomous systems, our approach aims to generate scenar-
ios where the system fails to adhere to rulebook safety rules,
thereby identifying potential systemic failures. Also, our
proposed framework ensures that the generated scenarios are
not only challenging but also devoid of unrealistic artifacts
(via use of high-fidelity simulators), offering a more effective
and comprehensive approach to testing and validating the
safety and reliability of autonomous systems. Lastly, while
this study primarily showcases our approach within the au-
tonomous driving (AD) domain, our approach is designed to
be applicable to other learning-enabled autonomous systems.

In summary, the key contributions of this paper are as
follows:

• We propose a synthetic edge case data generation
framework for system-level safety concerns in learning-
enabled autonomous systems.

• We propose an RL-based intelligent sampling technique
that can identify parametric settings of high-fidelity
simulators to generate natural edge cases that may
lead to violation of safety rules by a learning-enabled
autonomous system.

• We provide extensive experimental validation of our
framework in the context of the autonomous driving
problems using the CARLA simulator [18]. We also
demonstrate that a pre-trained RL policy can gener-
ate edge-cases for new scenarios with minimal to no

training steps, thus accelerating the process of assess-
ment and verification of learning-enabled autonomous
systems.

II. RELATED WORKS

Recent research has explored diverse approaches to gen-
erating edge cases, each with unique contributions and lim-
itations:

• Cost Function-Based Identification: Efforts using cost
functions to pinpoint high-risk scenarios have shown
potential but often neglect critical factors like occlusions
and unpredictable trajectories [19], [20], [21].

• Perception-based techniques: Methods such as constant
norm-based perturbation target the system’s perception
capabilities but may not address the system’s overall
performance comprehensively [22], [2], [7], [23].

• Computer-vision based models: While innovative, meth-
ods that extract and recreate accidents from videos face
challenges in accurately replicating real-world complex-
ity [24].

• Edge case generation toolkits: Some edge-case genera-
tion software toolkits, like VerifAI [25], are capable of
analysis, falsification and data augmentation for systems
utilizing ML architectures. It leverages an “abstract
feature space” of higher-level information compared
to the low-level “concrete feature space” of image
pixels, to search for rule violation scenarios in a given
environment.

III. BACKGROUND

In this section, we introduce some key terminologies and
foundational concepts, setting the stage for understanding our
approach.

In this work, a system refers to the entity that is being
evaluated for its ability to navigate and perform tasks within
variable conditions. It could be an autonomous vehicle,
robotic platform, or any computational model. The world
denotes the simulated surroundings in which the system
operates, a construct designed to emulate real-world dynam-
ics where every aspect can have an effect on the system’s
behavior. Lastly, an actor is an entity other than the system
that also lives in the world.

As an example, in an autonomous driving context, the
system here could be the ego vehicle, and the world is
where the ego vehicle is situated. Other entities such as other
vehicles and pedestrians on the street are actors. Together
with crucial factors such as weather and road conditions
(including road markings and traffic signs) that are not part
of the system but could affect the system’s behavior, they
are all parts of the world.

A. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) [26] is an extension
of RL that harnesses the representational power of deep
neural networks. At its core, DRL adheres to the Markov
Decision Process (MDP) framework, mathematically formu-
lated as a 4-tuple (S,A, T,R), where:



• S represents the state space, comprising all conceivable
states.

• A denotes the action space, encompassing all actions
available to the agent.

• T : S × A × S′ → [0, 1] is the transition function,
indicating the probability of transitioning from one state
S to another state S′ given an action A.

• R : S × A × S′ → R is the reward function, which
assigns a numerical reward for each transition between
states under specific actions.

In a typical DRL setup, there is a DRL agent and the
environment. The DRL agent is the entity that we hope to
train for, whereas the environment is the setting or domain
within which the DRL agent operates and makes decisions,
which encompasses all aspects mentioned above in the MDP
framework, including the state space S, action space A, the
transition function T and rewards R.

Under this MDP framework, the agent’s decision-making
strategy at any time t is governed by a policy π, which maps
the current perceived state st to an action at. In DRL, this
policy is represented with neural networks, denoted as πθ,
where θ represents the neural network’s trainable parameters.
This configuration enables the agent to dynamically refine its
strategy by updating θ, thus improving its performance and
adaptability in navigating the environment.

The objective of DRL is to discover an optimal policy π∗
θ

that guides the agent to maximize the expected return along
a trajectory τ , which is a sequence of states and actions
(s0, a0, s1, a1, ..., sT , aT ). The expected return is calculated
as J(θ) = Eτ∼πθ

[
∑T

t=0 γ
tR(st, at, st+1)], where γ is the

discount factor and T the length of the trajectory. The
concept of episodes emerge naturally from this setup. An
episode describes a complete trajectory from an initial state
to a terminal state [27].

B. Rulebook

We will use the rulebook formalism [17] to precisely de-
scribe the correct behavior of the system. A rulebook consists
of a set R of rules, each is evaluated over realizations. A
realization is defined as a sequence of states of the system
and all the other actors and features in the world. Given a set
Σ of realizations, a rule is defined as a function r : Σ → R≥0

that measures the degree of violation of its argument. If
r(x) < r(y), then the realization y violates the rule r to a
greater extent than does x. In particular, r(x) = 0 indicates
that a realization x is fully compliant with the rule. Note
that the definition of the violation metric might be analytical,
“from first principles”, or be the result of a learning process.

In this work, we utilize the rulebook to calculate the
rewards. A higher violation score leads to increased rewards,
encouraging the agent to explore scenarios that challenge the
system’s safety protocols and resilience, thereby generating
critical edge cases.

IV. METHODOLOGY

In this section, we present how we formulate natural
edge-case generation for an autonomous system, as a DRL

problem along with our proposed algorithmic framework.
At a high level, GENESIS-RL utilizes DRL to dynami-

cally explore and manipulate the conditions of a simulated
world, aimed at generating challenging yet naturalistic edge-
cases for a system. To achieve this, we have parameterized
the world with parametric knobs—adjustable settings that
control various aspects of the simulation, which in the
case of autonomous driving, could include dynamic weather
patterns, object placements, traffic flow, and so on. By
adjusting these knobs, the DRL agent is provided with the
capability to systematically probe and alter the simulated
world, effectively simulating different edge cases that the
system under test might encounter.

Remark. Our objective is to craft and manipulate the world
(via simulation) to induce challenging scenes. By doing
so, we seek to generate edge cases that test the limits of
the system’s current capabilities, aiming to reveal potential
failure cases. In contrast to typical DRL works, we do not
focus on improving the system’s capabilities in this work.

A. DRL Problem Formulation

Following the MDP framework, we define the state space,
action space, and reward of our problem as follows:

1) State space: The state space encompasses all con-
ceivable states st, which include permutations of parametric
knobs, system’s behaviors, other actors, and features of the
world. This state representation captures the dynamics of the
world and the DRL agent’s action inputs, and is conveyed
through information obtained by the system.

2) Action space: The action space is the set of all possible
actions at available to the agent, corresponding to the adjust-
ments the agent can make to the parametric knobs within
the simulation. To ensure that the changes introduced by the
DRL agent lead to scenes that are natural and realistic, we
imposed constraints on the extent of modifications possible
at each step. Specifically, we limit the maximum percentage
change that can be applied to any parametric knob by the
DRL agent in a single action. This measure prevents extreme,
unrealistic variations in conditions, thereby maintaining the
realistic nature of the simulated scenes while still challenging
the system under test.

3) Reward: The reward mechanism is designed to mo-
tivate the DRL agent to discover significant edge cases. It
comprises two components: the learning module loss rm
and the violation score rv derived from the rulebook. The
learning module loss is the loss experienced by the learning-
enabled module within the system, which acts a direct reward
to the agent, where a lower loss indicates better performance
of the module at performing its designated task. The violation
score is an indirect reward provided to the agent due to the
imperfection of the learning-enabled modules. For example,
in the context of autonomous driving, the rulebook evaluates
the ego vehicle’s trajectory against a set of predefined rules,
penalizing actions that lead to unsafe scenarios. The total
reward rt at time step t is calculated as a combination of
these two elements.



B. GENESIS-RL Framework

To effectively implement our DRL formulation, we de-
signed a framework consisting of the following components:
the DRL agent, the initial scene generator, the simulator, the
system, and the reward calculator. The latter four together
forms an environment for the DRL agent, facilitating contin-
uous learning of the DRL agent through dynamic interaction.

1) DRL agent: The DRL agent is the decision-making
core. At each time step t, it obtains the current state st of
the environment and executes an action at. The environment
then responds to this action by evolving to a new state based
on the updated parametric knobs of the simulated world and
issues a scalar reward rt to the agent as a feedback.

2) Initial scene generator: The initial scene generator is
responsible for creating a distribution of the initial scenes
(a configuration of physical objects, system and actors) and
sampling from them in the simulated world. It dictates
the initial conditions the system will encounter, therefore
determining the initial scene observed by the DRL agent.

3) Simulator: The simulator provides a realistic and in-
teractive backdrop where the DRL agent’s actions and the
system’s outputs are executed and new frames are updated,
reflecting the changes in real time.

4) System: The system is the entity being evaluated within
variable conditions, as defined in the background section.

5) Reward calculator: The reward calculator calculates
the reward rt for time step t, as defined in the previous
section.

C. Training the DRL Agent

Now putting things together, a single step the training
looks like as follows (See Fig. 1): at each time step t, the
DRL agent receives a state st from the simulator in the
environment and executes an action at on the simulator.
The simulator reflects the changes based on the updated
parametric knobs in the simulated world and the changes
are subsequently captured by the system through its sensors.
The system then generates its control signals based on
its inputs, which leads to a system trajectory update. The
updated trajectory is then evaluated by the rulebook for
violation score calculation, and is sent back to the DRL agent
combined with the learning module loss.

The DRL agent is trained through interactions with the
environment, where it observes the states, applies actions,
and receives rewards. The training process involves iterative
episodes of simulation, during which the agent refines its
policy πθ to maximize the cumulative reward, effectively
learning to identify and create challenging scenarios for the
system.

V. EXPERIMENTS

In this paper, we explore the weather conditions that
can lead to natural edge cases for autonomous driving.
Hence, we grant the DRL agent exclusive control over the
weather conditions in the simulated world. The system we
evaluate is an ego vehicle, tasked to navigate through the
simulated world based on sensor feedback. In subsequent

Fig. 1. Architectural overview of the proposed framework. At each step t,
the DRL agent observes a state st of the environment (1) and executes an
action at (2). The simulator then updates the simulated world accordingly
and creates an updated frame. The updated frame (3) is then processed by
the system to generate vehicle control signals (4). The control signals are
subsequently applied to the simulated world to update the vehicle trajectory
(5). The reward calculator evaluates the performance by comparing the ego
vehicle’s trajectory against the rulebook and also computes the learning
module loss, issuing a scalar reward rt (6) that guides the DRL agent’s
learning process.

sections, we detail the operationalization of the GENESIS-
RL framework’s components, starting with the DRL agent
and encompassing the environment, then the training and
testing setups and evaluation metrics.

A. DRL Agent

We have chosen the Proximal Policy Optimization (PPO)
algorithm [28] as the DRL agent for its stabilized training
capabilities and its proficiency in handling continuous state
and action spaces. We adopted the implementation of Stable-
Baselines3 [29]. The state and action spaces for the agent is
as follows:

• State space: A 640×480 three channel numpy array
from the RGB camera attached to the ego vehicle.

• Action space: A 5-tuple that represents the delta in value
for each parametric knob. The parametric knobs are: the
fog density, the precipitation density, the precipitation
deposit level, the sun altitude angle, and the sun azimuth
angle. These actions are bounded between [−1, 1], and
are scaled by a set of preset scalar factors to satisfy the
perturbation limit, which is 5%. For example, the fog
density ranges from 0 to 100, then the corresponding
parametric knob would be scaled by a factor of 5 such
that the change in fog density level between each step
in an episode will not exceed 5%.

As mentioned earlier, the DRL agent is developing a policy
πθ parameterized by a neural network θ. Here, the archi-
tecture of θ is a CNN, which takes the RGB three channel
arrays (640, 480, 3) as inputs, and outputs an 5-tuple action.

B. Environment

The initial scene generator, the simulator, the system, and
the reward calculator collaboratively create the environment



of the DRL agent. These parts together generate the state
and reward required to train the DRL agent and react to the
actions of the DRL agent dynamically.

1) Simulator: We employ CARLA [18] to simulate intri-
cate, dynamic urban settings with high visual fidelity.

2) Initial scene generator: Scenic [30] was utilized for
creating the initial scenes as a strategic approach to ensure
precision and versatility in our experimental setup. It allows
us to craft realistic, detailed and specific initial scenes,
thereby enhancing the relevance and challenge of each test
instance presented to the system. Specifically, this generator
is tasked with assigning the positions of vehicles within the
simulator: For each initial scene, we introduce 30 vehicles,
including the ego vehicle, a lead vehicle, a neighboring
vehicle on the front right, and the remaining 27 vehicles
randomly positioned within a specific radius of the ego
vehicle. Vehicle colors, models, and the distance between
the ego, lead, and neighbor vehicles could be either varied
randomly or deterministic, depending on the use case.

We leveraged CARLA’s [18] record feature to efficiently
catalog the configurations of the initial scenes. These saved
scenes are then randomly sampled and loaded back into the
simulation between training or testing episodes. A total of
1199 initial scenes for Town05 and 1202 for Town10 were
generated and cataloged using the this generator.

3) System: The system in our study is an ego vehicle that
navigates itself within the simulated world with RGB and
depth cameras onboard. It is equipped with a perception-
based controller, which consists of two parts: a perception
model for object detection, utilizing a pre-trained YOLOv5s
model [31] to process RGB images from the onboard RGB
camera, and a modified CARLA [18] behavior controller
that translates detection results into vehicle control signals.
In our implementation, the input to the modified behavior
controller includes the detection output from the perception
model along with depth information from the onboard depth
camera. By overlapping the 2D bounding boxes with the
depth image, we were able to obtain the depth of the
center point of the bounding boxes, which will then be used
to obtain the 3D bounding boxes of the detected objects.
Leveraging these 3D bounding boxes, combined with real-
time data on the vehicle’s position, orientation, velocity, and
the surrounding map, the controller adeptly synthesizes these
inputs to generate vehicle control signals, i.e., throttle, brake,
and steering signals.

4) Reward calculator: The reward rt is calculated by
the weighted sum of the learning module loss rm and the
violation score rv . The learning module loss is defined by the
Intersection Over Union (IOU) metric, assessing the system’s
object detection precision in real-time. Simultaneously, the
violation score is generated by the rulebook evaluating a
trajectory, focusing on two critical safety rules:

• Vehicle collision, violated if the ego vehicle collides
with other vehicles.

• Vehicle proximity, violated when the ego vehicle ap-
proaches closer than a predetermined minimum distance
to the vehicle in front.

The reward rt is and calculated as follows:

rt = rm + rv (1)

ri = e−iou (2)

rv =
∑
k

ln(1 + wksk), k = c, p (3)

where iou is the IOU metric, c, p represent collision and
proximity rules, respectively, (wc, wp) = (500, 100), and sk
is the speed of the ego vehicle in meters per second when
a violation occurs and serves as a measure to quantify the
resultant impact incurred by the violation. The predetermined
minimum distance for the proximity rule is set to 5 meters.

C. Training and Testing

Our experiments are divided into two phases: training and
testing, each aimed at evaluating the effectiveness of the
GENESIS-RL framework.

1) Training: The training experiments was conducted in
CARLA’s [18] Town10, an urban map setting with multiple
four-way intersections. To ensure the DRL agent experiences
a broad range of initial scene configurations, we start each
episode by randomly selecting from 1202 pre-cataloged
scenes, each featuring vehicles with randomized colors and
makes. This setup is further enhanced by the stochastic
behaviors of non-ego vehicles, governed by CARLA’s [18]
traffic manager, introducing both realism and complexity.
The variable vehicle arrangement, appearances, and the other
vehicle agents’ stochastic nature significantly enriched the
training landscape, equipping the DRL agent to adeptly
uncover system’s vulnerabilities. The DRL agent is trained
with 40960 steps, with an episode length of 512. The policy
of the DRL agent updates every four trajectories.

2) Testing: The testing experiments unfolded within
CARLA’s [18] Town05, a map setting featuring pine-covered
hills and a network of roads and a highway. In this phase, we
aimed for diverse yet repeatable conditions by selecting 50
out of 1199 cataloged scenes from the initial scene generator.
This is realized by using a fixed random seed, ensuring
these scenarios are consistent across different experiment
runs. The deterministic setting extends to other vehicles’
appearances and their behavior, i.e., the color/make of the
vehicles and the path they follow throughout the testing
episode are deterministic, chosen to maintain uniformity to
allow each scenario’s outcomes to be directly comparable.
This method ensures that despite the inherent variability of
the test runs, the foundational conditions remain constant,
facilitating an accurate assessment of performance across
varying scenarios.

Detailed records of violation scores and other critical data
were kept, with averages calculated for thorough analysis.
These findings were benchmarked against two specific sce-
narios: our system navigating in clear weather and under ran-
domly perturbed weather conditions by a non-strategic agent,
providing a comprehensive evaluation of the GENESIS-RL
framework. The length of each testing episode is identical
that of the training, which is 512 time steps in the simulation.



D. Evaluation Metrics

In our evaluation process, we employ two metrics: the
violation score and the minimum following distance deficit
δmfd. The former metric has been detailed earlier in this
section and measures the system’s adherence to a set of
predefined safety rules. For the latter, we introduce a metric
by leveraging the concept of minimum following distance
dmin, as defined in Responsibility-Sensitive Safety (RSS)
[32]. We adopt a simplified version of the RSS criterion,
which assumes that both the ego and lead vehicles have the
same maximum deceleration rate and that the reaction time of
the autonomous system is negligible. The simplified formula
for calculating dmin is given by the following equation:

dmin = max{0, (v
2
e − v2l
2a

)} (4)

where ve, vl the speed of the ego and lead vehicle, respec-
tively; a the maximum deceleration of both vehicles, which
is 5 m/s2.

The minimum following distance deficit δmfd is then
calculated by the discrepancy between the actual distance d
maintained by the ego vehicle and the calculated dmin, i.e.,
δmfd = max(0, dmin − d), where d is the distance between
the ego and lead vehicle. Specifically, it quantifies how much
closer the ego vehicle comes to the lead vehicle than is
deemed safe according to the simplified RSS criterion. In the
following section, we will show the sum of this metric over
all 50 runs. Showing the extent of the ego vehicle getting
too close to the lead car.

VI. RESULTS AND DISCUSSION

In this section, we present the outcomes of our experi-
ments, systematically analyzing the performance and efficacy
of the GENESIS-RL framework. The results underscore the
capability of our approach to generate meaningful edge
cases, highlighting key findings and insights gained through
testing scenarios. Particularly, we validate our approach by
answering the following questions:

• What impact do the generated edge cases have on
the performance and decision-making processes of the
system?

• How effectively does our framework generate edge
cases that are both challenging and realistic for the
system under test?

To begin our exploration of these questions, we first examine
the learning dynamics of GENESIS-RL, as evidenced by the
progression of rewards over time. Fig. 2 presents the reward
plot from five training runs, showcasing the DRL agent’s
ability to adapt and improve through its interactions through
time. Each run is depicted as a dashed line within the figure.
The mean reward across these five runs is displayed as a solid
blue line, indicating the overall learning trend. Additionally,
the variance in rewards across the runs is represented by
the shaded area, offering insight into the consistency and
reliability of the learning process.

Fig. 2. Reward plot for GENESIS-RL training runs. This figure illustrates
the variation in rewards over training steps in five training runs. The solid
blue line indicates the average reward of the runs, while the light blue shaded
area represents the variance. Dashed lines show individual run trajectories,
highlighting the spread around the average.

A. Impact of GENESIS-RL Generated Edge Cases on System
Performance

Our analysis of GENESIS-RL’s impact on the system
reveals a notable increase in both violation scores (See
Fig. 3) as well as the sum of minimum following distance
deficit, illustrating its ability to effectively challenge and ex-
ploit system vulnerabilities. Specifically, the scenario output
from GENESIS-RL’s policy leads to significant variations
in system performance, as demonstrated by the following
observations:

1) Proximity violation score increase: Under weather
scenarios controlled by GENESIS-RL, the system’s braking
response was markedly delayed compared to its reaction
under other testing scenarios and, in some instances, the
braking behavior is altogether absent. This delay/absence is
quantifiably demonstrated through the analysis of the ego
vehicle’s telemetry data (See Fig. 4(c), the system operating
under the GENESIS-RL policy maintains a brakes much
later, i.e., the blue curve is shifted more to the right compared
to the two other scenarios), showcasing a contrast in the
system’s ability to maintain safe following distances under
varied environmental influences.

2) Collision violation score increase: Further looking into
the types of collision violations induced by GENESIS-RL,
we categorize them into three main failure modes:

• Non-detection collisions: Instances where the system
fails to detect the leading vehicle at all, resulting in
high-speed impacts (See Fig. 4(a)). This failure mode
underscores critical perception system vulnerabilities
under complex environmental conditions orchestrated
by GENESIS-RL.

• Intermittent detection collisions: Occurrences where the
system initially detects the lead vehicle but subsequently
loses track of it, leading to collisions at reduced speeds
(See Fig. 4(b). These incidents underscore the deficien-



cies in the system’s ongoing tracking, and/or highlight
the shortcomings in its ability to respond promptly
within the scenarios induced by GENESIS-RL.

• Delayed detection collision: Occurrences where the
system detects the lead vehicle too late to stop in time,
leading to collisions at reduced speeds (See Fig. 4(c).
These incidents highlights the deficiencies in the sys-
tem’s detection mechanisms.

These findings not only exemplify GENESIS-RL’s capa-
bility in uncovering and leveraging system weaknesses but
also emphasize the imperative need for bolstered system
robustness against a wide spectrum of real-world conditions.

B. Effectiveness of GENESIS-RL in Generating Edge Cases

Our results show that with the GENESIS-RL framework,
we were able to generate edge cases that pose significant
challenges not only to automated systems but also to human
perception and response capabilities. A prime example of
such conditions includes scenarios combining foggy weather
with heavy rainfall, or nocturnal settings accentuated by
heavy rain, where the reflections on wet surfaces severely
disrupt the detection capabilities of autonomous systems.
These conditions, inherently challenging due to their impact
on visibility and sensor efficiency, highlight the scenario
generation capabilities of GENESIS-RL, underscoring its po-
tential for creating diverse testing environments that closely
mimic real-world driving complexities.

During inference, we observed that the DRL agent relies
heavily on manipulating certain parametric knobs (such as
rain and fog density) to introduce challenges to the system.
To investigate the capability of GENESIS-RL in generating
versatile cases, we conducted experiments with fog and rain
density levels set to zero, individually and in combination.
Despite the absence of these parametric knobs, our frame-
work is still capable of creating edge cases that undermine
the system’s performance, demonstrating its robustness in
edge case generation beyond the reliance on certain powerful
and effective parametric knobs (See banner figure on first
page for reference).

VII. CONCLUSION AND FUTURE WORK

In conclusion, our study demonstrates the GENESIS-RL
framework has demonstrated its capability to generate com-
plex and challenging edge cases for autonomous systems,
which are critical for thoroughly testing and enhancing
the reliability of systems as such. Moreover, GENESIS-
RL proved capable of producing edge cases that will lead
to system failure even in the absence of some dominating
factors, underscoring its robustness and potential broader
application in safety-critical testing environments.

The implications of the results from our work is manifold.
First, they highlight the need for including a wide range of
challenging scenarios in the testing protocols for autonomous
systems, ensuring they are well-equipped to handle intrica-
cies of complex and dynamic environments. Additionally, the
ability of GENESIS-RL to generate test conditions without
relying exclusively on dominant factors showcases its value

Fig. 3. Violation scores and sum of minimum following distance deficit
(based on RSS) across three testing scenarios - the system operates under
sunny weather, random weather and under the GENESIS-RL policy.

in crafting safer, more dependable autonomous system solu-
tions.

Looking ahead, we plan to expand our exploration to
a broader array of parameters, including a more extensive
range of weather conditions, the behavior of other actors in
the environment, and additional variables, to further enhance
the scenario generation capabilities of GENESIS-RL and its
application in creating even more diverse and challenging
testing environments for autonomous systems.
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