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MVEB: Self-Supervised Learning with
Multi-View Entropy Bottleneck

Liangjian Wen, Xiasi Wang, Jianzhuang Liu, Zenglin Xu

Abstract—Self-supervised learning aims to learn representation that can be effectively generalized to downstream tasks. Many
self-supervised approaches regard two views of an image as both the input and the self-supervised signals, assuming that either view
contains the same task-relevant information and the shared information is (approximately) sufficient for predicting downstream tasks.
Recent studies show that discarding superfluous information not shared between the views can improve generalization. Hence, the
ideal representation is sufficient for downstream tasks and contains minimal superfluous information, termed minimal sufficient
representation. One can learn this representation by maximizing the mutual information between the representation and the supervised
view while eliminating superfluous information. Nevertheless, the computation of mutual information is notoriously intractable. In this
work, we propose an objective termed multi-view entropy bottleneck (MVEB) to learn minimal sufficient representation effectively.
MVEB simplifies the minimal sufficient learning to maximizing both the agreement between the embeddings of two views and the
differential entropy of the embedding distribution. Our experiments confirm that MVEB significantly improves performance. For
example, it achieves top-1 accuracy of 76.9% on ImageNet with a vanilla ResNet-50 backbone on linear evaluation. To the best of our

knowledge, this is the new state-of-the-art result with ResNet-50.

Index Terms—Self-supervised learning, Minimal sufficient representation, Representation learning

1 INTRODUCTION

Elf-supervised learning (SSL) has achieved significant
Sprogress in learning representation to generalize well
to broad downstream tasks. Many state-of-the-art SSL ap-
proaches maximize the agreement between the embeddings
of two views of an image from a multi-view perspective.
These works are based on Siamese networks and employ
different methods to deal with the collapse problem dur-
ing representation learning. For example, contrastive learn-
ing [1]-[5] utilizes negative samples to separate features
of different images to avoid collapse. Asymmetric network
methods [6]-[8] introduce a predictor network and a mo-
mentum encoder (or a stop-gradient operation) to prevent
collapse without negative samples. In addition, feature
decorrelation methods [9], [10] avoid collapse by reducing
the redundancy among the feature dimensions. Empirical
results of these SSL works show competitive performance
on multiple visual tasks compared with supervised learning
methods.
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Fig. 1. lllustration of the sufficient and minimal representation in the
unsupervised multi-view setting. The common assumption in multi-view
learning is that the information 7(v1;v2) shared between view v and
view vz is sufficient for the prediction of downstream tasks [11]. When
I(z1;v2) = I(vi;v2), z1 (denoted by the dotted line in the above
figure) contains all the task-relevant information shared between the two
views (left). Hence, z; is a sufficient representation. If all superfluous
information is eliminated, i.e., I (z1;v1) = I (v1;v2) (right), z1 is the
minimal sufficient representation.

From the multi-view perspective, self-supervised ap-
proaches often consider two image views as the input
and the self-supervised signals for each other. One can
assume that either view is (approximately) sufficient for
the prediction of downstream tasks and contains the same
task-relevant information in multi-view learning [11]. This
suggests that different views of an image should not affect
the prediction for downstream tasks. Similar to the role of
labels in supervised learning, two views as the mutual self-
supervised signals are adapted to extract task-relevant infor-
mation based on Siamese networks. If the learned represen-
tation contains the same task-relevant information shared
between the two views, it is sufficient for downstream tasks.
Moreover, superfluous information is identified as that not
shared by both views. As shown in [12] and [13], discarding
superfluous information can improve the generalization of
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the learned representation for downstream tasks. Hence, the
ideal representation is sufficient for downstream tasks and
contains minimal superfluous information. In light of the
information bottleneck principle [14], the minimal sufficient
representation is defined in the unsupervised setting, as
shown in Fig. [I] One can learn the minimal sufficient rep-
resentation by minimizing the mutual information between
the extracted feature and its input view conditioned on the
other supervised view while maximizing the mutual infor-
mation between the extracted feature and the supervised
view. This is termed the multi-view information bottle-
neck [12]. However, the computation of mutual information
is notoriously intractable. Although the variational method
[12] can be introduced to overcome the intractability, [15]
shows this cannot improve the performance for downstream
tasks much compared with SImCLR [2]. Learning the min-
imal sufficient representation effectively in self-supervised
representation learning is still challenging.

To address this problem, we propose a new objective
function, the multi-view entropy bottleneck (MVEB), to
learn the minimal sufficient representation. Our method can
learn task-relevant information and eliminate superfluous
information, which is related to the multi-view information
bottleneck. MVEB simplifies the minimal sufficient learning
to the process of maximizing both the agreement between
the embeddings of two views of an image and the dif-
ferential entropy of the embedding distribution. Moreover,
it can be directly applied to Siamese networks without
modification of the network structure and other complex
designs.

However, it is intractable to compute the differential
entropy of the embedding distribution since it is unknown.
We propose a score-based entropy estimator with the von
Mises-Fisher kernel [16] to approximate the gradient of the
differential entropy with model parameters, such that we
can directly use the gradient approximation with model
parameters for backpropagation to maximize the differential
entropy. It can increase the uniformity of the embeddings
efficiently. Moreover, this formulation does not require a
large batch size or a memory bank.

We empirically demonstrate that MVEB significantly im-
proves the generalization of the learned representation for
downstream tasks. Our main contributions are summarized
as follows:

e We propose MVEB to learn the minimal sufficient
representation in the unsupervised multi-view set-
ting. It can be directly applied to Siamese networks
without modification of the network structure and
other complex designs.

o We present a score-based entropy estimator with the
von Mises-Fisher kernel to approximate the gradient
of the differential entropy of the embedding distri-
bution w.r.t. model parameters. This estimator can be
used to maximize the differential entropy to increase
uniformity.

e We first analyze contrastive learning (e.g., SimCLR
and MOCO), asymmetric network methods (e.g.,
BYOL and SimSiam), and feature decorrelation meth-
ods (e.g., Barlow Twins and VICReg) from learn-
ing the minimal sufficient representation. Based on

2

MVEB, we argue that these methods also try to learn
the minimal sufficient representation by optimizing
alignment and uniformity.

o Comprehensive experiments are conducted to show
the superior performance of MVEB. For example, it
achieves top-1 accuracy of 76.9% on ImageNet with
a vanilla ResNet-50 backbone with a single-layer
classifier fine-tuned. To the best of our knowledge,
this is the new state-of-the-art result with ResNet-50.

2 RELATED WORK

Self-supervised learning (SSL) learns representation by
defining a pretext task without annotation. Pretext tasks
are the core of SSL to provide supervision signals to mine
the data structure. Recently, contrastive learning [2], [3]
makes promising progress and has reduced the gap with
supervised learning on many computer vision benchmarks.
It defines instance classification as the pretext task [17].
Specifically, each image is considered as one class and is
discriminated invariant to its own distortions and differ-
ent from other images. [1] proposes to use the InfoNCE
loss to recognize images by contrasting them with other
images. [2] and [3] employ Siamese networks to improve
the performance. However, a large number of images as
negative samples are needed to contrast the positive sample.
It requires a large batch size or a memory bank. Clustering-
based approaches [18], [19] as the variants of contrastive
learning keep consistency between cluster assignments for
different views of images. Contrastive learning methods
naturally align the embeddings of positive samples and
separate the embeddings of negative samples to achieve uni-
formity of representation [20]. Our MVEB can be simplified
to maximizing the alignment between view embeddings
and the differential entropy of the embedding distribution.
Maximizing the differential entropy can also improve uni-
formity without the need for a large bath size or memory
bank.

Recent works can produce high-quality representation
without negative samples in contrastive learning. Asymmet-
ric network methods can learn representation by maximiz-
ing the agreement between the view embeddings based on
Siamese networks. They rely on asymmetric network archi-
tecture to prevent collapse. BYOL [6] introduces a predictor
network for the online branch and a momentum encoder.
SimSiam [7] adopts a stop-gradient operation for the target
branch and a predictor network to avoid collapse. DINO [8]
combines the momentum encoder with self-distillation on
the Transformer backbone. However, these methods are not
well understood, and hard to interpret their architectural
tricks [10]. Feature decorrelation methods [9], [10], [21],
[22] avoid collapse by reducing the redundancy among the
feature dimensions.

From the multi-view perspective, [13] proposes an
information-theoretical framework to understand and ex-
plain the success of SSL. Specifically, two views of an image
can be considered as the input and the self-supervised sig-
nals for each other. [12] proposes the multi-view information
bottleneck for unsupervised multi-view learning to learn the
minimal sufficient representation. However, the computa-
tion of mutual information is notoriously intractable. Our
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Fig. 2. Framework of MVEB and its training objective.

MVEB is related to the multi-view information bottleneck
and can be effectively applied to Siamese networks to learn
the minimal sufficient representation. [15] considers that the
minimal sufficient representation gives rise to the degrada-
tion of performance for downstream tasks since not all task-
relevant information is shared between views. Since either
view is assumed (approximately) sufficient for downstream
tasks for general data augmentation used in self-supervised
learning [13], we argue that the non-shared task-relevant
information between views can be ignored. Our experiment
results also verify that the minimal sufficient representation
can improve the generalization for downstream tasks.

3 PRELIMINARY: MINIMAL SUFFICIENT REPRE-
SENTATION

Representation learning aims to transform input data x
to the lower-dimensional representation z that contains the
information relevant to the prediction task y. This infor-
mation is considered unchanged after encoding the data,
which suggests I(x;y) = I(z;y), where I denotes mutual
information. Thus, the learned representation z is sufficient
for the prediction task [23].

Since x has more information than y, the sufficient repre-
sentation z of x may contain superfluous information irrele-
vant to the prediction task. The superfluous information can
be represented as conditional mutual information I(x;z|y).
Among all sufficient representations, the minimal sufficient
representation contains the least superfluous information.

4 APPROACH

We outline the general setting of training an encoder and
a projector to learn a representation in the multi-view self-
supervised setting in Fig.[2| The Siamese network consists of
online and target branches. Each branch includes an encoder
and a projector. Let v1 and v be two different views of the
input sample x. We can get the {3-normalized representa-
tions z; and zg from v; and vy through the deterministic
function f, with the parameters ¢. Let ¢4(z1) and g4(2z2)
be the marginal distributions of the representations z; and
zg, respectively, which are used to compute the entropy
H(z1) and H(z2). We derive a new objective L, v rp(é; A)
to optimize the parameters ¢.

Encoder

Py(Z4]V1) Py(22]V3)

Fig. 3. Visualization of the multi-view information bottleneck model.

4.1 Multi-View Information Bottleneck

In the unsupervised setting, it is more challenging to obtain
the minimal sufficient representation since the superfluous
information cannot be identified without downstream tasks.
To overcome the problem, [12] extends the information
bottleneck theory in supervised learning to the multi-view
unsupervised setting, termed multi-view information bot-
tleneck (MVIB). The main idea relies on the multi-view
assumption that either view is (approximately) sufficient
for the prediction of downstream tasks and contains the
same task-relevant information. In other words, the different
views of a sample should not affect the prediction for down-
stream tasks. Similar to the role of labels in supervised learn-
ing, two views can be considered as mutual self-supervised
signals for each other. Hence, we can obtain the sufficiency
for downstream tasks by ensuring that the representation
z1 of vy is sufficient for va. The superfluous information
can also be identified as conditional mutual information
I4 (z1;v1|ve). Decreasing I, (z1;v1|vz) can achieve the
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elimination of the superfluous information.

We can learn the minimal sufficient representation by
satisfying these requirements using the relaxed Lagrangian
multiplier method:

Lyvip (9;A) = Mg (z1;v1|ve) — I (z15v2). (1)

Although MVIB is appealing in learning the minimal suf-
ficient representation, the computation of the mutual in-
formation (MI) is notoriously intractable. To overcome the
intractability in MVIB, [12] adopts the same stochastic net-
work as VAE to obtain the Gaussian representation distri-
butions p(z1|v1) and p(z2|ve) to approximately optimize
Lyvip as shown in Fig. [3l Hence, we obtain the variational
MVIB objective as follows:

Lomvie(@;X) =ADkr(ps(z1|v1)||pe(22]v2))
— 1y (21;22), 2)

where Dgy, denotes the Kullback-Leibler divergence.
Specifically, D 1. (ps(21|V1)||pe(22]v2)) is the upper bound
of Iy(z1;v1|ve); Iy (z1;22) is the lower bound of
I (z1;v2) and approximated by InfoNCE [24], MINE [25]
or MIGE [26].

4.2 Multi-View Entropy Bottleneck

MVIB cannot be directly applied to the Siamese network
due to the intractability of the computation of mutual infor-
mation. As mentioned in Section[4.1] the variational method
can be introduced to optimize MVIB. However, this approxi-
mation optimization requires additional stochastic networks
and does not work as expected in practice for visual recog-
nition models compared with SimCLR, as shown in [15].
For the Siamese network, learning the minimal sufficient
representation effectively in self-supervised representation
learning is still challenging.

We derive the novel MVEB framework to solve the
challenge of learning the minimal sufficient representation.
Compared with MVIB, MVEB can be directly applied to
the Siamese network without modification of the network
structure and other complex designs.

The superfluous information I (z1;v1|ve) can be de-
composed (see Appendix) as:

I¢ (Z1§V1|V2) = H(Z1|V2) - H(Zl|V17V2), 3)

where the conditional entropy H(z1|vi,Vv2) contains no
randomness (no information) as z; being deterministic con-
ditioned on v;. Hence, minimizing H(z1|vz) is equiva-
lent to minimizing Iy (z1;Vv1|vz2). We can also decompose
I; (z1;v2) (see Appendix) as:

Iy (21;v2) = H(z1) — H(z1|v2). )

Based on the above derivations and Eq. (I), we obtain the
general MVEB objective:

Lyves (0;0) = (A +1)H(z1|v2) — H(z1), ®)

where H(z1|ve) = —Epz, v,)[logp(z1|ve)]. We can learn
the minimal sufficient representation with Ly gp for the
deterministic encoder.

4

The conditional entropy H (z1|v2) is intractable since the
distribution p(z1|vz) is unknown. To overcome this prob-
lem, we introduce ¢4(z1|v2) that is a variational approxi-
mation to p(z1|vz). Since K L(p(z1|va)||¢s(z1|v2)) > 0, we
can derive the upper bound of H(z1|v2):

H(zy|v2) = —]Ep(zl,w)[lOgP(ZﬂVzﬂ
< _EP(Z17V2) [IOg Q¢(Z1 |V2)]' (6)
Hence, a variational MVEB term (vVMVEB) is defined as

LomveB (9;A) = — (A + DEp(z, vy)[log gg(z1]v2)]
— H(z1). )

For self-supervised learning based on the Siamese net-
work, e.g. SImCLR, BYOL, and SimSiam, the representation
zq is ¢3-normalized in the hypersphere space to improve
the performance of the models. We also normalize z; in
the hypersphere space. The von Mises-Fisher (vMF) is the
common distribution of the hypersphere space. Hence, we
define g4 (z1|v2) as the vMF distribution, i.e.,

qs(21|v2) = Cp(r)e™ =1, ®)

where p is the mean direction, x denotes the concentration

parameter of the von Mises-Fisher distribution and C,, (k) =
n_q

that « is a constant and ¢ (z1|v2) is parameterized by p. As

illustrated in Fig. 2, we use the target branch to encode va

and output zz as n. Hence, we further obtain

H(z1|v2) < —logCp(k) — K/Ep(zl,z2)[z2TZ1]7 9)

is the normalization function of x. We assume

which allows us to reformulate the objective of Eq. as
follows,

Lomves (¢;8) = —Ep (21 ,22)[22" 21] — BH (21),

where 8 = ﬁ is the balance factor. This simplified
objective maximizes both the agreement between z; and
z2 and the differential entropy of z; to learn the minimal
sufficient representation for the deterministic encoder.

The sample view vy can also be regarded as the self-
supervised signal for va. Similarly, we derive another opti-
mization objective. The final simplified training objective is
obtained as follows,

(10)

EUMVEB (¢7 B) = - IE‘n(zl,zﬁ [ZZTZI]

_ %ﬁ(H(zl) +H(z). (1)

However, it is unfortunately intractable to compute
H(z1) and H(z2) since the distributions of z; and zs are
unknown. We propose a score-based entropy estimator with
the von Mises-Fisher kernel to maximize H (z1) and H(z2),
which is described in Section The training pseudocode
is given in Algorithm

4.3 Analysis of the Variational Approximation

In our work, the variational approximation is used to ob-
tain the upper bound of the conditional entropy H(z1|v2)
for minimization, rather than estimate the true H(z1|va).
However, we need to guarantee that this upper bound is
not loose to achieve the minimization of H(z1|v2).
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The bound of the variational approximation
of H(zi|lvz) in Eq (6) is completely tight if
Ep(va) KX L(p(Z1]V2)||gp(21|V2))] = 0. It means

that g¢y(z1|v2)) equals p(z1|ve). In other words, if
Ep(va) [KL(p(Z1]V2)l|qg(21|v2))] is smaller, the bound of
the variational approximation is tighter. Below we prove
the bound of the variational approximation is not loose and
can achieve the minimization of H(z1|v2).

If the approximation is very loose, we cannot opti-
mize H(z1|ve) = —Epz, v,)[log p(z1|ve)]; in other words,
—Ep(21,v2)[l0g p(2z1|v2)] cannot be reduced during opti-
mization. Decompose E,y,)[KL(p(z1|v2)||qs(z1]v2))] as
follows:

Ep(va) [KL(p(21]v2)|lgs(21[v2))]

= Ep(zl,vz) [logp(zl |V2)] - IE;D(zl,vz) [IOg qdo (Zl |V2)} . (12)

Since the first term E,(,, v,)[logp(z1|v2)] of Eq. is
fixed, minimizing —E,,, v,)[log ¢4(z1|v2)] is equivalent to
minimizing B, [K L(p(z1|v2)||qs(21|v2))], which makes
the bound tight.

Algorithm 1 MVEB pytorch pseudocode.

# f: encoder containing a backbone and
a projector
# lambda: loss balance coefficient

# N: batch size

for x in loader: # load a minibatch x
# augmentation
v_1l, v_2 = augment (x)

# compute normalized embeddings
z 1, z_. 2 = f£f(v_1), £(v_2)

# Alignment loss
Align_loss = mm(zl, z2.t()) .mean()
# compute the score function S(.)
# SGE: Stein Gradient Estimator
S(z_1)= SGE(z_1)

S(z_2)= SGE(z_2)

# compute the entropy loss

En_z_1= (S(z_1l) .detach()*z_1) .sum
(=1) .mean ()

En_z_2= (S(z_2) .detach()*z_2) .sum
(=1) .mean ()

# compute the total loss
loss = Align_loss+0.5x1lambdax* (
En_z 1+ En_z 2)

# optimization step
loss.backward ()
optimizer.step ()

5

4.4 Score-Based Entropy Estimation with the von
Mises-Fisher Kernel

For learning the minimal sufficient representation with
MVEB, we need to maximize H(z) = —Eg,,)[logqs(2)].
We first analyze the gradient of H(z) w.r.t. ¢, which can be
decomposed as:

V¢H(Z) = 7V¢Eq¢(z) [log Q(z)} - ]Eq(z) [V¢ IOg q¢ (Z)](, )
13

where ¢(z) without the subscript ¢ means the gradient of
computation is irrelevant to ¢. The second term on the right
part of Eq. can be further decomposed as:

Eq()[Vs 108 96(2)] = Eq(2)[Vs(2) x ﬁ]

= /V¢q¢(z)dz = V¢/q¢(z)dz =0. (19
Hence we have
V¢H(Z) = —V¢Eq¢(z) [log q(Z)].

However, V;H(z) is non-trivial because the expectation
w.rt. ¢4(2z) is not differentiable w.r.t. ¢.

To overcome this problem, we adopt the general repa-
rameterization trick proposed in [27] for the computation
of V4H(z). In detail, the samples from the representation
distribution ¢4(z) can be obtained by encoding the data
samples v, z = f;(v), where f, is the deterministic function
(encoder and projector). Hence, the representation can be
reparameterized via the following differentiable transforma-
tion:

(15)

z = fy(v) with
Since p(v) is irrelevant to the model parameters ¢, the
expectation w.r.t. ¢4(z) can be rewritten via the above repa-
rameterization, which makes the expectation differentiable
w.r.t. ¢. Hence, the entropy gradient estimator is derived as
follows:

V¢H(Z) = _V¢'Eq¢(z) [log Q(Z)] = _Ep(v) [vti’ log q(f¢ (V))]
= —Epw)[Vz1ogq(2)) Ve fs(v)], 17)

where V, log¢(z) is the score function, which can be di-
rectly approximated by score estimation using a black-box
function [28]. V4 fs(x) can be obtained by direct back-
propagation. As long as we can provide a good enough
approximation to the score function, this estimation of the
entropy gradient is approximately unbiased.

The Stein gradient estimator described in Appendix is an
effective estimation of the score function [28]. We adopt it to
approximate the score function S(z) = V,logq(z). Since
the representation z is {o-normalized, we propose to use the
following von Mises-Fisher kernel to compute S(z) :

T,/
o) = e (7).

where A is the bandwidth of the von Mises-Fisher kernel.
We set it to the median of pairwise cosine distances among
all samples in the batch.

v~ p(v). (16)

(18)
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5 RETHINKING ALIGNMENT AND UNIFORMITY

Contrastive learning (e.g.,, SimCLR and MOCO) aims to
bring similar (positive) samples closer and dissimilar (nega-
tive) samples farther apart. [20] decomposes the contrastive
loss into alignment and uniformity. As shown in [29], asym-
metric network methods (e.g., BYOL and SimSiam) and fea-
ture decorrelation methods (e.g., Barlow Twins and VICReg)
are viewed as optimizing alignment and uniformity based
on gradient analysis. Asymmetric network methods rely on
a predictor to optimize the uniformity, and feature decorre-
lation methods rely on feature decorrelation to optimize the
uniformity.

We consider the multi-view self-supervised setting in
Fig. 2| where z; and z, are the representations of views
vi and va, respectively. If we consider vy as the su-
pervised information, minimizing superfluous information
Iy (z1; v1|v2) is equivalent to minimizing H(z1|vz) for the
deterministic encoder, as shown in Section[4.2} Furthermore,
maximizing the alignment E,,, ,,)[z2” z1] is equivalent to
minimizing H(z1|vz) (see Eq. (9)). Hence, maximizing the
alignment can eliminate superfluous information.

We find that maximizing the mutual information
I4(z1;v2) between z; and the supervised information
vz not only keeps the information relevant to vz but
also reduces superfluous information. This is because
I4(z1;ve) = H(z1) — H(z1|v2) and minimizing super-
fluous information Iy (z1; v1|v2) is equivalent to minimiz-
ing H(z1|v2) for the deterministic encoder. As uniformity
prefers the feature distribution p(z1) that preserves its max-
imal entropy H(z1), we can consider H(z1) as the uni-
formity. Hence, I,(z1;Vv2) is the combination of alignment
and uniformity. In another view, maximizing alignment and
uniformity can keep the information in z; relevant to vs.
However, since the superfluous information is not minimal,
maximizing I(z1; ve) cannot achieve the goal of learning
of minimal sufficient representation.

In this work, we present a new objective function,
Lyves (0;N) = (A + 1)H(z1|ve) — H(z1), to learn the
minimal sufficient representation. H(z1|ve) — H(z1) =
—I4(z1;ve) aims to keep the information relevant to
va, and AH(z1|vz) aims to reduce superfluous infor-
mation I, (z1;v1|ve). Since maximizing the alignment
Ep(z1,20) 227 21] is equivalent to minimizing H(z1|v2), the
balance of maximizing alignment and uniformity can learn
minimal sufficient representation. Specifically, the coefficient
B in Eq. is used to balance the optimization of the
alignment and H(zq1) + H(z1). In Eq. 1) 8 = ﬁ,
where  is a constant. As shown in Eq. (I), X1s the coe%ﬁcient
to balance the optimization of I, (z1; v1|vz) and I (z1; v2).
Increasing 8 to make A smaller than a threshold does not
eliminate superfluous information effectively, which hurts
the performance of downstream tasks. Decreasing 3 to
approach zero means A approaches infinity, and the Siamese
network suffers from model collapse with the trivial con-
stant representations without maximizing the uniformity. In
anther view, when X\ approaches infinity, the optimization
objective in Eq. (1) only considers minimizing superfluous
information Iy (z1;v1|vz). Hence, a trivial solution is ob-
tained if constant representations of v are outputted, which
means the representations do not contain the information

relevant to vy and va.

Relation with Contrastive Learning. The contrastive loss,
also termed InfoNCE, is a lower bound of Iy(z1;v2) [13].
More negative samples make this lower bound tighter. Max-
imizing the contrastive loss aims to maximize Iy(z1;Vv2).
Specifically, when the number of negative samples N — oo,
the normalized contrastive loss reaches the following con-
vergence:

lgnooﬁmntrastive (s, N) —log N

N
= B[Sl elva)]

T (V1,V2)~Dpos

+ E

V1~Pdata

log E

V; "~ Pdata \Vl

[ef¢(v1)Tf¢(V1)/TH . (19)

where v; denotes the negative samples of vi and ppos
denotes the distribution of the pairs of positive samples.
The first term of the right-hand side of Eq. aims to
maximize alignment. The second term pushes dissimilar
(negative) samples farther apart. The performances of con-
trastive learning are sensitive to the choice of the hyper-
parameter 7, since 7 is used to balance the optimization
of alignment and uniformity to learn minimal sufficient
representation. However, 7 is also incorporated to maximize
uniformity, which limits the balance between alignment and
uniformity based on the gradient analysis in [29].

Contrastive learning relies on a large number of negative
samples to optimize uniformity and keep a lower bound
of I(z1;vz) tight. As uniformity optimization is based on
the separation of the instances, it is hard to maximize
global uniformity effectively. Unlike contrastive learning,
our MVEB directly maximizes the differential entropy of
the global feature distribution, which is, in principle, more
effective for uniformity maximization.

Relation with Asymmetric Network Methods and Feature
Decorrelation Methods. As shown in [29], from the gra-
dient analysis, asymmetric network methods and feature
decorrelation methods can be unified into the same form:

L (¢7 /\) = _Ep(zl,zz) [Z2TZ1} + )‘Ep(zl)[lele]a (20)

where F' is the correlation matrix of features; \ is the ban-
lance factor. For asymmetric network methods, F' is updated
according to the moving average; for feature decorrelation
methods, F' is computed according to the features of each
batch. The first term of the right-hand side of Eq. is
the alignment. The second term is the derivation of the
following entry:

_ _ T
IElp(z;)[Cos2 (z1,27)] = Ep(z;)[lezl 7] 71]

_ _T
= Ep(z;)[le(% zy )za| = 21" Fza, (21)

where z; denotes the negative samples of z;. According
to this derivation, the second term of Eq. aims to
minimize the similarity between negative samples to maxi-
mize uniformity. Hence, asymmetric network methods and
feature decorrelation methods also achieve balancing the
optimization of alignment and uniformity to learn minimal
sufficient representation.

Asymmetric network methods rely on a predictor to
optimize uniformity; feature decorrelation methods rely on
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feature decorrelation to optimize uniformity. This differ-
ence leads to the difference in performances. Although the
performances of these methods are better than contrastive
learning, they still rely on separating the instances, which
poses difficulty in achieving optimal results. We argue that
maximizing the differential entropy is the better way to
learn the minimal sufficient representation with the feature
distribution rather than the instance separation.

6 MAIN RESULTS

We first assess MVEB’s representation with the self-
supervised benchmark on ImageNet dataset [30] in linear
evaluation. We then evaluate our model by transferring it
to other datasets and tasks, including image classification,
object detection, and segmentation.

6.1 Pretraining Details

We pretrain our model MVEB on ImageNet with ResNet-
50 as the backbone. The projector network consists of three
linear layers, each with an output dimensionality set to 2048.
We apply BN and ReLU after the first two layers. According
to our empirical study, the momentum encoder is chosen
as the target branch (see Fig. [2). Following the setting of
BYOL [6], we update the target branch with the exponential
moving by increasing the average parameters from 0.996 to
1 with a cosine scheduler.

We follow the strategy of image augmentation used
in BYOL, including random cropping, color jittering, con-
verting to grayscale, horizontal flipping, Gaussian blurring
and solarization. We also adopt multi-crop to get six local
views [8] of 96 x 96. All augmentation parameters are the
same as those in DINO [8]. The local views are only passed
through the online branch. In addition, the positive sample
of each local view only comes from the average of the
embeddings of the two global views [§] from the same
sample.

We train MVEB for 800 epochs with the LARS [31]
optimizer. The weight decay and the momentum are set
to le-6 and 0.9, respectively. The basic learning rate is 0.4,
scaled with the batch size and divided by 256. We decrease
the learning rate to one-thousandth with a cosine decay
scheduler after a warm-up period of 10 epochs. The biases
and batch normalization parameters are excluded from the
LARS adaptation. The batch size is 4096, distributed over 32
NVIDIA V100 GPUs. The coefficient 5 in the loss function is
set to 0.01 according to our empirical study.

6.2 Linear Evaluation on ImageNet

Following the ImageNet linear evaluation in [2], [6]], [38] and
[3], we train a linear classifier on top of the frozen learned
representation to assess the classification performance on
ImageNet [30]. The number of training epochs is set to 50.
Other training settings of the linear evaluation are kept the
same as [7].

We compare MVEB with previous popular SSL methods
based on the Siamese network. The results are shown in Ta-
ble [1} MVEB significantly exceeds the previous best method
UniGrad in top-1 accuracy by an absolute improvement of
1.4%. Compared with the supervised baseline used in [2],

7

MVEB surpasses the supervised result of 76.5%. To the best
of our knowledge, MVEB is the first work that exceeds
this supervised learning result with the vanilla ResNet-50
backbone.

We compare MVEB with the masked autoencoder-based
methods, MAE [36] and SimMM [37]. Table [2| shows the re-
sult. For linear evaluation on ImageNet, MVEB outperforms
MAE and SimMM. Moreover, the number of parameters of
MVEB is the smallest.

6.3 Semi-Supervised Classification on ImageNet

We implement the semi-supervised learning by fine-tuning
the pre-trained MVEB on both the 1% and 10% subsets
of the ImageNet training set, utilizing the same partitions
as in SimCLR. Adhering to the semi-supervised training
configurations outlined in [10], we train a linear classifier
and fine-tune the representations using 1% and 10% of the
available labels. Our training employs the SGD optimizer
with no weight decay, a batch size of 256, and running for 60
epochs. For the training with 1% of labels, we use a learning
rate of 0.002 for the encoder and a learning rate of 0.8 for
the linear head. For the training with 10% of labels, we use
a learning rate of 0.003 for the encoder and a learning rate
of 0.4 for the linear head. The cosine decay is employed to
adjust the two learning rates. The augmentation pipelines
used for training data and validation are the same as those
for augmenting the data in linear evaluation.

In Table[3} we present the top-1 and top-5 accuracies. Our
results indicate that MVEB outperforms previous methods
consistently in both the 1% and 10% settings. Additionally,
it is worth mentioning that all self-supervised learning
methods significantly outperform the supervised baseline
[391.

6.4 Transfer Learning

To assess whether our learned representation is generic
across different domains, we transfer it to other classification
tasks on 11 datasets, including FGVC-Aircraft [40], Caltech-
101 [41], Stanford Cars [42], CIFAR-10 [43], CIFAR-100 [43],
Describable Textures Dataset (DTD) [44], Oxford 102 Flow-
ers [45], Food-101 [46], Oxford-IIIT Pets [47], SUN397 [48]
and Pascal VOC2007 [49]. For each dataset, we conduct (a)
linear evaluation, where a multinomial logistic regression
model is fit on top of the embeddings extracted from the
frozen ResNet-50 backbone, and (b) fine-tuning, where the
weights of both the backbone and classifier are allowed to
be updated. We search for the best hyperparameters ({3-
regularization coefficient for linear evaluation and learning
rate and weight decay for fine-tuning) on the split validation
set and report the evaluation reuslt on the test set of each
dataset.

Following the common practice in [2] and [6], we evalu-
ate the transfer performance on the 11 datasets via linear
classification and fine-tuning. As for the evaluation, we
use the metrics in the papers introducing these datasets.
Specifically, we report top-1 accuracy for CIFAR-10, CIFAR-
100, DTD, Food-101, Stanford Cars and SUN397, mean per-
class accuracy for Caltech-101, FGVC-Aircraft, Oxford-IIIT
Pets, and Oxford 102 Flowers, and 11-point mAP from [49]
for Pascal VOC 2007. For DTD and SUN397, which contain
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Top-1 and top-5 accuracies (%) of linear classification on ImageNet [30]. The bold entries denote the best. The results of all methods are based on

TABLE 1

the ResNet-50 |32] backbone for a fair comparison.

Method Batch size Training Epoch Multi-crop Top-1 Top-5
SimCLR [2] 4096 1000 2x224 69.3 89.0
MoCo-v2 [33] 256 800 2x224 71.1 90.1
InfoMin [34] 256 800 2x224 73.0 91.1
SimSiam [7] 256 800 2x224 71.3 -
Barlow Twins [9] 2048 1000 2x224 73.2 91.0
VICReg [10] 2048 1000 2x224 73.2 91.1
BYOL [6] 4096 1000 2x224 74.3 91.6
MVEB (ours) 4096 800 2x224 74.6 92.1
SwAV [19] 4096 800 2x224 + 6x96 75.3 -
Self-Classifier [35] 4096 800 2x224 + 6x96 74.1 -
DINO [8] 4096 800 2x224 + 8x96 75.3 92.5
UniGrad [29] 4096 800 2x224 + 6x96 75.5 -
MVEB (ours) 4096 800 2x224 + 6x96 76.9 93.3

TABLE 2
Comparison of MVEB with masked autoencoder-based methods for
linear evaluation on ImageNet [30]. The bold entry denotes the best.

Method Batch size Epoch Backbone Param. Top-1
MAE |[36] 4096 1600 ViT-B 85M 67.8
MAE |36 4096 1600 ViT-L 307M 76.0
SimMM |[37] 2048 800 ViT-B 85M 56.7
MVEB (ours) 4096 800 ResNet-18 11.7M 64.9
MVEB (ours) 4096 800 ResNet-34 21.8M 69.6
MVEB (ours) 4096 800 ResNet-50 23M 76.9
MVEB (ours) 4096 800 ResNet-101 44.5M 78.2
TABLE 3

Semi-supervised classification results on ImageNet. We use 1% and
10% training examples to fine-tune the pre-trained model.

Method 1% 10%

Top 1 Top 5 Top 1 Top 5
Supervised [39] 25.4 484 56.4 80.4
SimCLR [2] 483 75.5 65.6 87.8
BYOL [6] 53.2 78.4 68.8 89.0
Barlow Twins [9] 55.0 79.2 69.7 89.3
DINO [38] 52.2 78.2 68.2 89.1
VICReg [10] 54.8 79.4 69.5 89.5
MVEB (ours) 57.5 82.1 72.6 91.5

multiple train/test splits defined by the original creators, we
only report results in the first train/test split. For Caltech-
101, since there is no defined train/test split, we randomly
select 30 images per class to form the training set and the
rest is for test. DTD, FGVC-Aircraft, Pascal VOC 2007, and
Oxford 102 Flowers have their own validation sets, and we
directly use them. For the others, we hold out a subset by
randomly selecting 20% from the training set to form the
validation set. The hyperparameters are chosen based on
the metrics on the split validation set, and the final results
are reported on the test set.

Linear Classification. We fit an {y-regularization multino-
mial logistic regression model on top of the embeddings
extracted from the frozen ResNet-50 backbone. The images
are resized to 224 pixels along the shorter side using bicubic

resampling, after which a center crop of 224 x 224 is fol-
lowed. We use L-BFGS [50] to optimize the softmax cross-
entropy objective. The coefficient of the {5-regularization for
each dataset is chosen on the validation set, ranging over a
grid of 45 logarithmically spaced values between 10~¢ and
10°.

Fine-Tuning. We initialize the model with the parameters
of the pretrained model and tune the whole network. For
augmentation, we only perform random crops with resizing
and flipping at training time. With a batch size of 64, we
train the model for 5000 iterations. The optimizer is SGD
with the Nesterov momentum with the parameter set to 0.9.
The learning rate is decreased with the cosine annealing
schedule without restart. We search for the best learning
rate and weight decay on the validation set. Specifically, the
initial learning rate is chosen from a grid of 4 logarithmically
spaced values between 0.0001 and 0.1, and the weight decay
is chosen from a grid of 4 logarithmically spaced values
between 107¢ and 1073, as well as no weight decay. The
values of weight decay are divided by the learning rates.

As shown in Table [ for linear evaluation, MVEB out-
performs other methods by a large margin on all datasets
except for DTD and Pets where the results of MVEB are still
competitive. In the case of fine-tuning, MVEB also achieves
the best or second best on 9 of 11 datasets, surpassing the su-
pervised baseline in terms of the average evaluation metric
of all datasets. Compared with other SSL methods, MVEB
shows more advantages in generalization across different
image domains.

6.5 Object Detection and Segmentation

We further evaluate the learned embeddings by transfer-
ring them to more downstream tasks besides classification,
including object detection and instance segmentation on
MS COCO [54]. We adopt ResNet-50 [32] with the fea-
ture pyramid network (FPN) [54] and Mask RCNN [55]
for detection and segmentation. The ResNet-50 backbone
is pretrained by MVEB for 800 epochs, as in Section
For implementation, we adopt Detectron2 [56] and use the
hyperparameters suggested in [57] without searching for the
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TABLE 4
Transfer learning results of the models pretrained on ImageNet. The best result for each dataset is bold, and the second best is underlined.
‘Supervised’ refers to the pretrained model provided in the PyTorch library [51], where the model is pretrained using the labels of ImageNet. The
results of all methods are based on the vanilla ResNet-50 backbone.

Method Aircraft  Caltech101 Cars  CIFARI10 CIFAR100 DTD Flowers Food Pets SUN397  VOC2007 \ Avg.
Linear evaluation
Supervised 43.6 90.2 449 914 73.9 72.2 89.9 69.5 91.5 60.5 83.6 73.8
InfoMin [34] 38.6 87.8 41.0 91.5 73.4 74.7 87.2 69.5 86.2 61.0 83.2 72.2
SimCLR |2 449 90.1 43.7 91.2 72.7 74.2 90.9 67.5 83.3 59.2 80.8 72.6
MoCo v2 [33] 41.8 87.9 39.3 92.3 74.9 73.9 90.1 69.0 83.3 60.3 82.7 72.3
SimCLR v2[52] 46.4 89.6 50.4 92.5 76.8 76.4 92.9 73.1 84.7 61.5 81.6 75.1
BYOL |6 53.9 91.5 56.4 93.3 779 76.9 94.5 73.0 89.1 60.0 81.1 77.1
MVEB (ours) 55.8 92.7 59.6 94.6 79.4 76.5 95.7 779 912 66.5 855 | 79.6
Fine-tuning
Supervised 83.5 91.0 82.6 96.4 82.9 73.3 95.5 84.6 924 63.6 84.8 84.6
InfoMin [34] 80.2 83.9 78.8 96.9 71.2 71.1 95.2 78.9 85.3 57.7 76.6 79.6
SimCLR |2 81.1 90.4 83.8 97.1 84.5 71.5 93.8 82.4 84.1 63.3 82.6 83.1
MoCo v2 [33] 79.9 84.4 75.2 96.5 71.3 69.5 94.4 76.8 79.8 55.8 71.7 77.7
SimCLR v2[52] 78.7 82.9 79.8 96.2 79.1 70.2 94.3 82.2 83.2 61.1 78.2 80.5
BYOL [6] 79.5 89.4 84.6 97.0 84.0 73.6 94.5 85.5 89.6 64.0 82.7 84.0
MVEB (ours) 85.9 88.6 89.9 97.0 80.4 74.5 95.7 849 919 64.3 856 | 853
TABLE 5
Object detection and instance segmentation results (%) on MS COCO.
COCO object detection COCO instance segmentation
Method APbox APbox APbox APmask APmask APmask
all 50 75 all 50 75
Supervised 38.9 59.6 42.7 35.4 56.5 38.1
MoCo v2 [33] 39.8 59.8 43.6 36.1 56.9 38.7
DenseCL [53] 40.3 59.9 44.3 36.4 57.0 39.2
DC v2 [19] 41.0 61.8 45.1 37.3 58.7 39.9
DINO [8] 414 62.2 45.3 37.5 58.8 40.2
SimCLR [2] 41.6 61.8 45.6 37.6 59.0 40.5
UniGrad [29] 42.0 62.6 45.7 37.9 59.7 40.7
MVEB (ours) 42.2 62.8 46.2 38.1 59.8 41.1

best hyperparameters. The model is fine-tuned on COCO
2017 with the 1x training schedule [3]].

The results are reported in Table [5 It is shown that
our MVEB consistently outperforms other methods on both
object detection and instance segmentation w.r.t. all eval-
uation metrics. This indicates that MVEB’s representation
generalizes well beyond the ImageNet classification task.

7 EMPIRICAL STUDY

In this section, we explore the behaviors of MVEB in self-
supervised learning with Siamese networks. In all empirical
studies, our model based on ResNet-50 [32] backbone is
pretrained for 100 epochs on ImageNet [30]. We report all
results using the linear evaluation protocol on ImageNet [7].
A supervised linear classifier is trained based on the frozen
features from the pre-trained model and the number of
training epochs is set to 50. Other training settings of the
linear evaluation are kept the same as [7].

7.1 Batch Size

Empirical experiments are conducted to evaluate the perfor-
mance of our method with different batch sizes. We compare

MVEB with SImCLR [2], SimSiam [7] and VICReg [10].
We use a symmetric Siamese network without a predictor
network, a momentum encoder, and a stop-gradient opera-
tion. The batch size is set to a range from 128 to 4096. The
projector network consists of three linear layers, each with
the output dimensionality set to 8194. We apply BN and
ReLU after the first two layers. SGD is used as the optimizer.
The weight decay and the momentum are set to le-4 and
0.9, respectively. The basic learning rate is 0.05, scaled with
the batch size and divided by 256, and the loss function
coefficient 3 is set to 0.01.

The results are reported in Table [f| MVEB works well
over a wide range of batch-size settings. We can observe
that the top-1 accuracy of MVEB increases as the batch size
increases. When the batch size varies from 512 to 4096, the
accuracies of MVEB are similar. Compared with SimCLR,
SimSiam, and VICReg, our MVEB outperforms them by a
large margin with different batch sizes.

Although MVEB adopts the Siamese network with direct
weight-sharing similar to SimCLR, MVEB can work well
without the requirement of a large batch (e.g., 4096). The
behavior of MVEB is also different from SimSiam and
VICReg, both of which, with the large batch size 4096,
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TABLE 6
Top-1 accuracies (%) of linear classification on ImageNet of SSL
methods pretrained with different batch sizes.

Batch size 128 256 512 1024 2048 4096
SimCLR [2] - 575 607 628 640 64.6
SimSiam [7] 673 681 681 680 679 64.0
VICReg [10] 673 679 682 683 686 678
MVEB (ours) 67.8 685 68.8 689 689 69.0

drop significantly in accuracy. Moreover, SimSiam relies
on the predictor network and the stop-gradient operation.
Although SimSiam is effective with small bath sizes, it is
not well understood, and hard to interpret its architectural
tricks [10]. In contrast, MVEB can work well without archi-
tectural tricks and the requirement for a large batch size.

7.2 Target Branch Type

The self-supervised learning methods with Siamese net-
works adopt different types of the target branch. We select
two common types for it: weight-sharing and momentum-
update. In SimCLR [2], two branches share the same weights
and are updated simultaneously, which is referred to as a
symmetric network. MoCo [3] uses the momentum encoder
as the target branch, which performs momentum updates
according to the other branch.

We use the same projector network for both weight-
sharing and momentum-update branches. Specifically, the
projector network consists of three linear layers, each with
the output dimensionality set to 8194. We apply BN and
ReLU after each of the first two layers. The predictor net-
work is not used in Siamese networks.

Weight-Sharing Branch. The batch size is set to 1024. Other
configurations are kept the same as the pre-training setting
in Section

Momentum-Update Branch. We train 100 epochs with the
SGD optimizer. The weight decay and the momentum are
set to le-4 and 0.9, respectively. The basic learning rate
is 0.1, scaled with the batch size and divided by 256. We
decrease the learning rate to one-thousandth of it with the
cosine decay scheduler after a warm-up period of 5 epochs.
The loss function coefficient 3 is set to 0.01. The batch size
is 1024. Following the setting of BYOL [6], we update the
target branch with the exponential moving by increasing
the average parameters from 0.996 to 1 with the cosine
scheduler.

We empirically study the effect of these two types for
MVEB. For the weight-sharing target branch, the linear eval-
uation on ImageNet is 68.9%. In contrast, the momentum
encoder can achieve 71.2% with the linear evaluation on
ImageNet. This shows that MVEB is more beneficial with
the momentum encoder. Hence, we adopt it as the target
branch in our experiments.

7.3 Loss Balance Coefficient

The objective function of MVEB in Eq. consists of
two terms, each having different roles. The first term
Eyp(21,20) 22" 21] learns invariant representation for different
views of a sample. Maximizing the second term H(z1) +
H(z1) increases the uniformity of the embeddings.
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Fig. 4. Linear classification on ImageNet by MVEB pretrained with
different coefficients 8. Collapse means that the accuracy of the linear
classification is 0.
TABLE 7
Top-1 accuracies (%) of linear classification on ImageNet [30] with
ViT-s and ResNet-50. The bold entries denote the best.

Top-1 Backbone
ResNet-50 (23M) ViT-s (21M)

Method

SimCLR [2] 69.3 69.0
SwWAV [19] 71.8 67.1
BYOL [6] 74.3 71.0
MoCo V3 [58] 73.8 72.5
DINO [8] - 70.9
MAE [36] - 68.2
MVEB (ours) 74.6 73.4

We study its importance and report the performance in
Fig. [l We can observe that all the representations collapse
to a constant vector when /3 is 0.001. Since 8 approaches
zero, the Siamese network suffers from model collapse with
the trivial constant representations without maximizing uni-
formity. In Eq. , B8 = ﬁ, where k is a constant.
As shown in Eq. (I), A is the coefficient to balance the
optimization of I, (z1;v1|ve) and I, (z1;v2). When in-
creasing the value of 3, which decreases )\, the objective
pays more attention to maximizing I, (z1;va) to keep the
information relevant to ve. However, the performance of the
model degrades when § is greater than 0.01. This is because
increasing 8 to make X smaller than a threshold does not
eliminate superfluous information effectively, which hurts
the performance of downstream tasks.

7.4 Generalization Across Different Backbones

In this section, we evaluate the capability of our approach
to generalize effectively across both ViTs and ConvNets.
We follow the experiment setting on ImageNet in [58], and
compare MVEB with previous popular SSL methods based
on the Siamese network and MAE [36] across both ViTs
and ConvNets in Table [/l The results indicate that MVEB
demonstrates competitive performance with both ViTs and
ConvNets.

7.5 Pretraining Efficiency

To evaluate the pretraining efficacy of the MVEB approach,
we conduct a comparative analysis against two established
methods: BYOL and Barlow Twins. To ensure an equitable
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evaluation, we standardize the experimental setup by em-
ploying a Resnet50 architecture as the underlying backbone.
We assess the pretraining duration required by each method
to complete 1000 epochs with a batch size of 4096 on
ImageNet. The experimental configurations for BYOL and
Barlow Twins are aligned with the parameters detailed in
their respective seminal papers [6] and [9].

MVEB takes approximately 81 hours to distribute on 32
NVIDIA V100 GPUs. The reimplementations of BYOL and
Barlow Twins take approximately 89 and 80 hours on the
same hardware with the same setting, respectively. Hence,
the pretraining cost of MVEB is similar to those of BYOL
and Barlow Twins.

7.6 Comparison of MVEB with MVIB

The work in [15] conducts analytical experiments on CI-
FAR10 to compare MVIB with SimCLR. The linear eval-
uation accuracy of SimCLR is 85.76%, while the linear
evaluation accuracy of MVIB is 86.2%. This indicates that
MVIB cannot improve its performance much compared
with SimCLR. We follow the same experiment setting as
[15] on CIFAR10 to compare MVEB with MVIB. The linear
evaluation accuracy of MVEB is 90.42%. This accuracy sur-
passes that of MVIB. Besides, MVEB can be directly applied
to the Siamese network, but MVIB requires an additional
stochastic net to obtain the feature distribution as shown in

Fig. B}

8 DISCUSSION AND CONCLUSION

The core of self-supervised learning is that the learned
representation can generalize well to downstream tasks.
The minimal sufficient representation can improve the gen-
eralization. We propose the multi-view entropy bottleneck
(MVEB), a novel pretext task to learn the minimal sufficient
representation. It can be further simplified to maximizing
both the agreement between the embeddings of the two
views of a sample and the differential entropy of the em-
bedding distribution. We present the score-based entropy
estimator with the von Mises-Fisher kernel to approximate
the gradient of the differential entropy. This estimator can
be used to maximize the differential entropy to prevent
collapse efficiently. Extensive experiments show that MVEB
generalizes well across various downstream tasks and es-
tablishes new state-of-the-art results.

Limitation. Exiting self-supervised methods with
Siamese networks are based on the common assumption
in multi-view learning: either view is (approximately) suf-
ficient for the prediction of downstream tasks and contains
the same task-relevant information. Hence, the non-shared
task-relevant information between the views can be ignored.
Our experiment results also verify that the minimal suf-
ficient representation can improve the generalization for
downstream tasks. If the discrepancy between the two views
is too large, the non-shared task-relevant information cannot
be ignored. In other words, either view is not sufficient for
the prediction of downstream tasks. Thus either view cannot
be regarded as a supervised signal to extract task-relevant
information and eliminate the superfluous information in
Siamese networks. How to overcome this problem is future
work.
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APPENDIX
A Stein Gradient Estimator

A promising method for estimating the score of an implicit
distribution is the Stein gradient estimator proposed in [28].
Here we briefly describe it.

Assume x is supported on X C R% Let ¢(x) be a con-
tinuously differentiable probability density function, and
h(x) = [h1(x), ha(x), ..., ha (x)]" be a d’-dimensional dif-
ferentiable vector function, where the following boundary
condition is satisfied:

q(x)h(x) = 0,¥x € 90X if X is compact, or
. 0y md
xh_>rrgo g(x)h(x) =0if X =R".
(22)

We call h(x) the Stein class of ¢(x) if the above condition
holds. Then the following Stein’s identity can be derived by
using integration by parts:

E, [h(0)[Vxlogg(0))” + Vih(x)| =0, (23)
where Vy log ¢(x) is the score of ¢(x).

The Monte Carlo method can be adopted to estimate
the expectation in Eq. (23), which establishes a connection
between samples from ¢(x) and the score Vy logq(x). Let
x!*M be M ii.d. samples drawn from ¢(x). Monte Carlo
sampling shows:

1 -

— 37 HG = Vxh, (24)
where H = [h(x1)7--~ ,h(XM)] c Rd’xM, G =
[Vxl logq(x1>’... , Vim logq(xM)]T c ]RMXd, inh _
LYM Veh(x™) € R and Viwh(x™) =

[Vymhy (X™) ..., Vamhg (x™)]" € R >4, This motivates
the ridge regression problem:

1P n oA
<h+—HG —IG|%, 25

argmin
GeRrMxd

where || - ||% denotes the Frobenius norm of a matrix and
1 > 0 is the regularization coefficient. An analytic solution

of Eq. is:

GSen — _M(K 4 nI) 'HTV,h, (26)
where K = HTH. We rewrite K;; = h (xi)Th (x7) by
defining a positive definite kernel & : R? x RY — R so
that K;; = k(x’,x7). Similarly, we have (HTVxh)Z.j =
LM Vymk (x',x™). In this way, GS®in and the esti-
mation of the score Vy log ¢(x) can be obtained.

B Proof of Eq. (3): Ij(z1;vi|ve) =
H(z1|vi,v2)

H(z1]vz) —
Iy (z1; v1|v2) is defined as follows:
Iy (z1;vi|ve) = /p¢ (z1,vi|vz)logpy (21, v1|v2) dz1dvy

- /p<z> (z1,v1|v2)logpg (z1|v2) pg (Vi|ve) dzidvy
(27)
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The first term on the right-hand side of Eq. can be
decomposed as follows:

/p¢ (z1,v1|v2)logpy (z1|v1,Ve) dz1dvy

+ /pqs (z1,v1|va)logpy (vi|ve) dzidvy,  (28)
and the second term can be decomposed as:
/Zw (Z1, V1|V2) Ing¢ (Z1|V2) dzidvy
+ /p¢ (z1,v1|va)logpy (v1|vz) dzidv. (29)

Hence, I (z1; v1|v2) is represented as:
Iy (z1;v1|ve) = /p¢ (z1,v1|v2) log pg (z1|v1, v2) dz1dvy

- /qu (21,V1|v2)logpy (z1|v2) dzidvy
(30)

The first term on the right-hand side of Eq. B0] can be
rewritten as:

/p¢, (z1,v1|v2)logpy (z1|v1,ve) dz1dvy = —H(z1|v1, v2),

@)
and the second term can be derived as :
- /pqs (21, v1|v2)log py (21|v2) dzidvy =
— /p¢ (z1|v2) log py (z1|v2) dz1 = H(z1|v2).
Finally, we obtain:
Iy (z1;v1lve) = H(z1|v2) — H(z1|v1,v2).  (32)

C Proof of Eq (4) I¢ (Zl; Vl) = H(Zl) — H(Zl|V1)

I; (z1;v1) is defined as follows:
Iy (z1;v1) = /qu (z1,v1)logpy (21, v1) dz1dvy

— /p¢ (z1,v1)logpy (z1) e (V1) dzadvi.  (33)

The first term on the right-hand side of Eq. can be
decomposed as follows:

/P¢> (z1,v1)logpg (z1|v1) dz1dvy

+ /p¢ (z1,v1)logpy (V1) dz1dvy, (34)
and the second term can be decomposed as:
/p¢ (z1,v1)logpy (2z1) dz1dvy
+ /p¢ (21,v1) log pg (v1) dzidvs. (35)

Hence, I (z1; v1) is represented as:
Iy (z1;v1) = /qu (z1,v1)log py (z1|v1) dz1dvy

- /p¢ (z1,v1)logpy (z1) dz1dvy.
(36)
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The first term on the right-hand side of Eq. can be
rewritten as:

/P¢ (z1,v1)logpy (21|v1) dz1dvi = —H(z1|v1), (37)
and the second term can be derived as :
- /p¢ (z1,v1)logpg (z1) dzadvy =
- /p¢ (z1)logpy (z1) dz1 = H(z1).
Finally, we obtain:

I¢ (Zl;Vl):H(ZlfH(ZﬂVl). (38)
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