
1

Tiny Machine Learning: Progress and Futures
Ji Lin Ligeng Zhu Wei-Ming Chen Wei-Chen Wang Song Han

Massachusetts Institute of Technology
https://tinyml.mit.edu

Abstract—Tiny Machine Learning (TinyML) is a new frontier of
machine learning. By squeezing deep learning models into billions
of IoT devices and microcontrollers (MCUs), we expand the scope
of AI applications and enable ubiquitous intelligence. However,
TinyML is challenging due to hardware constraints: the tiny
memory resource makes it difficult to hold deep learning models
designed for cloud and mobile platforms. There is also limited
compiler and inference engine support for bare-metal devices.
Therefore, we need to co-design the algorithm and system stack to
enable TinyML. In this review, we will first discuss the definition,
challenges, and applications of TinyML. We then survey the recent
progress in TinyML and deep learning on MCUs. Next, we will
introduce MCUNet, showing how we can achieve ImageNet-scale
AI applications on IoT devices with system-algorithm co-design.
We will further extend the solution from inference to training and
introduce tiny on-device training techniques. Finally, we present
future directions in this area. Today’s “large” model might be
tomorrow’s “tiny” model. The scope of TinyML should evolve
and adapt over time.

Index Terms—TinyML, Efficient Deep Learning, On-Device
Training, Learning on the Edge

I. OVERVIEW OF TINY MACHINE LEARNING

Machine learning (ML) has made significant impacts on
various fields, including vision, language, and audio. However,
state-of-the-art models often come at the cost of high computa-
tion and memory, making them expensive to deploy. To address
this, researchers have been working on efficient algorithms,
systems, and hardware to reduce the cost of machine learning
models in various deployment scenarios. There are two main
subdomains of efficient ML: EdgeML and CloudML (Figure 1).
While CloudML focuses on improving latency and throughput
on cloud servers, EdgeML focuses on improving energy
efficiency, latency, and privacy on edge devices. These two
domains also intersect in areas such as hybrid inference [1, 2],
over-the-air (OTA) updates, and federated learning between the
edge and cloud [3]. In recent years, there has been significant
progress in extending the scope of EdgeML to ultra-low-power
devices such as IoT devices and microcontrollers, known as
TinyML.

TinyML has several key advantages. It enables machine
learning using only a few hundred kilobytes of memory which
greatly reduces the cost. With billions of IoT devices producing
more and more data in our daily lives, there is a growing
need for low-power, always-on, on-device AI. By performing
on-device inference near the sensor, TinyML enables better

This paper is published by IEEE Circuits and Systems Magazine. © 2023
IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Fig. 1. Efficiency is critical for CloudML, EdgeML, and TinyML.
CloudML targets high-throughput accelerators like GPUs, while
EdgeML focuses on portable devices like mobile phones. TinyML
further pushes the efficiency boundary, enabling powerful ML models
to run on ultra-low-power devices such as microcontrollers.

responsiveness and privacy while reducing the energy cost
associated with wireless communication. On-device processing
of data can be beneficial for applications where real-time
decision-making is crucial, such as autonomous vehicles.

In addition to inference, we push the frontier of TinyML
to enable on-device training on IoT devices. Itrevolutionizes
EdgeAI through continuous and lifelong learning. Edge device
can finetune the model on itself rather than transmitting data to
cloud servers, which protects privacy. On-device learning has
numerous benefits and a variety of applications. For example,
home cameras can continuously recognize new faces, and email
clients can gradually improve their prediction by updating
customized language models. It also enables IoT applications
that do not have a physical connection to the internet to adapt
to the environment, such as precision agriculture and ocean
sensing.

In this review, we will first discuss the definition and
challenges of TinyML, analyzing why we can’t directly scale
mobile ML or cloud ML models for tinyML. Then we delve
into the importance of system-algorithm co-design in TinyML.
We will then survey recent literature and the progress of the
field, presenting a holistic survey and comparison in Tables II
and III. Next, we will introduce our TinyML project, MCUNet,
which combines efficient system and algorithm design to enable
TinyML for both inference to training. Finally, we will discuss
several emerging topics for future research directions in the
field.

A. Challenges of TinyML

The success of deep learning models often comes at the
cost of high computation, which is not feasible for use in
TinyML applications due to the strict resource constraints of
devices such as microcontrollers. Deploying and training AI
models on MCU is extremely hard: No DRAM, no operating
systems (OS), and strict memory constraints (SRAM is smaller
than 256kB, and FLASH is read-only). The available resources
on these devices are orders of magnitude smaller than those

ar
X

iv
:2

40
3.

19
07

6v
2

 [
cs

.L
G

]
 2

9
M

ar
 2

02
4

https://tinyml.mit.edu

2

TABLE I. Left: Microcontrollers have 3 orders of magnitude less memory and storage compared to mobile phones, and 5-6 orders of
magnitude less than cloud GPUs. The extremely limited memory makes deep learning deployment difficult. Right: The peak memory and
storage usage of widely used deep learning models. ResNet-50 exceeds the resource limit on microcontrollers by 100×, MobileNet-V2
exceeds by 20×. Even the int8 quantized MobileNetV2 requires 5.3× larger memory and can’t fit a microcontroller.

Fig. 2. We can’t directly scale mobile ML or cloud ML models
for TinyML. MobilenetV2 [4] with a width of 1.4 was used for the
experiments. The batch size was set to 1 for inference and 8 for
training. While MobilenetV2 reduces the number of parameters by
4.2× compared to ResNet, the peak memory usage increases by 2.3×
for inference and only improves by 1.1× for training. Additionally,
the total required training memory is 6.9× larger than the memory
needed for inference. These results demonstrate the significant memory
bottleneck for TinyML, and the bottleneck is the activation memory,
not the number of parameters.

available on mobile platforms (see Table I). Previous work in
the field has either (I) focused on reducing model parameters
without addressing the real bottleneck of activations, or (II)
only optimized operator kernels without considering improving
the network architecture design. Neither of which considers
the problem from a co-design perspective, and this has led to
less optimal solutions for TinyML applications. We observe
several unique challenges of TinyML and postulate how they
might be overcome:

1) Models designed for mobile platforms does not fit TinyML

There has been a lot of effort optimizing deep learning
models for mobile platforms like MobileNets [5, 4] and
ShuffleNet [6]. However, since mobile devices have sufficient
memory resources (Table I), the model designs focus on pa-
rameters/FLOPs/latency reduction but not peak memory usage.
As shown in Figure 2 Left and Middle, comparing two models
with the same level of ImageNet accuracy, MobileNetV2-1.4
has 4.2× smaller model size compared to ResNet-50, but its
peak memory even larger by 2.3×. Using MobileNet designs
does not adequately address the SRAM limit, instead, it actually
makes the situation even worse compared to ResNet. Therefore,
we need to rethink the model design principles for TinyML.

2) Directly adapting models for inference does not work for
tiny training.

Training poses an even greater challenge in terms of resource
constraints, as intermediate activations must be stored in

order to compute backward gradients. When moving from
inference to training with full backpropagation, the required
memory increases by a factor of 6.9. As shown in Figure 2,
the training memory requirements of MobileNets are not
much better than ResNets (improved by only 10%). Tiny
IoT devices such as microcontrollers typically have a limited
SRAM size, such as 256KB, which is barely enough for the
inference of deep learning models, let alone training. Previous
work in the cloud and mobile AI has focused on reducing
FLOPs [5, 4, 7] or only optimizing inference memory [8, 9].
However, even using memory-efficient inference models such
as MCUNet [8] to bridge the three orders of magnitude gap,
training is still too expensive for tiny platforms. If we follow
conventional full model update schemes, the model must
be scaled down significantly to fit within the tight memory
constraints, resulting in low accuracy. This highlights the
need to redesign backpropagation schemes and investigate
new learning algorithms to reduce the main activation memory
bottleneck and enable fast and accurate training on tiny devices.
In Section IV, we will discuss this issue in detail and introduce
the concept of sparse layer and sparse tensor updates.

3) Co-design is necessary for TinyML

Co-design is necessary for TinyML because it allows us
to fully customize the solutions that are optimized for the
unique constraints of tiny devices. Previous neural architectures
like MobileNets [5, 4], and ResNets [10] are designed for
mobile/cloud scenarios but not well-suited for tiny hardware.
Therefore, we need to design neural architectures that are
suitable for TinyML applications. On the other hand, existing
deep training frameworks are optimized for cloud servers and
lack support for memory-efficient forward and backward, thus
cannot fit into tiny devices. The huge gap (>1000×) between the
resources of tiny IoT devices and the requirements of current
frameworks prohibits the usage. To address these challenges,
it is necessary to develop algorithms, systems, and training
techniques that are specifically tailored to the settings of these
tiny platforms.

B. Applications of TinyML

By democratizing costly deep learning models to IoT devices,
TinyML has many practical applications. Some example
applications include:

• Personalized healthcare: TinyML can allow wearable
devices, such as smartwatches, to continuously track the
activities and oxygen saturation status of the user in
order to provide health suggestions [11, 12, 13, 14]. Body

3

pose estimation is also a crucial application for elderly
healthcare [15].

• Wearable applications: TinyML can assist people with
wearable or IoT devices for speech applications, e.g.,
keyword spotting, automatic speech recognition, and
speaker verification [16, 17, 18].

• Smart home: TinyML can enable object detection, image
recognition, and face detection on IoT devices to build
smart environments, such as smart homes and hospi-
tals [19, 20, 21, 22, 23].

• Human-machine interface: TinyML can enable human-
machine interface applications, like hand gesture recogni-
tion [24, 25, 26, 27]. TinyML is also capable of predicting
and recognizing sign languages [28].

• Smart vehicle and transportation: TinyML can perform
object detection, lane detection, and decision making
without a cloud connection, achieving high-accuracy
and low-latency results for autonomous driving scenar-
ios [29, 30, 31].

• Anomaly detection: TinyML can equip robots and sensors
with the capability to perform anomaly detection to reduce
human efforts [32, 33, 34].

• Ecology and agriculture: TinyML can also help with
ecological, agricultural, environmental, and phenomics
applications so as to conserve endangered species or
forecast weather activities [35, 36, 37, 38, 39, 40].

Overall, the potential applications of TinyML are diverse and
numerous, and will expand as the field continues to advance.

II. RECENT PROGRESS IN TINYML

A. Recent Progress on TinyML Inference

TinyML and deep learning on MCUs have seen rapid growth
in industry and academia in recent years. The primary challenge
of deploying deep learning models on MCUs for inference
is the limited memory and computation available on these
devices. For example, a popular ARM Cortex-M7 MCU, the
STM32F746, has only 320KB of SRAM and 1MB of flash
memory. In deep learning scenarios, SRAM limits the size
of activations (read and write) while flash memory limits the
size of the model (read-only). In addition, the STM32F746
has a processor with a clock speed of 216 MHz, which is
10 to 20 times lower than laptops. To enable deep learning
inference on MCUs, researchers have proposed various designs
and solutions to address these issues. Table II summarizes the
recent related studies on TinyML targeting MCUs, including
both algorithm solutions and system solutions. In Table III, we
measured three different metrics (i.e., latency, peak memory,
and flash usage) of four representative related studies (i.e.,
CMSIS-NN [41], X-Cube-AI [42], TinyEngine [8], and TF-
Lite Micro [47]) on an identical MCU (STM32H743) and
identical datasets (VWW and Imagenet), in order to provide a
more accurate and transparent comparison.

a) Algorithm Solutions

The importance of neural network’s efficiency to the overall
performance of a deep learning system cannot be overstated.
Compressing off-the-shelf networks by removing redundancy
and reducing complexity through pruning [57, 58, 59, 60,

61, 62] and quantization [63, 64, 65, 66, 67, 68, 69, 70] are
two popular methods to improve network efficiency. Tensor
decomposition [71, 72, 73] is also an efficient compression
technique. In order to enhance network efficiency, knowledge
distillation is also a method to transfer information learned
from one teacher model to another student model [74, 75, 76,
77, 78, 79, 80, 81]. Another method is to directly design tiny
and efficient network structures [5, 4, 6, 7]. Recently, neural
architecture search (NAS) has dominated the design of efficient
networks [82, 83, 84, 85, 86, 87].

To make deep learning feasible on MCUs, researchers have
proposed various algorithm solutions. Rusci et al. proposed
a rule-based quantization strategy that minimizes the bit
precision of activations and weights in order to reduce memory
usage [45]. Depending on the memory constraints of various
devices, this method can quantize activations and weights with
8 bits, 4 bits, or 2 bits of mixed precision. On the other hand,
although neural architecture search (NAS) has been successful
in finding efficient network architectures, its effectiveness is
highly dependent on the quality of the search space [88].
For MCUs with limited memory, standard model designs and
appropriate search spaces are especially lacking. To address
this, TinyNAS, proposed as part of MCUNet, employs a two-
step NAS strategy that optimizes the search space according to
the available resources [8]. TinyNAS then specializes network
architectures within the optimized search space, allowing it to
automatically deal with a variety of constraints (e.g., device,
latency, energy, memory) at low search costs. MicroNets
observed that the inference latency of networks in the NAS
search space for MCUs varies linearly with the number of
FLOPs in the model [48]. As a result, it proposed differentiated
NAS, which treats the FLOPs as a proxy for latency in order
to achieve both low memory consumption and high speed.
MCUNetV2 identified that the imbalanced memory distribution
is the primary memory bottleneck in most convolutional neural
network designs, where the memory usage of the first few
blocks is an order of magnitude greater than the rest of the
network [9]. As a result, this study proposed receptive field
redistribution to shift the receptive field and FLOPs to a later
stage, reducing the halo’s computation overhead. To minimize
the difficulty of manually redistributing the receptive field, this
study also automated the neural architecture search process to
simultaneously optimize the neural architecture and inference
scheduling. UDC explored a broader design search space to
generate compressible neural networks with high accuracy for
neural processing units (NPUs), which can address the memory
problem by exploiting model compression with a broader range
of weight quantization and sparsity [51].

b) System Solutions

In recent years, popular training frameworks such as Py-
Torch [89], TensorFlow [90], MXNet [91], and JAX [92]
have contributed to the success of deep learning. However,
these frameworks typically rely on a host language (e.g.,
Python) and various runtime systems, which adds significant
overhead and makes them incompatible with tiny edge devices.
Emerging frameworks such as TVM [93], TF-Lite [94],
MNN [95], NCNN [96], TensorRT [97], and OpenVino [98]

4

TABLE II. Specification and performance comparison of recent progress on TinyML research targeting microcontrollers.

CMSIS-NN
arXiv’18 [41]

X-Cube-AI
[42]

MicroTVM
[43]

Liberis et al.
MLSys’20 [44]

Rusci et al.
MLSys’20 [45]

CMix-NN
TCAS’20 [46]

On-Device Training
or Inference Inference Inference Inference Inference Inference Inference

Measured Device MCU
(STM32H743)

MCU
(STM32H743)

MCU
(STM32F746)

MCU
(STM32F767)

MCU
(STM32H743)

MCU
(STM32H743)

Dataset ImageNet ImageNet CIFAR-10 VWW ImageNet ImageNet

Model MobileNetV1 MobileNetV1 SmallCifar MobileNetV1 MobileNetV1 MobileNetV1

Input Resolution 192 192 32 96 224 192

Width Multiplier 0.5 0.5 1.0 0.25 0.75 0.5

Data Bitwidth INT8 INT8 INT8 INT8 Mixed INT8

Latency 510 ms1 437 ms1 157 ms3 1325 ms 1860 ms 677 ms

Peak Memory < 1 MB2 < 1 MB2 144 KB3 55 KB < 512 KB2 < 512 KB2

Flash Usage 1.4 MB1 1.4 MB1 < 1 MB2 < 2 MB2 2 MB 1.4 MB

Energy Consumption 135 mJ1 115 mJ1 - 735 mJ 491 mJ4 179 mJ4

Top-1 Accuracy 59.5%1 59.5%1 - ∼76% 68.2% 62.9%

MCUNetV1
NeurIPS’20 [8]

TF-Lite Micro
MLSys’21 [47]

MicroNets
MLSys’21 [48]

MCUNetV2
NeurIPS’21 [9]

TinyOps
CVPRW’22 [49]

TinyMaix
[50]

On-Device Training
or Inference Inference Inference Inference Inference Inference Inference

Measured Device MCU
(STM32H743)

MCU
(STM32F746)

MCU
(STM32F746)

MCU
(STM32H743)

MCU
(STM32F746)

MCU
(STM32H750)

Dataset ImageNet ImageNet VWW ImageNet ImageNet VWW

Model MCUNet MobileNetV2 MicroNet-
VWW-1 MCUNet MNASNet MobileNetV1

Input Resolution 160 64 160 224 96 96

Width Multiplier N/A 0.35 N/A N/A 1.0 0.25

Data Bitwidth INT8 INT8 INT8 INT8 INT8 Mixed

Latency 463 ms 296 ms3 1133 ms 859 ms 866 ms 64 ms

Peak Memory 416 KB 211 KB3 285 KB 434 KB 397 KB 54 KB

Flash Usage 1.7 MB < 1 MB2 0.8 MB 1.8 MB 4.7 MB 0.2 MB

Energy Consumption - - 479 mJ - 546 mJ -

Top-1 Accuracy 68.0% - 88.0% 71.8% 64.0% ∼76%

UDC
NeurIPS’22 [51]

TinyTL
NeurIPS’20 [52]

TinyOL
IJCNN’21 [53]

POET
ICML’22 [54]

MiniLearn
EWSN’22 [55]

MCUNetV3
NeurIPS’22 [56]

On-Device Training
or Inference Inference Training Training Training Training Training

Measured Device N/A
(Simulation)

N/A
(Simulation)

MCU
(nRF52840)

MCU
(nRF52840)

MCU
(nRF52840)

MCU
(STM32F746)

Dataset ImageNet CIFAR-10 Self-Collected CIFAR-10 KWS-subset VWW

Model UDC ProxylessNAS-
Mobile Autoencoder ResNet-18 Customized MCUNet

Data Bitwidth Mixed FP32 FP32 FP32 Mixed INT8

Latency - - - 49 ms 93 ms 546 ms

Peak Memory - 65 MB < 256 KB2 271 KB 196 KB 173 KB

Flash Usage 1.27 MB - < 1 MB2 < 1 MB2 0.9 MB 0.7MB

Energy Consumption - - - 868 mJ 1486 mJ -

Top-1 Accuracy 72.1% 96.1% - 95.5% 88.5% 89.3%
1Measured by CMix-NN paper [46]. 2Speculated by the specification of the corresponding MCU. 3Measured by MCUNet paper [8]. 4In a private email on

Dec. 22, 2022, the authors of the papers replied that the energy consumption should be interpreted as mJ instead of µJ in their papers.

offer lightweight runtime systems for edge devices such as mobile phones, but they are not yet small enough for MCUs.

5

TABLE III. Performance comparison of various tiny models and inference frameworks on STM32H743, which runs at 480MHz with the
resource constraint of 512 KB peak memory and 2 MB storage.

CMSIS-NN
arXiv’18 [41]

X-Cube-AI
[42]

TinyEngine
NeurIPS’20 [8]

TF-Lite Micro
MLSys’21 [47]

Dataset: VWW; Model: mcunet-vww0 ; Input Resolution: 64; Width Multiplier: N/A; Top-1 Accuracy: 87.3%

Latency 53 ms 32 ms 27 ms 587 ms
Peak Memory 163 KB 88 KB 59 KB 163 KB
Storage usage 646 KB 463 KB 453 KB 627 KB

Dataset: VWW; Model: mcunet-vww1 ; Input Resolution: 80; Width Multiplier: N/A; Top-1 Accuracy: 88.9%

Latency 97 ms 57 ms 51 ms 1120 ms
Peak Memory 220 KB 113 KB 92 KB 220 KB
Storage usage 736 KB 534 KB 521 KB 718 KB

Dataset: VWW; Model: mcunet-vww2 ; Input Resolution: 144; Width Multiplier: N/A; Top-1 Accuracy: 91.8%

Latency 478 ms 269 ms 234 ms 5310 ms
Peak Memory 390 KB 201 KB 174 KB 385 KB
Storage usage 1034 KB 774 KB 741 KB 1016 KB

Dataset: ImageNet; Model: mcunet-in0 ; Input Resolution: 48; Width Multiplier: N/A; Top-1 Accuracy: 40.4%

Latency 51 ms 35 ms 25 ms 596 ms
Peak Memory 161 KB 69 KB 49 KB 161 KB
Storage usage 1090 KB 856 KB 842 KB 1072 KB

Dataset: ImageNet; Model: mcunet-in1 ; Input Resolution: 96; Width Multiplier: N/A; Top-1 Accuracy: 49.9%

Latency 103 ms 63 ms 56 ms 1227 ms
Peak Memory 219 KB 106 KB 96 KB 219 KB
Storage usage 956 KB 737 KB 727 KB 937 KB

Dataset: ImageNet; Model: mcunet-in2 ; Input Resolution: 160; Width Multiplier: N/A; Top-1 Accuracy: 60.3%

Latency 642 ms 351 ms 280 ms 6463 ms
Peak Memory 469 KB 238 KB 215 KB 460 KB
Storage usage 1102 KB 849 KB 830 KB 1084 KB

Dataset: ImageNet; Model: mcunet-in3 ; Input Resolution: 176; Width Multiplier: N/A; Top-1 Accuracy: 61.8%

Latency 770 ms 414 ms 336 ms 7821 ms
Peak Memory 493 KB 243 KB 260 KB 493 KB
Storage usage 1106 KB 867 KB 835 KB 1091 KB

Dataset: ImageNet; Model: mcunet-in4 ; Input Resolution: 160; Width Multiplier: N/A; Top-1 Accuracy: 68.0%

Latency OOM 516 ms 463 ms OOM
Peak Memory OOM 342 KB 416 KB OOM
Storage usage OOM 1843 KB 1825 KB OOM

Dataset: ImageNet; Model: proxyless-w0.3; Input Resolution: 64; Width Multiplier: 0.3; Top-1 Accuracy: 37.0%

Latency 54 ms 35 ms 23 ms 512 ms
Peak Memory 136 KB 97 KB 35 KB 128 KB
Storage usage 1084 KB 865 KB 777 KB 1065 KB

Dataset: ImageNet; Model: proxyless-w0.3; Input Resolution: 176; Width Multiplier: 0.3; Top-1 Accuracy: 56.2%

Latency 380 ms 205 ms 176 ms 3801 ms
Peak Memory 453 KB 221 KB 259 KB 453 KB
Storage usage 1084 KB 865 KB 779 KB 1065 KB

Dataset: ImageNet; Model: mbv2-w0.3; Input Resolution: 64; Width Multiplier: 0.3; Top-1 Accuracy: 34.1%

Latency 43 ms 29 ms 23 ms 467 ms
Peak Memory 173 KB 88 KB 61 KB 173 KB
Storage usage 959 KB 768 KB 690 KB 940 KB

1All the inference frameworks used in this measurement are the latest versions as of Dec. 19, 2022. 2The measurement of X-Cube-AI (v7.3.0) is with the
default compilation setting, i.e., balanced optimization. 3OOM denotes Out Of Memory. 4All the models are available on:https://github.com/mit-han-lab/mcunet.

These frameworks cannot accommodate IoT devices and MCUs
with limited memory.

CMSIS-NN implements optimized kernels to increase infer-
ence speed, minimize memory footprint, and enhance the energy

https://github.com/mit-han-lab/mcunet

6

efficiency of deep learning models on ARM Cortex-M proces-
sors [41]. X-Cube-AI, designed by STMicroelectronics, enables
the automatic conversion of pre-trained deep learning models
to run on STM MCUs with optimized kernel libraries [42].
TVM [93] and AutoTVM [99] also supports microcontrollers
(referred to as µTVM/microTVM [43]). Compilation techniques
can also be employed to reduce memory requirements. For
instance, Stoutchinin et al. propose to improve deep learning
performance on MCU by optimizing the convolution loop
nest [100]. Liberis et al. and Ahn et al. present to reorder
the operator executions to minimize peak memory [44, 101],
whereas Miao et al. seek to achieve better memory utilization
by temporarily swapping data off SRAM [102]. With a similar
goal of reducing peak memory, other researchers further
propose computing partial spatial regions across multiple
layers [103, 104, 105]. Additionally, CMix-NN supports mixed-
precision kernel libraries of quantized activation and weight on
MCU to reduce memory footprint [46]. TinyEngine, as part of
MCUNet, is proposed as a memory-efficient inference engine
for expanding the search space and fitting a larger model [8].
TinyEngine transfers the majority of operations from runtime
to compile time before generating only the code that will
be executed by the TinyNAS model. In addition, TinyEngine
adapts memory scheduling to the overall network topology as
opposed to layer-by-layer optimization. TensorFlow-Lite Micro
(TF-Lite Micro) is among the first deep-learning frameworks
to support bare-metal microcontrollers in order to enable deep-
learning inference on MCUs with tight memory constraints [47].
However, the aforementioned frameworks only support per-
layer inference, which limits the model capacity that can
be executed with only a small amount of memory and
makes higher-resolution input impossible. Hence, MCUNetV2
proposes a generic patch-by-patch inference scheduling, which
operates on a small spatial region of the feature map and
drastically reduces peak memory usage, and thus makes the
inference with high-resolution input on MCUs feasible [9].
TinyOps combines fast internal memory with an additional
slow external memory through Direct Memory Access (DMA)
peripheral to enlarge memory size and speed up inference [49].
TinyMaix, similar to CMSIS-NN, is an optimized inference
kernel library, but it eschews new but rare features and seeks
to preserve the readability and simplicity of the codebase [50].

B. Recent Progress on TinyML Training

On-device training on small devices is gaining popularity, as
it enables machine learning models to be trained and refined
directly on small and low-power devices. On-device training
offers several benefits, including the provision of personalized
services and the protection of user privacy, as user data is never
transmitted to the cloud. However, on-device training presents
additional challenges compared to on-device inference, due to
larger memory footprints and increased computing operations
needed to store intermediate activations and gradients.

Researchers have been investigating ways to reduce the
memory footprint of training deep learning models. One kind of
approach is to design lightweight network structures manually
or by utilizing NAS [85, 106, 107]. Another common approach
is to trade computation for memory efficiency, such as freeing

up activation during inference and recomputing discarded
activation during the backward propagation [108, 109]. How-
ever, such an approach comes at the expense of increased
computation time, which is not affordable for tiny devices
with limited computation resources. Another approach is layer-
wise training, which can also reduce the memory footprint
compared to end-to-end training. However, it is not as effective
at achieving high levels of accuracy [110]. Another approach
reduces the memory footprint by building a dynamic and
sparse computation graph for training by activation pruning
[111]. Some researchers propose different optimizers [112].
Quantization is also a common approach that reduces the size
of activation during training by reducing the bitwidth of training
activation [113, 114].

Due to limited data and computational resources, on-device
training usually focuses on transfer learning. In transfer
learning, a neural network is first pre-trained on a large-scale
dataset, such as ImageNet [115], and used as a feature extrac-
tor [116, 117, 118]. Then, only the last layer needs to be fine-
tuned on a smaller, task-specific dataset [119, 120, 121, 122].
This approach reduces the memory footprint by eliminating
the need to store intermediate activations during training, but
due to the limited capacity, the accuracy can be poor when the
domain shift is large [52]. Fine-tuning all layers can achieve
better accuracy but requires large memory to store activation,
which is not affordable for tiny devices [117, 116]. Recently,
several memory-friendly on-device training frameworks were
proposed [123, 124, 125], but these frameworks targeted larger
edge devices (i.e., mobile devices) and cannot be adopted on
MCUs. An alternative approach is only updating the parameters
of batch normalization layers [126, 127]. This reduces the
number of trainable parameters, which however does not
translate to memory efficiency [52] because the intermediate
activation of batch normalization layers still needs to be stored
in the memory.

It has been shown that the activation of a neural network is
the main factor limiting the ability to train on small devices.
Tiny-Transfer-Learning (TinyTL) addresses this issue by freez-
ing the weights of the network and only fine-tuning the biases,
which allows intermediate activations to be discarded during
backward propagation, reducing peak memory usage [52].
TinyOL trains only the weights of the final layer, allowing
for weight training while keeping the activation small enough
to fit on small devices [53]. This enables incremental on-
device streaming of data for training. However, fine-tuning
only the biases or the last layer may not provide sufficient
precision. To train more layers on devices with limited memory,
POET (Private Optimal Energy Training) [54] introduces two
techniques: rematerialization, which frees up activations early at
the cost of recomputation, and paging, which allows activations
to be transferred to secondary storage. POET uses an integer
linear program to find the energy-optimal schedule for on-
device training. To further reduce the memory required to
store trained weights, MiniLearn applies quantization and
dequantization techniques to store the weights and intermediate
output in integer precision and dequantizes them to floating-
point precision during training [55]. When deployed on tiny
devices, deep learning models are often quantized to reduce

7

Fig. 3. Techniques specifically designed for tiny devices. In order to fully leverage the limited available resources, we need to take careful
consideration of both the system and the algorithm. The co-design approach not only enables practical AI applications on a wide range of
IoT platforms (inference), but also allows AI to continuously learn over time, adapting to a world that is changing fast (training).

Fig. 4. MCUNet jointly designs the neural architecture and the inference scheduling to fit the tight memory resource on microcontrollers.
TinyEngine makes full use of the limited resources on MCU, allowing a larger design space for architecture search. With a larger degree of
design freedom, TinyNAS is more likely to find a high accuracy model compared to using existing frameworks.

the memory usage of parameters and activations. However,
even after quantization, the parameters may still be too large
to fit in the limited hardware resources, preventing full back-
propagation. To address these challenges, MCUNetV3 proposes
an algorithm-system co-design approach [56]. The algorithm
part includes Quantization-Aware Scaling (QAS) and the sparse
update. QAS calibrates the gradient scales and stabilizes 8-bit
quantized training, while the sparse update skips the gradient
computation of less important layers and sub-tensors. The
system part includes the Tiny Training Engine (TTE), which
has been developed to support both QAS and the sparse update,
enabling on-device learning on microcontrollers with limited
memory, such as those with 256KB or even less.

III. TINY INFERENCE

In this section, we discuss our recent work, MCUNet fam-
ily [8, 9], a system-algorithm co-design framework that jointly
optimizes the NN architecture (TinyNAS) and the inference
scheduling (TinyEngine) in the same loop (Figure 4). Compared
to traditional methods that either (a) optimize the neural
network using neural architecture search based on a given
deep learning library (e.g., TensorFlow, PyTorch) [86, 85, 87],
or (b) tune the library to maximize the inference speed for a
given network [93, 99], MCUNet can better utilize the resources
by system-algorithm co-design, enabling a better performance
on microcontrollers. The design space of the inference part is
listed in Figure 3 (left).

A. TinyNAS: Automated Tiny Model Design

TinyNAS is a two-stage neural architecture search method
that first optimizes the search space to fit the tiny and diverse
resource constraints, and then performs neural architecture

search within the optimized space. By optimizing the search
space, it significantly improves the accuracy of the final model.

1) Automated search space optimization.

TinyNAS proposes to optimize the search space automatically
at low cost by analyzing the computation distribution of
the satisfying models. To fit the tiny and diverse resource
constraints of different microcontrollers, TinyNAS scales the
input resolution and the width multiplier of the mobile search
space [86]. It chooses from an input resolution spanning
R = {48, 64, 80, ..., 192, 208, 224} and a width multiplier
W = {0.2, 0.3, 0.4, ..., 1.0} to cover a wide spectrum of
resource constraints. This leads to 12 × 9 = 108 possible
search space configurations S = W × R. Each search space
configuration contains 3.3× 1025 possible sub-networks. The
goal is to find the best search space configuration S∗ that
contains the model with the highest accuracy while satisfying
the resource constraints.

Finding S∗ is non-trivial. One way is to perform neural
architecture search on each of the search spaces and compare
the final results. But the computation would be astronomical.
Instead, TinyNAS evaluates the quality of the search space
by randomly sampling m networks from the search space and
comparing the distribution of satisfying networks. Instead of
collecting the Cumulative Distribution Function (CDF) of each
satisfying network’s accuracy [88], which is computationally
heavy due to tremendous training, it only collects the CDF
of FLOPs (see Figure 5(b)). The intuition is that, within the
same model family, the accuracy is usually positively related
to the computation [128, 61]. A model with larger computation
has a larger capacity, which is more likely to achieve higher
accuracy.

8

Fig. 5. (a) TinyNAS is a two-stage neural architecture search method. It first specifies a sub-space according to the constraints, and then
performs model specialization. (b) TinyNAS selects the best search space by analyzing the FLOPs CDF of different search spaces. Each
curve represents a design space. Our insight is that the design space that is more likely to produce high FLOPs models under the memory
constraint gives higher model capacity, thus more likely to achieve high accuracy.

Fig. 6. Once-For-All [129] trains one single super network that supports a wide range of sub-networks through weight sharing, and specializes
different sub-network architectures for different MCU hardware.

Take the study of the best search space for ImageNet-100 (a
100-class classification task taken from the original ImageNet)
on STM32F746 as an example. We show the FLOPs distribution
CDF of the top-10 search space configurations in Figure 5(b).
Only the models that satisfy the memory requirement at the best
scheduling from TinyEngine are kept. For example, according
to the experimental results on ImageNet-100, using the solid red
space (average FLOPs 52.0M) achieves 2.3% better accuracy
compared to using the solid green space (average FLOPs
46.9M), showing the effectiveness of automated search space
optimization.

2) Resource-constrained model specialization with Once-
For-All NAS.

To specialize network architecture for various microcon-
trollers, we need to keep a low neural architecture search cost.
Given an optimized search space, TinyNAS further performs
one-shot neural architecture search [130, 131] to efficiently
find a good model. Specifically, it follows Once-For-All (OFA)
NAS [129] to perform network specialization (Figure 6). We
train one super network that contains all the possible sub-
networks through weight sharing and use it to estimate the
performance of each sub-network. The search space is based

on the widely-used mobile search space [86, 85, 87, 129]
and supports variable kernel sizes for depth-wise convolution
(3/5/7), variable expansion ratios for inverted bottleneck (3/4/6)
and variable stage depths (2/3/4). The number of possible sub-
networks that TinyNAS can cover in the search space is large:
2× 1019. For each batch of data, it randomly samples 4 sub-
networks, calculates the loss, backpropagates the gradients for
each sub-network, and updates the corresponding weights. It
then performs an evolution search to find the best model within
the search space that meets the onboard resource constraints
while achieving the highest accuracy. For each sampled network,
it uses TinyEngine to optimize the memory scheduling to
measure the optimal memory usage. With such a kind of co-
design, we can efficiently fit the tiny memory budget.

B. TinyEngine: A Memory-Efficient Inference Library

Researchers used to assume that using different deep learning
frameworks (libraries) will only affect the inference speed but
not the accuracy . However, this is not the case for TinyML:
the efficiency of the inference library matters a lot to both the
latency and accuracy of the searched model. Specifically, a
good inference framework will make full use of the limited
resources in MCUs, avoiding waste of memory, and allowing

9

Fig. 7. TinyEngine achieves higher inference efficiency than existing inference frameworks while reducing memory usage. Left: TinyEngine
is up to 22×, 2.3×, and 1.5× faster than TF-Lite Micro, CMSIS-NN, and X-Cube-AI, respectively. Right: By reducing the memory usage,
TinyEngine can run various model designs with tiny memory, enlarging the design space for TinyNAS under the limited memory of MCU.

Fig. 8. TinyEngine outperforms existing libraries by eliminating runtime overheads, specializing each optimization technique, and adopting
in-place depth-wise convolution. This effectively enlarges design space for TinyNAS under a given latency/memory constraint.

a larger search space for architecture search. With a larger
degree of design freedom, TinyNAS is more likely to find a
high-accuracy model. Thus, TinyNAS is co-designed with a
memory-efficient inference library, TinyEngine.

1) Code generation.

Most existing inference libraries (e.g., TF-Lite Micro,
CMSIS-NN) are interpreter-based. Though it is easy to support
cross-platform development, it requires extra memory, the most
expensive resource in MCU, to store the meta-information
(such as model structure parameters). Instead, TinyEngine
only focuses on MCU devices and adopts code generator-
based compilation. This not only avoids the time for runtime
interpretation, but also frees up the memory usage to allow
design and inference of larger models. Compared to CMSIS-
NN, TinyEngine reduced memory usage by 2.1× and improve
inference efficiency by 22% via code generation, as shown in
Figures 7 and 8.

Fig. 9. Binary size.

The binary size of TinyEngine is
lightweight, making it very memory-
efficient for MCUs. The model di-
rectly compiled by well-known pro-
gramming languages for deep learn-
ing (e.g., Python, Cython, etc.) can-
not be run on MCUs as the size
of their dependencies and packages
are already larger than the Flash
size of MCUs, let alone the size
of the compiled model. Besides, un-
like interpreter-based TF-Lite Micro,
which prepares the code for every operation (e.g., conv,
softmax) to support cross-model inference even if they are not
used, which has high redundancy. TinyEngine only compiles
the operations that are used by a given model into the
binary. That is, the reduction of binary size of the model

compiled by TinyEngine comes from not only the benefit of
compilation over interpretation but also the model-specific
optimization/specialization. As shown in Figure 9, such model-
adaptive compilation reduces code size by up to 4.5× and 5.0×
compared to TF-Lite Micro and CMSIS-NN, respectively.

2) In-place depth-wise convolution

TinyEngine supports in-place depth-wise convolution to
further reduce peak memory. Different from standard con-
volutions, depth-wise convolutions do not perform filtering
across channels. Therefore, once the computation of a channel
is completed, the input activation of the channel can be
overwritten and used to store the output activation of another
channel, allowing activation of depth-wise convolutions to be
updated in-place as shown in Figure 10. This method reduces
the measured memory usage by 1.6× as shown in Figure 8.

3) Patched-based Inference

TinyNAS and TinyEngine have significantly reduced the
peak memory at the same level of accuracy. But we still notice
a very imbalanced peak memory usage per block.

Imbalanced memory distribution. As an example, the per-
block peak memory usage of MobileNetV2 [4] is shown in
Figure 11. The profiling is done in int8. There is a clear
pattern of imbalanced memory usage distribution. The first
5 blocks have large peak memory, exceeding the memory
constraints of MCUs, while the remaining 13 blocks easily
fit 256KB memory constraints. The third block has 8× larger
memory usage than the rest of the network, becoming the
memory bottleneck. There are similar patterns for other efficient
network designs, which is quite common across different CNN
backbones, even for models specialized for memory-limited
microcontrollers [8].

The phenomenon applies to most single-branch or residual

10

Fig. 10. TinyEngine reduces peak memory by performing in-place depth-wise convolution. Left: Conventional depth-wise convolution
requires 2N memory footprint for activations. Right: in-place depth-wise convolution reduces the memory of depth-wise convolutions to N+1.
Specifically, the output activation of the first channel is stored in a temporary buffer. Then, for each following channel, the output activation
overwrites the input activation of its previous channel. Finally, the output activation of the first channel stored in the buffer is written back to
the input activation of the last channel.

Fig. 11. MobileNetV2 [4] has a very imbalanced memory usage distribution. The peak memory is determined by the first 5 blocks with
high peak memory, while the later blocks all share a small memory usage. By using per-patch inference (4× 4 patches), we are able to
significantly reduce the memory usage of the first 5 blocks, and reduce the overall peak memory by 8×, fitting MCUs with a 256kB memory
budget. Notice that the model architecture and accuracy are not changed for the two settings. The memory usage is measured in int8.

Fig. 12. Per-patch inference can significantly reduce the peak memory required to execute a sequence of convolutional layers. We study two
convolutional layers (stride 1 and 2). Under per-layer computation (a), the first convolution has a large input/output activation size, dominating
the peak memory requirement. With per-patch computation (b), we allocate the buffer to host the final output activation, and compute the
results patch-by-patch. We only need to store the activation from one patch but not the entire feature map, reducing the peak memory (the
first input is the image, which can be partially decoded from a compressed format like JPEG).

CNN designs due to the hierarchical structure*: after each
stage, the image resolution is down-sampled by half, leading
to 4× fewer pixels, while the channel number increases only
by 2× [132, 10, 5] or by an even smaller ratio [4, 133, 106],
resulting in a decreasing activation size. Therefore, the memory
bottleneck tends to appear at the early stage of the network,
after which the peak memory usage is much smaller.

Breaking the Memory Bottleneck with Patch-based
Inference. TinEngine breaks the memory bottleneck of the

*some CNN designs have highly complicated branching structure (e.g.,
NASNet [83]), but they are generally less efficient for inference [6, 86, 85];
thus not widely used for edge computing.

initial layers with patch-based inference (Figure 12). Existing
deep learning inference frameworks (e.g., TensorFlow Lite
Micro [90], TinyEngine [8], microTVM [93], etc.) use a layer-
by-layer execution. For each convolutional layer, the inference
library first allocates the input and output activation buffer
in SRAM, and releases the input buffer after the whole layer
computation is finished. The patch-based inference runs the
initial memory-intensive stage in a patch-by-patch manner. For
each time, it only runs the model on a small spatial region
(>10× smaller than the whole area), which effectively cuts
down the peak memory usage. After this stage is finished, the
rest of the network with a small peak memory is executed in a

11

Fig. 13. The redistributed MobileNetV2 (MbV2-RD) has reduced receptive field for the per-patch inference stage and increased receptive
field for the per-layer stage. The two networks have the same level of performance, but MbV2-RD has a smaller overhead under patch-based
inference. The mobile inverted block is denoted as MB{expansion ratio} {kernel size}. The dashed border means stride=2.

normal layer-by-layer manner (upper notations in Figure 11).

An example of two convolutional layers (with stride 1 and 2)
is shown in Figure 12. For conventional per-layer computation,
the first convolutional layer has large input and output activation
size, leading to a high peak memory. With spatial partial
computation, it allocates the buffer for the final output and
computes its values patch-by-patch. In this manner, it only
needs to store the activation from one patch instead of the
whole feature map.

Reducing Computation Overhead by Redistributing the
Receptive Field. The significant memory saving comes at
the cost of computation overhead. To maintain the same
output results as per-layer inference, the non-overlapping output
patches correspond to overlapping patches in the input image
(the shadow area in Figure 12(b)). This is because convolutional
filters with kernel size >1 contribute to increasing receptive
fields. The computation overhead is related to the receptive
field of the patch-based initial stage. Consider the output of
the patch-based stage, the larger receptive field it has on the
input image, the larger resolution for each patch, leading to
a larger overlapping area and repeated computation. There
are some focusing on addressing the issue from the hardware
perspective [103]. However, since such practices may not be
general to all devices, TinyEngine solves the problem from the
network architecture side.

MCUNet proposes to redistribute the receptive field (RF) of
the CNN to reduce computation overhead. The basic idea is:
(1) reduce the receptive field of the patch-based initial stage;
(2) increase the receptive field of the later stage. Reducing
RF for the initial stage helps to reduce the size of each input
patch and repeated computation. However, some tasks may
have degraded performance if the overall RF is smaller (e.g.,
detecting large objects). Therefore, it further increases the
RF of the later stage to compensate for the performance
loss. A manually tuned example of MobileNetV2 is shown in
Figure 13. After redistributing the receptive field (“MbV2-RD”),
the computation overhead is negligible.

MCUNet automates the process with joint search (introduced
in the next section).

C. Co-Design: Joint Neural Architecture and Inference
Scheduling Search

1) Co-Design Loop

The optimization algorithms for model architectures and
inference engines are tightly coupled. For example, redis-
tributing the receptive field allows us to enjoy the benefit
of memory reduction at minimal computation/latency overhead,
which allows larger freedom when designing the backbone
architecture (e.g., we can now use a larger input resolution). To
explore such a large design space, MCUNet jointly optimizes
the neural architecture and the inference scheduling in an
automated manner. Given a certain dataset and hardware
constraints (SRAM limit, Flash limit, latency limit, etc.), our
goal is to achieve the highest accuracy while satisfying all
the constraints. For the model optimization, it uses NAS to
find a good candidate network architecture; for the scheduling
optimization, it optimizes the knobs like the patches number p
and the number of blocks n to perform patch-based inference,
and other knobs in TinyEngine [8].

There are some trade-offs during the co-design. For example,
given the same constraints, it can choose to use a smaller model
that fits per-layer execution (p = 1, no computation overhead),
or a larger model and per-patch inference (p > 1, with a small
computation overhead). Therefore, MCUNet puts both sides in
the same loop and uses evolutionary search to find the best set
of (k[], e[], d[], w[], r, p, n) satisfying constraints. Therefore,
The two dimensions are jointly searched in the same loop with
evolutionary search.

2) Experimental Results

a) Pushing the ImageNet record on MCUs.

With joint optimization of neural architecture and inference
scheduling, MCUNet significantly pushes the state-of-the-art
results for MCU-based tiny image classification.

We compared MCUNet with existing state-of-the-art solu-
tions on ImageNet classification under two hardware settings:
256kB SRAM/1MB Flash and 512kB SRAM/2MB Flash. The
former represents a widely used Cortex-M4 microcontroller;
the latter corresponds to a higher-end Cortex-M7. The goal is to
achieve the highest ImageNet accuracy on resource-constrained
MCUs (Table IV). MCUNet significantly improves the Ima-
geNet accuracy of tiny deep learning on microcontrollers. Under

12

TABLE IV. MCUNet significantly improves the ImageNet accuracy on microcontrollers, outperforming the state-of-the-arts by 4.6% under
256kB SRAM and 3.3% under 512kB. Lower or mixed precisions (marked gray) are orthogonal techniques, which we leave for future work.
Out-of-memory (OOM) results are struck out.

Model / Library Quant. MACs SRAM Flash Top-1 Top-5

STM32F412 (256kB SRAM, 1MB Flash)

MbV2 0.35× (r=144) [4] / TinyEngine [8] int8 24M 308kB 862kB 49.0% 73.8%
Proxyless 0.3× (r=176) [85] / TinyEngine [8] int8 38M 292kB 892kB 56.2% 79.7%
MbV1 0.5× (r=192) [5] / Rusci et al. [45] mixed 110M <256kB <1MB 60.2%
MCUNet (TinyNAS / TinyEngine) [8] int8 68M 238kB 1007kB 60.3% -
MCUNet (TinyNAS / TinyEngine) [8] int4 134M 233kB 1008kB 62.0% -

MCUNet-M4 (w/ patch) int8 119M 196kB 1010kB 64.9% 86.2%

STM32H743 (512kB SRAM, 2MB Flash)

MbV1 0.75× (r=224) [5] / Rusci et al. [45] mixed 317M <512kB <2MB 68.0%
MCUNet (TinyNAS / TinyEngine) [8] int8 126M 452kB 2014kB 68.5% -
MCUNet (TinyNAS / TinyEngine) [8] int4 474M 498kB 2000kB 70.7% -

MCUNet-H7 (w/ patch) int8 256M 465kB 2032kB 71.8% 90.7%

Fig. 14. Left: MCUNet has better visual wake word (VWW) accuracy vs. peak SRAM trade-off. Compared to MCUNet [8], MCUNet
achieves better accuracy at 4.0× smaller peak memory. It achieves >90% accuracy under <32kB memory, facilitating deployment on extremely
small hardware. Right: patch-based method expands the search space that can fit the MCU, allowing better accuracy vs. latency trade-off.

256kB SRAM/1MB Flash, MCUNet outperforms the state-of-
the-art method [8] by 4.6% at 18% lower peak SRAM. Under
512kB SRAM/2MB Flash, MCUNet achieves a new record
ImageNet accuracy of 71.8% on commercial microcontrollers,
which is 3.3% compared to the best solution under the same
quantization policy. Lower-bit (int4) or mixed-precision
quantization can further improve the accuracy (marked in gray
in the table).

b) Visual Wake Words under 32kKB SRAM.

Visual wake word (VWW) reflects the low-energy application
of TinyML. MCUNet allows running a VWW model with
a modest memory requirement. As in Figure 14†, MCUNet
outperforms state-of-the-art method [8] for both accuracy vs.
peak memory and accuracy vs. latency trade-off. Compared
to per-layer inference, MCUNet can achieve better accuracy
using 4.0× smaller memory. Actually, it can achieve >90%
accuracy under 32kB SRAM requirement, allowing model
deployment on low-end MCUs like STM32F410 costing only
$1.6. Per-patch inference also expands the search space, giving
us more freedom to find models with better accuracy vs. latency
trade-off.

†Note that MCUNetV2 refers to the version w/ patch-based inference, while
MCUNet refers to per-layer inference.

c) MCU-based detection on Pascal VOC.

Object detection is sensitive to a smaller input resolution [9].
Current state-of-the-art [8] cannot achieve a decent detection
performance on MCUs due to the resolution bottleneck.
MCUNet breaks the memory bottleneck for detectors and
improves the mAP by double digits.

The object detection results on Pascal VOC trained with
YOLOv3 [135] are shown in Table V, including results for
M4 MCU with 256kB SRAM and H7 MCU with 512kB
SRAM. On H7 MCU, MCUNet-H7 improves the mAP by
16.7% compared to the state-of-the-art method MCUNet [8].
It can also scale down to fit a cheaper commodity Cortex-M4
MCU with only 256kB SRAM, while still improving the mAP
by 13.2% at 1.9× smaller peak SRAM. Note that MCUNet-M4
shares a similar computation with MCUNet (172M vs. 168M)
but a much better mAP. This is because the expanded search
space from patch-based inference allows us to choose a better
configuration of larger input resolution and smaller models.

d) Memory-efficient face detection.

The performance of MCUNet for memory-efficient face
detection on WIDER FACE [136] dataset are shown in Table VI.
The analytic memory usage of the detector backbone in fp32
is reported following [105]. The models are trained with S3FD

13

TABLE V. MCUNet significantly improves Pascal VOC [134] object detection on MCU by allowing a higher input resolution. Under
STM32H743 MCU constraints, MCUNet-H7 improves the mAP by 16.9% compared to [8], achieving a record performance on MCU. It can
also scale down to cheaper MCU STM32F412 with only 256kB SRAM while still improving mAP by 13.2% at 1.9× smaller peak SRAM
and a similar computation.

MCU Model Constraint Model #Param MACs peak SRAM VOC mAP Gain

H743 (∼$7) SRAM
<512kB

MbV2+CMSIS [8] 0.87M 34M 519kB 31.6% -
MCUNet [8] 1.20M 168M 466kB 51.4% 0%

MCUNet-H7 0.67M 343M 438kB 68.3% +16.9%

F412 (∼$4) <256kB MCUNet-M4 0.47M 172M 247kB 64.6% +13.2%

TABLE VI. MCUNet outperforms existing methods for memory-efficient face detection on WIDER FACE [136] dataset. Compared to
RNNPool-Face-C [105], MCUNet-L can achieve similar mAP at 3.4× smaller peak SRAM and 1.6× smaller computation. The model
statistics are profiled on 640× 480 RGB input images following [105].

Method MACs ↓ Peak Memory ↓ mAP ↑ mAP (≤3 faces) ↑
(fp32) Easy Medium Hard Easy Medium Hard

EXTD [137] 8.49G 18.8MB (9.9×) 0.90 0.88 0.82 0.93 0.93 0.91
LFFD [138] 9.25G 18.8MB (9.9×) 0.91 0.88 0.77 0.83 0.83 0.82
RNNPool-Face-C [105] 1.80G 6.44MB (3.4×) 0.92 0.89 0.70 0.95 0.94 0.92
MCUNet-L 1.10G 1.89MB (1.0×) 0.92 0.90 0.70 0.94 0.93 0.92

EagleEye [139] 0.08G 1.17MB (1.8×) 0.74 0.70 0.44 0.79 0.78 0.75
RNNPool-Face-A [105] 0.10G 1.17MB (1.8×) 0.77 0.75 0.53 0.81 0.79 0.77

MCUNet-S 0.11G 672kB (1.0×) 0.85 0.81 0.55 0.90 0.89 0.87

face detector [140] following [105] for a fair comparison. The
reported mAP is calculated on samples with ≤ 3 faces, which
is a more realistic setting for tiny devices. MCUNet outper-
forms existing solutions under different scales. MCUNet-L
achieves comparable performance at 3.4× smaller peak memory
compared to RNNPool-Face-C [8] and 9.9× smaller peak
memory compared to LFFD [138]. The computation is also
1.6× and 8.4× smaller. MCUNet-S consistently outperforms
RNNPool-Face-A [105] and EagleEye [139] at 1.8× smaller
peak memory.

IV. TINY TRAINING

In addition to inference, tiny on-device training is a growing
direction that allows us to adapt the pre-trained model to
newly collected sensory data after deployment. By training
and adapting locally on the edge, the model can learn to
continuously improve its predictions and perform lifelong
learning and user customization. By bringing training closer to
the sensors, it also helps to protect user privacy when handling
sensitive data (e.g., healthcare).

However, on-device training on tiny edge devices is ex-
tremely challenging and fundamentally different from cloud
training. Tiny IoT devices (e.g., microcontrollers) typically
have a limited SRAM size like 256KB. Such a small memory
budget is hardly enough for the inference of deep learning
models [8, 9, 48, 141, 142, 143, 44, 45], let alone the
training, which requires extra computation for the backward and
extra memory for intermediate activation [109]. On the other
hand, modern deep training frameworks (e.g., PyTorch [89],
TensorFlow [144]) are usually designed for cloud servers and
require a large memory footprint (>300MB) even when training
a small model (e.g., MobileNetV2-w0.35 [4]) with batch size 1.
The huge gap (>1000×) makes it impossible to run on tiny IoT

devices. Furthermore, devices like microcontrollers are bare-
metal and do not have an operational system and the runtime
support needed by existing training frameworks. Therefore, we
need to jointly design the algorithm and the system to enable
tiny on-device training.

Deep learning training systems such as PyTorch [89],
TensorFlow [144], JAX [92], MXNet [91], etc. do not consider
the tight resources on edge devices. Edge deep learning
inference frameworks like TVM [93], TF-Lite [94], NCNN [97],
etc. provide a slim runtime, but lack the support for back-
propagation. There are low-cost efficient transfer learning
algorithms like training only the final classifier layer, bias-
only update [52], etc. However, the existing training systems
can not realize the theoretical saving into measured savings.
The downstream accuracy of such update schemes is also low
(Figure 18). There is a need for training systems that can
effectively utilize the limited resources on edge devices."

In order to bridge the gap and enable tiny on-device
training with algorithm-system co-design, there are two unique
challenges in tiny on-device training: (1) the model is quantized
on edge devices. A real quantized graph is difficult to
optimize due to mixed-precision tensors and the lack of Batch
Normalization layers [145]; (2) the limited hardware resource
(memory and computation) of tiny hardware does not allow
full back-propagation, as the memory usage can easily exceed
the SRAM of microcontrollers by more than an order of
magnitude. To cope with the difficulties, TinyTraining proposes
the following designs

A. Quantization Aware Scaling

Neural networks usually need to be quantized to fit the
limited memory of edge devices [8, 146]. For a fp32 linear
layer yfp32 = Wfp32xfp32 + bfp32, the int8 quantized

14

Fig. 15. Algorithm and system co-design reduces the training memory from 303MB (PyTorch) to 149KB with the same transfer learning
accuracy, leading to 2077× reduction. The numbers are measured with MobilenetV2-w0.35 [4], batch size 1 and resolution 128×128. It can
be deployed to a microcontroller with 256KB SRAM.

counterpart is:

ȳint8 = cast2int8[sfp32 · (W̄int8x̄int8 + b̄int32)], (1)

where ·̄ denotes the tensor being quantized to fixed-point num-
bers, and s is a floating-point scaling factor to project the results
back into int8 range. The gradient update for the weights can
be presented as: W̄′

int8 = cast2int8(W̄int8 − α ·GW̄),
where α is the learning rate, and GW̄ is the gradient of the
weights. After applying the gradient update, the weights are
rounded back to 8-bit integers.
Gradient Scale Mismatch: Unlike fine-tuning floating-point
model on the cloud, training with a real quantized graph‡

is difficult: the quantized graph has tensors of different bit-
precisions (int8, int32, fp32, shown in Equation 1) and
lacks Batch Normalization [145] layers (fused), leading to
unstable gradient update.

Optimizing a quantized graph often leads to lower accuracy
compared to the floating-point counterpart.. A possible hypoth-
esis is that the quantization process distorts the gradient update.
To verify the idea, Figure 16 plot the ratio between weight
norm and gradient norm (i.e., ∥W∥/∥G∥) for each tensor at
the beginning of the training on the CIFAR dataset [147]. The
ratio curve is very different after quantization: (1) the ratio is
much larger (could be addressed by adjusting the learning rate);
(2) the ratio has a different pattern after quantization. Take the
highlighted area (red box) as an example, the quantized ratios
have a zigzag pattern, differing from the floating-point curve. If

‡Note that this is contrary to the fake quantization graph, which is widely
used in quantization-aware training [146].

all the tensors are updated with a fixed learning rate, then the
update speed of each tensor would be very different compared
to the floating-point case, leading to inferior accuracy. Even
adaptive-learning rate optimizers like Adam [148] cannot fully
address the issue, as shown in Table VII.
Hyperparameter-Free Gradient Scaling. To address the
problem, a hyper-parameter-free learning rate scaling rule,
QAS, is proposed. Consider a 2D weight matrix of a linear
layer W ∈ Rc1×c2 , where c1, c2 are the input and output
channel. To perform per-tensor quantization§, a scaling rate
sW ∈ R is computed, such that W̄’s largest magnitude is
27 − 1 = 127:
W = sW ·(W/sW)

quantize
≈ sW ·W̄, GW̄ ≈ sW ·GW, (2)

The process (roughly) preserves the mathematical functionality
during the forward (Equation 1), but it distorts the magnitude
ratio between the weight and its corresponding gradient:

∥W̄∥/∥GW̄∥ ≈ ∥W/sW∥/∥sW ·GW∥ = s−2
W · ∥W∥/∥G∥.

(3)
The weight and gradient ratios are off by s−2

W , leading to
the distorted pattern in Figure 16: (1) the scaling factor is
far smaller than 1, making the weight-gradient ratio much
larger; (2) weights and biases have different data type (int8
vs. int32) and thus have scaling factors of very different
magnitude, leading to the zigzag pattern. To solve the issue,
Quantization-Aware Scaling (QAS) is proposed by compensat-

§For simplicity. In practice, per-channel quantization [146] is used and the
scaling factor is a vector of size c2.

Fig. 16. Left: The quantized model has a very different weight/gradient norm ratio (i.e., ∥W∥/∥G∥) compared to the floating-point model at
training time. QAS stabilizes the ∥W∥/∥G∥ ratio and helps optimization. Right: The validation loss curves w/ and w/o QAS. QAS effectively
helps convergence, leading to better accuracy. The results are from updating the last two blocks of the MCUNet model on the Cars dataset.

15

TABLE VII. Updating real quantized graphs (int8) with SGD is difficult: the transfer learning accuracy falls behind the floating-point
counterpart (fp32), even with adaptive learning rate optimizers like Adam [148] and LARS [149]. QAS helps to bridge the accuracy gap
without memory overhead (slightly higher). The numbers are for updating the last two blocks of MCUNet-5FPS [8] model.

Precision Optimizer Accuracy (%) (MCUNet backbone: 23M MACs, 0.48M Param) Avg
Acc.Cars CF10 CF100 CUB Flowers Food Pets VWW

fp32 SGD-M 56.7 86.0 63.4 56.2 88.8 67.1 79.5 88.7 73.3

int8

SGD-M 31.2 75.4 54.5 55.1 84.5 52.5 81.0 85.4 64.9
Adam [148] 54.0 84.5 61.0 58.5 87.2 62.6 80.1 86.5 71.8
LARS [149] 5.1 64.8 39.5 9.6 28.8 46.5 39.1 85.0 39.8

SGD-M+QAS 55.2 86.9 64.6 57.8 89.1 64.4 80.9 89.3 73.5

ing the gradient of the quantized graph according to Equation 3:

G̃W̄ = GW̄ · s−2
W , G̃b̄ = Gb̄ · s−2

W · s−2
x = Gb̄ · s−2 (4)

where s−2
X is the scaling factor for quantizing input x (a

scalar following [146], note that s = sW · sx in Equation 1).
∥W∥/∥G∥ curve with QAS is plotted in Figure 16 (int8+scale).
After scaling, the gradient ratios match the floating-point coun-
terpart. It also improves transfer learning accuracy (Table VII),
matching the accuracy of the floating-point counterpart without
incurring memory overhead.

Experiment Results. The last two blocks in Table VII show
the fine-tuning results (simulating low-cost fine-tuning) of
MCUNet on various downstream datasets. With momentum
SGD, the training accuracy of the quantized model (int8) falls
behind the floating-point counterpart due to the difficulty in
optimization. Adaptive learning rate optimizers like Adam [148]
can improve the accuracy, but it is still lower than the fp32
fine-tuning results. It also consumes 3 times more memory due
to second-order momentum, which is not desired in TinyML
settings. LARS [149] does not converge well on most datasets
despite extensive hyperparameter tuning (of both the learning
rate and the "trust coefficient"). The aggressive gradient scaling
rule of LARS makes the training unstable. The accuracy gap
is closed when applying QAS, achieving the same accuracy as
floating-point training with no extra memory cost. Figure 16
shows the training curve of TinyTraining on the Cars dataset
with and without QAS. QAS effectively improves optimization.

B. Memory-Efficient Sparse Update

Though QAS makes optimizing a quantized model possible,
updating the whole model (or even the last several blocks)
requires a large amount of memory, which is not affordable
for the TinyML setting. To address this, sparsely updating the
layers and the tensors is proposed

Sparse Layer/Tensor Update. Pruning techniques prove to
be quite successful for achieving sparsity and reducing model
size [63, 61, 59, 58, 60, 62]. Instead of pruning weights for
inference, the gradient during backpropagation, and updating
the model sparsely are pruned. Given a tight memory budget,
updates of the less important parameters are skipped to reduce
memory usage and computation cost. When updating a linear
layer y = Wx+ b (similar analysis applies to convolutions),
the gradient update is GW = f1(Gy,x) and Gb = f2(Gy),
given the output gradient Gy from the later layer Notice that
updating the biases does not require saving the intermediate

activation x, leading to a lighter memory footprint [52]¶; while
updating the weights is more memory-intensive but also more
expressive. For hardware like microcontrollers, an extra copy
is needed for the updated parameters since the original ones
are stored in read-only FLASH [8]. Given the different natures
of updating rules, three aspects of the sparse update rule are
considered (Figure 17): (1) Bias update: how many layers
should be backpropagated to and update the biases (bias update
is cheap, the bias terms can be always updated if the layer is
backpropagated). (2) Sparse layer update: select a subset of
layers to update the corresponding weights. (3) Sparse tensor
update: further allow updating a subset of weight channels to
reduce the cost.

However, finding the right sparse update scheme under a
memory budget is challenging due to the large combinational
space. For MCUNet [8] model with 43 convolutional layers and
weight update ratios from {0, 1/8, 1/4, 1/2, 1}, the combination
is about 1030, making exhaustive search impossible.
Automated Selection with Contribution Analysis. con-
tribution analysis is proposed to automatically derive the
sparse update scheme by counting the contribution of each
parameter (weight/bias) to the downstream accuracy. Given
a convolutional neural network with l layers, the accuracy
improvement is measured from (1) biases: the improvement of
updating last k biases bl,bl−1, ...,bl−k+1 (bias-only update)
compared to only updating the classifier, defined as ∆accb[:k];
(2) weights: the improvement of updating the weight of one
extra layer Wi (with a channel update ratio r) compared to
bias-only update, defined as ∆accWi,r. An example of the
contribution analysis can be found in Figure 18 Left (MCUNet
on Cars [150] dataset; After finding ∆accb[:k] and ∆accWi

(1 ≤ k, i ≤ l), an optimization problem is solved to find:

k∗, i∗, r∗ = max
k,i,r

(∆accb[:k] +
∑

i∈i,r∈r

∆accWi,r)

s.t. Memory(k, i, r) ≤ constraint,
(5)

where i is a collection of layer indices whose weights are
updated, and r is the corresponding update ratios (1/8, 1/4,
1/2, 1). Intuitively, by solving this optimization problem, the
combination of (#layers for bias update is found, the subset of
weights to update), such that the total contribution is maximized
while the memory overhead does not exceed the constraint.
The problem can be efficiently solved with the evolutionary
search. Sparse update assumes that the accuracy contribution of

¶If many layers are updated, the intermediate activation could consume a
large memory [109].

16

Fig. 17. Different learning schemes on ProxylessNAS-Mobile [85]. Full update (a) consumes a lot of memory thus cannot fit TinyML.
Efficient learning methods like last-only (b) / bias-only (c) save the memory but cannot match the baseline performance. Sparse update (d)
only performs partial back-propagation, leading to less memory usage and computation with comparable accuracy on downstream tasks.

Fig. 18. Left: Contribution analysis of updating biases and weights. For updating the weight of a specific layer, the later layers appear to
be more important; the first point-wise conv (pw1) in an inverted bottleneck block [4] appears to be more important; and the gains are
bigger with more channels updated. Right: Sparse update can achieve higher transfer learning accuracy using 4.5-7.5× smaller extra memory
(analytic) compared to updating the last k layers. For classifier-only update, the accuracy is low due to limited capacity. Bias-only update can
achieve a higher accuracy but plateaus soon.

each tensor (∆acc) can be summed up. Such an approximation
proves to be quite effective in our experiments.

Sparse Update Obtains Better Accuracy at Lower Memory.
The performance of our searched sparse update schemes is
compared to two baseline methods: fine-tuning only the biases
of the last k layers and fine-tuning the weights and biases of
the last k layers. For each configuration, the average accuracy
is measured on 8 downstream datasets, and the extra memory
usage is calculated analytically. Figure 18 compares the results
with a simple baseline of fine-tuning only the classifier. The
accuracy of classifier-only update is low due to the limited
learning capacity. Updating only the classifier is not enough;
the backbone also needs updates. Bias-only update outperforms
classifier-only update, but the accuracy quickly plateaus and
does not improve even when more biases are tuned. For
updating the last k layers, the accuracy generally improves as
more layers are tuned; however, it has a very large memory

footprint. For example, updating the last two blocks of MCUNet
leads to an extra memory usage exceeding 256KB, making it
infeasible for IoT devices/microcontrollers. Our sparse update
scheme can achieve higher downstream accuracy at a much
lower memory cost. Compared to updating the last k layers, the
sparse update can achieve higher downstream accuracy with
4.5-7.5 times smaller memory overhead The highest accuracy is
achievable by updating the last k layers|| as the baseline upper
bound (denoted as "upper bound"). Interestingly, our sparse
update achieves a better downstream accuracy compared to the
baseline best statistics. The sparse update scheme alleviates
over-fitting or makes momentum-free optimization easier.

||Note that fine-tuning the entire model does not always lead to the best
accuracy. The best k on Cars dataset is obtained via grid search: k =36 for
MobileNetV2, 39 for ProxylessNAS, 12 for MCUNet, and apply it to all
datasets.

17

Fig. 19. The workflow of our Tiny Training Engine (TTE). (a,b) Our engine traces the forward graph for a given model and derives the
corresponding backward graph at compile time. The red cycles denote the gradient descent operators. (c) To reduce memory requirements,
nodes related with frozen weights (colored in light blue) are pruned from backward computation. (d) To minimize memory footprint, the
gradient descent operators are re-ordered to be interlaced with backward computations (colored in yellow). (e) TTE compiles forward and
backward graphs using code generation and deploys training on tiny IoT devices (best viewed in colors).

Fig. 20. Memory footprint reduction by operator reordering. With operator reordering, TTE can apply in-place gradient update and perform
operator fusion to avoid large intermediate tensors to reduce memory footprint. We profiled MobileNetV2-w0.35 in this figure (same as
Figure 15).

C. Tiny Training Engine (TTE)

The theoretical saving from real quantized training and
sparse update does not translate to measured memory saving
in existing deep learning frameworks, due to the redundant
runtime and the lack of graph pruning. MCUNetV3 co-designed
an efficient training system, Tiny Training Engine (TTE),
to transform the above algorithms into slim binary codes
(Figure 19).
Compile-time Differentiation and Code Generation. TTE
offloads the auto-differentiation from the runtime to the compile-
time, generating a static backward graph that can be pruned and
optimized (see below) to reduce the memory and computation.
TTE is based on code generation: it compiles the optimized
graphs to executable binaries on the target hardware, which
minimizes the runtime library size and removes the need
for host languages like Python (typically uses Megabytes of
memory).
Backward Graph Pruning for Sparse Update. TTE prune
the redundant nodes in the backward graph before compiling it
to binary codes. For sparse layer update, TTE prune away the
gradient nodes of the frozen weights, only keeping the nodes
for bias update. Afterward, TTE traverses the graph to find
unused intermediate nodes due to pruning (e.g., saved input
activation) and apply dead-code elimination (DCE) to remove
the redundancy. For sparse tensor update, TTE introduces
a sub-operator slicing mechanism to split a layer’s weights
into trainable and frozen parts; the backward graph of the
frozen subset is removed. TTE’s compilation translates the
sparse update algorithm into the measured memory saving,

reducing the training memory by 7-9× without losing accuracy
(Figure 21(a)).
Operator Reordering and Graph Optimization. The exe-
cution order of different operations affects the life cycle of
tensors and the overall memory footprint. This has been well-
studied for inference [101, 44] but not for training due to
the extra complexity. Traditional training frameworks usually
derive the gradients of all the trainable parameters before
applying the update. Such a practice leads to significant memory
waste for storing the gradients. By reordering operators, the
gradient update to a specific tensor can immediately be applied
(in-place update) before back-propagating to earlier layers,
so that the gradient can be released. As such, TTE trace
the dependency of all tensors (weights, gradients, activation)
and reorder the operators, so that some operators can be
fused to reduce memory footprint (by 2.4-3.2×, Figure 21(a)).
Figure 20 provides an example to reflect the memory saving
from reordering.
Memory Saving & Faster Training Figure 21(a)) shows the
training memory of three models on STM32F746 MCU to
compare the memory saving from TTE. The sparse update
effectively reduces peak memory by 7-9× compared to the full
update thanks to the graph pruning mechanism, while achieving
the same or higher transfer learning accuracy (compare the
data points connected by arrows in Figure 18). The memory
is further reduced with operator reordering, leading to 20-21×
total memory saving. With both techniques, the training of all
3 models fits 256KB SRAM.

The training latency per image on the STM32F746 MCU
is measured in Figure 21(c). By graph optimization and

18

Fig. 21. Measured peak memory and latency: (a) Sparse update with TTE graph optimization can reduce the measured peak memory by
20-21× for different models, making training feasible on tiny edge devices. (b) Graph optimization consistently reduces the peak memory for
different sparse update schemes (denoted by different average transfer learning accuracies). (c) Sparse update with TTE operators achieves
23-25× faster training speed compared to the full update with TF-Lite Micro operators, leading to less energy usage. Note: for sparse update,
we choose the config that achieves the same accuracy as full update.

exploiting multiple compiler optimization approaches (such as
loop unrolling and tiling), our sparse update + TTE kernels can
significantly enhance the training speed by 23-25× compared
to the full update + TF-Lite Micro kernels, leading to energy
saving and making training practical.

V. CONCLUSION AND OUTLOOK

In conclusion, TinyML is a rapidly evolving field that enables
deep learning on resource-constrained devices. It fosters a
wide range of customized and private AI applications on
edge devices, which can process the data collected from
the sensors right at the source. We point out several unique
challenges of TinyML. First, we need to redesign the model
design space since deep models designed for mobile and
other platforms do not work well for TinyML. Second, we
need to redesign backpropagation schemes and investigate
new learning algorithms since directly adapting models for
inference does not work for tiny training. Third, co-design
is necessary for TinyML. We summarize the related works
aiming to overcome the challenges from the algorithm and the
system perspectives. Furthermore, we introduce the TinyML
techniques that not only enable practical AI applications on a
wide range of IoT platforms for inference, but also allow AI to
be continuously trained over time, adapting to a world that is
changing fast. Looking to the future, TinyML will continue to
be an active and rapidly growing area, which requires continued
efforts to improve the performance and energy efficiency. We
discuss several possible directions for the future development
of TinyML.

More applications and modalities. This review mainly
focuses on convolutional neural networks (CNNs) as computer
vision is widely adapted to tiny devices. However, TinyML
has a broad range of applications beyond computer vision,
including but not limited to audio processing, language
processing, anomaly detection, etc., with sensor inputs from
temperature/humidity sensors, accelerometers, current/voltage
sensors, among others. TinyML enables local devices to process
multiple-sensor inputs to handle multi-task workloads, opening
up future avenues for numerous potential applications. We will
leave further exploration of these possibilities for future work.

Self-supervised learning. Obtaining accurately labeled data

for on-device learning on the edge can be challenging. In some
cases, like keyboard typing, we can use the next input word as
the prediction target for the model. However, this is not always
practical for most applications, such as domain adaptation
for vision tasks (e.g., segmentation, detection), obtaining
supervision can be expensive and difficult. One potential
solution is to design self-supervised learning tasks for on-
device training, as has been proposed in recent research [151].

Relationship between TinyML and LargeML. TinyML
and LargeML both aim to develop efficient models under
resource constraints such as memory, computation, engineering
effort, and data. While TinyML is primarily focusing on
making models run efficiently on small devices, many of its
techniques can also be applied in cloud environments for large-
scale machine learning scenarios. For example, quantization
techniques have been effective in both TinyML [8, 9] and
LargeML settings [152, 153], and the concept of sparse learning
has been used in both scenarios to run models efficiently with
limited resources [154, 56]. These efficient techniques are
generally applicable and should not be limited to TinyML
settings.

The concept of TinyML is constantly evolving and expanding.
When ResNet-50 [10] was first introduced in 2016, it was
considered as a large model with 25M parameters and 4G
MACs. However, 6 years later, with the rapid advances in
hardware, it can now achieve sub-millisecond inference on a
smartphone DSP (Qualcomm Snapdragon 8Gen1). As hardware
continues to improve, what was once considered a “large”
model may be considered “tiny” in the future. The scope of
TinyML should evolve and adapt over time.

VI. ACKNOWLEDGEMENT

We thank MIT AI Hardware Program, National Science
Foundation, NVIDIA Academic Partnership Award, MIT-IBM
Watson AI Lab, Amazon and MIT Science Hub, Qualcomm
Innovation Fellowship, Microsoft Turing Academic Program
for supporting this research.

REFERENCES

[1] Z. Liu, Z. Wu, C. Gan, L. Zhu, and S. Han, “Datamix:
Efficient privacy-preserving edge-cloud inference,” in

19

European Conference on Computer Vision. Springer,
2020, pp. 578–595.

[2] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar,
“Detailed comparison of communication efficiency of
split learning and federated learning,” arXiv preprint
arXiv:1909.09145, 2019.

[3] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon, “Federated learning: Strategies
for improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[6] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet
v2: Practical guidelines for efficient cnn architecture
design,” in ECCV, 2018.

[7] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet:
An extremely efficient convolutional neural network for
mobile devices,” in CVPR, 2018.

[8] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han,
“Mcunet: Tiny deep learning on iot devices,” in NeurIPS,
2020.

[9] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han,
“Mcunetv2: Memory-efficient patch-based inference for
tiny deep learning,” arXiv preprint arXiv:2110.15352,
2021.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[11] V. Tsoukas, E. Boumpa, G. Giannakas, and A. Kakaroun-
tas, “A review of machine learning and tinyml in health-
care,” in 25th Pan-Hellenic Conference on Informatics,
2021, pp. 69–73.

[12] A. Rana, Y. Dhiman, and R. Anand, “Cough detection
system using tinyml,” in 2022 International Conference
on Computing, Communication and Power Technology
(IC3P). IEEE, 2022, pp. 119–122.

[13] O. D’Souza, S. C. Mukhopadhyay, and M. Sheng,
“Health, security and fire safety process optimisation
using intelligence at the edge,” Sensors, vol. 22,
no. 21, 2022. [Online]. Available: https://www.mdpi.
com/1424-8220/22/21/8143

[14] A.-T. Shumba, T. Montanaro, I. Sergi, L. Fachechi,
M. De Vittorio, and L. Patrono, “Leveraging iot-aware
technologies and ai techniques for real-time critical
healthcare applications,” Sensors, vol. 22, no. 19, 2022.
[Online]. Available: https://www.mdpi.com/1424-8220/
22/19/7675

[15] M. Vuletic, V. Mujagic, N. Milojevic, and D. Biswas,
“Edge ai framework for healthcare applications.”

[16] A. Wong, M. Famouri, M. Pavlova, and S. Surana,
“Tinyspeech: Attention condensers for deep speech

recognition neural networks on edge devices,” arXiv
preprint arXiv:2008.04245, 2020.

[17] M. Mazumder, C. Banbury, J. Meyer, P. Warden, and V. J.
Reddi, “Few-shot keyword spotting in any language,”
arXiv preprint arXiv:2104.01454, 2021.

[18] E. Hardy and F. Badets, “An ultra-low power rnn
classifier for always-on voice wake-up detection robust to
real-world scenarios,” arXiv preprint arXiv:2103.04792,
2021.

[19] C.-H. Lu and X.-Z. Lin, “Toward direct edge-to-edge
transfer learning for iot-enabled edge cameras,” IEEE
Internet of Things Journal, vol. 8, no. 6, pp. 4931–4943,
2020.

[20] M. Giordano, P. Mayer, and M. Magno, “A battery-free
long-range wireless smart camera for face detection,”
in Proceedings of the 8th International Workshop on
Energy Harvesting and Energy-Neutral Sensing Systems,
2020, pp. 29–35.

[21] T. Luukkonen, A. Colley, T. Seppänen, and J. Häkkilä,
“Cough activated dynamic face visor,” in Augmented
Humans Conference 2021, 2021, pp. 295–297.

[22] P. Mohan, A. J. Paul, and A. Chirania, “A tiny cnn
architecture for medical face mask detection for resource-
constrained endpoints,” in Innovations in Electrical and
Electronic Engineering. Springer, 2021, pp. 657–670.

[23] A. Wong, M. Famouri, and M. J. Shafiee, “Attendnets:
tiny deep image recognition neural networks for the
edge via visual attention condensers,” arXiv preprint
arXiv:2009.14385, 2020.

[24] S. Benatti, F. Montagna, V. Kartsch, A. Rahimi, D. Rossi,
and L. Benini, “Online learning and classification of emg-
based gestures on a parallel ultra-low power platform
using hyperdimensional computing,” IEEE transactions
on biomedical circuits and systems, vol. 13, no. 3, pp.
516–528, 2019.

[25] A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti,
G. Alexandrov, S. Tamakloe, J. Ting, N. Yamamoto,
Y. Khan et al., “A wearable biosensing system with
in-sensor adaptive machine learning for hand gesture
recognition,” Nature Electronics, vol. 4, no. 1, pp. 54–63,
2021.

[26] A. Zhou, R. Muller, and J. Rabaey, “Memory-
efficient, limb position-aware hand gesture recognition
using hyperdimensional computing,” arXiv preprint
arXiv:2103.05267, 2021.

[27] S. Bian and P. Lukowicz, “Capacitive sensing based
on-board hand gesture recognition with tinyml,” in
Adjunct Proceedings of the 2021 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2021 ACM International Symposium
on Wearable Computers, 2021, pp. 4–5.

[28] A. J. Paul, P. Mohan, and S. Sehgal, “Rethinking
generalization in american sign language prediction for
edge devices with extremely low memory footprint,” in
2020 IEEE Recent Advances in Intelligent Computational
Systems (RAICS). IEEE, 2020, pp. 147–152.

[29] M. de Prado, M. Rusci, A. Capotondi, R. Donze,
L. Benini, and N. Pazos, “Robustifying the deployment

https://www.mdpi.com/1424-8220/22/21/8143
https://www.mdpi.com/1424-8220/22/21/8143
https://www.mdpi.com/1424-8220/22/19/7675
https://www.mdpi.com/1424-8220/22/19/7675

20

of tinyml models for autonomous mini-vehicles,” Sen-
sors, vol. 21, no. 4, p. 1339, 2021.

[30] A. N. Roshan, B. Gokulapriyan, C. Siddarth, and
P. Kokil, “Adaptive traffic control with tinyml,” in 2021
Sixth International Conference on Wireless Communi-
cations, Signal Processing and Networking (WiSPNET).
IEEE, 2021, pp. 451–455.

[31] W. Bao, C. Wu, S. Guleng, J. Zhang, K.-L. A. Yau, and
Y. Ji, “Edge computing-based joint client selection and
networking scheme for federated learning in vehicular
iot,” China Communications, vol. 18, no. 6, pp. 39–52,
2021.

[32] J. Ying, J. Hsieh, D. Hou, J. Hou, T. Liu, X. Zhang,
Y. Wang, and Y.-T. Pan, “Edge-enabled cloud computing
management platform for smart manufacturing,” in 2021
IEEE International Workshop on Metrology for Industry
4.0 & IoT (MetroInd4.0&IoT), 2021, pp. 682–686.

[33] Y. Y. Siang, M. R. Ahamd, and M. S. Z. Abidin,
“Anomaly detection based on tiny machine learning:
A review,” Open International Journal of Informatics,
vol. 9, no. Special Issue 2, pp. 67–78, 2021.

[34] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox,
and P. Gehler, “Towards total recall in industrial anomaly
detection,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp.
14 318–14 328.

[35] F. Alongi, N. Ghielmetti, D. Pau, F. Terraneo, and
W. Fornaciari, “Tiny neural networks for environmental
predictions: an integrated approach with miosix,” in 2020
IEEE International Conference on Smart Computing
(SMARTCOMP). IEEE, 2020, pp. 350–355.

[36] C. Vuppalapati, A. Ilapakurti, K. Chillara, S. Kedari,
and V. Mamidi, “Automating tiny ml intelligent sensors
devops using microsoft azure,” in 2020 ieee international
conference on big data (big data). IEEE, 2020, pp.
2375–2384.

[37] C. Vuppalapati, A. Ilapakurti, S. Kedari, J. Vuppalapati,
S. Kedari, and R. Vuppalapati, “Democratization of ai,
albeit constrained iot devices & tiny ml, for creating
a sustainable food future,” in 2020 3rd International
Conference on Information and Computer Technologies
(ICICT). IEEE, 2020, pp. 525–530.

[38] F. Nakhle and A. L. Harfouche, “Ready, steady, go
ai: A practical tutorial on fundamentals of artificial
intelligence and its applications in phenomics image
analysis,” Patterns, vol. 2, no. 9, p. 100323, 2021.

[39] D. J. Curnick, A. J. Davies, C. Duncan, R. Freeman,
D. M. Jacoby, H. T. Shelley, C. Rossi, O. R. Wearn,
M. J. Williamson, and N. Pettorelli, “Smallsats: a new
technological frontier in ecology and conservation?”
Remote Sensing in Ecology and Conservation, vol. 8,
no. 2, pp. 139–150, 2022.

[40] C. Nicolas, B. Naila, and R.-C. Amar, “Tinyml smart
sensor for energy saving in internet of things preci-
sion agriculture platform,” in 2022 Thirteenth Interna-
tional Conference on Ubiquitous and Future Networks
(ICUFN). IEEE, 2022, pp. 256–259.

[41] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient

neural network kernels for arm cortex-m cpus,” arXiv
preprint arXiv:1801.06601, 2018.

[42] STMicroelectronics, “X-cube-ai: Ai expansion
pack for stm32cubemx,” https://www.st.com/en/
embedded-software/x-cube-ai.html.

[43] “microtvm: Tvm on bare-metal,” https://tvm.apache.org/
docs/topic/microtvm/index.html.

[44] E. Liberis and N. D. Lane, “Neural networks on mi-
crocontrollers: saving memory at inference via operator
reordering,” arXiv preprint arXiv:1910.05110, 2019.

[45] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven
mixed low precision quantization for enabling deep
network inference on microcontrollers,” in MLSys, 2020.

[46] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini,
“Cmix-nn: Mixed low-precision cnn library for memory-
constrained edge devices,” IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, vol. 67, no. 5, pp.
871–875, 2020.

[47] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries,
J. Li, N. Kreeger, I. Nappier, M. Natraj, T. Wang,
P. Warden, and R. Rhodes, “Tensorflow lite micro:
Embedded machine learning for tinyml systems,” in
Proceedings of Machine Learning and Systems, vol. 3,
2021, pp. 800–811.

[48] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker,
D. Gope, V. Janapa Reddi, M. Mattina, and P. What-
mough, “Micronets: Neural network architectures for
deploying tinyml applications on commodity microcon-
trollers,” Proceedings of Machine Learning and Systems,
vol. 3, 2021.

[49] S. Sadiq, J. Hare, P. Maji, S. Craske, and G. V.
Merrett, “Tinyops: Imagenet scale deep learning on
microcontrollers,” in 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW), 2022, pp. 2701–2705.

[50] “Tinymaix,” https://github.com/sipeed/TinyMaix.
[51] I. Fedorov, R. Matas, H. Tann, C. Zhou, M. Mattina, and

P. Whatmough, “UDC: Unified DNAS for compressible
tinyML models for neural processing units,” in Advances
in Neural Information Processing Systems, 2022.

[52] H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce
activations, not trainable parameters for efficient on-
device learning,” arXiv preprint arXiv:2007.11622, 2020.

[53] H. Ren, D. Anicic, and T. A. Runkler, “Tinyol: Tinyml
with online-learning on microcontrollers,” in 2021 Inter-
national Joint Conference on Neural Networks (IJCNN).
IEEE, 2021, pp. 1–8.

[54] S. G. Patil, P. Jain, P. Dutta, I. Stoica, and J. Gonzalez,
“Poet: Training neural networks on tiny devices with
integrated rematerialization and paging,” in International
Conference on Machine Learning. PMLR, 2022, pp.
17 573–17 583.

[55] C. Profentzas, M. Almgren, and O. Landsiedel,
“Minilearn: On-device learning for low-power iot de-
vices,” in Proceedings of the 2022 International Confer-
ence on Embedded Wireless Systems and Networks (Linz,
Austria)(EWSN’22). Junction Publishing, USA, 2022.

[56] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and

https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://tvm.apache.org/docs/topic/microtvm/index.html
https://tvm.apache.org/docs/topic/microtvm/index.html
https://github.com/sipeed/TinyMaix

21

S. Han, “On-device training under 256kb memory,” 2022.
[57] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both

weights and connections for efficient neural network,”
in NeurIPS, 2015.

[58] Y. He, X. Zhang, and J. Sun, “Channel pruning for
accelerating very deep neural networks,” in ICCV, 2017.

[59] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural
pruning,” in NeurIPS, 2017.

[60] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,
“Learning efficient convolutional networks through net-
work slimming,” in ICCV, 2017.

[61] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han,
“Amc: Automl for model compression and acceleration
on mobile devices,” in ECCV, 2018.

[62] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng,
and J. Sun, “MetaPruning: Meta Learning for Automatic
Neural Network Channel Pruning,” in ICCV, 2019.

[63] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” in ICLR, 2016.

[64] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained
ternary quantization,” in ICLR, 2017.

[65] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“Xnor-net: Imagenet classification using binary convolu-
tional neural networks,” in ECCV, 2016.

[66] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou,
“Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

[67] M. Courbariaux and Y. Bengio, “Binarynet: Training
deep neural networks with weights and activations con-
strained to+ 1 or-1,” arXiv preprint arXiv:1602.02830,
2016.

[68] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang,
V. Srinivasan, and K. Gopalakrishnan, “Pact: Parameter-
ized clipping activation for quantized neural networks,”
arXiv preprint arXiv:1805.06085, 2018.

[69] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ:
Hardware-Aware Automated Quantization with Mixed
Precision,” in CVPR, 2019.

[70] H. F. Langroudi, V. Karia, T. Pandit, and D. Kudithipudi,
“Tent: Efficient quantization of neural networks on the
tiny edge with tapered fixed point,” arXiv preprint
arXiv:2104.02233, 2021.

[71] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets,
and V. Lempitsky, “Speeding-up convolutional neural
networks using fine-tuned cp-decomposition,” arXiv
preprint arXiv:1412.6553, 2014.

[72] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Com-
pressing deep convolutional networks using vector
quantization,” arXiv preprint arXiv:1412.6115, 2014.

[73] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and
D. Shin, “Compression of deep convolutional neural
networks for fast and low power mobile applications,”
arXiv preprint arXiv:1511.06530, 2015.

[74] G. Hinton, O. Vinyals, and J. Dean, “Distilling
the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[75] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational
knowledge distillation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2019, pp. 3967–3976.

[76] F. Tung and G. Mori, “Similarity-preserving knowledge
distillation,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019, pp. 1365–
1374.

[77] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Mat-
sukawa, and H. Ghasemzadeh, “Improved knowledge
distillation via teacher assistant,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 34, no. 04,
2020, pp. 5191–5198.

[78] L. Wang and K.-J. Yoon, “Knowledge distillation and
student-teacher learning for visual intelligence: A review
and new outlooks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[79] Z. Yang, Z. Li, X. Jiang, Y. Gong, Z. Yuan, D. Zhao, and
C. Yuan, “Focal and global knowledge distillation for
detectors,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp.
4643–4652.

[80] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang,
“Decoupled knowledge distillation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 11 953–11 962.

[81] L. Beyer, X. Zhai, A. Royer, L. Markeeva, R. Anil,
and A. Kolesnikov, “Knowledge distillation: A good
teacher is patient and consistent,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 10 925–10 934.

[82] B. Zoph and Q. V. Le, “Neural architecture search with
reinforcement learning,” in ICLR, 2017.

[83] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le,
“Learning transferable architectures for scalable image
recognition,” in CVPR, 2018.

[84] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable
architecture search,” in ICLR, 2019.

[85] H. Cai, L. Zhu, and S. Han, “ProxylessNAS:
Direct neural architecture search on target task
and hardware,” in ICLR, 2019. [Online]. Available:
https://arxiv.org/pdf/1812.00332.pdf

[86] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler,
A. Howard, and Q. V. Le, “Mnasnet: Platform-aware
neural architecture search for mobile,” in CVPR, 2019.

[87] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,
P. Vajda, Y. Jia, and K. Keutzer, “Fbnet: Hardware-
aware efficient convnet design via differentiable neural
architecture search,” in CVPR, 2019.

[88] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and
P. Dollár, “Designing network design spaces,” arXiv
preprint arXiv:2003.13678, 2020.

[89] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga
et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information
processing systems, vol. 32, 2019.

[90] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

https://arxiv.org/pdf/1812.00332.pdf

22

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard
et al., “Tensorflow: A system for large-scale machine
learning,” in OSDI, 2016.

[91] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “Mxnet:
A flexible and efficient machine learning library for
heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[92] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang,
“JAX: composable transformations of Python+NumPy
programs,” 2018. [Online]. Available: http://github.com/
google/jax

[93] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze et al., “{TVM}:
An automated end-to-end optimizing compiler for deep
learning,” in OSDI, 2018.

[94] “Tensorflow lite,” https://www.tensorflow.org/lite.
[95] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou,

Y. Yang, Z. Cui, Y. Cai, T. Yu, C. Lv, and Z. Wu, “Mnn:
A universal and efficient inference engine,” in MLSys,
2020.

[96] “Ncnn : A high-performance neural network inference
computing framework optimized for mobile platforms,”
https://github.com/Tencent/ncnn.

[97] “Nvidia tensorrt, an sdk for high-performance deep
learning inference,” https://developer.nvidia.com/tensorrt.

[98] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in NeurIPS, 2017.

[99] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “Learning
to optimize tensor programs,” in NeurIPS, 2018.

[100] A. Stoutchinin, F. Conti, and L. Benini, “Optimally
scheduling cnn convolutions for efficient memory access,”
arXiv preprint arXiv:1902.01492, 2019.

[101] B. H. Ahn, J. Lee, J. M. Lin, H.-P. Cheng, J. Hou,
and H. Esmaeilzadeh, “Ordering chaos: Memory-aware
scheduling of irregularly wired neural networks for edge
devices,” arXiv preprint arXiv:2003.02369, 2020.

[102] H. Miao and F. X. Lin, “Enabling large neural networks
on tiny microcontrollers with swapping,” arXiv preprint
arXiv:2101.08744, 2021.

[103] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-
layer cnn accelerators,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–12.

[104] K. Goetschalckx and M. Verhelst, “Breaking high-
resolution cnn bandwidth barriers with enhanced depth-
first execution,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 2, pp. 323–331,
2019.

[105] O. Saha, A. Kusupati, H. V. Simhadri, M. Varma, and
P. Jain, “Rnnpool: Efficient non-linear pooling for ram
constrained inference,” arXiv preprint arXiv:2002.11921,
2020.

[106] M. Tan and Q. Le, “Efficientnet: Rethinking model scal-

ing for convolutional neural networks,” in International
Conferences on Machine Learning (ICML). PMLR,
2019, pp. 6105–6114.

[107] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models
and faster training,” CoRR, vol. abs/2104.00298, 2021.
[Online]. Available: https://arxiv.org/abs/2104.00298

[108] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and
A. Graves, “Memory-efficient backpropagation through
time,” in NeurIPS, 2016, p. 4132–4140.

[109] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training
deep nets with sublinear memory cost,” arXiv preprint
arXiv:1604.06174, 2016.

[110] K. Greff, R. K. Srivastava, and J. Schmidhuber,
“Highway and residual networks learn unrolled iterative
estimation,” in ICLR, 2017. [Online]. Available:
https://arxiv.org/pdf/1604.06174.pdf

[111] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding,
and Y. Xie, “Dynamic sparse graph for efficient deep
learning,” in ICLR, 2019.

[112] Y. Wang, Z. Jiang, X. Chen, P. Xu, Y. Zhao, Y. Lin, and
Z. Wang, “E2-train: Training state-of-the-art cnns with
over 80% energy savings,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.13349

[113] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and
K. Gopalakrishnan, “Training deep neural networks with
8-bit floating point numbers,” in NeurIPS, 2018.

[114] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani,
V. V. Srinivasan, X. Cui, W. Zhang, and K. Gopalakr-
ishnan, “Hybrid 8-bit floating point (hfp8) training and
inference for deep neural networks,” in NeurIPS, 2019.

[115] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems
(NIPS), 2012.

[116] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie,
“Large scale fine-grained categorization and domain-
specific transfer learning,” in CVPR, 2018.

[117] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet
models transfer better?” in CVPR, 2019.

[118] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung,
S. Gelly, and N. Houlsby, “Big transfer (bit): General
visual representation learning,” in European conference
on computer vision. Springer, 2020, pp. 491–507.

[119] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisser-
man, “Return of the devil in the details: Delving deep
into convolutional nets,” in BMVC, 2014.

[120] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell, “Decaf: A deep convolutional
activation feature for generic visual recognition,” in
International Conferences on Machine Learning (ICML),
2014.

[121] C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G.
Hauptmann, “DevNet: a deep event network for mul-
timedia event detection and evidence recounting,” in
CVPR, 2015, pp. 2568–2577.

[122] A. Sharif Razavian, H. Azizpour, J. Sullivan, and
S. Carlsson, “Cnn features off-the-shelf: an astounding
baseline for recognition,” in CVPR Workshops, 2014.

http://github.com/google/jax
http://github.com/google/jax
https://www.tensorflow.org/lite
https://github.com/Tencent/ncnn
https://developer.nvidia.com/tensorrt
https://arxiv.org/abs/2104.00298
https://arxiv.org/pdf/1604.06174.pdf
https://arxiv.org/abs/1910.13349

23

[123] Q. Wang, M. Xu, C. Jin, X. Dong, J. Yuan, X. Jin,
G. Huang, Y. Liu, and X. Liu, “Melon: Breaking the
memory wall for resource-efficient on-device machine
learning,” in Proceedings of the 20th Annual Interna-
tional Conference on Mobile Systems, Applications and
Services, ser. MobiSys ’22, 2022, p. 450–463.

[124] D. Xu, M. Xu, Q. Wang, S. Wang, Y. Ma, K. Huang,
G. Huang, X. Jin, and X. Liu, “Mandheling: Mixed-
precision on-device dnn training with dsp offloading,” in
Proceedings of the 28th Annual International Conference
on Mobile Computing And Networking, ser. MobiCom
’22, 2022, p. 214–227.

[125] I. Gim and J. Ko, “Memory-efficient dnn training on
mobile devices,” in Proceedings of the 20th Annual In-
ternational Conference on Mobile Systems, Applications
and Services, ser. MobiSys ’22, 2022, p. 464–476.

[126] J. Frankle, D. J. Schwab, and A. S. Morcos, “Training
batchnorm and only batchnorm: On the expressive
power of random features in cnns,” arXiv preprint
arXiv:2003.00152, 2020.

[127] P. K. Mudrakarta, M. Sandler, A. Zhmoginov, and
A. Howard, “K for the price of 1: Parameter efficient
multi-task and transfer learning,” in ICLR, 2019.

[128] A. Canziani, A. Paszke, and E. Culurciello, “An analysis
of deep neural network models for practical applications,”
arXiv preprint arXiv:1605.07678, 2016.

[129] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han,
“Once for all: Train one network and specialize it
for efficient deployment,” in ICLR, 2020. [Online].
Available: https://arxiv.org/pdf/1908.09791.pdf

[130] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan,
and Q. Le, “Understanding and simplifying one-shot
architecture search,” in International Conferences on
Machine Learning (ICML), 2018.

[131] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei,
and J. Sun, “Single path one-shot neural architec-
ture search with uniform sampling,” arXiv preprint
arXiv:1904.00420, 2019.

[132] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
International Conference on Learning Representations
(ICLR), 2015.

[133] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen,
M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al.,
“Searching for mobilenetv3,” in ICCV, 2019.

[134] M. Everingham, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes (voc)
challenge,” International journal of computer vision,
vol. 88, no. 2, pp. 303–338, 2010.

[135] J. Redmon and A. Farhadi, “YOLOv3: An Incremental
Improvement,” arXiv, 2018.

[136] S. Yang, P. Luo, C. C. Loy, and X. Tang, “Wider face:
A face detection benchmark,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[137] Y. Yoo, D. Han, and S. Yun, “Extd: Extremely tiny
face detector via iterative filter reuse,” arXiv preprint
arXiv:1906.06579, 2019.

[138] Y. He, D. Xu, L. Wu, M. Jian, S. Xiang, and C. Pan,

“Lffd: A light and fast face detector for edge devices,”
arXiv preprint arXiv:1904.10633, 2019.

[139] X. Zhao, X. Liang, C. Zhao, M. Tang, and J. Wang,
“Real-time multi-scale face detector on embedded de-
vices,” Sensors, vol. 19, no. 9, p. 2158, 2019.

[140] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z.
Li, “S3fd: Single shot scale-invariant face detector,” in
Proceedings of the IEEE international conference on
computer vision, 2017, pp. 192–201.

[141] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini,
D. Rossi, and F. Conti, “Dory: Automatic end-to-end
deployment of real-world dnns on low-cost iot mcus,”
IEEE Transactions on Computers, vol. 70, no. 8, pp.
1253–1268, 2021.

[142] E. Liberis, Ł. Dudziak, and N. D. Lane, “µnas: Con-
strained neural architecture search for microcontrollers,”
arXiv preprint arXiv:2010.14246, 2020.

[143] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough,
“Sparse: Sparse architecture search for cnns on resource-
constrained microcontrollers,” in NeurIPS, 2019.

[144] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online].
Available: http://tensorflow.org/

[145] S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift,” in International Conferences on Machine Learning
(ICML), 2015.

[146] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,
A. Howard, H. Adam, and D. Kalenichenko, “Quan-
tization and training of neural networks for efficient
integer-arithmetic-only inference,” in CVPR, 2018, pp.
2704–2713.

[147] A. Krizhevsky and G. Hinton, “Learning multiple
layers of features from tiny images,” Master’s thesis,
Department of Computer Science, University of Toronto,
2009.

[148] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[149] Y. You, I. Gitman, and B. Ginsburg, “Large batch
training of convolutional networks,” arXiv preprint
arXiv:1708.03888, 2017.

[150] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d
object representations for fine-grained categorization,”
in Proceedings of the IEEE International Conference on
Computer Vision Workshops, 2013.

[151] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and
M. Hardt, “Test-time training with self-supervision for
generalization under distribution shifts,” in International
conference on machine learning. PMLR, 2020, pp.

https://arxiv.org/pdf/1908.09791.pdf
http://tensorflow.org/

24

9229–9248.
[152] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer,

“Llm. int8 (): 8-bit matrix multiplication for transformers
at scale,” arXiv preprint arXiv:2208.07339, 2022.

[153] G. Xiao, J. Lin, M. Seznec, J. Demouth, and S. Han,
“Smoothquant: Accurate and efficient post-training quan-
tization for large language models,” arXiv preprint
arXiv:2211.10438, 2022.

[154] A. Chowdhery, S. Narang, J. Devlin, M. Bosma,
G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sut-
ton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko,
J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prab-
hakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Brad-
bury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke,
A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski,
X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou,
D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov,
R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M.
Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira,
R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang,
B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-
Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel,
“Palm: Scaling language modeling with pathways,” in
Machine Learning and Systems (MLSys), 2022.

Ji Lin is a PhD student at MIT EECS. Previously, he
graduated from Department of Electronic Engineer-
ing, Tsinghua University. His research interests lie
in efficient and hardware-friendly machine learning,
model compression and acceleration.

Ligeng Zhu is a PhD student at MIT EECS,
supervised by Professor Song Han. His study focuses
on efficient and accelerated deep learning systems
and algorithms.

Wei-Ming Chen is a Postdoctoral Associate at MIT
EECS. Dr. Chen received his Master’s and Doctorate
degrees in computer science and information engi-
neering from National Taiwan University in 2015
and 2020, respectively. His research interests include
TinyML and embedded systems with a focus on
enabling efficient deep learning on edge devices.

Wei-Chen Wang is a Postdoctoral Associate at
MIT EECS. Dr. Wang received his Ph.D. degree in
Computer Science from the Department of Computer
Science and Information Engineering at National Tai-
wan University in 2021. His current research interests
include efficient deep learning, model compression,
TinyML, and embedded systems.

Song Han is an associate professor at MIT EECS.
Dr. Han received the Ph.D. degree from Stanford
University. Dr. Han’s research focuses on efficient
deep learning computing at the intersection between
machine learning and computer architecture. He
proposed “Deep Compression” and the “Efficient
Inference Engine” that widely impacted the industry.
He is a recipient of NSF CAREER Award, Sloan
Research Fellowship, MIT Technology Review Inno-
vators Under 35, best paper awards at the ICLR and
FPGA, and faculty awards from Amazon, Facebook,

NVIDIA, Samsung and SONY.

	Overview of Tiny Machine Learning
	Challenges of TinyML
	Models designed for mobile platforms does not fit TinyML
	Directly adapting models for inference does not work for tiny training.
	Co-design is necessary for TinyML

	Applications of TinyML

	Recent Progress in TinyML
	Recent Progress on TinyML Inference
	Recent Progress on TinyML Training

	Tiny Inference
	TinyNAS: Automated Tiny Model Design
	Automated search space optimization.
	Resource-constrained model specialization with Once-For-All NAS.

	TinyEngine: A Memory-Efficient Inference Library
	Code generation.
	In-place depth-wise convolution
	Patched-based Inference

	Co-Design: Joint Neural Architecture and Inference Scheduling Search
	Co-Design Loop
	Experimental Results

	Tiny Training
	Quantization Aware Scaling
	Memory-Efficient Sparse Update
	Tiny Training Engine (TTE)

	Conclusion and Outlook
	Acknowledgement
	Biographies
	Ji Lin
	Ligeng Zhu
	Wei-Ming Chen
	Wei-Chen Wang
	Song Han

