
HOMEMADE ALGEBRAIC GEOMETRY.
CELEBRATING ENRIQUE ARRONDO’S 60TH BIRTHDAY

SIMONE MARCHESI 1 AND ALICIA TOCINO 2,∗

Abstract. In this survey we recognize Enrique Arrondo’s contributions over the whole of its career, recalling
his professional history and collecting the results of his mathematical production.

1. Introduction

At July 10th-13th, 2023, we celebrated Enrique Arrondo’s 60th birthday. On this occasion we could see
and appreciate the professional esteem and the personal affection that so many people, in the mathematical
community, have for Enrique.

As a continuation of this celebration, the purpose of this survey is twofold.
First, we would like to briefly recall, as done in the dedicated talk of the congress, Enrique’s academic
background and professional history, drawing a global picture of the vast network that he has built over the
years and underlying how much he deeply influenced the community (and especially his Ph.D. students) with
his unique and natural way of doing mathematics. In doing so, we hope we managed to mention most of the
people that played a role in his career and apologize in advance if we have missed someone.
Furthermore, we also would like to collect in this work most of Enrique’s contributions in algebraic geometry,
regarding especially Grassmannian varieties and vector bundles.

Enrique obtained his Degree in Mathematical Science in the Universidad Complutense de Madrid (with
extraordinary bachelor’s degree award) in 1985. He obtained his Ph.D. in Mathematical Sciences in 1990
from the Universidad Complutense de Madrid (with extraordinary Ph.D. award), presenting the thesis Con-
gruencias de rectas en P3 (Congruences of lines in P3), with advisor Ignacio Sols. Since 1990, he is a professor
at the Universidad Complutense de Madrid.

During this period, he provided an important contribution in the training of young researchers, also
by mentoring and teaching in summer schools and training courses. His enthusiasm, mastery of algebraic
geometry and, at the same time, eagerness to learn, have been, over the years, an inspiration to many. The
following genealogy tree shows all of Enrique’s mathematical descendants, most of which are now themselves
university professors.
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Ignacio Sols (1975) ! Enrique Arrondo (1990)



Raquel Dı́az (1996) - Universidad Complutense de Madrid
Luca Ugaglia (2001) - Università degli studi di Palermo
Beatriz Graña (2003) - Universidad de Salamanca
Jose Carlos Sierra (2004) - Universidad Nacional de Educación a Distancia
Jorge Caravantes (2006) - Universidad de Alcalá
Sof́ıa Cobo (2008)

Simone Marchesi (2012) - Universitat de Barcelona
{

Aydee López (2017)
Aline Vilela (2018)

Alicia Tocino (2015) - Universidad de Málaga

We now pass to Enrique’s contributions in algebraic geometry.
Being aware of how hard and unfair it is to divide a life’s work in sections, we have decided to start by
presenting the research developed during his doctoral studies, focused on congruences over projective spaces
and Grassmannian varieties. Among his collaborators on this topic over the years we would like to mention
Marina Bertolini, Sof́ıa Cobo, Beatriz Graña, Mark Gross and Cristina Turrini. Nevertheless, more details
on this topic can be found in Section 2.

To continue this division, an efficient way to detect Enrique’s mathematical interests is given by considering
the topics proposed to his Ph.D. students.

Hence, wee see that another point of interest consists in vector bundles without intermediate cohomology.
Together with Beatriz Graña, Francesco Malaspina and Alicia Tocino these bundles were investigated on
Grassmannians of lines. Furthermore, this study was extended for Fano 3-fold and quartic threefolds together
with Daniele Faenzi, Laura Costa and Carlo Madonna. Details on this topic can be found in Section 3.

Moving forward, the works together with Raffaella Paoletti, Jose Carlos Sierra and Luca Ugaglia provide
the next point: projections of Grassmannians. Details on this topic can be found in Section 4.

The following item of our list is given by Steiner and Schwarzenberger bundles. They were first studied by
Enrique for projective spaces and subsequently generalized, first for Grassmannians, with Simone Marchesi,
and then for projective varieties, jointly with Simone Marchesi and Helena Soares. Details on this topic can
be found in Section 5.

The next area of interest is to be found in the famous Hartshorne’s conjecture, the study of which inspired
various lines of research. An example of this is the subcanonicity of codimension two submanifolds of G(1, 4),
he studied together with Maria Lucia Fania, as well as the Picard group of low codimension subvarieties,
studied with Jorge Caravantes. Details on this topic can be found in Section 6.

Finally, Section 7 collects “miscellaneous” topics and Section 8 represents an exhibit of Enrique’s unique
point of view in understanding algebraic geometry.

We cannot finish this introduction without thanking Enrique again, who helped us grow professionally and
personally, and whose friendships we hold dear.

Projective Algebraic Geometry in Milano, June, 2009
Courtesy of Antonio Lanteri

2. Congruences

As we mentioned before, Enrique’s Ph.D. thesis is entitled Congruencias de rectas en P3; it has been
developed under the supervision of Ignacio Sols and defended in 1990. In their joint published work [41], they
mainly study smooth congruences, which are surfaces in the Grassmannian of lines in P3, that is, G(1, 3). They
also inquire the parallelism with surfaces in P4. They prove that the only indecomposable bundles on G(1, 3),
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without intermediate cohomology, are line bundles and twists of the spinor bundle (we will briefly explain
the concept of vector bundles without intermediate cohomology in the next section). They also describe the
Hilbert schemes of all smooth congruences of degree up to nine, enhancing the results obtained previously
in [39] and by Alessandro Verra in [62]. The most relevant result is [41, Theorem 5.1], where they give a
complete classification of the smooth congruences that can be obtained as a projection from another surface
in G(1, 4) (projections will be another important topic of Enrique’s research that will be detailed later on).
Although it is an analogue of Severi’s theorem for P4 (see [61]) they use a completely different approach. In
fact, they obtain five different classes of such smooth congruences geometrically, more concretely by looking
at the geometry of lines in P3. Moreover, with the collaboration of Manuel Pedreira, they prove:

Theorem ([41], Theorem 6.18). Except for a finite number of components, each component of the Hilbert
scheme of smooth congruences consists of surfaces of general type.

Indeed, an analogous result for surfaces in P4 was proven by Geir Ellingsrud and Christian Peskine in [47].
Let us continue with more congruences, jointly with Mark Gross, [27]. Contrary to the preferred setting of

the classical authors (see [50]), they study smooth congruences having a fundamental curve. The fundamental
curve of a congruence is formed by its singular points that are points in P3 with infinitely many lines of the
congruence passing through them. The number a of lines of a congruence Y passing through a general point
of P3 is called order of Y . Dually, the number b of lines of a congruence contained in a general plane of
P3 is called class of Y . So, the pair (a, b) is called the bidegree of the congruence. They provide a more
comprehensive classification of smooth congruences in G(1, 3), listing the possible degrees of the fundamental
curve and, in case this is not a line, giving all the possible bidegrees of the congruences, that we collect below.

Theorem ([27], Theorem 2.1). Let Y be a smooth congruence having a curve C in P3 of singular points.
Then one of the following holds:

(a) The curve C is a line.
(b) The congruence consists of the bisecants to C, which is either a twisted cubic, Y being a (1, 3) con-

gruence, or an elliptic quartic and Y is a (2, 6) congruence.
(c) The congruence Y is a scroll of degree bigger than two and hence is either a (1, 2) or a (2, 2) (with C

being a conic) or a (3, 3) congruence and C is a smooth plane cubic.
(d) The curve is a smooth plane cubic and Y is the (3, 6) conic bundle over C of Example 1.5 of [27]

(that consists of a concrete surface with an infinite number of singular points of bidegree (3, 6)).

In addition, they introduce a vector bundle construction for various smooth congruences in Section 3. In
particular, in Example 3.7, they give a smooth (5, 8) congruence, thanks to an observation of Peskine, being
the first example found so far.

A generalization of these arguments comes about through his collaboration with Marina Bertolini and
Cristina Turrini.
As a first step, the three of them study, in [14], the congruences of lines, which are defined as (n − 1)-
dimensional subvarieties of G(1, n). Again, the fundamental curve of the congruence is a curve C ⊂ Pn which
meets all lines of the congruence. They give a classification of all smooth congruences having a fundamental
curve C, obtaining two cases. Firstly, when C is a line (Theorem 1), there are infinitely many families of
these congruences. Secondly, if deg(C) ≥ 2 (Theorem 2), there are finitely many of such families. They
continue these investigations in [15], studying congruences of small degree in G(1, 4). A classification of all
smooth threefolds in G(1, 4) is provided in terms of the bidegree (a, b) with a = 0 or b ≤ 2 and collected in
Lemma 5.1, Lemma 5.2, Lemma 5.3 and Lemma 5.4. Furthermore, all the possible numerical invariants of
smooth threefolds in G(1, 4) of degree less than or equal to 10 are also given. In Table 1 they collect the list
of congruences of degree d ≤ 8, developing all the details in Sections 8, 9 and 10. In Table 2 and Table 3 they
provide a maximal list of congruences of degree 9 and 10 (which is far from being effective due the presence of
unknown cases). In order to obtain these results, they use different classification results of varieties of small
degree, in particular the one given by Paltin Ionescu in [54] and the one given by Maria Lucia Fania and
Elvira Laura Livorni in [49].
They also continue studying quadric bundle congruences in G(1, n) with n ≥ 4 in [16]. A quadric bundle
congruences in G(1, n) is a quadric fibrations embedded in G(1, n) with dimension equal to codimension. They
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describe all the possible smooth congruences in G(1, n), for n ≥ 4, which have a quadric bundle structure over
a curve. In particular, Section 3 is devoted to the case n = 6, Section 4 to the case n = 5, Section 6 details
the case n = 4 and Section 8 collects all the information in a table. The main tool they use is Castelnuovo’s
bound for the genus of projective curves as well as a generalization for curves in an arbitrary Grassmannian
variety (which was obtained by Luis Giraldo in [51]). Much more articles have been published with Marina
Bertolini and Cristina Turrini concerning congruences (see [17], [18] and [19]). Among them, we would like
to highlight the following result.

Theorem ([18], Theorem 5.1). The only smooth congruences X of the trisecant lines to a surface S in P3

(with at most ordinary singularities) are those listed in the following:
(i) the congruence of trisecants to S1, which is the hyperplane section of G(1, 4) and has bidegree (1, 2)

and sectional genus 1. (S1 is the projected Veronese surface)
(ii) the congruence of trisecants to S3, which is the dependency locus of two sections of Q2 and has bidegree

(0, 2) and sectional genus 0. (S3 = Blq,p1,...,p7(P2) is the Castelnuovo surface of degree 5, that is, the
blowingup of P2 in eight points embedded by plane quartics with a given double and other seven base
points and Q is the quotient bundle of rank 2 of G(1, 4))

(iii) the congruence of trisecants to S4, which is the zero locus of section of Sym2Q and has bidegree (0, 4)
and sectional genus 1. (S4 = V (2, 3) is the smooth complete intersection of a quadric and a cubic
hypersurface)

(iv) the congruence of trisecants to S5, which is the dependency locus of four sections of Q3 and has bidegree
(1, 8) and sectional genus 10. (S5 = Blp1,...,p10(P2) is the Bordiga surface of degree 6, embedded by
plane quartics with ten base points)

(v) the congruence of trisecants to S6, which is the dependency locus of three sections of Q ⊕ Sym2Q and
has bidegree (2, 15) and sectional genus 33. (S6 = Blp(K3) is the inner projection of the complete
intersection V (2, 2, 2) of three quadric hypersurfaces in P5 from a point in it)

(vi) the congruence of trisecants to S7, which is the dependency locus of two sections of Sym3Q and has
bidegree (6, 42) and sectional genus 181. (S7 = V (3, 3) is the smooth complete intersection of two
cubic hypersurfaces)

Furthermore, Enrique studies on his own line congruences of low order, see [4]. As for P3, the order is
defined as the number of lines of the family passing through a general point of Pn. More concretely, Proposition
2.1 characterizes line congruences of order 0 in P4, Theorem 2.1 gives a complete list of congruences of order
one in P3 and Propositions 3.1, 3.2 and 3.3 provide some results concerning congruences of order two in P3.

Let us keep on going with more congruences, in this case provided together with Beatriz Graña and Sof́ıa
Cobo, both Ph.D. students of Enrique. Beatriz defended her thesis in 2003, entitled Escisión de fibrados en
G(1, 4) y sus variedades, in which congruences on G(1, 4) with split universal quotient bundle are studied.
Moreover, Enrique and Beatriz give in [26, Theorem 2.8] a complete classification of the smooth threefolds in
G(1, 4), in the case that the restriction of the universal quotient bundle Q is a direct sum of two line bundles.
Sof́ıa Cobo obtained her Ph.D. in 2008, presenting the work Estabilidad del fibrado universal restringido
a congruencias. In the corrisponding published paper [21], Enrique and Sofia try to discover if there is a
congruence in G(1, 3) with any preassigned bidegree (a, b) obtaining as main result in this sense Theorem 2.1.

3. Vector bundles without intermediate cohomology

Now, it is time for arithmetically Cohen-Macaulay (aCM for short) vector bundles, equivalently, vector
bundles without intermediate cohomology. Our story starts when Geoffrey Horrocks obtains in [53] a criterion
that states that a vector bundle F over Pn splits as a direct sum of line bundles if and only if Hi(Pn, F ⊗
OPn(t)) = 0 for all t ∈ Z and 0 < i < n, that is, F does not have intermediate cohomology. In this direction,
Horst Knörrer proves that line bundles and twists of the spinor bundles are the only indecomposable aCM
vector bundles over quadrics in [55]. In a kind of converse result, Buchweitz, Greuel and Schreyer show in [46]
that the only smooth hypersurfaces in a projective space for which there exists, up to a twist, a finite number
of aCM bundles are the hyperplanes and the quadrics. Continuing our story, Giorgio Ottaviani generalizes
Horrocks’ criterion for quadrics and Grassmannians, respectively in [58] and [59]. In the last case, he states
that a vector bundle F over G(k, n) splits if and only if Hi(G(k, n), ∧i1Q ⊗ . . . ⊗ ∧isQ ⊗ F (t)) = 0 for all
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0 ≤ i1, . . . , is ≤ n − k, s ≤ k, t ∈ Z and 0 < i < (k + 1)(n − k) where Q is the quotient bundle on G(k, n).
In the same sense as Horrocks’ and Ottaviani’s criterion, Enrique Arrondo and Beatriz Graña characterize
exactly which are the concrete vector bundles on G(1, 4) without intermediate cohomology in [25, Theorem
3.3]. Following the Mumford-Castelnuovo regularity of sheaves on the projective space, Enrique Arrondo
and Francesco Malaspina obtain an analogue of Evans and Griffith’s theorem (see [48]) on Grassmannians
of lines. They give in [30] two criteria (Theorem 3.1 and 3.2) stating that a vector bundle contains, as
a direct summand, an exterior power of the universal sub-bundle or a symmetric power of the universal
quotient bundle, if certain cohomologies vanish. They also characterize (Theorem 3.3) those vector bundles
that are direct sums of twists of the above exterior and symmetric powers. As a consequence of these results,
Alicia Tocino’s thesis was carried out under Enrique Arrondo’s supervision in 2015, entitled Cohomological
characterization of universal bundles of the Grassmannian of lines. More concretely, in [43, Theorem 4.14] a
characterization is provided according to directs sums of twists of symmetric powers of the universal quotient
bundle over G(1, n) (also using derived categories and Beilinson’s spectral sequence).

We continue with more vector bundles without intermediate cohomology beyond Grassmannians. Enrique,
together with Laura Costa, proves in [22, Theorem 3.4] that there exist, up to a twist, only three inde-
composable rank-2 bundles without intermediate cohomology on Fano 3-folds. For vector bundles of higher
rank, they give a table of concrete examples and characterize which are the Chern classes of vector bundles
without intermediate cohomology (verifying some general conditions), see [22, Table 4.6 and Theorem 4.9].
With Daniele Faenzi, Enrique focuses on rank-2 vector bundles without intermediate cohomology on prime
Fano threefold X of index 1 and genus 12, proving that there are only five different classes and providing a
description of their moduli spaces, see [23]. They mainly use elliptic curves in X and the resolution of the
diagonal on X × X to prove such result. In addition, in [29] with Carlo G. Madonna, he studies aCM vector
bundles F of rank greater or equal than 3 on hypersurfaces Xr inside P4 of degree r ≥ 1 . The main result
is Theorem 1.5, focusing on an aCM vector bundle F of rank 3 and 4 on a general quartic threefold X4 ⊂ P4

which satisfies a concrete condition, defined in Definition 1.2.

4. Projections and Grassmannian variety

The study of projective varieties of small codimension that are not linearly normal, that is, isomorphically
projected from higher projective spaces, is a classical problem. Note that any n-dimensional variety can be
projected isomorphically to P2n+1, but it produces singular points when it is projected to P2n. So, it is
expected that the n-dimensional varieties of codimension at most n are linearly normal. In the first place,
Francesco Severi proves in [61] that the only nondegenerate, that is, not contained in a hyperplane, smooth
complex surface in P5 that can be isomorphically projected to P4 is the Veronese surface. Subsequently, Fyodor
L. Zak proves in [63] that for n ≥ 2, the only nondegenerate n-dimensional smooth subvariety of Pn(n+3)/2

that can be isomorphically projected to P2n is the double Veronese embedding of Pn, together with a large
amount of projectability results in terms of the secant varieties. Enrique shows in [3] an analogous result for
the Grassmannian of lines. He gives a characterization of the double Veronese embedding of Pn as the only
variety that, under certain general conditions, can be isomorphically projected from G(1, 2n+1) to G(1, n+1)
(Theorem 3.1 and Theorem 3.2). This was the first step for a huge variety of papers. Also by his own, he
studies the same problem for G(n−1, n) and G(n−2, n), assuming some general conditions, in [2, Proposition
2.1 and Theorem 2.3]. The topic of projections of Grassmannians is addressed with the thesis, under Enriques’s
supervision, of Luca Ugaglia, in 2001, with title Projection of subvarieties of Grassmannians of lines. On
a similar topic, Jose Carlos Sierra defends his thesis in 2004, entitled Proyecciones en Grassmannianas e
inmersiones dobles de Veronese, supervised also by Enrique. Consequently, in [38] all three of them give a
classification of the varieties that are projectable to G(1, n + 1) coming from G(1, 2n) and obtaining as a
result:

Theorem ([38], Theorem 3.1). The only smooth, n-dimensional (n ≥ 3), nondegenerate, uncompressed
varieties that can be isomorphically projected from G(1, 2n) to G(1, n + 1) are the Veronese variety and the
blow-up of Pn in one point.

where X ⊂ G(1, N) (dim(X) = n) is said to be uncompressed if dim(X̄) = n + 1 with X̄ denoting the union
inside PN of the lines in X (as defined in Definition 1.3 of [38]).
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As an extension of these arguments, Enrique, together with Raffaella Paoletti, obtains in [34] a result
concerning Grassmann varieties of higher-dimensional linear subspaces, more concretely, projections from
G(d − 1, nd + d − 1) into G(d − 1, n + 2d − 3) under suitable conditions:
Theorem ([34], Theorem 3.1). Let X ⊂ G(d − 1, nd + d − 1) be a smooth irreducible nondegenerate n-
dimensional variety such that any two (possibly infinitely close) (d − 1)-planes of X do not meet. If X has
positive defect and is 1-projectable to G(d − 1, n + 2d − 3), then X is the Veronese variety.
They also study the relation of this problem with the Steiner bundles over Pn. Indeed, in Proposition 4.3,
they prove that the Schwarzenberger bundles never appear if n ≥ 3. This last remark connects us to the
following section.

5. Steiner and Schwarzenberger bundles

The difficulty of working with a given family of vector bundles is often related with how complicated its
resolution is. In this direction, a vector bundle F on a projective variety is called a Steiner bundle if it is defined
as a cokernel of copies of two bundles that form an strongly exceptional pair (see [57]). In particular, in the
projective space Pn, the classical definition is given considering a linear resolution of length 1. When the linear
map defining a vector bundle is given by a particular cohomological multiplication, the Steiner bundle is called
a Schwarzenberger bundle. In [9], Enrique introduces a certain class of Steiner bundles that generalize the
construction of Schwarzenberger and are therefore called generalized Schwarzenberger bundles. Furthermore,
he inquires whenever it is possible to describe a given Steiner bundle as a generalized Schwarzenberger bundle.
To do this, he defines the concept of jumping subspaces of a Steiner bundle, bounding the dimension of the
jumping locus (Theorem 2.8). Finally, he proves that any Steiner bundle whose jumping locus has maximal
dimension is in fact a generalized Schwarzenberger bundle and, specifically, every one of such bundles falls in
one of four particular families (Theorem 3.7).

Together with Simone Marchesi, as part of Simone’s doctoral project, the latter work has been extended
to Grassmannian varieties. These results can be found in Simone’s Ph.D. thesis Jumping pairs of Steiner
bundles, followed by the published work [32]. More in detail, they gave a general definition of a Steiner
bundle on a Grassmannian, finding lower bounds for its possible ranks, and also provide the notion of gener-
alized Schwarzenberger bundle on a Grassmannian. Furthermore, they introduce the notion of jumping pairs
associated to a Steiner bundle, bound the dimension of the jumping variety (Theorem 4.9) and prove once
again that any Steiner bundle on G(k, n) whose jumping locus is maximal belongs to a finite list of possible
Schwarzenberger bundles (Theorem 5.5). Later on, Enrique, in a joint work with Simone Marchesi and Helena
Soares, generalizes the same ideas for smooth projective varieties, see [33].

6. On the path to Hartshorne’s conjecture

In 1974, Robin Hartshorne states in [52] his celebrated conjecture:
Conjecture. If X is a nonsingular subvariety of dimension n of PN , and if n > 2

3 N , then X is a complete
intersection.
In other words, subvarieties of low codimension must be complete intersections. This problem has been
deeply investigated by many members of the mathematical community and opened many lines of research, for
example the study of curves in a threefold which lead to the definition of reflexive sheaves. Wolf Paul Barth
states in [44] that Hi(X,Q) ∼= Hi(PN ,Q) if i ≤ 2n − N . Subsequently, together with Mogens Esrom Larsen,
they prove in [45] that π1(X) = 0, or equivalently, X is simply connected, if N ≤ 2n − 1. Finally, Mogens
Esrom Larsen shows in [56] that Hi(X,Z) ∼= Hi(PN ,Z) if i ≤ 2n − N . In particular, this implies that the
Picard group of such X is generated by the class of its hyperplane section if N ≤ 2n − 2 and the cohomology
of X “behaves like the one of a complete intersection”. In the codimension two case, the conjecture can be
restated as:
Conjecture. For N > 6, any codimension two smooth X ⊂ PN has to be a complete intersection.
More concretely, as a consequence of the Barth-Larsen theorem, any codimension two variety in the conditions
above is subcanonical, that is, the canonical bundle is a multiple of the hyperplane section. In [6], Enrique
proves the following.
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Proposition ([6], Proposition 1.1). Let X ⊂ PN be a smooth subvariety of codimension two. If N ≥ 6, then
X is rationally numerically subcanonical.
He then studies the same problem changing Pn with a Grassmannian or a quadric. Being the limit and
interesting case when the ambient space has dimension six, he focuses on G(1, 4) and Q6, which denotes
the smooth six-dimensional quadric, obtaining as main results Theorem 2.1 and 2.2 and Corollary 2.3 for
Grassmannians and Theorem 3.2 for quadrics.
Theorem ([6], Theorem 2.1 and Theorem 2.2). Any smooth subvariety X ⊂ G(1, n) with n ∈ {4, 5} of
codimension two is rationally numerically subcanonical.
Corollary ([6], Corollary 2.3). Let X ⊂ G(1, n) be a smooth codimension two subvariety. If n ≥ 4 then X is
rationally numerically subcanonical.
Theorem ([6], Theorem 3.2). Let X ⊂ Q6 be a smooth codimension two subvariety of Q6. Then X is
rationally numerically subcanonical if and only if g1 = g2 (where g1, g2 are the genera of the curves obtained
by intersecting X with a three-dimensional linear space of each of the two families of such linear spaces
contained in Q6).

In a joint work with Maria Lucia Fania, see [24], he proves that any smooth codimension two projective
subvariety of G(1, 4), of degree less than or equal to 25, is subcanonical, providing a classification of such
subvarieties (Theorem 4.1). As a consequence, any smooth codimension two projective subvariety of G(1, 4),
which is not of general type, has degree less than or equal to 32 (Theorem 5.4) and such subvarieties are
completely determined in Table 3 of Example 5.1.

Following this path, Enrique continues to study low-codimension subvarieties in collaboration with Jorge
Caravantes, a work which lead to Jorge’s Ph.D. thesis: Sobre el grupo de Picard en subvariedades de codi-
mensión pequeña. In the corresponding published paper, see [20], they try to determine whenever an n-
dimensional smooth subvariety of an ambient space of dimension at most 2n − 2 inherits the Picard group
from the ambient space, and observe that a key step to do this is knowing if the subvariety is simply con-
nected. In particular, they focus on the case of Grassmannian of lines (Theorem 2.1), where some Schubert
varieties come into play, and on a product of two projective spaces of the same dimension (Theorem 3.1).

7. More algebraic geometry topics

This section is a collection, in chronological order, of Enrique’s remaining papers dealing with different
topics of algebraic geometry that are not easily classifiable due to their variety and complexity. Together with
Manuel Pedreira and his supervisor, Ignacio Sols, he publishes [35], concerning ruled surfaces. They denote
by Qn ∈ Pn+1 the smooth n-dimensional quadric and by Hd,q(Q4) the Hilbert scheme of smooth curves of
degree d and genus q. A ruled surface in P3 means the image of a ruled surface as a scroll of P3 with no
multiple generators, or equivalently, a smooth curve C in G(1, 3). Moreover, Rd,q(Q4) and Sd,q(Q4) represent
the open subschemes of Hd,q(Q4) corresponding respectively to regular and stable ruled surfaces (that is,
surfaces in P3 not having unisecants of degree less than or equal to d/2). Their main result is the following.
Theorem ([35], Theorem). If d ≤ 2q + 2 then Rd,q(Q4) and Sd,q(Q4) are irreducible open subschemes of
dimension 4d − q + 1 in the same component of Hd,q(Q4).

Hermann Schubert proves in [60] two formulas concerning the number of double contacts among the curves
of two families in P2 and also conjectures four other formulas. The aim of [31], written together with Raquel
Mallavibarrena and Ignacio Sols, is to give a proof of these six formulas, in the framework of Hilbert’s 15th
problem, by finding bases of the Chow groups of Hilb2F, the Hilbert scheme of the point-line flag variety
F = {(P, l) ∈ P2 × P2∗ | P ∈ l}.

Again with Ignacio Sols, Enrique gives in [40] some bounds on the global sections of vector bundles over
a smooth, complete and connected curve and discuss their sharpness. In order to state the main results, we
reproduce here the notation they use. Consider C a smooth irreducible curve of genus g and E a rank two
vector bundle of degree d on it. Denote by −e the minimum degree of a twist E ⊗L−1 having sections, for any
line bundle L on C (which is an invariant of the ruled surface P(E)). They propose the following conjecture:

Conjecture. In the above notations, if −e ≤ d ≤ 4g − 4 + e and P(E) is not C × P1, then h0(E) ≤ d+e
2 + 1.
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They prove that the conjecture is true for the semistable case and for hyperelliptic curves.

Proposition ([40], Proposition 2). If C is not hyperelliptic, E is semistable and −e ≤ d ≤ 4g − 4 + e, then
h0(E) ≤ d

2 + 1 unless E is either OC ⊕ OC or ωC ⊕ ωC .

Proposition ([40], Proposition 3). If C is hyperelliptic and −e ≤ d ≤ 4g − 4 + e, then h0(E) − h0(E ) ≤ d+e
2

and for any values of d and e such that d ≡ e − 2(mod 4) there exists a vector bundle E achieving the bound.

Corollary ([40], Corollary 6). Let E be a semistable vector bundle of degree d and rank R which is generically
generated by global sections and assume that h0(E∨ ⊗ ωC) ̸= 0. Then h0(E) ≤ d

2 + R.

Finally, consider Wd,R the moduli space of semistable rank R vector bundles on C of degree d and W r
d,R(C)

the subscheme parameterizing those bundles E having at least r + 1 global sections. With these notations,
they also prove the following.

Proposition ([40], Proposition 9). Let Y be a component of W r
d,R(C) such that the bundle E corresponding

to its generic point is spanned by its sections, has not automorphisms different from the identity and E ⊗∧RE
is strongly special. Then, dim(Y ) ≤ (R + 1)( d

2 − r).

In 1996, his first Ph.D. student, Raquel Dı́az, defends her thesis entitled Matrices de Gram y espacios de
ángulos diédricos de poliedros.

One year later, Enrique with Ignacio Sols and Robert Speiser study in [42] what happens when two
embedded varieties, smooth or not (regardless of their dimensions), make specific contact with each other.
The main result is Theorem 7.4 in terms of some data schemes Dr

kX constructed in Section 4.
Aside, jointly with Juana Sendra and Juan Rafael Sendra, he publishes [36], in which they extend the

classical notion of offset to the concept of generalized offset to a hypersurface, and [37] in which the same
authors compute the genus of irreducible generalized offset curves to projective irreducible plane curves with
only affine ordinary singularities over an algebraically closed field.

Together with Alessandra Bernardi, Enrique publishes [12]. The purpose of this paper is to relate the
variety of splitting forms (namely Splitd(Pn), see Definition 1.1), that is, the variety whose points are classes
of degree d forms splitting as a product of d linear forms in n + 1 variables with G(n − 1, n + d − 1) obtaining
also results concerning the higher secant varieties of the varieties of splitting forms. For example, in Theorem
5.4, they provide a result on the intersection between G(n − 1, n + d − 1) and Splitd(Pn) when d = 3. The
case d = 2 is also studied in Section 2.

Jointly with Antonio Lanteri and Carla Novelli, he publishes [28]. They define the notion of “delta-genus”
for ample vector bundles E of rank two on a smooth projective threefold X as a couple of integers (δ1, δ2)
(Definition 1.1) which extends the classical definition for ample line bundles. Furthermore, a classification
of (X, E) with low δ1 and δ2 is provided under suitable additional assumptions on E. They summarize the
main results in the theorem stated in page 138 in the Introduction section.

More recently, with Alessandra Bernardi, Pedro Macias Marques and Bernard Murrain, problems related
to skew-symmetric tensor decomposition are considered in [13], but from an algebraic geometry point of
view, resulting in the study of higher secant varieties of Grassmannians. Moreover, from the skew-symmetric
action, they define the skew-catalecticant matrices stating the skew-apolarity lemma (Lemma 12) which is
the analogue of the classical apolarity lemma for symmetric tensors.

8. How Enrique understands algebraic geometry

It is common knowledge, especially among his former students, that Enrique has a unique way of under-
standing mathematics. Throughout his career, this lead to the publications of papers and extremely useful
notes about several topics in algebraic geometry.

For example, we would like to recall [5] and [8], where it is possible to find an alternative proof of the
Hartshorne-Serre correspondence and represent now a widely used reference for this result. In [8, Section 1],
it is recalled the standard approach to the Hartshorne-Serre construction.

Theorem ([8], Theorem 1.1: Hartshorne-Serre correspondence). Let X be a smooth algebraic variety and let
Y be a local complete intersection subscheme of codimension two in X. Let N be the normal bundle of Y in
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X and let L be a line bundle on X such that H2(X, L∗) = 0. Assume that ∧2N ⊗ L∗
|Y has r − 1 generating

global sections s1, . . . , sr−1. Then there exists a rank r vector bundle E over X such that:
(i) ∧rE = L;

(ii) E has r−1 global sections α1, . . . , αr−1 whose dependency locus is Y and s1α1|Y +. . .+sr−1αr−1|Y = 0.
Moreover, if H1(X, L∗) = 0, conditions (i) and (ii) determine E up to isomorphism.

The elementary proof of this theorem is divided in three sections. In Section 3, he studies the main properties
that are required to an open covering of our general ambient variety leading to Lemmas 3.1 and 3.2. In order
to reproduce here these lemmas, we recall the notation used. Let us take a covering of Y by affine sets Y ∩ Ui

with i ∈ I such that Ui is an affine set of X, the vector bundle L trivializes on Ui with transition functions hij

and J(Ui) is generated by the vanishing of two regular functions fi, gi on Ui (where J(Ui) denotes the ideal
of Y ∩ Ui inside Ui). Regarding the intersection of two of those open sets, Ui, Uj , one can find a matrix Aij

satisfying
(

fi
gi

)
= Aij

(
fj
gj

)
=
(

aij bij
cij dij

)(
fj
gj

)
where aij , bij , cij , dij are regular functions on Ui ∩ Uj and det Aij

does not have zeros on Ui ∩ Uj . Note that the vector bundle N trivializes on Y ∩ Ui and has as transition
matrices the restriction Āij of Aij to Y ∩ Ui ∩ Uj . As before, we consider s1, . . . , sr−1 the global sections
generating ∧2N ⊗ L⋆. These sections can be represented locally at each Y ∩ Ui by a regular function s̄it such
that s̄it = det Āij

h̄ij
s̄jt. Since s̄i1, . . . , s̄i,r−1 do not vanish simultaneously on Y ∩ Ui, one can refine the covering

and assume that there is ti ∈ {1, . . . , r − 1} such that s̄iti
does not have zeros in Y ∩ Ui. By replacing Ui with

its intersection with {siti
̸= 0}, we can assume that siti

does not have zeros in Ui, so, it is a unit in OX(Ui).

Lemma ([8], Lemma 3.1). With the above notations, it is possible to choose regular functions fi, gi such that
siti

= (−1)ti . In particular, det Āij = (−1)ti h̄ij

s̄jti
.

The affine covering can be extended to a covering of the whole X. So, he covers X \ Y by a new affine open
sets Ui and defines the matrices Aij for any choice of open sets Ui, Uj . More accurately:

• If Y ∩ Ui ̸= ∅ ≠ Y ∩ Uj , Aij =
(

aij bij
cij dij

)
, as before.

• If Y ∩ Ui = ∅ = Y ∩ Uj , Aij is the identity matrix.
• If Y ∩ Ui ̸= ∅ = Y ∩ Uj , Aij =

(
uj vj

−gj fj

)
, with uj , vj such that ujfj + vjfj = 1.

• If Y ∩ Ui = ∅ ≠ Y ∩ Uj , Aij =
(

fi −vi
gi ui

)
, with ui, vi such that uifi + vifi = 1.

Lemma ([8], Lemma 3.2). With the above choices and notations, it is possible to choose the matrices Aij

such that det Aij = (−1)ti hij

sjti
.

In Section 4, he constructs the r −1 sections of the desired vector bundle reaching to Lemmas 4.1 and 4.3 and
Corollary 4.4. For the purpose of stating the first lemma and the corollary, we continue with the appropriate
notation. Consider α1, . . . , αr−1 r −1 sections of the vector bundle E. Since α1, . . . , α̂ti , . . . , αr−1 are linearly
independent on Ui, it can be extended to a basis of E|Ui

so that it is possible to represent α1, . . . , αr−1 on Ui

in terms of this basis as the columns of an r × (r − 2) matrix Mi =
(

∆ti
T ′

i
T ′′

i

)
, where

T ′
i =


1 0 . . . −(−1)ti si1 . . . 0
0 1 . . . −(−1)ti si2 . . . 0
...

. . .
...

...
0 0 . . . 1 . . . 0
...

...
. . .

...
0 0 . . . −(−1)ti si,r−1 . . . 1

 , T ′′
i =

(
0 0 . . . fi . . . 0
0 0 . . . gi . . . 0

)

and ∆tN is the submatrix of N obtained by removing its t-th row. Similarly, N∆′
t is the submatrix of N

obtained by removing its t-th column.

Lemma ([8], Lemma 4.1). For a covering and choices as in Lemma 3.2, if for each i ∈ I we take Mi as
before, then an r × r matrix Zij =

(
Pij Qij
Rij Sij

)
satisfies the equality Mi = ZijMj if and only if the following

equalities hold:
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(1) Pij = ∆ti
T ′

i ∆′
tj

(2) Rij = T ′′
i ∆′

tj

(3) Qij

(
fj
gj

)
= (−1)tj ∆tiT

′
i

(
sj1

...
sjr−1

)
(4) Sij

(
fj
gj

)
= (−1)tj sjti

(
fi
gi

)
Moreover, such a matrix always exists and, when taking Aij as in Lemma 3.2, it follows det Sij = (−1)tisjti

hij

and det Zij = hij.

Corollary ([8], Corollary 4.4). If the matrices {Zij}i,j∈I are chosen as in the previous lemma, then for any
i, j, k ∈ I there exist regular functiones βijk1, . . . , βijk,r−1 on Ui ∩Uj ∩Uk such that Zik −ZijZjk =

(
0 Bijk

)
,

with

Bijk =
(

Qik − PijQjk − QijSjk

Sik − RijQjk − SijSjk

)
=



βijk1
...

β̂ijkti

...
βijk,r−1
βijktifi

βijktigi


(
gk, −fk

)
.

The end of the proof culminates with Proposition 5.6 in Section 5 in which the existence and uniqueness of
the vector bundle is proven due to cohomological conditions on L∗. So, the correspondence is obtained gluing
together the explicit local description in order to construct the section of a vector bundle.

Moreover, he provides Another elementary proof of the Nullstellensatz in [7] and The Nullstellensatz without
the Axiom of Choice in [10]. In addition, he gives a new innovative approach to construct representations
of finite groups without the necessity of calculating character tables in [11] under the name Representation
theory of finite groups through (basic) algebraic geometry.

Finally, we would like to remind the reader of Enrique’s useful lecture notes on several topics, starting
from lecture notes on bachelor degree level to arrive to more complicated aspects of algebraic geometry. In
particular, we would like recall [1], which provides an introduction to Grassmannians and its subvarieties,
that, as we could aprreciate in this survey, represent a common factor in Enrique’s work. All of these notes
are available at Enrique’s webpage https://blogs.mat.ucm.es/arrondo.

Acknowledgements: We thank the anonymous referee for his/her valuable suggestions that improved
the quality of this paper.
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