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Abstract
We study the problem of achieving high efficiency
in iterative combinatorial auctions (ICAs). ICAs
are a kind of combinatorial auction where the auc-
tioneer interacts with bidders to gather their valua-
tion information using a limited number of queries,
aiming for efficient allocation. Preference elicita-
tion, a process that incrementally asks bidders to
value bundles while refining the outcome alloca-
tion, is a commonly used technique in ICAs. Re-
cently, the integration of machine learning (ML)
into ICAs has significantly improved preference
elicitation. This approach employs ML models that
match the number of bidders, estimating each bid-
der’s valuation functions based on their reported
valuations. However, most current studies train a
separate model for each bidder, which can be ineffi-
cient when there are numerous bidders with similar
valuation functions and a limited number of avail-
able queries. In this study, we introduce a multi-
task learning method to learn valuation functions
more efficiently. Specifically, we propose to share
model parameters during training to grasp the in-
trinsic relationships between valuations. We assess
the performance of our method using a spectrum
auction simulator. The findings demonstrate that
our method achieves higher efficiency than exist-
ing methods, especially in scenarios with many bid-
ders and items but a limited number of maximum
queries.

1 Introduction
Combinatorial auctions (CAs) are an effective mechanism for
allocation, allowing bidders to place bids on sets of items,
known as ‘bundles.’ This approach enables them to express
their complex preferences for items, considering the comple-
mentarity and substitutability among the items. These auc-
tions have significant applications in various sectors, such
as the sale of spectrum licenses [Cramton, 2013], real estate
spaces [Goossens et al., 2014], and airport access rights [Ball
et al., 2018].

The primary challenge in CAs is the exponential num-
ber of possible bundles. The well-known Vickrey-Clarke-

Groves (VCG) mechanism [Vickrey, 1961; Clarke, 1971;
Groves, 1973] assumes access to bidders’ full valuation func-
tions, that is, bidders need to value all the bundles, which
is impractical with a large number of items. To circumvent
this issue, extensive research has focused on preference elic-
itation, an iterative process in which bidders are queried to
provide information about their valuations instead of report-
ing on all possible bundles. This approach simplifies the bid-
ding process by reducing the information required from each
participant. The queries for preference elicitation are classi-
fied into various types, including value queries, which ask for
a valuation of a specific bundle, and demand queries, which
inquire about the bundle with maximum utility given prices
[Sandholm and Boutilier, 2005]. A notable implementation
is the combinatorial clock auction, primarily used in spec-
trum auctions [Ausubel and Baranov, 2017], which employs
demand queries to elicit preference information.

Recently, machine learning has enhanced preference elic-
itation. Following the seminal works [Lahaie and Parkes,
2004; Blum et al., 2004], a series of studies have devel-
oped under the concept of ML-powered iterative combinato-
rial auctions (ICAs). In ML-powered ICAs, machine learning
models are employed for each bidder to learn their valuation
functions based on queries, with the trained model parame-
ters determining the next queries [Brero et al., 2017]. Brero
et al. [2017] first proposed the framework for ML-based
ICAs, and subsequent works [Weissteiner and Seuken, 2020;
Weissteiner et al., 2022; Weissteiner et al., 2023] have devel-
oped more efficient elicitation algorithms. From a theoreti-
cal perspective, the worst-case communication complexity is
exponential in the number of items when bidders have arbi-
trary monotone valuation functions [Nisan and Segal, 2006].
Nonetheless, preference elicitation can still be effective with
machine learning support.

However, most existing studies train models separately for
each bidder. Influenced by the mainstream framework [Brero
et al., 2018; Brero et al., 2021], the majority of subsequent
works use each ML model to approximate the correspond-
ing bidder’s valuation function independently. This method,
while effective, can lead to inefficiencies, particularly when
several bidders have similar valuation functions. Bidders of-
ten have similar valuation functions, especially in certain CA
applications. For example, in these applications, it’s possi-
ble to model bidders’ valuation functions based on item at-
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tributes, such as geometric locations [Leyton-Brown et al.,
2000]. In addition, real-world applications may have more
than 100 bidders, as in logistics [Vries and Vohra, 2003]. This
suggests that the valuation functions of different bidders can
align closely. When there are several bidders with similar
valuation functions, avoiding repetitive queries to different
bidders is crucial to reduce time costs; however, separately
trained models cannot detect the similarity and hence will ne-
cessitate the repetition of the same queries across bidders with
similar valuation profiles for inference.

In scenarios with many bidders whose valuations are some-
what related, there is a clear need for a methodology for han-
dling these complexities, aiming for efficient allocation with
fewer queries. In this context, joint model training emerges
as a crucial method. Jointly trained models are expected to
capture the intrinsic relatedness of valuation functions more
effectively by sharing information across models. Despite
its potential, this type of approach is underexplored in ex-
isting studies like Weissteiner et al. [2022] or Weissteiner et
al. [2023], which instead invent several better model architec-
tures to make more efficient preference elicitation algorithms.

In this paper, we propose a multi-tasking machine learning-
powered combinatorial auction (MT-MLCA) that integrates
multi-task learning into existing machine learning-based
preference elicitation algorithms. This approach aims to
leverage shared information across different bidders to im-
prove efficiency. Technically, we apply the soft-parameter
sharing across models to capture the valuation similarities. In
addition, we incorporate a method using bidders’ ID features
to assist in differentiating between tasks.

We experimentally assess the effectiveness of multi-task
learning in improving the existing methods. We conduct eval-
uations in experimental settings characterized by a large num-
ber of bidders but limited availability of queries. The exper-
imental results show that our multi-tasking approach yields
higher efficiency than the existing method under 196 items
and over 30 bidders, or 50 bidders with similar valuation
functions and 98 or 196 items.

Our contributions are summarized as follows:
• We introduce soft-parameter sharing from the realm of

multi-task learning to ML-powered ICAs, improving ef-
ficiency by leveraging shared bidder information.

• We validate our approach through experiments in sce-
narios with many bidders and limited queries, demon-
strating its practical advantages.

2 Related Work
Preference Elicitation in Combinatorial Auctions
Combinatorial auctions present several practical challenges,
such as the difficulty for bidders to report complete valua-
tions for the exponentially large number of possible bundles.
This challenge has motivated researchers to explore prefer-
ence elicitation, defined as “the process of asking questions
about the preferences of bidders to best divide some set of
goods” [Blum et al., 2004]. The initial framework for this
approach was proposed by Conen and Sandholm [2001], and
the general procedure can be described as follows [Sandholm
and Boutilier, 2005]:

1. Initialize t := 0 and let C0 represent the prior informa-
tion available to the auctioneer about the bidders’ valua-
tion functions.

2. Given the current information on valuation functions Ct,
decide whether to

(a) terminate the process and determine an allocation
and payments, or

(b) choose a set of queries Qt, gather responses to these
queries from the bidders, and update the current in-
formation from Ct to Ct+1, incrementing t to t+1.

More recent studies [Brero et al., 2017; Brero et al., 2018;
Weissteiner and Seuken, 2020; Weissteiner et al., 2022;
Weissteiner et al., 2023], including this study, can be viewed
as instances of the above general framework.

Machine Learning in Auctions
Machine-learning techniques have made significant advance-
ments in the domain of auction mechanisms. Duetting et
al. [2019] introduced RegretNet, a deep learning model de-
signed to learn revenue-maximizing auction mechanisms.
RegretNet aims to maximize revenue while minimizing re-
gret, which measures the extent of deviation from strategy-
proofness. Conversely, Dütting et al. [2021] developed Ro-
chetNet, a model specifically constructed to adhere strictly to
strategy-proofness, as opposed to RegretNet, which only ap-
proximately achieves this. Initially, RochetNet was limited
to scenarios with a single bidder. However, recent work by
Curry et al. [2023] has expanded its application to multiple
bidders, employing an affine maximizer auction framework.

While most existing studies in this area generally assume
that bidders have additive utilities, our research considers
general combinatorial utilities, aligning with the prevailing
trend, as exemplified by related studies [Weissteiner and
Seuken, 2020; Weissteiner et al., 2022; Weissteiner et al.,
2023].

3 Preliminaries
We first describe the problem setting and then introduce the
ML-powered ICA proposed by Brero et al. [2021].

3.1 Problem Setting
For any k ∈ N, let [k] denote the set of {1, . . . , k} and we
denote by R≥0 the set of non-negative real numbers.

Consider a CA setting where we are given a set of bidders
N := [n] and a set of items M := [m]. A bundle is a subset
of M , denoted by a vector x ∈ {0, 1}m, where xk = 1 if and
only if the k-th item belongs to the bundle. Each bidder i has
a private valuation function vi : {0, 1}m → R≥0 which gives
i’s true value for a bundle.

The ICA mechanism outputs an allocation of bundles and
monetary payments. We denote by A := [a1 · · · an] ∈
{0, 1}m×n an allocation of items to bidders, where the i-
th column ai := (a1i, · · · , ami)

⊤ ∈ {0, 1}m is the bun-
dle which the bidder i obtains. An allocation A is fea-
sible if

∑
i∈N aji ≤ 1 for all j ∈ M . We let F :=

{A ∈ {0, 1}m×n |
∑

i∈N aji ≤ 1, ∀j ∈ M} be the set
of all feasible allocations. Payments are denoted by a vector



p := (p1, . . . , pn)
⊤ ∈ Rn

≥0. We assume bidders have quasi-
linear utilities ui(ai,p) := vi(ai) − pi for an allocation A
and payments p = (p1, . . . , pn)

⊤ ∈ Rn
≥0. Simultaneously,

the auctioneer receives utility uauctioneer(p) :=
∑

i∈N pi.
Given a feasible allocation A ∈ F , the social welfare is de-
fined as V (A) :=

∑
i∈N vi(ai). This is equal to the sum of

utilities of the auctioneer and bidders for any payments p be-
cause

∑
i∈N ui(ai,p) + uauctioneer(p) =

∑
i∈N (vi(ai) −

pi) +
∑

i∈N pi =
∑

i∈N vi(ai) = V (A). An efficient al-
location is the social-welfare maximizing allocation A∗ :=
argmaxA∈F V (A). For a given feasible allocation A ∈ F ,
the efficiency is defined as V (A)/V (A∗).

An ICA mechanism aims to find an approximately effi-
cient allocation. During the procedure, the mechanism re-
peatedly asks bidders to report their valuation on some bun-
dles to determine a final allocation. Let v̄i(x) be the pos-
sibly untruthful reported valuation for a bundle x. The re-
ported bundle-value pairs are denoted by the set of Ri :=
{(x(k), v̄i(x

(k))}ni

k=1, where ni denotes the number of to-
tally reported pairs. Given R := (R1, . . . , Rn), the re-
ported social welfare for an allocation A ∈ F is defined as
V (A|R) :=

∑
i∈N :(ai,v̄i(ai))∈Ri

v̄i(ai) that is, the sum of re-
ported valuations on bundles contained both in A and R. The
final allocation is the allocation that maximizes the reported
social welfare, which is determined by

A∗
R := argmax

A∈F
V (A|R). (1)

The objective is to collect bundle-value pairs for the final al-
location A∗

R to be as efficient as possible [Weissteiner and
Seuken, 2020]. Formally, given the maximum query cap
ce ∈ N, we would like to compute R such that

R ∈ argmax
R:|Ri|≤ce

V (A∗
R)

V (A∗)
. (2)

In practice, the maximum query cap ce must be small to
reduce consideration costs on bidders.

3.2 ML-powered ICA
We describe the machine learning-powered combinatorial

auction (MLCA) in Algorithm 1 for the machine learning-
powered ICAs proposed by Brero et al. [2021] with slightly
changed notations from Weissteiner et al. [2022].

MLCA proceeds in rounds by repeatedly asking valua-
tions for specific bundles until reaching the maximum round
Qmax = ce. During the procedure, NEXTQUERIES in Algo-
rithm 2 is invoked to compute the next queried bundles. This
computation involves two key steps: at the estimation step
(Line 2), a machine learning model Ai : {0, 1}m → R≥0

is trained on each bidder i’s reported bundle-value pairs Ri

through regression to estimate the bidders’ valuation func-
tion. Subsequently, at the optimization step (Line 4), the
most promising allocation Q is calculated based on the esti-
mated valuation functions. Finally, the next queries are calcu-
lated after the exclusion of previously asked bundles and re-
computation of tentative allocations. MLCA guarantees that
truthful bidding is an ex-post Nash equilibrium under several
assumptions [Brero et al., 2021].

Algorithm 1 MLCA [Brero et al., 2021]

Input: Numbers of queries Qinit, Qmax, Qround

Output: Allocation A∗
R and payments p(R)

1: for i ∈ N do
2: Receive reports Ri for Qinit randomly drawn bundles
3: end for
4: for k = 1, . . . , ⌊(Qmax −Qinit)/Qround⌋ do
5: for i ∈ N do
6: Draw uniformly without replacement (Qround − 1)

bidders from N \ {i} and store them in Ñ

7: for j ∈ Ñ do
8: Qnew = Qnew ∪ NEXTQUERIES(N \ {j}, R−j)
9: end for

10: end for
11: Qnew = NEXTQUERIES(N,R)
12: for i ∈ N do
13: Receive reports Rnew

i for qnew
i , set Ri = Ri∪Rnew

i
14: end for
15: end for
16: Compute A∗

R as in (1)
17: Compute VCG payments p(R) as in (3)
18: return Allocation A∗

R and payments p(R)

MLCA outputs the final allocation, denoted by A∗
R, and

the payment vector p(R). The allocation A∗
R is obtained

by solving equation (1). The payment vector p(R) =
(p(R)i)i∈N represents the VCG Payments, calculated in a
manner akin to the original VCG rule. Specifically, let
R−i := (R1, . . . , Ri−1, Ri+1, . . . , Rn) denote the tuple of
reported bundle-value pairs except for bidder i’s one, and
MLCA calculates the payments by

p(R)i :=
∑

j∈N\{i}

v̄j(a
∗
R−i,j)−

∑
j∈N\{i}

v̄j(a
∗
R,j), (3)

where a∗
R,j denotes the j-th column of A∗

R, and A∗
R−i

:=

[a∗
R−i,1

· · · a∗
R−i,n

] represents the allocation that maximizes
the reported social welfare, excluding the contribution of bid-
der i. This allocation is defined as

A∗
R−i

:= argmax
A∈F

∑
j∈N\{i}:(aj ,v̄j(aj))∈Rj

v̄j(aj). (4)

In the estimation step, each model Ai : {0, 1}m →
R≥0 estimates bidder i’s valuation function via labeled data
Ri = {(x(k)

i , v̄i(x
(k)
i ))}k. Several studies have investi-

gated ML models A in Algorithm 2, including SVMs [Brero
et al., 2017] and deep learning models [Weissteiner and
Seuken, 2020; Weissteiner et al., 2022; Weissteiner et al.,
2023]. Here, we assume the monotone-value neural network
(MVNN) proposed in Weissteiner et al. [2022]; however, our
proposed method can be extended to other architectures. The
MVNN, a multi-layer perceptron, is constructed as a mono-
tone set function. Formally, an MVNN Ai = Ni(W

i, bi)
has (Ki − 1) hidden layers with non-negative weight ma-
trices W i = (W i,1, . . . ,W i,Ki) ≥ 0, non-positive biases
bi = (bi,1, . . . , bi,Ki−1) ≤ 0, and the bounded ReLU activa-



Algorithm 2 NEXTQUERIES [Brero et al., 2021]
Input: Subset of bidders I and reported bundle-value pairs R
Params: ML algorithm A = (Ai)i∈N

Output: New query profile Q = [qi]i∈N

1: for i ∈ I do
2: Fit Ai on Ri and obtain Ai[Ri] ▷ Estimation step
3: end for
4: Solve Q = [q1 · · · qn] ∈ argmaxA∈F

∑
i∈I Ai[Ri](ai)

▷ Optimization step
5: for i ∈ I do
6: if (qi, v̄i(qi)) ∈ Ri then
7: Define F ′ := {A ∈ F | ai ̸= x,∀(x, v̄i(x)) ∈ Ri}
8: Resolve Q′ ∈ argmaxA∈F ′

∑
l∈I Al[Rl](al)

9: Update qi to q′
i, the i-th column of Q′

10: end if
11: end for
12: return Q = [q1 . . . qn]

tion function φ0,t(z) := min(t,max(0, z)):

Ni(W
i, bi)(x) := W i,Kiφ0,t(· · ·φ0,t(W

i,1x+ bi,1) · · · ).
(5)

An MVNN Ni(W
i, bi) satisfies monotonicity, i.e., for all

x,y ∈ {0, 1}m, Ni(W
i, bi)(x) ≤ Ni(W

i, bi)(y) if regard-
ing x and y as subsets x,y ⊆ {0, 1}m and set inclusion holds
x ⊆ y.

The optimization step is implemented and solved via the
following mixed integer linear programming (MILP) [Weis-
steiner et al., 2022]:

max
∑
i∈I

Ai[Ri](ai), (6)

s.t.,
∑
i∈I

aji ≤ 1, ∀j ∈ M, (7)

aij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M, (8)

where Ai[Ri] is the trained model Ai on the set of bidder
i’s reported bundle-value pairs Ri. Note that the above op-
timization problem can be written as a MILP with respect to
the model parameters.

4 Proposed Method
We propose our MT-MLCA, the integration of a multi-task
learning approach with MLCA and MVNN. Initially, we will
outline the process of sharing valuation information among
bidders. Subsequently, we will present our technique, which
utilizes bidders’ ID features to distinguish and capture task
differences.

4.1 Soft Parameter-Sharing
In the estimation step at Line 2 in Algorithm 2, we observe
that the models Ai are trained exclusively on their respective
datasets Ri. However, this approach might not fully leverage
the potential efficiency gains in scenarios where multiple bid-
ders have similar valuation functions. Capturing the inherent
relatedness of these regression tasks could significantly en-
hance the effectiveness of the models.

We apply multi-task learning methods in the estimation
step instead of training each model separately. Technically,
we adopt a simple soft parameter-sharing approach, as de-
scribed in Duong et al. [2015], but more sophisticated multi-
tasking approaches could also be utilized.

We focus on the estimation step when NEXTQUERIES
is invoked for a set of bidders I ⊆ N . Let RI :=
(Ri)i∈I represent the sets of reported bundle-value pairs, and
(Ni(W

i, bi))i∈I denote the MVNNs participating in the es-
timation step. We assume that all MVNNs have an identical
architecture with (K − 1) hidden layers, which we will dis-
cuss later.

In our soft parameter-sharing approach, we aim to mini-
mize regression loss while maintaining proximity among the
models. Let ŷ(k)i := Ni(W

i, bi)(x
(k)
i ) denote the estimation

of y(k)i := v̄i(x
(k)
i ) given (x

(k)
i , v̄i(x

(k)
i )) ∈ Ri. We train

(Ni(W
i, bi))i∈I by minimizing:

loss({(W i, bi)}i∈I)

:=
∑
i∈I

|Ri|∑
k=1

L(y
(k)
i , ŷ

(k)
i ) + λ

∑
i,j∈I

∑
s∈S

∥W i,s −W j,s∥2F,

(9)

where L is the regression loss (e.g., ℓ2-loss), λ is a hyper-
parameter, S ⊂ [K] is the indices of shared weights, and
∥X∥F =

√
tr(X⊤X) is the Frobenius norm of a matrix X .

The parameters indexed by any s ∈ [K] \ S contribute to
task-specific components.

For our experimental evaluation, we explore two config-
urations of the sharing indices S. The first configuration,
referred to as MT-MLCA-F, includes indices in the range
S = 1, . . . , ⌊K/2⌋. The second configuration, named MT-
MLCA-R, encompasses indices from ⌊K/2⌋, . . . ,K. Here,
‘F’ in MT-MLCA-F represents the ‘Front’ part of the range,
and ‘R’ in MT-MLCA-R. Note that both the MT-MLCA-F
and MT-MLCA-R configurations incorporate the ID injection
technique described in the following section.

4.2 ID Injection
We utilize bidder IDs to assist models in distinguishing task
differences. Conceptually, we make a feature vector for each
bidder ID i ∈ N and incorporate it into the corresponding
model Ai. In our experiments, using this technique enhanced
the performance of MT-MLCA-F and MT-MLCA-R, enhanc-
ing the benefits of multi-task learning.

A bidder ID i ∈ N is crucial for the model’s ability to cap-
ture task differences and adapt to individual bidder character-
istics. The MVNN, by construction, is assumed to have an
input dimension equal to the number of items. Consequently,
we cannot input the concatenation of a bundle vector with
an ID representation directly. Hence, we propose to inject
an ID feature into a hidden layer output to adapt an MVNN
for individual bidder ID recognition. We expect this feature
to accommodate task differences that cannot be captured via
only the weights or biases.

Our ID injection methodology is as follows: We make a
trainable embedding vector ei ∈ Rd

≤0 that represents the



d-dimensional non-positive embedding for an ID i ∈ N .
MVNN assumes that all the bias terms must be non-positive
elements, so our embedding must exist in Rd

≤0. We then in-
ject ei into the j-th layer, altering the layer’s parameters W i,j

and bi,j as illustrated:

W i,j :=

[
W i,j O
O O

]
, bi,j :=

[
bi,j

ei

]
, (10)

where O is the zero-matrix with appropriate dimensions. This
modification is expected to enhance MVNN’s ability to dif-
ferentiate and adapt to the uniqueness of the valuation func-
tion of each bidder, thus improving the overall accuracy and
efficiency of the model.

4.3 Discussion on Identical Architecture
We assume that the machine learning models in MLCA, de-
noted as (Ai)i∈N , all share a common architecture. This as-
sumption is elaborated on in the following discussion.

In auctions, bidders are characterized by their types, a form
of private information that critically influences their bidding
strategies and behaviors. Typically, types are identical to the
true valuation functions, but all the information influencing
the functions can be seen as constituents of types. A prime
example of this concept is evident in spectrum auctions, par-
ticularly as enterprise scales [Weiss et al., 2017]. In these
auctions, the bidders are usually mobile network operators
vying for licenses to use spectrum band blocks. The diversity
in bidder objectives is clear here: while some aim to acquire
as many spectrum bands as possible, others might focus their
interest on securing licenses for specific geographic regions.

Current methodologies, as shown in recent studies [Weis-
steiner et al., 2022; Weissteiner et al., 2023], often involve
extensive hyper-parameter optimization to determine the op-
timal model structure for each bidder. This optimization, ap-
plied to each model Ai, considers the bidders’ previously
mentioned valuation tendencies. Essentially, this technique
involves model tuning with knowledge of the bidder types.

In contrast to these existing methods, our approach oper-
ates under the assumption that bidder types are anonymous
to the auctioneer. This decision is predicated on the practical
limitation that personalizing models to individual bidders is
not practicable in the absence of detailed information regard-
ing bidder types. Consequently, we utilize a uniform model
structure for all bidders during the estimation phase.

5 Experimental Result
In this section, we conduct simulation-based experiments.
First, we briefly summarize the evaluation simulator. We then
describe the experimental setup and results, followed by a dis-
cussion.

5.1 Spectrum Auction Test Suite (SATS)
We employ the Spectrum Auction Test Suite (SATS) [Weiss
et al., 2017] to generate realistic combinatorial auction in-
stances. SATS generates combinatorial auction instances us-
ing a value model—an analytic or algorithmic representation
of a bidder’s valuation function, which is realized by varying
random parameters [Weiss et al., 2017].

Our study primarily focuses on the Multi-Region Value
Model (MRVM), the realistic model for the 2014 Canadian
spectrum auction. In MRVM, bidders are mobile network
operators, and items are the licenses for using spectrum band
blocks over one region out of 14 regions. Bidders are classi-
fied into three kinds: local, regional, and national. Note that
each kind of bidder shares the structure of value functions ex-
cept for random parameters. Those varieties are described as
follows:

• A local bidder is interested in specific regions and has a
positive value on a license for them. The interested re-
gions are drawn uniformly from the set of all the regions.

• A regional bidder has a headquarters in one region. This
kind of bidder values a bundle considering the distance
of its licenses from the headquarters. The location of the
headquarters is drawn uniformly.

• A national bidder prefers to cover as many regions as
possible and, therefore, has higher values on bundles that
contain licenses distributed over nearly all the regions.

MRVM contains 3 local bidders, 4 regional bidders, and
3 national bidders, along with 98 items by default, but can
be modified to generate differently-sized auction problems.
When using SATS, we follow the prior work [Weissteiner et
al., 2022] and assume truthful bidding i.e., v̄i = vi.

5.2 Experimental Setup
We evaluate the performance of our multi-tasking on large-
scale and small-data settings.

MLCA Configuration
For MLCA, we set Qinit = Qround = 1 and Qmax = 10
to realize small-data settings. Therefore, we omit Lines 5 to
10 in MLCA (Algorithm 1), meaning that reported bundle-
value pairs R = (Ri)i∈N are simultaneously augmented one
pair per round.

In the MRVM auction instances, we modify the number of
bidders in two primary settings. These are:

1. Multiplying the default number by 1 to 5 times, which
results in (3l, 4l, 3l), l ∈ {1, 2, 3, 4, 5}.

2. Having 50 bidders of the same kind, represented as
(50, 0, 0), (0, 50, 0), or (0, 0, 50).

These adjustments are applied to local, regional, and national
bidders, respectively. The former settings serve to underscore
the adaptability of our approach to varying problem sizes.
Conversely, the latter settings are designed to demonstrate its
effectiveness in scenarios where task characteristics are com-
mon. We conduct 10 auction instances for each of these set-
tings.

Unlike existing studies [Brero et al., 2021; Weissteiner and
Seuken, 2020; Weissteiner et al., 2022; Weissteiner et al.,
2023], we also consider two settings for the number of items:
98 and 196. Although 98 is the default configuration, and
the original paper [Weiss et al., 2017] presents various set-
tings, SATS does not offer a direct API to change the number
of items in MRVM. To address this, we modified the source
code, doubling the spectrum band block quantities to increase
the number of items effectively. These adjustments facilitate
the simulation of large-scale auction instances.



# Bidders Efficiency
# Items # Local # Regional # National MVNN (baseline) MT-MLCA-F (ours) MT-MLCA-R (ours)

98 3 4 3 0.464 ± .0671 0.464 ± .0683 0.463± .0711
6 8 6 0.444 ± .0186 0.423± .0266 0.427± .0397
9 12 9 0.474 ± .0535 0.441± .0467 0.456± .0424

12 16 12 0.466± .0339 0.474 ± .0325 0.466± .0383
15 20 15 0.497 ± .0556 0.470± .0337 0.469± .0497

50 0 0 0.603± .0289 0.620± .0576 0.629 ± .0508
0 50 0 0.494± .0446 0.516 ± .0598 0.515± .0702
0 0 50 0.779± .0287 0.779± .0216 0.781 ± .0273

196 3 4 3 0.535± .0919 0.555± .0666 0.557 ± .0628
6 8 6 0.472± .0448 0.502 ± .0377 0.485± .0377
9 12 9 0.443± .0389 0.455 ± .0430 0.441± .0350

12 16 12 0.399± .0471 0.422± .0393 0.425 ± .0426
15 20 15 0.420± .0274 0.428 ± .0616 0.425± .0470

50 0 0 0.468± .0189 0.509 ± .0319 0.495± .0284
0 50 0 0.475 ± .0345 0.468± .0340 0.475 ± .0376
0 0 50 0.728± .0164 0.761 ± .0169 0.758± .0136

Table 1: Efficiency results of all the settings. The left four columns represent the number of items and bidders. The right three columns
show the efficiency of different methods with means and standard deviations. “MVNN” means MLCA with the plain MVNN without multi-
tasking, “MT-MLCA-F” means MLCA with MVNNs having shared parameters S = {1, . . . , ⌊K/2⌋}, and “MT-MLCA-R” means MLCA
with MVNNs that share parameters S = {⌊K/2⌋, . . . ,K}. Scores with the highest averages are highlighted in bold.

Model Architectures
Given our assumption that bidder types are indiscernible, we
use the same MVNN architecture for all bidders rather than
using hyper-parameter optimized configurations tailored to
each bidder kind. We adopt the architecture designed for lo-
cal bidders in the previous research [Weissteiner et al., 2022].

For the shared parameter sets S in our multi-task learn-
ing, we consider two settings: S = {1, . . . , ⌊K/2⌋} for MT-
MLCA-F, and S = {⌊K/2⌋, . . . ,K} for MT-MLCA-R. K is
given in the model configuration for local bidders (see Weis-
steiner et al. [2022] for more details). MT-MLCA-F first
adopts feature extraction in a shared way and then indepen-
dently solves regressions for different bidders. Conversely,
MT-MLCA-R extracts features independently and then uti-
lizes them for a shared regression. We set the regulariza-
tion factor λ = 10−10, and the regression loss function L
be the mean squared error loss as in the setting for local bid-
ders [Weissteiner et al., 2022]. For the ID injection, we use
d = 4 dimensional embeddings and inject it to the layer at
depth j = 1.

5.3 Evaluation Metrics
We evaluate our methods from two perspectives: the effi-
ciency and the mean absolute percentage error (MAPE).

We define efficiency as V (A∗
R)/V (A∗). Here, A∗

R denotes
the final allocation derived from the reported bundle-value
pairs R, and A∗ represents the optimal allocation that SATS
provides. This metric ranges from 0 to 1, with higher values
indicating better efficiency.

We measure the Mean Absolute Percentage Error (MAPE)
to evaluate the regression accuracy. In SATS, national bid-
ders are designed to bid higher values compared to local and

regional bidders. MAPE is particularly appropriate for the
MRVM setting, as it allows for the normalization of differ-
ences in the bidding scale.

MAPE is calculated for each bidder i using the formula

MAPEi :=
1

ntest

ntest∑
l=1

∣∣∣∣∣ ŷ(l)i − y
(l)
i

y
(l)
i

∣∣∣∣∣ , (11)

where ntest is the number of test bundles. For each test bun-
dle x(l), y

(l)
i = vi(x

(l)) is the true valuation and ŷ
(l)
i =

Ni(W
i, bi)(x(l)) is its estimated value. During each round

of the MLCA process (as outlined in Line 11 of Algorithm
1), the overall MAPE is computed as the average of MAPEi

across all bidders, defined as

MAPE :=
1

n

n∑
i=1

MAPEi, (12)

where n is the total number of bidders.
To ensure consistency across auction instances, we gener-

ate a standardized set of test data {x(l) | l = 1, . . . , ntest},
which is uniformly applied to all 10 instances within a single
setting.

5.4 Results
We present efficiency results in the settings mentioned above
in Table 1 and visualize the average results of the first set-
tings in Figure 2. Table 1 illustrates that our multi-task learn-
ing approach achieves, on average, higher efficiency com-
pared to the baseline (MVNN) in mainly two settings: the 98-
item scenario with a single kind of bidder and the 198-item
setting with any bidder population. As illustrated in Figure



Figure 1: MAPE results for all settings. The horizontal axis represents the number of rounds k in MLCA, and the vertical axis denotes the
MAPE. The first row of five figures presents the results for 98 items with (3l, 4l, 3l)(l = 1, . . . , 5) bidders, while the second row of five
figures displays the results for 196 items. All figures share the legend presented in the first one.
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Figure 2: Mean efficiency in the (3l, 4l, 3l)(l = 1, . . . , 5) settings.
The horizontal axis represents the number of (local, regional, na-
tional) bidders, respectively, while the vertical axis shows the effi-
ciency. The left panel displays the efficiency results for 98 items and
the right panel for 196 items. Both figures share the same legend.

2, under the 196-item settings, our method maintains higher
efficiency despite the increasing problem size, whereas the
98-item settings do not demonstrate such scalability. We do
not observe consistent differences in efficiency between MT-
MLCA-F and MT-MLCA-R.

We examine the variations in MAPE scores as depicted
in Figure 1. MAPE scores are calculated using the equa-
tion (12) for each round k , which ranges from 1 to 9 (=
⌊(Qmax − Qround)/Qround⌋). In most large-scale scenar-
ios ((3l, 4l, 3l), l ≥ 3), our multi-tasking approach achieves
lower MAPE scores by the final round (k = 9). Similar to
the efficiency results, there is no consistent evidence of supe-
riority between MT-MLCA-F and MT-MLCA-R in terms of
MAPE scores.

5.5 Discussion
From Table 1 and Figure 2, we observe that our multi-tasking
approach performs well in several settings, though it does not
consistently outperform the baseline. The efficiency results
for 50 bidders of one kind suggest that multi-tasking can ef-
fectively capture intrinsic task relatedness through shared pa-
rameters, making it suitable for auction environments where
bidders have similar bidding strategies. However, under the
auction environments with 98 items, MVNN outperforms our
methods, while it underperforms in comparison to ours in the
196-item scenarios. This discrepancy could be attributed to
the task unrelatedness or relatedness resulting from the way

we used to increase the number of items. We doubled the
number of default spectrum band blocks to create the environ-
ments with 196 items. This increased substitutability among
items, augmenting the relatedness of the valuation functions
and, thus, the efficiency of multi-task learning. The pool of
relevant information for estimating valuations across differ-
ent bidders also increases as the number of nearly equivalent
bundles grows. Therefore, our multi-tasking approach can
more effectively utilize interconnected data for precise valua-
tion estimations in 196-item settings compared to 98-item en-
vironments. The MAPE results for large-scale auctions with
196 items and (3l, 4l, 3l), (l ≥ 3) bidders, as shown in Figure
1, corroborate this explanation because the MAPE scores for
196 items are generally lower than those for 98 items.

MT-MLCA-F and MT-MLCA-R do not consistently ex-
hibit superiority in both efficiency and MAPE. This is due
to the shallow architecture of the original MVNN. The orig-
inal paper [Weissteiner et al., 2022] suggests the number of
hidden layers at most 3; therefore, there is no obvious signifi-
cance between MT-MLCA-F, which shares the feature extrac-
tion and differentiates the regression task, and MT-MLCA-R,
which conversely operates the two process.

All methods, including ours, show lower efficiency around
0.4, due to the challenge of estimating bidders’ true valua-
tions with only 10 queries. Enhancing the efficiency in such
scenarios is a goal for future work.

6 Conclusion
Our research introduces multi-task learning in iterative com-
binatorial auctions for preference elicitation in which many
bidders exhibit similar valuation functions. We applied soft-
parameter sharing to effectively estimate these interconnected
valuations, differentiating tasks based on bidder ID features.
This approach was more effective in our simulation-based ex-
periments, particularly in scenarios involving a large num-
ber of bidders with similar bidding patterns and a substantial
number of items, compared to existing methods. However,
we encountered a challenge in efficiency loss in data-scarce
situations. Enhancing efficiency remains an area for our fu-
ture research endeavors.
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