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Abstract—GitGuardian monitored secrets exposure in public
GitHub repositories and reported that developers leaked over
12 million secrets (database and other credentials) in 2023,
indicating a 113% surge from 2021. Despite the availability
of secret detection tools, developers ignore the tools’ reported
warnings because of false positives (25%-99%). However, each
secret protects assets of different values accessible through asset
identifiers (a DNS name and a public or private IP address). The
asset information for a secret can aid developers in filtering false
positives and prioritizing secret removal from the source code.
However, existing secret detection tools do not provide the asset
information, thus presenting difficulty to developers in filtering
secrets only by looking at the secret value or finding the assets
manually for each reported secret. The goal of our study is to aid
software practitioners in prioritizing secrets removal by providing
the assets information protected by the secrets through our novel
static analysis tool. We present AssetHarvester, a static analysis
tool to detect secret-asset pairs in a repository. Since the location
of the asset can be distant from where the secret is defined,
we investigated secret-asset co-location patterns and found four
patterns. To identify the secret-asset pairs of the four patterns, we
utilized three approaches (pattern matching, data flow analysis,
and fast-approximation heuristics). We curated a benchmark of
1,791 secret-asset pairs of four database types extracted from
188 public GitHub repositories to evaluate the performance of
AssetHarvester. AssetHarvester demonstrates precision of (97%),
recall (90%), and F1-score (94%) in detecting secret-asset pairs.
Our findings indicate that data flow analysis employed in As-
setHarvester detects secret-asset pairs with 0% false positives and
aids in improving the recall of secret detection tools. Additionally,
though fast-approximation heuristics introduce relatively more
false positives, this approach improves recall by detecting assets
that cannot be detected using other approaches.

I. INTRODUCTION

In March 2024, GitGuardian reported a 113% surge in
developers leaking over 12 million secrets in public GitHub
repositories in 2023 compared to 2021 [1]. They found that 1.7
million authors leaked secrets out of 14.9 million who pushed
code to GitHub in 2023. Secrets, such as database credentials
and API keys, are essential for integrating with external
services such as customer databases and payment systems.
However, developers keep hard-coded secrets in application
packages and version control systems (VCS), exposing sensi-
tive information to attackers [2], [3]. For example, an attacker
leveraged hard-coded credentials present in Uber’s PowerShell
script and launched an account takeover of their internal tools
and productivity applications in September 2022 [4].

(a) A public IP address protected by a secret

(b) A localhost protected by a secret

Fig. 1: A secret can protect both real and non-sensitive assets,
such as a public IP address (real) and localhost (non-sensitive).

At present, many open-source and proprietary secret de-
tection tools, such as TruffleHog [5] and GGShield [6], are
available to prevent leaking secrets. However, Basak et al. [7]
investigated five open-source and four proprietary secret detec-
tion tools and found that five of these nine tools demonstrate a
precision of less than 7%. The tool with the highest precision
(75%) among the nine tools misses many secrets, having only
3% recall. Thus, developers may develop “alert-fatigue” [8]
and start to ignore the warnings reported by the tools.

A secret in a software artifact protects an asset (a database
or an API service) accessible through asset identifiers (a URL,
a DNS name, or an IP address). However, a secret may look
like a false positive that protects a real asset. For example,
Figure 1a shows a customer database with a public IP address
(“120.77.222.216”) protected by the password “123456”. On
the contrary, a secret may look like a true positive but protects
a non-sensitive asset. For example, Figure 1b shows the pass-
word “332315Yuan@” protects a test database of a “localhost”
that is typically not vulnerable to outside attackers. However,
existing secret detection tools do not provide the asset in-
formation corresponding to a secret. As a result, developers
manually filter alerts based on the secret value without the
asset information and may ignore a secret protecting a valuable
asset. In addition, developers may lose their development time
while manually identifying the asset for each secret reported
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by the tools. Thus, programmatically identifying the assets
protected by the secrets can aid in reducing the manual effort
of developers to filter false positives and identify secrets that
protect valuable assets. Additionally, developers can prioritize
efforts to remove secrets based on the asset context.

The goal of our study is to aid software practitioners in pri-
oritizing secrets removal by providing the assets information
protected by the secrets through our novel static analysis tool.

However, identifying the assets protected by the secrets
is not straightforward since the asset identifiers can have
multiple parts defined separately in the source code. For
example, a database server address contains a host, port, and
database name. In addition, multiple assets can be present in
the same file (such as a configuration file). Additionally, the
asset can be distant from where the secret is defined in the
source code. For example, a secret is disclosed in one file,
and the corresponding asset is disclosed in another file of
the repository. Thus, even if we identify the asset, mapping
the asset to the correct secret is challenging. In this study,
we investigate how we can programmatically identify both
the secret and the asset protected by the secret and provide
answers to our research questions:

• RQ1: What are the secret-asset co-location patterns
present in software artifacts? (Section IV)

• RQ2: What performance can be achieved in detecting
assets protected by secrets via static analysis in terms of
precision, recall, and F1-score? (Section VI)

We curated AssetBench, a benchmark of 1,791 secret-asset
pairs of four database types extracted from 188 public GitHub
repositories. To answer RQ1, we investigated and categorized
the secret-asset co-location patterns in the source code. To
answer RQ2, we constructed AssetHarvester, a static analysis
tool to identify the database secret-asset pairs. In constructing
AssetHarvester, we utilized pattern matching, data flow analy-
sis, and fast-approximation heuristics to detect the secret-asset
pairs. We evaluated the performance of AssetHarvester against
AssetBench in terms of precision, recall, and F1-score. We
provide a summary of our contributions as follows:

• We provided four secret-asset co-location patterns generic
to secret-asset types, formulating ideas for automated
identification of secret-asset pairs within source code;

• We used three approaches (pattern matching, data flow
analysis, and fast-approximation heuristics) to detect
secret-asset pairs in different forms. We implemented the
approaches in a static analysis tool (AssetHarvester) and
made the implementations publicly available [9].

• We provided AssetBench, a dataset of secret-asset pairs
that can be extended and utilized by researchers and tool
developers for future research and tool development.

The rest of our paper is structured as follows: Section II
introduces the selection process of asset types, followed
by the benchmark dataset curation and the secret-asset co-
location patterns. We discuss the AssetHarvester construction
and evaluation results of AssetHarvester against AssetBench
in Sections V and VI, followed by the implications of our

Fig. 2: The database asset identifier has three parts (host, port,
and database name) that are defined separately in the same
line, in separate lines, or together in the same string.

work. We discuss the ethics and limitations of our study in
Sections VIII and IX, respectively. We discuss the related work
in Section X and conclude in Section XI.

II. ASSET TYPE SELECTION

A software artifact may contain different types of assets,
such as database server addresses and API URLs, which are
protected by secrets. However, database assets can be present
in multiple formats, among other asset types. For example,
Figure 2 shows a database asset identifier can have multiple
parts (host, port, and database name) defined separately in the
same line (line 2) or in different lines (lines 6-8). Additionally,
the database asset can be present in the same string (line 13),
similar to API URLs. Due to multiple formats of database
assets, we selected databases as the asset type to be detected
for a secret in this study. However, different types of relational
and non-relational databases are present. According to the
Stack Overflow Developer Survey 2023 [10], the top five
databases developers use are PostgreSQL [11], MySQL [12],
SQLite [13], MongoDB [14], and SQL Server [15]. We did not
study SQLite since SQLite is a file-based database requiring
no authentication mechanism [13], and in our study, we want
to find the assets protected by the secrets. We used the selected
four databases to construct AssetHarvester (Section V).

III. ASSETBENCH

To create a dataset of secret-asset pairs, we started with
SecretBench [16], a publicly available benchmark dataset of
software secrets. We accessed the dataset through Google
Cloud Storage (Bucket Name: secretbench) and Google Big-
Query (Dataset ID: dev-range-332204.secretbench.secrets).
The authors curated 818 repositories from the September 2022
snapshot of Google BigQuery Public Dataset of GitHub [17]
(Dataset ID: bigquery-public-data.github repos). The reposi-
tories in the dataset comprise source codes of 49 programming
languages. The secrets present in the repositories are extracted
using two open-source secret detection tools, TruffleHog [5]
and Gitleaks [18]. The dataset contains 97,479 labeled plain-
text secrets, manually labeled as true or false by two authors



TABLE I: Count of Secret-Asset pairs for four databases

Database Type # Secret-Asset Pair % of Pair

MySQL 777 43.4%
PostgreSQL 679 37.9%
MongoDB 310 17.3%

SQL Server 25 1.4%

of the SecretBench. In addition, the dataset provides additional
metadata such as repository name, commit ID, file path, and
line number where the secrets have been found. However,
the dataset does not provide information regarding the assets
protected by the secrets. Hence, we extended the dataset as
AssetBench by identifying assets for each secret in our study.

Filtering Dataset: Before identifying assets, we applied the
following selection criteria to filter SecretBench.

Criteria 1 (Programming Language): A repository can have
source code of multiple programming languages. We chose
repositories containing source code of Python programming
language since Python provides multiple libraries that can
access the assets using secrets. Additionally, Python is third
among 49 programming languages containing secrets in Se-
cretBench. We selected 188 repositories from 818 repositories
and 34,569 secrets from 97,479 secrets of SecretBench.

Criteria 2 (Database Type): A repository can contain dif-
ferent types of secrets, such as API keys and database cre-
dentials. We filtered the secrets of the selected four databases
(Section II) and selected 2,114 secrets from 34,569 secrets.

Identifying Assets: Next, the first and third authors manu-
ally inspected each secret independently using the repository
name, commit ID, file path, and line number provided by
the dataset and identified the asset protected by the secret.
However, the asset may not be present in the same file where
the secret is located. In such cases, both authors inspected the
candidate asset-containing files in the repository. The asset’s
value for each secret with additional metadata (the file path
and line number where the asset is found) is collected. We
observed the agreement of finding the secret-asset pairs with a
Cohen’s Kappa [19] score of 0.96 between two authors, which
indicates a “near perfect agreement” according to Landis and
Koch’s interpretation [20]. The disagreements were resolved
after a discussion between the two authors. However, neither
author found corresponding assets for 323 secrets. We removed
those secrets and selected 1,791 secret-asset pairs. In Table I,
we presented the database type and the number of secret-asset
pairs with percentages for each type. AssetBench contains 25
secret-asset pairs for SQL Server, representing 1.4% of the
total pairs. The relatively lower percentage might stem from
SQL Server’s proprietary nature, leading to lesser adoption in
open-source projects than available open-source databases.

Developer Survey: To evaluate whether the committer
of the secret agrees with our identified asset for the se-
cret, we conducted a developer survey. First, to avoid re-
call bias [21], we selected secret-asset pairs committed be-
tween 2021 and 2022 and identified 683 secret-asset pairs.

Next, we filtered out secret-asset pairs that have a noreply
(xxx@users.noreply.github.com) or GitHub Actions
bot (action@github.com) commit email address [22] and
selected 490 secret-asset pairs. Next, we randomly selected
100 secret-asset pairs to avoid selection bias [23] and emailed
the developers to know their agreement with our labeling and
the reason for any disagreements. In the email, we provided
the secret-asset pair information with a screenshot of the code
where the secret-asset pair is found. We received 27 responses
out of 100, and all respondents agreed with our label.

Dataset Storage: Our curated dataset, AssetBench, is stored
in Google BigQuery (Dataset ID: dev-range-351901.assetben
ch.assets) as a relational structured data. Users can access the
dataset through SQL queries. However, due to the sensitive
nature of the dataset, we will provide access to the dataset
to only selected researchers and tool developers. Those who
require access need to contact us through email.

IV. SECRET-ASSET CO-LOCATION PATTERNS

To answer RQ1, the first and second authors independently
inspected a random sample of 100 secret-asset pairs from the
AssetBench. Both authors observed the location pattern of a
secret and the corresponding asset and identified four mutually
exclusive secret-asset co-location patterns. We utilized the co-
location patterns for programmatically identifying secret-asset
pairs in the construction of AssetHarvester, as described in
Section V. We now describe the four secret-asset co-location
patterns. The number in parenthesis denotes the occurrences
of each pattern found out of 100 secret-asset pairs.

Pattern 1 (Same String, Same Line, Same File) (54): The
secret and the corresponding asset identifier can be present in
the same string and the same line of a file, such as in a database
connection string. For example, Figure 3a shows a MongoDB
connection string ("mongodb://root:s123@128.5.6.
11:27017") defined in line 4, where "root" and "s123"
are the username and password of the database, and "128.5
.6.11:27017" is the database server address.

Pattern 2 (Separate Strings, Same Line, Same File) (20):
The secret and the corresponding asset identifier can be present
in the same line of the file but defined separately in multiple
strings. For example, the database server address ("10.0.0
.1"), the username ("test"), and the password ("test")
are defined and passed as separate arguments to db.connect
method in line 4, as shown in Figure 3b.

Pattern 3 (Separate Strings, Separate Lines, Same File)
(19): The secret and the corresponding asset identifier can be
present in the same file of the repository but defined in separate
strings and separate lines. For example, as shown in Figure 3c,
the username ("root") and password ("root") are defined
in lines 3 and 4, respectively, whereas the database server
address ("127.0.0.1") is defined in line 2 of the same file.

Pattern 4 (Separate Strings, Separate Lines, Separate
Files) (7): The secret and the corresponding asset identifier
can be present in separate files of the repository. For example,
as shown in Figure 3d, the username ("root") and password
("123456") of the database are defined in lines 2 and 3 of



(a) Pattern 1 (Same String, Same Line, Same File) (b) Pattern 2 (Separate Strings, Same Line, Same File)

(c) Pattern 3 (Separate Strings, Separate Lines, Same File) (d) Pattern 4 (Separate Strings, Separate Lines, Separate Files)

Fig. 3: We identified four types of secret-asset co-location patterns in the source code.

common.py file, respectively. The values of the common.py
file are imported in line 1 of the pattern4.py file, where
the database server address ("wrpxdb.bioch.edu") is
defined in line 4. However, the secret and the asset may
not always be present in the same file types. For example,
both the files in Figure 3d have .py extension. However, the
secret or asset can be defined in configuration files such as
config.yml file, that can be read in a .py file.

V. ASSETHARVESTER

We utilized the identified secret-asset co-location patterns
(Section IV) and constructed AssetHarvester using pattern
matching (Step 1), data flow analysis (Step 2), and fast-
approximation heuristic (Step 3). We now discuss the three-
step process of constructing AssetHarvester.

Step 1: Asset Finding Using Pattern Matching: We
observed from Pattern 1 in Section IV that the secret and
the corresponding database asset are present in a database
connection string. Since a database connection string follows a
specific format, we can formulate regular expressions (regex)
to identify the secret and the corresponding asset. We now
discuss our approach to formulating the regex and identifying
the assets protected by the corresponding secrets.

Step 1.1 Formulating Regex: In this step, we manu-
ally inspected the documentation for each database type and
identified the database connection string format. Then, we
categorized the connection string formats into three groups
and formulated the regex for each group, as shown in Table II.
We now discuss how we categorized the database connection
string formats and formulated regex for each group.

Group 1: (MySQL, PostgreSQL & MongoDB): We ob-
served that according to MySQL [24], PostgreSQL [25], and

MongoDB [26] documentations, these three database types
have similar connection string formats. The common format
is “[scheme://][user[:[password]]@]host[:port][/db]”. The
scheme refers to the transport protocol, user:password
refers to the credentials, host:port refers to the server
address, and db is the database name in the connection. We
observed that only the scheme type differs in the three database
connection strings. For example, MySQL uses "mysql" or
"mysqlx" whereas PostgreSQL uses "postgresql" or
"postgres" as the scheme types. Hence, we formulated a
common regex with the different scheme types for Group 1.

Group 2: (ODBC & OLE-DB): The Open Database Con-
nectivity (ODBC) [27] and the Object Linking and Embedding
Database (OLE-DB) [28] are two standard APIs that provide
support for accessing and interacting with different databases.
ODBC and OLE-DB support the selected four databases
in our study. We noticed that ODBC and OLE-DB have
similar connection string formats consisting of key-value pairs
separated by semicolons. For example, the connection string
format for ODBC is “Driver=Driver Name; Server=address;
Database=dbname; Uid=username; Pwd=password;”. The
key Driver refers to the ODBC database driver to be used
such as “SQL Server”. The key Server refers to the address
of the database server, and keys Uid and Pwd refer to the
credentials in the connection. However, for OLE-DB, the key
for the database server is Data Source instead of Server.
Hence, we formulated a common regex with all the ODBC and
OLE-DB key-value pairs for Group 2.

Group 3: (JDBC): Similar to ODBC and OLE-DB, Java
Database Connectivity (JDBC) [29] is a standard API that
allows Java applications to interact with different databases. In



TABLE II: List of regexes categorized into three groups for identifying database connection string

Type Connection String Format Example Regex

G
ro

up
 1 MySQL [mysql|mysqlx|mysql+srv://][user[:[password]]@]host[:port][/db] mysql://root:root@10.0.0.1:3306/test (?P<dbms>mysql|mysqlx|mysql+srv|postgresql|postgres|

mongodb|mongodb+srv):\/\/(?P<credentials>[^:@\s]*(?::
[^@\s]*)?@)?(?P<server>[^\/\?\s`'\";]+)

PostgreSQL [postgresql|postgres://][user[:[password]]@]host[:port][/db] postgresql://test:test@localhost/mydb
MongoDB [mongodb|mongodb+srv://][user[:[password]]@]host[:port][/db] mongodb://root:test@10.1.1.0:27017

G
ro

up
 2 ODBC Driver={Driver_Name};Server=address;Database=dbname;

Uid=username;Pwd=password;

Driver={SQL Server}; Server= 
192.168.1.0;Database =test_db;Uid=sa;
Pwd=sa

(?:(Provider|Driver)=[^;]*);[\s]*(?:(?:Data Source| Server)=
(?P<server>[^;]+);)(?:(?:Initial Catalog| Database)=(?
P<database>[^;]+);)?(?:(?:User Id| UID)=(?P<user>[^;]+);)?
(?:(?:Password|PWD=)(?P<password>[^;]+);)?OLE-DB Provider={Provider_Name};Data Source=address;Initial 

Catalog=dbname;User Id=username;Password=password;

Provider={SQL Server}; Data Source= 
192.168.1.0; Initial Catalog=test_db;User 
Id=sa;Password=sa

G
ro

up
 3

JDBC

jdbc:[scheme://][user[:[password]]@]host[:port][/db] jdbc:sqlserver://root:root@localhost:1433 (?P<dbms>mysql|postgresql|mongodb|sqlserver):[/]{2,3}(?
P<credentials>[^:@\s]*(?::[^@\s]*)?@)?(?P<server>[^\?
\s`'\";]+)\?user=(?P<user>[^\s&;<>]+)(?:&amp;)?(?:\&?
password=(?P<password>[^\s&;\]<>]+))?

jdbc:[scheme://]host[:port][/db]?user=usr&password= pass jdbc:sqlserver://localhost?user=root&
password=root

our study, though we selected repositories containing Python
programming language, repositories can have Java source code
containing JDBC connection strings. In addition, Packages
such as JayDeBeApi [30] are available that allow the
connection of a database using the JDBC connection string
from the Python source code. As shown in Table II, the JDBC
connection string starts with "jdbc" prefix followed by the
scheme type, server address, and database name. We observed
that the username and password can be present in two forms,
either before the server address or separately in the query
parameters. We combined the two forms and formulated a
common regex for Group 3.

To separate the secret and asset from the database connec-
tion string, we used the capturing group [31] feature of regex.
The capturing group allows us to capture a specific part of the
match. For example, as shown in Table II, we implemented
three capturing groups in the MySQL regex. The capturing
group <dbms> captures the database type, <credentials>
captures the username and password, and server captures
the server address of the database.

Step 1.2 Identifying Secret-Asset Pairs Using Regex: In
this step, we executed the regexes formulated in Step 1.1 to
identify the database connection strings. We used the re [32]
library of Python to execute the regexes. Since the database
connection strings can be present in the Git commit history of
a repository, we used GitPython [33], a Python library for
traversing the commit history. In addition to the commit ID,
file path, and line number of a match, we extracted the secret
and the corresponding database asset from the connection
string using the capturing group of regex.

Step 2: Asset Finding Using Data Flow Analysis: Among
the four patterns described in Section IV, except Pattern 1,
we observed that the secret and the corresponding database
asset are not present in the same string. Instead, the secret and
the corresponding database asset are defined separately and
passed into a database driver function defined in the same or
separate source file from where the secret and asset are present.
For example, as shown in Figure 3c (Pattern 3), the database
username, password, and the server address present in lines
3, 4, and 2, respectively, are passed into mysql.connect
driver function defined in line 7.

For AssetHarvester, we utilized Data Flow analysis [34] to

detect the flow of secrets and assets into the database driver
functions. Previous research [35] has used Data Flow analysis
for security weakness propagation in the source code, such
as the use of weak cryptographic algorithms. In a Data Flow
analysis [34], the data flow among program elements of the
entire source code is modeled through a Data Flow Graph
(DFG). A DFG is a directed graph that consists of a set of
nodes and a set of edges. The nodes in the DFG represent the
semantic elements that carry values at runtime, whereas edges
represent the way data flows between program elements. In
a program, a node representing the origin of data is called
the Source, whereas a node representing the destination
of the data is called the Sink. In our study, a database
secret and the corresponding asset are the Sources, and the
database driver functions are the Sinks. We now describe the
process of identifying the Python database drivers for our
study. Additionally, we discuss the ways sources can flow into
the database driver sinks and the process of identifying the
secret-asset pairs from the sources and sinks.

Step 2.1 Identifying Database Drivers: To identify the
Python database drivers, we constructed a set of search strings:
(MySQL OR PostgreSQL OR MongoDB OR SQL Server)
AND (driver for Python). We selected the top 100 results
from Google Search Engine for each search string. The
stopping criteria for choosing the top 100 results are based
on the grey literature search guideline in prior studies [36].
From the search result, we identified 12 database drivers
grouped in 7 categories, which are presented in Table III.
We observed that in addition to identifying database drivers
for the four databases, ODBC and JDBC, we identified two
drivers, peewee [37] and SQLAlchemy [38] for the Object
Relational Mapper (ORM) framework [39]. ORM is different
than other drivers since ORM abstracts the database access
with objects instead of directly managing the database access
with SQL queries. The identified drivers have a function
such as connect or create_pool to connect with the
database. We observe that a driver function can have two
different argument types (Positional and Keyword) [40], which
act as the sinks for database username, password, and server
address. The columns “Positional Argument” and “Keyword
Argument” of Table III indicate which argument type each
driver supports. We now discuss the two argument types as



TABLE III: List of Python database drivers with their sup-
ported arguments for secret-asset pairs

Category Driver Name Positional
Argument

Keyword
Argument

MySQL
aiomysql [41] ✓
mysql-connector [42] ✓
PyMySQL [43] ✓ ✓

PostgreSQL
aiopg [44] ✓ ✓
asyncpg [45] ✓ ✓
psycopg2 [46] ✓ ✓

MongoDB pymongo [47] ✓
SQL Server pymssql [48] ✓
ODBC pyodbc [49] ✓
JDBC JayDeBeApi [30] ✓

ORM peewee [37] ✓ ✓
SQLAlchemy [38] ✓

Fig. 4: The database credentials and server address are passed
in a specific order in the database driver function.

sinks for database secrets and assets.
1. Positional Argument: A positional argument [40] is

passed to a function based on the position in the argument
list without explicitly specifying the parameter name. Since
the order of the position of the arguments is fixed, we know
which positions will act as the database credentials (username
and password) and asset (host, port, and database name) sinks.
For example, as shown in Figure 4, the username, password,
database name, and host address of the database are passed in
a specific order in the connect function of asyncpg. Hence,
we identified the sources that flow into each ordered position
of the driver function for the database secrets and assets.

2. Keyword Argument: A keyword argument [40] (also
called Named argument) is passed to a function by specifying
the parameter name with the corresponding value. Unlike
positional argument, the order of keyword argument is not
fixed in a function. We observe that keyword arguments can be
passed in separate parameter names and dictionary objects. As
shown in Figure 5a, the username, password, database name,
and host address of the database are passed in separate named
arguments without fixed order, whereas defined in a dictionary
object and passed in the function as shown in Figure 5b. Since
we know the argument names, we can identify the sources
flowing into the relevant arguments of the driver function for
the database secrets and assets.

Step 2.2 Identifying Secret-Asset Pairs Using CodeQL:
For Data Flow analysis, we used CodeQL [50], an open-source
source code analysis framework developed by GitHub. Cod-
eQL treats source code as data and creates databases for each
programming language present in a repository. Developers can
query the generated database of each programming language
to find various security vulnerabilities using QL [51]. QL is

(a) Keyword arguments passed as separate parameters

(b) Keyword arguments defined in a dictionary

Fig. 5: The database credentials and server address are passed
as keyword arguments in the database driver functions.

a declarative and object-oriented query language optimized
for efficiently analyzing hierarchical data structures, especially
databases representing software artifacts [51]. In our study, we
used the Version 2.15.1 of CodeQL.

Since the database drivers are external libraries, we utilized
the API Graphs [52] of CodeQL to compute data flow. API
Graphs are a uniform interface for referring to functions,
classes, and methods defined in external libraries. We used
the semmle.python.ApiGraphs module for accessing
the external library functions. To find out the secret-asset pair
in the positional and keyword arguments of the database driver
functions, we queried the database of Python source codes
generated by CodeQL for a repository.

Step 2.3 Identifying Secret-Asset Pairs Using CodeQL
and File Parsing: We observed that the database secret and the
corresponding asset can be present in a configuration (config)
file such as YAML, JSON, and XML files. The config file is
read as a dictionary object, and the values of the dictionary
object are accessed in the driver function. For example, as
shown in Figure 6, the secret and the corresponding asset of
MySQL database are present in the config.yml file, which
is read in a dictionary object cfg of the main.py file (lines 5
and 6). The values of dictionary object cfg are accessed in the
aiomysql.connect driver function (lines 8-11) using key
names such as dbhost and dbuser. However, CodeQL does
not support data flow analysis of source codes across multiple
programming languages. As a result, the flow of secrets and
assets from the config.yml file into the driver function of
the main.py file can not be captured.

However, we observed that by utilizing the data flow anal-
ysis of CodeQL, we can find the config file name and the key
names that flow into the driver function. Since we identified
the config file name and associated the key names, we parsed
the config file and retrieved the values for each key name. For
retrieving the values from the YAML, JSON, and XML files,
we used the PyYAML [53], json [54] and xmltodict [55]
packages of Python, respectively.



TABLE IV: Statistics of the presence of database assets in the neighboring lines of the secrets of the same file in AssetBench

Secret
Absolute Difference Between Secret and Asset Line Number

(Number of Secret-Asset Pairs)
0 1 2 3 >=4

Database Password 407 (31.9%) 340 (26.7%) 349 (27.4%) 124 (9.7%) 54 (4.2%)

Fig. 6: The config.yml file contains the database secret-asset
pair that is read in the main.py file. The secret-asset values are
accessed by the key names and passed to the driver function.

Step 3: Asset Finding Using Fast-Approximation Heuris-
tic: We observed that developers may have accidentally or
intentionally kept the secret and the corresponding asset as
commented lines in the source code. However, commented
lines are ignored during data flow analysis. In addition,
capturing the data flow may not always be possible if the
source code has dynamic behavior, such as extensive use of
reflection. As a result, we can not identify the assets protected
by secrets in those cases using data flow analysis. However,
when the secret-asset pair is present in the same file, we
observed from AssetBench that the database asset may be
present in the neighbor lines of the corresponding secret. As
shown in Table IV, the percentage of database assets present
within three neighboring lines of the corresponding database
password in the same file is 95.8%. In our study, we define
three neighboring lines as three lines above and three lines
below the secret line. For example, if a secret is present in
line 20, the asset can be present between line 17 and line 23.
We now discuss the approach of identifying the secret-asset
pairs using neighboring lines.

Step 3.1 Identifying and Filtering Secrets: First, we
identified the secrets in the repositories using two open-source
secret detection tools, TruffleHog [5] and Gitleaks [18]. The
authors of SecretBench [16] have used the same two tools to
curate the benchmark dataset as discussed in Section III. Next,
we merged the unique database secrets outputted by the two

Fig. 7: Multiple or zero corresponding assets can be present
in the neighboring lines of a secret.

tools and filtered the secrets for which we already found assets
using Regex (Step 1) and Data Flow Analysis (Step 2).

Step 3.2 Identifying Secret-Asset Pairs Using Neigh-
boring Lines: In this step, to identify the neighboring lines
for each secret, we used the linecache [56] library of
Python that provides random access to source code lines.
We observe that a database asset identifier can be present
as an IP address (10.0.0.1) or a DNS name (wrpxdb
.bioch.edu), as shown in Pattern 2 and 4, respectively.
Hence, we formulated regexes for capturing the IP addresses
(\b(?:\d{1,3}\.){3}\d{1,3}\b) and DNS names
(\b[A-Za-z0-9][A-Za-z0-9-.]*\.\D{2,4}\b) in
the neighboring lines. However, the neighboring lines may
contain multiple IP addresses and DNS names. Among those
assets, one asset can be the corresponding asset for a secret.
For example, as shown in Figure 7, a file server and a MySQL
database address are present in lines 1 and 2, respectively. The
correct asset for the MySQL database username and password
present in lines 3 and 4 is the MySQL database address. In
addition, the asset protected by the secret may not be present
in the source code. For example, a DNS name for an email
server is present in line 10. However, the email server is not
the asset protected by the MongoDB database username and
password present in lines 11 and 12, respectively.

We observe that a specific group’s secret and corresponding
asset can have the same prefix in the variable or key names.
For example, as shown in Figure 7, the key names of username
(mysql-user), password (mysql-password) and server
address (mysql-host) of MySQL database have the same
prefix (mysql). However, the key name of the file server
does not start with the same prefix as the key names of
the MySQL database. Hence, we can apply a string-matching
algorithm to calculate similarity scores between the secret line
and the candidate asset lines and choose the asset with the
highest similarity score. In addition, we discard the asset if the
similarity score with the secret line is less than a threshold. To
calculate the similarity score, we used Jaro-Winkler Similar-



TABLE V: Precision, Recall and F1-score of AssetHarvester
for each database type

Database Type Precision
(TP, FP)

Recall
(TP, FN)

F1
Score

MySQL 0.98 (712, 13) 0.91 (712, 65) 0.94
PostgreSQL 0.98 (620, 10) 0.91 (620, 51) 0.94
MongoDB 0.96 (286, 11) 0.92 (286, 24) 0.94
SQL Server 1.00 (8, 0) 0.32 (8, 17) 0.48
Overall 0.97 (1626, 34) 0.90 (1626, 165) 0.94

ity [57], a string-matching algorithm that uses a prefix scale
by giving a high similarity score to strings that match from the
beginning. The Jaro–Winkler algorithm provides a similarity
score between 0 and 1, and we chose 0.5 as the threshold simi-
larity score. We utilized the jaro_winkler_similarity
function from the jellyfish [58] package in Python to
compute the similarity score and identify the secret-asset pairs.

VI. PERFORMANCE OF ASSETHARVESTER

In this section, we answer RQ2 by evaluating the perfor-
mance of AssetHarvester against AssetBench.

Precision, Recall and F1-Score: Table V presents the
precision, recall and F1-score of AssetHarvester for each
database type. The column “Precision (TP, FP)” denotes the
precision for each database type. The number in parenthesis
denotes the number of true positive and false positive secret-
asset pairs outputted by AssetHarvester. The column “Recall
(TP, FN)” denotes the recall for each database type. The
number in parenthesis denotes the number of true positive and
false negative secret-asset pairs outputted by AssetHarvester.
The column “F1 Score” denotes each database type’s F1-score
(the harmonic mean of precision and recall). We now discuss
our observations related to precision, recall, and F1-score.

• We observed that AssetHarvester demonstrated overall
97% precision, indicating high precise detection of assets
protected by secrets with low false positives. The count
of false positives (34) indicates that the tool incorrectly
outputted 34 assets out of 1,791 secret-asset pairs.

• The overall recall score of AssetHarvester is 90%, indi-
cating a strong ability to identify instances of assets for
secrets, supported by an F1-score of 94%. The count of
false negatives (165) indicates that the tool failed to detect
165 instances of secret-asset pairs.

• Among the four database types, the recall score of SQL
Server is low (32%) though the precision score is 100%.
The tool could not detect 17 instances of SQL Server
assets out of 25 secret-asset pairs. We discussed the
reason for false negatives later in this section.

Performance of Pattern Matching, Data Flow Analysis,
and Fast-Approximation Heuristic: Figure 8 depicts that
AssetHarvester detected unique secret-asset pairs using the
three approaches, thus indicating the importance of the three
approaches. Out of 1,626 secret-asset pairs, using pattern
matching (regex) and data flow analysis (CodeQL), we found

Fig. 8: The number of unique secret-asset pairs found by Pat-
tern Matching, Data Flow Analysis, and Fast-Approximation
Heuristic approaches.

1,090 and 404 unique secret-asset pairs, respectively. In addi-
tion, we found 111 unique secret-asset pairs using the fast-
approximation heuristic (Neighboring Lines). However, we
observed that 21 instances of secret-asset pairs were detected
by both pattern matching and data flow analysis. The overlap
happened because of dsn keyword argument of driver func-
tions, which takes a connection string that is also matched by
the regex of database types. However, the overlap is low since
all the connection strings found by the regex are not passed
to Python database driver functions. Instead, the connection
strings are either passed to non-python such as Java or .NET
database driver functions or not passed to any functions. Thus,
those connection strings could not be captured by data flow
analysis. Additionally, we observed that among the three ap-
proaches, AssetHarvester incorrectly detected 9 and 25 secret-
asset pairs out of 34 false positives using pattern matching
and fast-approximation heuristics, respectively. However, As-
setHarvester did not detect any false positives using data flow
analysis, indicating 100% precision. We inspected the false
positives and false negatives and discussed our observations
on the rules triggering the false positives and false negatives.

Analysis of False Positives: We observed that the false
positives are mostly triggered by the neighboring lines rule
(73.5% of the 34 false positives reported by AssetHarvester).
We noticed that the key names of the secret and corresponding
asset do not always follow the specific pattern of having
similar prefixes (Step 3.2, Section V). For example, “URL”
and “password” are the key names of a database server address
and password but do not have the same prefixes. As a result,
when multiple IP addresses or DNS names were present in the
neighboring lines, and the similarity score met the threshold,
AssetHarvester could not detect the correct asset for a secret.

Analysis of False Negatives: We observed that AssetHar-
vester failed to detect secret-asset pairs when the asset is
not present within three neighboring lines of the secret. As
shown in Table IV, 54 (4.2%) instances of secret-asset pairs
in AssetBench do not fall within three neighboring lines. In
our study, the repositories also contain non-Python source
codes, such as Java and .NET, where the secret-asset pairs are



passed to Java and .NET database driver functions. However,
AssetHarvester did not detect those secret-asset pairs since we
only executed data flow analysis for Python source codes in
our study. Thus, AssetHarvester shows a lower recall (32%)
for SQL Server among other database types since the SQL
Server assets are typically passed to .NET driver functions.
Additionally, AssetHarvester could not detect assets present as
variables in the connection strings not passed to Python driver
functions. For example, the connection string "jdbc:post
gresql://${databaseServer}" contains the variable
databaseServer defined separately with the actual value.

VII. DISCUSSION

In this section, we discuss the implications of AssetHar-
vester from the findings of our study.

Data Flow Analysis aids in detecting all parts of a
credential and the corresponding asset as one group.
A credential can have multiple parts required to access the
protected asset. For example, an access key ID and a secret
access key are required to access an AWS resource, whereas
for accessing a database, both a username and a password
are required. Similar to credentials, assets can have multiple
parts as well. For example, a database asset consists of a host,
port, and database name. However, existing secret detection
tools can not detect all parts of an asset if present separately
in the source code. In addition, the tools output each part
of a credential in separate alerts instead of outputting as one
group. Thus, developers need to manually identify the related
alerts out of all the alerts reported by the tools. However,
AssetHarvester leverages data flow analysis to detect all parts
of a credential and the asset and output as one alert to the
developers. In our study, we detected the database credential
(username and password) and asset (host, port, database name)
flowing into the same database driver functions using data flow
analysis. Additionally, we provided the information on the call
location as an additional context for the developers to prioritize
secret and asset eradication from the source code.

Data Flow Analysis aids in improving the recall of
the secret detection tools. Since we detected the secret-
asset pairs flowing into the database driver functions, we
identified 86 secrets not present in SecretBench. As discussed
in Section III, the authors of SecretBench used two open-
source tools, TruffleHog and Gitleaks, to curate the benchmark
dataset. These tools leverage regex and entropy scores to
identify secrets. However, Basak et al. [7] found that tools
miss secrets because of generic regex, ineffective entropy
calculation, and insufficient rulesets. As a result, secrets that
are not matched by the regex and entropy score are not
detected. However, the recall of the secret detection tools can
be improved as secrets flowing into the respective functions
can be identified using data flow analysis.

AssetHarvester can be extended to detect non-database
assets for corresponding secrets. In our study, we detected
assets of the corresponding secrets of four databases. However,
the found secret-asset co-location patterns (Section IV) also
apply to other databases and non-database secret-asset pairs.

We observed a random sample of 10 secrets for each secret
type from SecretBench [16] and categorized the identified as-
set types protected by the secrets into three categories. We now
provide the asset categories and discuss how AssetHarvester
can be extended to each asset category.

1. Database Servers: Except the four databases studied in
our work, AssetHarvester can be extended to identify secret-
asset pairs of other databases such as Oracle [59] and Mari-
aDB [60]. Since these databases also have specific connection
string formats containing the secret and asset values, we can
formulate regex to identify the secret-asset pairs. For example,
an Oracle connection string is "UserId=scott;passwo
rd=tiger;datasource=10.0.0.1" containing secret
and server address. In addition, we can add the driver functions
of these databases to the existing sinks to identify secret-asset
pairs using data flow analysis. For example, cx_Oracle [61]
is a database driver for connecting to the Oracle database.

2. API Services: API keys and tokens are used for authen-
tication and authorization with API services provided as API
URLs. Since each vendor follows a specific format for API
URLs, regex can be formulated for each API and added to the
regex list (Step 1.1, Section V). In addition, when the secret
is not present in the API URL, the secret and corresponding
API URL can be detected by data flow analysis since these
values will be passed in an HTTP request client. For example,
the get, post, or put methods of request package [62]
in Python act as sinks to the secret and API URLs.

3. Non-Database Servers: A secret can protect non-database
servers such as Mail and FTP servers. Similar to database
servers (Group 1, Table II), non-database servers have specific
formats containing a scheme type (scheme://user:pass
word@host:port). For example, the “smtp” or “pop3” are
the Mail server’s scheme types, whereas “ftp” is the scheme
type for the FTP server. We can add the scheme types in
Group 1 of the regex list to capture the non-database server
secret-asset pairs. In addition, the secret and the corresponding
server URL are used by functions such as “login” and “SMTP”
functions of smtplib [63] module of Python for sending
email. Additionally, servers such as Web and Mail servers use
private keys (SSL/TLS certificates) to enable secure connec-
tions. These keys are defined separately from the asset location
and loaded into the file where the calling function is present.
Thus, we can apply data flow analysis and file parsing (Step
2.3, Section V) to identify the private key and asset.

VIII. ETHICS AND DATA PROTECTION

Since our dataset contains sensitive information, such as
the secret-asset pairs and the committer’s email addresses, we
will distribute the dataset selectively. Researchers and tool
developers who want to use our dataset will sign a data
protection agreement with us to ensure ethical use. Once
completed, access to our dataset will be granted via Google
BigQuery using their email addresses. In addition, we did not
attempt to use the secret-asset pairs to verify their validity. We
only contacted the developers who committed the secret-asset
pairs to validate our labeling. We did not disclose developers’



identities to management or higher officials within their or-
ganizations. Additionally, we are notifying every developer in
our dataset to remove the secret-asset pairs from their VCS.

IX. THREATS TO VALIDITY

In this section, we discuss the limitations of our paper.
Manual Analysis: Manual analysis can introduce bias due

to the multiple interpretations and oversights. For example,
identifying the assets protected by secrets while curating
AssetBench is susceptible to bias. We mitigated the bias by
cross-checking the identified secret-asset pairs with two raters.

Benchmark Dataset: Our selection of benchmark dataset
for secrets is susceptible to bias. Basak et al. [16] utilized
two open-source tools (TruffleHog and Gitleaks) and curated
SecretBench, which we extended as AssetBench by identifying
the protected asset for each secret. However, we observed that
AssetHarvester identified 86 secrets that are not present in
SecretBench (Section VII). As a result, SecretBench may have
more missing secrets, which may impact the results discussed
in Section VI. Additionally, SecretBench has been constructed
by extracting secrets from GitHub repositories and not from
other VCSs such as GitLab [64] and BitBucket [65]. Since
SecretBench is the only publicly available dataset, we could
not evaluate AssetHarvester with another benchmark dataset
to mitigate the potential bias.

Developer Survey: For the developer survey of AssetBench,
we selected the secret-asset pairs committed between 2021 and
2022. However, the developer’s responses could have recall
bias. To mitigate the bias, we provided screenshots of the
secret and asset-containing source code with metadata (commit
ID, file path, and line number) to the developers.

Data Flow Analysis: In our study, we used CodeQL for data
flow analysis in the latest snapshot of the repositories. CodeQL
can only model the data flow with the provided snapshot of the
source code. However, developers can push secret-asset pairs
in one commit and remove them in another commit. Secret-
asset pairs can still be present in the old snapshot, that can
not be detected by executing data flow analysis on the latest
snapshot. However, we can compute data flow analysis for
each repository snapshot to identify the secret-asset pairs from
Git history, which will be impractical and time-consuming.

X. RELATED WORK

Previous studies [2], [66]–[70] have investigated the under-
lying causes of the exposure of secrets in software artifacts.
Researchers have found that keeping hard-coded secrets in
software artifacts is the most prevalent insecure practice that
developers adopt, causing secret leakage. In 2019, Meli et
al. [2] found over 100K hard-coded secrets by studying
a 13% snapshot of public GitHub repositories. Rahman et
al. [67] investigated 5,232 Infrastructure as Code (IaC) scripts
extracted from 293 open-source repositories and observed
7 “Security Smells”. Security smells are the indicators of
potential security flaws that can lead to security breaches.
Among the 7 security smells, hard-coded secrets were found
to be the most frequent, with 1,326 occurrences. Within

GitHub Gists, which developers use for sharing code snippets,
Rayhanur et al. [66] found 689 instances of hard-coded secrets
by investigating 5,822 Python Gists in GitHub. These previous
works indicate that hard-coded secrets have been leaking in
various forms within software artifacts.

Researchers [70]–[72] have recommended that developers
follow secure practices for secret management to avoid ex-
posure of secrets in software artifacts. In 2022, Basak et
al. [71] identified 24 developer and organization practices by
conducting a grey literature review of Internet artifacts such
as blog posts. To avoid the accidental commit of secrets,
they suggested using VCS scan tools. In another study, Basak
et al. [72] investigated the challenges developers face for
checked-in secrets in Stack Exchange (SE) and the solutions
SE users suggest to mitigate the challenge. They found that to
avoid accidentally committing secrets, SE users also suggested
using VCS scan tools. However, Basak et al. [7] compared
5 open-source and 4 proprietary VCS scan tools against
SecretBench [16] and observed that tools output a lot of false
positives. In addition, tools failed to detect all the secrets
present in a repository. Recent research [73]–[76] has em-
ployed Machine Learning (ML) algorithms to reduce the false
positives. For example, deep neural networks were used by
Feng et al. [74] to identify the inherent characteristics of plain
text credentials and detect valid credentials. However, among
the 9 VCS scan tools investigated by Basak et al. [7], two tools
(Commercial X (anonymized) and SpectralOps [77]) employed
ML algorithms to detect secrets showed lower precision scores
of 25% and 1%, respectively.

Rayhanur et al. [78] conducted a developer survey in an
XTech company (anonymized) and found that developers
ignore secrets due to many secrets outputted by VCS scan
tools and time pressure. However, if the information about
the asset protected by the secret was provided, developers
could have prioritized secret eradication. However, existing
VCS scan tools do not provide the asset information for a
secret. In this study, we concentrated our research efforts on
identifying the assets protected by secrets to aid developers in
prioritizing secrets removal efforts.

XI. CONCLUSION

We constructed AssetHarvester, a static analysis tool to
detect the assets protected by the corresponding secrets in
a repository by investigating the secret-asset co-location pat-
terns. We utilized pattern matching, data flow analysis, and
fast-approximation heuristics to construct AssetHarvester. To
evaluate AssetHarvester, we curated AssetBench, a benchmark
dataset of 1,791 secret-asset pairs comprising four database
types (PostgreSQL, MySQL, MongoDB, and SQL Server).
The secret-asset pairs are extracted from 188 public GitHub
repositories. We found that AssetHarvester demonstrates pre-
cision of (97%), recall (90%), and F1-score (94%) in detecting
secret-asset pairs. Our findings indicate that data flow analysis
employed in AssetHarvester detects secret-asset pairs with 0%
false positives and also aids in improving the recall of secret



detection tools. In addition, though fast-approximation heuris-
tics introduce relatively more false positives, this approach
improves recall by detecting assets that cannot be detected
using other approaches.
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