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Abstract

Different from a unimodal model whose input is from a
single modality, the input (called multi-modal input) of a
multi-modal model is from multiple modalities such as im-
age, 3D points, audio, text, etc. Similar to unimodal mod-
els, many existing studies show that a multi-modal model
is also vulnerable to adversarial perturbation, where an at-
tacker could add small perturbation to all modalities of a
multi-modal input such that the multi-modal model makes
incorrect predictions for it. Existing certified defenses are
mostly designed for unimodal models, which achieve sub-
optimal certified robustness guarantees when extended to
multi-modal models as shown in our experimental results.
In our work, we propose MMCert, the first certified defense
against adversarial attacks to a multi-modal model. We de-
rive a lower bound on the performance of our MMCert un-
der arbitrary adversarial attacks with bounded perturba-
tions to both modalities (e.g., in the context of auto-driving,
we bound the number of changed pixels in both RGB im-
age and depth image). We evaluate our MMCert using
two benchmark datasets: one for the multi-modal road seg-
mentation task and the other for the multi-modal emotion
recognition task. Moreover, we compare our MMCert with
a state-of-the-art certified defense extended from unimodal
models. Our experimental results show that our MMCert
outperforms the baseline.

1. Introduction

With the rapid advancement of machine learning, multi-
modal models have emerged as a powerful paradigm. Dif-
fering from their unimodal counterpart whose input is from
a singular modality, these multi-modal models leverage in-
put (called multi-modal input) from diverse modalities such
as images, 3D data points, audio, and text [8, 11, 24, 39, 50].
Those multi-modal models have been widely used in many
security and safety critical applications such as autonomous
driving [11, 30, 35, 44, 48] and medical imaging [15].

*Hongye Fu performed this research when he was a remote intern.

As shown in many existing studies [13, 37, 42], uni-
modal models are susceptible to adversarial attacks. There
is no exception for multi-modal models. In particular, many
recent studies [6, 41, 43, 45, 54, 61] showed that multi-
modal models are also vulnerable to adversarial perturba-
tions. In particular, an attacker could simultaneously ma-
nipulate all modalities of a multi-modal input such that
a multi-modal model makes incorrect predictions. For
instance, in the scenario of road segmentation for auto-
driving, the attacker can add small perturbations to both
the RGB image (captured by a camera) and the depth im-
age (captured by a LiDAR depth sensor) to degrade the seg-
mentation quality. Similarly, in the scenario of video emo-
tion recognition, the attacker can apply subtle disruptions to
both visual and audio data to reduce prediction accuracy.

Many defenses were proposed to defend against adver-
sarial attacks, In particular, they can be categorized into em-
pirical defenses [25, 34, 40, 45, 49, 52, 56] and certified de-
fenses [7, 10, 14, 19, 27, 28, 51, 53, 57, 60]. Many existing
studies [4, 5, 46] showed that most empirical defenses could
be broken by strong, adaptive attacks (one exception is ad-
versarial training [34]). Therefore, we focus on certified
defense in this work. Existing certified defenses are mainly
designed for unimodal models (its input is from a single
modality). Our experimental results show that they achieve
sub-optimal performance when extended to defend against
adversarial attacks for multi-modal models. The key rea-
son is that when the attacker adds lp bounded perturbations
to all modalities, the space of perturbed multi-modal inputs
cannot be simply formulated as a lp ball. In this work, we
focus on l0-like adversarial attacks applied to each modal-
ity (i.e., manipulate a certain number of features for each
modality) due to their straightforward applicability across
various modalities. The investigation of alternative forms
of attacks is reserved for future research.

Our work. We propose MMCert, the first certified defense
against adversarial attacks to multi-modal models. Suppose
we have a multi-modal input M = (m1,m2, · · · ,mT )
with T modalities, where mi contains a set/sequence of ba-
sic elements from the i-th modality. We consider a general
scenario, where each element could be arbitrary. For in-
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stance, each element could be a pixel value, a 3D point, an
image frame, an audio frame, etc.. Given a multi-modal in-
put M and a multi-modal model g (called base multi-modal
model), we first create multiple sub-sampled multi-modal
inputs. In particular, each sub-sampled multi-modal input
is obtained by randomly sub-sampling k1, k2, · · · , kT basic
elements from m1,m2, · · · ,mT , respectively. Then, we
use the base multi-modal model g to make a prediction for
each sub-sampled multi-modal input. Finally, we build an
ensemble multi-modal model by aggregating those predic-
tions as the final prediction made by our ensemble multi-
modal classifier for the given multi-modal input M.

We derive the provable robustness guarantee of our
ensemble multi-modal model. In particular, we show
that our ensemble multi-modal model provably makes the
same prediction for a multi-modal input when the num-
ber of added (or deleted or modified) basic elements to
m1,m2, · · · ,mT is no larger than r1, r2, · · · , rT . Intu-
itively, there is a considerable overlap between the space
of randomly sub-sampled multi-modal inputs before the at-
tack and those sub-sampled after the attack. This suggests
that the alterations in the output prediction probabilities are
constrained. Following [10, 20], the robustness guarantee is
achieved by utilizing Neyman-Pearson Lemma [36].

We conduct a systematic evaluation for our MMCert on
two benchmark datasets for multi-modal road segmentation
and multi-modal emotion recognition tasks, respectively.
We measure the performance lower bounds of our defense
under adversarial attacks, with the constraint that the num-
ber of modified (or deleted or added) basic elements to each
modality is bounded. We compare our MMCert with ran-
domized ablation [28], which is a state-of-the-art certified
defense for unimodal models. Our experimental results
show that our MMCert significantly outperforms random-
ized ablation when extending it to multi-modal models.

In summary, we make the following major contributions:

• We propose MMCert, the first certified defense against
adversarial attacks to multi-modal models.

• We derive the provable robustness guarantees of our
MMCert.

• We conduct a systematic evaluation for our MMCert and
compare it with state-of-the-art certified defense for uni-
modal models.

2. Background and Related Work
Multi-modal models [8, 11, 24, 39] are designed to process
information across multiple types of data, such as text, im-
ages, 3D point clouds, and audio, simultaneously. Multi-
modal models have shown impressive results across a vari-
ety of applications, such as scene understanding [24], object
detection [16, 39, 47], sentiment analysis [8, 26, 58, 59],

visual question answering [3, 18], and semantic segmenta-
tion [11, 31].

For simplicity, we use M = (m1,m2, · · · ,mT ) to de-
note a multi-modal input with T modalities, where mi rep-
resents the group of basic elements (pixels, images, audio)
from the ith (i = 1, 2, · · · , T ) modality.

2.1. Adversarial Attacks to Multi-modal Models

Many existing studies [6, 41, 43, 45, 54, 61] showed
that multi-modal models are vulnerable to adversarial at-
tacks [13]. For instance, Cheng et al. [6] showed that the
multi-modal auto-driving system can be undermined by a
single-modal attack that only aims at the camera modality,
which is considered less expensive to compromise. Those
attacks cause severe security and safety concerns for the de-
ployment of multi-modal models in various real-world ap-
plications such as autonomous driving [11, 30, 35, 44, 48].
In our work, we consider a general attack, where an attacker
could arbitrarily add (or delete or modify) a certain number
of basic elements to each modality. For instance, when each
basic element of a modality represents a pixel, an attacker
could arbitrarily manipulate (e.g., modify) some pixel val-
ues for that modality.

2.2. Existing Defenses

Defenses against adversarial attacks can be categorized into
empirical defenses and certified defenses. Empirical de-
fenses [25, 34, 40, 45, 49, 52, 56] cannot provide for-
mal robustness guarantees under arbitrary attacks. Multiple
works [4, 5, 46] have shown that they can be bypassed by
more advanced attacks. Existing certified defenses [7, 10,
19, 22, 27, 28, 32, 38, 53, 55, 57, 60, 62] against adversar-
ial attacks all focus on unimodal model whose input is only
from a single modality. Among those defenses, randomized
ablation [21, 28] achieves state-of-the-art certified robust-
ness guarantee when an attacker could arbitrarily modify a
certain number of basic elements to the input. Our experi-
mental results show that randomized ablation achieves sub-
optimal provable robustness guarantees when extended to
multi-modal models. This is because when the attacker in-
troduces perturbations with l0 bounds across all modalities,
the space of possible perturbed multi-modal inputs cannot
be straightforwardly formulated as a l0 ball.

We note that all the previously discussed certified de-
fenses [7, 10, 19, 27, 28, 53, 57, 60] are model-agnostic
and scalable to large models. Another family of certified
defenses [14, 23, 51] proposed to derive the certified ro-
bustness guarantee of an unimodal model by conducting a
layer-by-layer analysis. In general, those methods cannot
be applied to general models and are not scalable to large
neural networks.

2



3. Problem Formulation
We first introduce the threat model and then formally define
certified defense against adversarial attacks to classification
and segmentation tasks.

3.1. Threat Model

We discuss the threat model from the perspective of the at-
tacker’s goals, background knowledge, and capabilities.
Attacker’s goals. Given a multi-modal input and a multi-
modal model, an attacker aims to adversarially perturb the
multi-modal input such that the multi-modal model makes
incorrect predictions for the perturbed multi-modal input.
Attacker’s background knowledge and capabilities. As
we focus on the certified defense, we assume the attacker
has full knowledge about about the multi-modal model,
including its architecture and parameters. We consider a
strong attack to multi-modal models. In particular, given
a multi-modal input, an attacker could simultaneously ma-
nipulate all modalities of the input [45, 61]. As a result, a
multi-modal makes incorrect predictions for the perturbed
multi-modal input. For example, to attack an auto-driving
system, the attacker can add adversarial perturbation to both
the depth image (captured by a LiDAR depth sensor) and
the RGB image (captured by a camera) to lower the predic-
tion quality.

Formally, we denote a multi-modal input as M =
(m1,m2, · · · ,mT ), where mi represents a group of ele-
ments of the i-th modality, the attacker could arbitrarily add
(or delete or modify) at most ri elements to mi. For in-
stance, when mi represents an image, an attacker could ar-
bitrarily change ri pixel values.

We use M′ = (m′
1,m

′
2, · · · ,m′

T ) to denote the adver-
sarial input. Without loss of generality, every modality can
be rewritten as a list of it’s basic elements. For example,
an image (e.g., RGB image) can be written as a list of pix-
els, and an audio can be written as a list of audio frames.
Therefore, we can denote mi as a composition of basic ele-
ments denoted by [m1

i ,m
2
i , · · · ,m

ni
i ], where mj

i represents
the j-th basic element in the i-th modality, and ni represents
the total number of basic elements in the i-th modality. We
denote the number of basic elements in each modality af-
ter the attack as n′

1, n
′
2, . . . , n

′
T , respectively. For the image

modality, we know the number of basic elements (pixels) is
fixed. However, for some other modalities like audio, the at-
tacker is able to change the number of basic elements (e.g.,
audio frames) via addition or deletion.

Hence, we define three kinds of attacks for each modal-
ity: modification attack, addition attack, and deletion at-
tack. We use S(mi, ri) to denote the set of all possible
m′

i when an attacker could add (or delete or modify) at
most ri basic elements in mi. For simplicity, we use R =
(r1, r2, . . . , rT ) to denote the added (or deleted or modified)
basic elements to all modalities. Then we use S(M,R) =

S(m1, r1)×S(m2, r2) . . .×S(mT , rT ) to denote the set of
all possible adversarial inputs M′ = (m′

1,m
′
2, · · · ,m′

T ).

3.2. Certifiably Robust Multi-modal Prediction

For classification tasks, suppose we have a multi-modal
classifier G. Given a test sample (M, y), where y is the
ground truth label, we say G is certifiably stable for M if
the predicted label remains unchanged under attack:

G(M) = G(M′),∀M′ ∈ S(M,R). (1)

If this unchanged label is the ground-truth label of M, i.e.,
G(M) = y, then we say the classifier G is certifiably robust
for this test sample.

For segmentation tasks, without loss of generality, we
assume the multi-modal model outputs the segmentation re-
sult for one of the input modalities (denoted by mo) with
no basic elements (e.g., pixels). Then the output contains
no labels. For example, if RGB image is one of the input
modalities, the output can be a segmentation of this RGB
image, which contains a label for each pixel in the RGB
image. Unless otherwise mentioned, we assume that the at-
tacker performs modification attacks on mo (please refer to
Appendix C for deletion and addition attacks on mo).

We can think of the multi-modal segmentation model
G as composed of multiple classifiers denoted by
G1, G2, . . . , Gno . Each classifier Gj predicts a label
Gj(M) for mj

o (the j-th basic element of mo). The ground
truth y also includes no labels, denoted by y1, y2, . . . , yno

.
We use Gj(M

′) to denote the predicted label for mj
o after

the attack. We say Gj is certifiably stable for a basic ele-
ment (e.g., a pixel) mj

o if:

Gj(M) = Gj(M
′),∀M′ ∈ S(M,R), (2)

which means the predicted label for the the j-th basic ele-
ment of mo remains unchanged under attack. If Gj(M) =
yj , then we term Gj as certifiably robust for mj

o.
By deriving a lower bound on the number of basic ele-

ments whose predictions are certifiably robust, we can guar-
antee the segmentation quality for a test sample, measured
via metrics such as Certified Pixel Accuracy, Certified F-
score, or Certified IoU.

4. Our Design
4.1. Independent Sub-sampling

In this section, we will first outline a universal sub-sampling
method [21, 28, 32], and then demonstrate its application
across various multi-modal tasks.
Sub-sampling Strategy. We repeatedly randomly sub-
sample ki basic elements (e.g., pixels) from the i-th modal-
ity mi = [m1

i ,m
2
i , · · · ,m

ni
i ] without replacement. For

simplicity, we use Z = (z1, z2, . . . , zT ) to denote the ran-
domly sampled multi-modal input. Thus, we have |zi| = ki

3



for all i = 1, 2, . . . , T . This sampling strategy exhibits ver-
satility by being applicable across various modalities and
tasks. It can be applied for classification tasks, e.g., emo-
tion recognition. And it can also be employed for segmen-
tation tasks, e.g., road segmentation. Figure 9 in Appendix
provides a visualization of this sub-sampling method.

Next, we first apply this sampling strategy to build an
ensemble classifier for classification tasks.

4.2. Certify Multi-modal Classification

Ensemble Classifier. Given a testing input M =
(m1,m2, . . . ,mT ), we use Z = (z1, z2, . . . , zT ) to de-
note the randomly sub-sampled multi-modal input. We de-
note the multi-modal model by g. For simplicity, we use
g(Z) and y to denote the predicted label and the true la-
bel. As Z is randomly sub-sampled, g(Z) is also random.
Given an arbitrary label l ∈ {1, 2, · · · , C} (C is the to-
tal number of classes), we use pl to denote the probabil-
ity that the predicted label g(Z) is l. Formally, we have
pl = Pr(l = g(Z)). We call pl label probability. In prac-
tice, it is computationally expensive to calculate the exact
label probabilities. Following [10, 19, 28], we use Monte
Carlo sampling to estimate a lower bound or upper bound
of pl, denoted as pl and pl respectively. This is achieved
by randomly sample N ablated inputs from the distribution
Z , represented as Z1,Z2, · · · ,ZN , and then count the label
frequency Nl =

∑N
i=1 I(g(Zi) = l) for each label l. Our

ensemble classifier G then predicts the label with the largest
frequency Nl. For simplicity, we denote this label by A
and use pA to represent A’s label probability lower bound.
We define the runner-up label B as the label with the sec-
ond highest label frequency, i.e., B = argmaxl ̸=ANl. We
present our certification result below:

Theorem 1 (Certification for classification). Suppose we
have a multi-modal test input M and a base multi-modal
classifier g. Our ensemble classifier G is as defined as
above. We denote A = G(M) and use pA to denote the
label probability lower bound for the label A. We use B
to denote the runner-up class and use pB to denote the
label probability upper bound for the label B. We define

δl = pA −
⌊pA

∏T
i=1 (

ni
ki
)⌋∏T

i=1 (
ni
ki
)

and δu =
⌈pB

∏T
i=1 (

ni
ki
)⌉∏T

i=1 (
ni
ki
)

− pB .

Given a perturbation size R = (r1, r2, . . . , rT ), we have
the following:

G(M) = G(M′),∀M′ ∈ S(M,R) (3)

if: ∏T
i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (pA − δl − 1 +

∏T
i=1

(
ei
ki

)∏T
i=1

(
ni

ki

) ) (4)

≥
∏T

i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (pB + δu) + 1−
∏T

i=1

(
ei
ki

)∏T
i=1

(n′
i

ki

) (5)

where ei = ni − ri and n′
i = ni for modification attack;

ei = ni and n′
i = ni + ri for addition attack; ei = ni − ri

and n′
i = ni − ri for deletion attack, where i = 1, 2, . . . , T

is the modality index.

Proof. Please refer to Appendix A.

Computing pB and pA. Following [10, 19, 20], we
apply Monte Carlo sampling to approximate pB and pA.
We first randomly sub-sample N multi-modal inputs from
the test input M, and we denote these ablated inputs as
Z1,Z2, · · · ,ZN . We denote the number of sub-sampled
inputs that predicts for the label l as Nl, i.e., Nl =∑N

i=1 I(g(Zi) = l). Then, the frequency Nl of any label
l follows a binomial distribution. Therefore, we can apply
Clopper-Pearson [9] based method to estimate pB and pA
with predefined confidence level 1− α:

pA = Beta(
α

C
;NA, N −NA + 1) (6)

pB = Beta(1− α

C
;NB , N −NB + 1), (7)

where A represents the predicted label, i.e., A =
argmaxlNl, and B represents the runner-up label, i.e.,
argmaxl ̸=ANl. Beta(β;λ, θ) calculates the β-th quantile
of the Beta distribution given shape parameters λ and θ.
We divide α by the number of classes because we estimate
bounds for C classes simultaneously [20]. By Bonferroni
correction, if we use 1− α/C as the confidence level to es-
timate each bound, then the overall confidence level for the
C classes is at least 1− α.

4.3. Certify Multi-modal Segmentation

In this section, we extend our certification method for clas-
sification tasks to certify multi-model segmentation tasks.
Segmentation tasks are essentially a variant of classifica-
tion since each basic element (e.g., a pixel) in one of the
input modalities (e.g., an image) is assigned a label. We
denote this input modality as mo, and denote the j-th ba-
sic element of mo as mj

o. Suppose mo has no basic ele-
ments. If we naively apply union bound, certifying the test
input with overall confidence level 1 − α requires certify-
ing each basic element with confidence level 1− α

no
, which

becomes hard when no grows large. To maximize the num-
ber of certified basic elements, Fischer et al. [12] utilized
the Holm–Bonferroni method [17], originally designed for
Multiple Hypothesis Testing. Specifically, this method tends
to certify basic elements with confident predictions, while
abstaining ambiguous basic elements. Furthermore, this
method guarantees that the probability of mistakenly report-
ing at least one non-certifiably-stable basic element as cer-
tified is limited at α. In this work, we adapt the approach
from Fischer et al. [12] to multi-modal scenarios.
Ensemble Classifiers for Segmentation. Given a test-
ing input M, we use Z = (z1, z2, . . . , zT ) to denote the

4



randomly sub-sampled input. The base multi-modal seg-
mentation model can be seen as a composition of multi-
modal classifiers g1, g2, . . . , gno

, where gj predicts a la-
bel for the basic element mj

o. We use gj(Z) to denote
the predicted label for mj

o. We randomly sample N ab-
lated inputs from the distribution Z , and represent them as
Z1,Z2, · · · ,ZN . For each basic element mj

o and each label
l, we count the label frequency N j

l =
∑N

i=1 I(gj(Zi) = l).
The ensemble classifier for mj

o (denoted by Gj) then pre-
dicts the the label l with the highest label frequency N j

l , i.e.,
Gj(M) = argmaxlN

j
l . We say Gj is certifiably stable for

mj
o if the predicted label of Gj for mj

o remains unchanged
under attack, i.e., Gj(M) = Gj(M

′),∀M′ ∈ S(M,R).
Next, we discuss how to certify as many basic elements as
possible given that the possibility of mistakenly certifying a
non-certifiably-stable basic element is at most α.
Calculate a Confidence Level for Each Basic Ele-
ment. For each basic element mj

o, we denote the number
of ablated inputs that predicts the label l for this component
as N j

l . We denote the total number of ablated inputs as N .
We define:

pA(αj) = Beta(
αj

C
;N j

A, N −N j
A + 1) (8)

pB(αj) = Beta(1− αj

C
;N j

B , N −N j
B + 1), (9)

where A represents the predicted label for this basic ele-
ment, i.e., argmaxlN

j
l , and B represents the runner-up label

for this component, i.e., argmaxl ̸=AN
j
l . Then we define:

α∗
j = min

αj

(10)

s.t.,

∏T
i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (pA(αj)− δl − 1 +

∏T
i=1

(
ei
ki

)∏T
i=1

(
ni

ki

) ) (11)

≥
∏T

i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (pB(αj) + δu) + 1−
∏T

i=1

(
ei
ki

)∏T
i=1

(n′
i

ki

) , (12)

where ni, n′
i, ei, ki, δl and δu are defined as in Theorem 1.

Then with probability at least 1−α∗
j , the basic element mj

o

is certifiably stable (the output label of this basic element
cannot be changed by the attacker) according to Theorem 1.
In practice, we calculate α∗

j by binary search. If such an α∗
j

does not exist, the binary search algorithm returns 1 instead.
Apply Holm-Bonferroni method. Using the computed val-
ues of α∗

j , we employ the Holm-Bonferroni method [17] to
determine the basic elements eligible for certification. This
method maximizes the number of certified basic elements,
while at the same time ensures that the possibility of mis-
takenly certifying a non-certifiably-stable basic element re-
mains within the limit of α. Specifically, we have two steps:

• Step 1: We order α∗
j -values (j = 1, 2, · · · , no) in ascend-

ing order so that we have α∗
(1) ≤ α∗

(2) ≤ · · · ≤ α∗
(no)

.

• Step 2: Calculate L = min{j : α∗
(j) >

α
no+1−j }.

We report all basic elements mj
o for which α∗

j < α∗
(L) as

certifiably stable (the output labels of these basic elements
cannot be changed by the attacker), and the predictions for
other basic elements are abstained. In Section 5, we derive
certified metrics, e.g., Certified Pixel Accuracy, from these
certifiably stable basic elements.

5. Evaluation
In this section, we demonstrate the effectiveness of our
method on multi-modal emotion recognition task and multi-
modal road segmentation task.

5.1. Experimental Setup

Datasets. We use the following benchmark datasets in our
evaluation: RAVDESS [33] for the multi-modal emotion
recognition task and KITTI Road [1] for the multi-modal
road segmentation task. Details of the datasets can be found
in Appendix B.
Models. For the multi-modal emotion recognition task, we
follow the pipeline proposed by [8]. Specifically, we uti-
lize EfficientFace [63] (a recently proposed facial expres-
sion recognition architecture) to extract features from image
frames, and use 1D convolutional layers to extract features
from audio frames. Then we use intermediate attention-
based fusion [8] to combine features extracted from these
two modalities. This fusion method ensures that features
that are consistent between both modalities have the most
significant impact on the final prediction.

As for the multi-modal road segmentation task, we ap-
ply SNE-RoadSeg [11], which is capable of merging fea-
tures from both RGB images and depth images for road seg-
mentation. Specifically, this method first computes surface
normal information from depth images, and then employs
a data-fusion CNN architecture to fuse features from both
RGB images and the inferred surface normal information
for accurate prediction.

We note that if we directly use the original training
recipes for these models, we get low prediction accuracy
for randomly sub-sampled testing inputs, and the certified
robustness of MMCert and randomized ablation [29] would
be low as both rely on predicting ablated inputs. In re-
sponse, we perform data augmentation by randomly ablate
training inputs, such that the distribution of training data
can match that of testing data. We note that this is stan-
dard practice for randomized smoothing-based certification
methods [10]. For MMCert, we independently sub-sample
between 0% and 5% of basic elements from each modality,
ablating the rest. For randomized ablation [29], we ran-
domly sample between 0% and 5% of basic elements col-
lectively from the two modalities to keep and ablate the re-
maining elements. Specifically, we initially merge the basic
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Figure 1. Compare our MMCert with randomized ablation on RAVDESS Dataset.
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Figure 2. Compare our MMCert with randomized ablation on KITTI Road Dataset. Certified Pixel Accuracy (first row), Certified F-score
(second row) and Certified IoU (third row) are considered.
elements of both modalities into one list. After sampling
and ablating, we then split the modified list back into two
separate modalities.
Compared Method. We compare our method with ran-
domized ablation [28], which is the state-of-the-art certifi-
cation method for l0 attacks on a single image.

We adapt randomized ablation to multi-modal models by
combining the sets of basic elements from each modality.
Given the original input (m1,m2, . . . ,mT ), where mi =
[m1

i ,m
2
i , . . . ,m

ni
i ] , we combine all modalities to get m =

[m1
1,m

2
1, . . . ,m

n1
1 , . . . ,m1

T ,m
2
T , . . . ,m

nT

T ]. We denote the
size of m as n =

∑T
i=1 ni. Then we randomly sample k

elements from m without replacement to get a subset z ⊆
m. Finally, we divide z back to T modalities, i.e., zi =
z ∩mi, and (z1, z2, . . . , zT ) is the randomly ablated input.
We make the final prediction by taking the majority vote of
all ablated multi-modal inputs.

For multi-modal classification tasks, we use the same
certification process for randomized ablation as in the orig-
inal paper [28]. For multi-modal segmentation tasks, we
follow the same certification process as described in Sec-
tion 4.3 as the original work [28] only considered classifi-

cation tasks. The only difference is that we define α∗
j as:

α∗
j = min

αj

(13)

s.t., pA(αj)− 1 +

(
n−

∑T
i=1 ri
k

)(
n
k

) ≥ pB(αj) + 1−
(
n−

∑T
i=1 ri
k

)(
n
k

) .

(14)

It is worth noting that in this context, ri represent the max-
imum number of modified basic elements in the i-th modal-
ity. The original work did not take into account addition and
deletion attacks, as [28] focuses on image domain.
Parameter Settings. By default, we focus on modification
attacks, where ri denote the maximum basic elements that
can be modified by the attacker in ith modality.

For the multi-modal emotion recognition task, the vi-
sual modality contains 108 image frames, while the audio
modality contains 79,380 audio frames. Without loss of
generality, we denote the maximum number of modified
image frames as r1 and the maximum number of modified
audio frames as r2. The default setting is that the attacker
can modify equal or more audio frames than image frames.
That is, we let r2 = ĉ · r1, for ĉ = 1, 2, 3, 4. We set k1 = 5
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Figure 3. Compare different attack types on RAVDESS Dataset.
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Figure 4. Impact of the ratio between k1 and k2. Certified Pixel Accuracy (first row), Certified F-score (second row) and Certified IoU
(third row) are considered.
and k2 = 1, 000. For randomized ablation, k is set to 3,000
such that, when there is no attack (r1 = r2 = 0), the accu-
racy of randomized ablation is similar to our MMCert. In
Appendix D, we show the case where an attacker can mod-
ify more image frames than audio frames (r1 > r2).

For the multi-modal road segmentation task, the first
modality is a RGB image that consists of 375× 1, 242 pix-
els, where each pixel has three channels (representing the
three primary colors), while the second modality is a depth
image that has the same number of pixels, but each pixel
has a single channel for depth. The default setting is that
the attacker can modify equal or more pixels from the depth
image than pixels from the RGB image. Specifically, we
test for r2 = ĉ · r1 where ĉ = 1, 2, 3, 4. For our MMCert,
we set k1 = 9, 000 and k2 = 1, 000. Regarding random-
ized ablation, we set the total number of retained pixels k
to 10,000 such when there is no attack (r1 = r2 = 0), the
accuracy of randomized ablation is similar to our MMCert.
In Appendix D, we show the case where the attacker can
change more pixels from the RGB image than pixels from
the depth image (r1 > r2).

For Monte Carlo sampling, we set N = 100 and α =
0.001 for all experiments.

Evaluation Metrics. We use Certified Accuracy as the
evaluation metric for the multi-modal emotion recognition
task, and use Certified Pixel Accuracy, Certified F-score,
and Certified IoU as the evaluation metrics for the multi-
modal road segmentation task.

• Certified Accuracy. Certified Accuracy is defined as the
fraction of testing inputs whose predicted labels are not
only correct but also verified to be unchanged by an
attacker, i.e., certifiably stable. A testing sample for
a multi-modal model can be represented as (M, y) ∈
Dtest, where Dtest is the testing dataset. M is the multi-
modal test input and y is the ground truth label. We use G
to denote the multi-modal classifier. Then we can define
Certified Accuracy as:∑

(M,y)∈Dtest
I(IsStable(M) ∧G(M) = y)

|Dtest|
. (15)

IsStable(M) is true if and only if for all M′ ∈
S(M,R), we have G(M) = G(M′). I is the indicator
function, and |Dtest| is the total number of testing inputs
in Dtest.

• Certified Pixel Accuracy (or F-score or IoU). Here
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we consider these certified metrics for the purpose of
freespace detection [11]. For general purposed segmen-
tation tasks, mean values over different classes should be
considered. The Certified Pixel Accuracy (or F-score or
IoU) is defined as the average Pixel Accuracy (or F-score
or IoU) lower bound of testing inputs under a given adver-
sarial perturbation space R. We use j ∈ [no] to denote the
index of a basic element of the segmented input modality
mo. We define:

TP = |{j : (Gj(M) = yj = 1) ∧ IsStable(M, j)}|,

TN = |{j : (Gj(M) = yj = 0) ∧ IsStable(M, j)}|,

FP = |{j : Gj(M) = 1}| − TP, and

FN = |{j : Gj(M) = 0}| − TN,

where label 1 represents freespace and label 0 rep-
resents non-freespace. IsStable(M, j) is true
if and only if the predicted label of the jth ba-
sic element of mo cannot be changed by the at-
tacker, i.e., Gj(M) = Gj(M

′),∀M′ ∈ S(M,R).
Then for an individual test sample, we have
Certified Pixel Accuracy = TP+TN

TP+TN+FP+FN ,

Certified F-score = 2TP 2

2TP 2+TP (FP+FN) , and
Certified IoU = TP

TP+FP+FN . To obtain the final
metrics, we compute the average of these values across
all test samples.

5.2. Experimental Results

In this section, we first compare our method with an exist-
ing state-of-the-art method, followed by an analysis of the
impact of hyper-parameters on MMCert. Then, we show
the performance of our method on attack types other than
modification attack, i.e., addition and deletion attacks.
Our MMCert Outperforms Existing State-of-the-Art
Method. Figure 1 and Figure 2 show the comparison result
between our MMCert and randomized ablation [28], which
is the state-of-the-art certified defense against l0 attacks. We
can see that our MMCert consistently outperforms random-
ized ablation on both tasks, for all combinations of r1 and
r2 . For example, Figure 1 shows that on the RAVDESS
dataset, when r1 = r2 = 8 (the attacker can modify 8
frames in both visual and audio modalities), our MMCert
can guarantee correct predictions for more than 40% of the
test samples, while randomized ablation can guarantee 0%
of the test samples.

Our method is more effective than randomized ablation
because of two reasons. First, our method provides an adap-
tive selection of k1 and k2 to control the fraction of sub-
sampled basic elements, i.e., k1

n1
and k2

n2
, of the two modal-

ities. In contrast, for randomized ablation, the sub-sampled
fractions for both modalities are the identical on average,
i.e., k

n . This means that randomized ablation is essentially a

special case of our MMCert. Secondly, our MMCert is more
stable than randomized ablation during both training and
testing phases. In our method, the count of sub-sampled ba-
sic elements remains constant at k1 and k2 for each modal-
ity. Meanwhile, in randomized ablation, this count, adding
up to k, fluctuates. As a result, our method’s sub-sampled
input space is smaller than that of randomized ablation, en-
hancing stability.
Impact of k1 and k2. Here we study the impact of k1
and k2 on the performance of our MMCert. To simplify
the analysis, we perform the experiment on KITTI Road
Dataset such that we have n1 = n2. This setup allows
a direct comparison of the attacker’s capability across two
modalities using r1 and r2. We keep the sum of k1 and k2
constant at 10,000 but vary their ratio. Three specific ratios
were tested: k1 = k2, k1 = 3k2, and k1 = 9k2. The results
are presented in Figure 4. We observe that with r2 = r1
(indicating similar attack capabilities on both modalities),
different ratios of k1 and k2 have similar performance out-
comes. However, for r2 > r1 (where the attacker has more
attack capability on the second modality), strategies with a
larger k1/k2 ratio demonstrated better robustness. For ex-
ample, if r2 > r1, the k2 = 9k1 sub-sampling strategy
consistently outperforms k2 = 3k1, with this advantage
magnifying as r2/r1 increased.. Therefore, in practice, it
is advantageous to sub-sample fewer basic elements from
the modality with higher attack capability and sub-sample
more basic elements from the modality with lower attack
capability, provided this doesn’t compromise the utility (ac-
curacy when there is no attack).
Different Attack Types. We previously focused on modi-
fication attacks, where the attacker modifies at most r1 and
r2 basic elements for the two respective modalities. Our
method also allows the attacker to add or delete basic ele-
ments from each modality. Here we do experiments in sce-
narios where the attacker can add (or delete) at most r1 and
r2 basic elements respectively for the two modalities, and
compare with the modification attack scenario. The results
are shown in Figure 3. We can see that modification attack
is the strongest attack type. For example, when r1 and r2
are both 10, modification attack brings the certified accu-
racy down to 0. In contrast, the addition attack maintains a
certified accuracy greater than 0.4, and the deletion attack
maintains a certified accuracy greater than 0.6.

6. Conclusion
In this work, we propose MMCert, the first certified de-
fense against adversarial attacks for multi-modal models.
Our experimental results show that MMCert significantly
improves the certified robustness guarantees by leveraging
a modality-independent sub-sampling strategy.
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A. Proof of Theorem 1
Our proof is extended from previous studies [20]. We first specify notations and then show our proof. Given original multi-
modal input pair M = (m1,m2, . . . ,mT ) and attacked input pair (m′

1,m
′
2, . . . ,m

′
T ), we respectively use X and Y to

denote the ablated multi-modal input sampled from them without replacement. We use ei to denote the number of basic
elements (e.g., pixels) that are in both mi and m′

i, i.e., ei = |mi ∩ m′
i|. Moreover, we use Υ to denote the joint space

between X and Y . We use E = (E1, E2, . . . , ET ) to denote a variable in the space Υ.
We divide the space Υ into the following subspace:

B̃ = {E|E1 ⊆ (m1 ∩m′
1), E2 ⊆ (m2 ∩m′

2), . . . , ET ⊆ (mT ∩m′
T )}, (16)

Ã = {E|E1 ⊆ m1, E2 ⊆ m2, . . . , ET ⊆ mT } − B̃, (17)

C̃ = {E|E1 ⊆ m′
1, E2 ⊆ m′

2, . . . , ET ⊆ m′
T } − B̃. (18)

We present Neyman Pearson Lemma [10, 20, 36] for later use.

Lemma 1 (Neyman Pearson). Let X , Y be two random variables whose probability densities are respectively Pr(X = E)
and Pr(Y = E), where E ∈ Υ. Let Z be a random or deterministic functions. where Z(1|E) denotes the probability that
Z(E) = 1. Then, we have the following:

(1) If W1 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) < µ} and W2 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) = µ} for some µ > 0.
Let S = W1 ∪W3, where W3 ⊆ W2. If Pr(Z(X ) = 1) ≥ Pr(X ∈ S), then Pr(Z(Y) = 1) ≥ Pr(Y ∈ S).

(2) If W1 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) > µ} and W2 = {E ∈ Υ : Pr(Y = E)/Pr(X = E) = µ} for some µ > 0.
Let S = W1 ∪W3, where W3 ⊆ W2. If Pr(Z(X ) = 1) ≤ Pr(X ∈ S), then Pr(Z(Y) = 1) ≤ Pr(Y ∈ S).

Proof. Let’s start by proving part (1). For convenience, we denote the complement of S as Sc. With this notation, we have
the following:

Pr(Z(Y) = 1)− Pr(Y ∈ S) (19)

=

∫
Υ

Z(1|E) · Pr(Y = E)dE −
∫
S

Pr(Y = E)dE (20)

=

∫
Sc

Z(1|E) · Pr(Y = E)dE +

∫
S

Z(1|E) · Pr(Y = E)dE −
∫
S

Pr(Y = E)dE (21)

=

∫
Sc

Z(1|E) · Pr(Y = E)dE −
∫
S

(1− Z(1|E)) · Pr(Y = E)dE (22)

≥µ · [
∫
Sc

Z(1|E) · Pr(X = E)dE −
∫
S

(1− Z(1|E)) · Pr(X = E)dE ] (23)

=µ · [
∫
Sc

Z(1|E) · Pr(X = E)dE +

∫
S

Z(1|E) · Pr(X = E)dE −
∫
S

Pr(X = E)dE ] (24)

=µ · [
∫
Υ

Z(1|E) · Pr(X = E)dE −
∫
S

Pr(X = E)dE ] (25)

=µ · [Pr(Z(X ) = 1)− Pr(X ∈ S)] (26)
≥0. (27)

Equation 23 is derived from 22 due to the fact that Pr(Y = E)/Pr(X = E) ≤ µ,∀E ∈ S, Pr(Y = E)/Pr(X = E) ≥ µ,∀E ∈
Sc, and 1−Z(1|E) ≥ 0. Similarly, we can establish the proof for part (2), but we have omitted the detailed steps for the sake
of conciseness.

For simplicity, we use ni and n′
i to denote the number of basic elements (e.g., pixels) in mi and m′

i respectively, i.e.,
ni = |mi| and n′

i = |m′
i|. Then, we have the following probability mass function:

Pr(X = E) =


1∏T

i=1 (
ni
ki
)
, if E ∈ Ã ∪ B̃,

0, otherwise.
(28)

Pr(Y = E) =


1∏T

i=1 (
n′
i

ki
)
, if E ∈ B̃ ∪ C̃,

0, otherwise.
(29)
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Recall that we have ei = |m′
i ∩mi| for i = 1, 2, . . . , T , so the probability of X and Y in Ã, B̃ and C̃ can be computed as

follows:

Pr(X ∈ Ã) = 1−
∏T

i=1

(
ei
ki

)∏T
i=1

(
ni

ki

) ,Pr(X ∈ B̃) =

∏T
i=1

(
ei
ki

)∏T
i=1

(
ni

ki

) ,Pr(X ∈ C̃) = 0; (30)

Pr(Y ∈ Ã) = 0,Pr(Y ∈ B̃) =

∏T
i=1

(
ei
ki

)∏T
i=1

(n′
i

ki

) ,Pr(Y ∈ C̃) = 1−
∏T

i=1

(
ei
ki

)∏T
i=1

(n′
i

ki

) . (31)

We first define δl = Pr(g(X ) = A) −
⌊Pr(g(X )=A)

∏T
i=1 (

ni
ki
)⌋∏T

i=1 (
ni
ki
)

to help rounding Pr(g(X ) = A). Then we can construct a

set S = Ã+ B̃′, where B̃′ ⊆ B̃ and Pr(X ∈ B̃′) = Pr(g(X ) = A)− δl − Pr(X ∈ Ã). We can assume Pr(g(X ) = A) >
Pr(X ∈ Ã) because otherwise Pr(g(Y) = A) is bounded by 0. Then we have Pr(g(X ) = A) ≥ Pr(X ∈ S). So we have
the following lower bound on Pr(g(Y) = A):

Pr(g(Y) = A) (32)
≥Pr(Y ∈ S) (33)

≥Pr(Y ∈ B̃′) (34)

≥Pr(X ∈ B̃′)
Pr(Y ∈ B̃′)

Pr(X ∈ B̃′)
(35)

≥
∏T

i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (Pr(g(X ) = A)− δl − 1 +

∏T
i=1

(
ei
ki

)∏T
i=1

(
ni

ki

) ) (36)

Similarly we define δu =
⌈Pr(g(X )=B)

∏T
i=1 (

ni
ki
)⌉∏T

i=1 (
ni
ki
)

−Pr(g(X ) = B), so we can construct a set S = B̃′+ C̃, where B̃′ ⊆ B̃

and Pr(X ∈ B̃′) = Pr(g(X ) = B) + δu − Pr(X ∈ C̃). Then we have Pr(g(X ) = B) ≤ Pr(X ∈ S). So we have the
following upper bound on Pr(g(Y) = B):

Pr(g(Y) = B) (37)
≤Pr(Y ∈ S) (38)

≤Pr(Y ∈ B̃′) + Pr(Y ∈ C̃) (39)

≤Pr(X ∈ B̃′)
Pr(Y ∈ B̃′)

Pr(X ∈ B̃′)
+ Pr(Y ∈ C̃) (40)

≤
∏T

i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (Pr(g(X ) = B) + δu) + Pr(Y ∈ C̃) (41)

≤
∏T

i=1

(
ni

ki

)∏T
i=1

(n′
i

ki

) (Pr(g(X ) = B) + δu) + 1−
∏T

i=1

(
ei
ki

)∏T
i=1

(n′
i

ki

) (42)

To certify a test sample, we just need to enforce Pr(g(Y) = A) > Pr(g(Y) = B). So we get Theorem 1.

B. Details About the Datasets
We use two benchmark datasets for evaluation.

• RAVDESS. We use RAVDESS dataset [33] for the multi-modal emotion recognition task. This dataset contains video
recordings of 24 participants, each speaking with a variety of emotions. The goal is to classify these emotions into one of
seven categories: calm, happy, sad, angry, fearful, surprise, and disgust. For each participant, there are 60 distinct video
sequences. For data pre-processing, we follow previous work [2, 8] and crop or zero-pad these videos to 3.6 seconds, which
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is the average video length. After pre-processing, each data sample contains 108 image frames and 79380 audio frames.
We assume that the attacker can arbitrarily modify r1 image frames (from 108 image frames of visual input) and r2 audio
frames (from 79380 audio frames of audio input). We divide the data into training, validation and test sets ensuring that
the identities of actors are not repeated across sets. Particularly, we used four actors for testing, four for validation, and the
remaining 16 for training.

• KITTI Road. For the multi-modal road segmentation task, we use KITTI Road Dataset [1], which contains 289 training
and 290 test samples across three distinct road scene categories. Notably, the initial release [1] lacks ground-truth labels
for its test samples. As a result, we divided the original training dataset into 231 data samples (80% of the data samples)
for training and 58 data samples (20% of the data samples) for testing. Each data sample consists of a RGB image, a depth
image, and the ground truth segmentation. We assume that the attacker can arbitrarily modify r1 pixels from the RGB
image and r2 pixels from the depth image for each testing input.

C. Special Cases in Multi-modal Segmentation
For segmentation tasks, the multi-modal model outputs the segmentation result for one of the input modalities mo with no

basic elements, which can be pixels or 3-D points. Then the output contains no labels. Previously, we consider the case
where the attacker perform modification attacks to mo, where we have mo = no = n′

o = |m′
o|. However, deletion and

addition attacks on mo are also possible if mo represents a point cloud. If that is the case, the process of deriving Certified
Pixel Accuracy, Certified F-score and Certified IoU can be different.

First, we think of the multi-modal segmentation model before the attack (denoted by G) as composed of multiple classifiers
denoted by G1, G2, . . . , Gno

. Each classifier Gj predicts a label Gj(M) for mj
o (the jth basic element of mo). The ground

truth y also includes no labels, denoted by y1, y2, . . . , yno
. We use Gj(M) to denote the predicted label for mj

o before the
attack and use Gj(M

′) to denote the predicted label for mj
o after the attack. We say a basic element (e.g., a pixel) mj

o is
certifiably stable if

Gj(M) = Gj(M
′),∀M′ ∈ S(M,R), and mj

o ∈ mo ∩m′
o, (43)

which means jth basic element of mo is also in m′
o and the predicted label for it is unchanged by the attack. If it also holds

that Gj(M) = yj , then we term mj
o as certifiably robust.

Then we derive Certified Pixel Accuracy (or F-score or IoU) for deletion and addition attacks on mo. We use j ∈ [no] to
denote the index of a basic element of the input modality mo. For each label, we define:

TP = |{j : (Gj(M) = yj = 1) ∧ IsStable(M, j)}|,

TN = |{j : (Gj(M) = yj = 0) ∧ IsStable(M, j)}|,

FP = |{j : Gj(M) = 1}| − TP, and

FN = |{j : Gj(M) = 0}| − TN,

where 1 indicates that this basic element has been identified as belonging to this label, while label 0 signifies the op-
posite. IsStable(M, j) is true if and only if the jth basic element of mo is certifiably stable as defined above. We
use ro denote the added (or deleted) basic elements for mo. Then for addition attacks to mo, the worst case is
that all added basic elements are not certifiably robust, so we have Certified Pixel Accuracy = TP+TN

TP+TN+FP+FN+ro
,

Certified F-score = 2TP 2

2TP 2+TP (FP+FN+ro)
, and Certified IoU = TP

TP+FP+FN+ro
. And for deletion attacks to mo, the worst

case is that all deleted basic elements are certifiably robust, so we have Certified Pixel Accuracy = TP+TN−ro
TP+TN+FP+FN−ro

,

Certified F-score = 2(TP−ro)
2

2(TP−ro)2+(TP−ro)(FP+FN) , and Certified IoU = TP−ro
TP+FP+FN−ro

. To obtain the final metrics, we
compute the average of these values across all test samples and all labels.

D. Experiment Results for the r1 > r2 Case
Here, we compare our method with randomized ablation for the case r1 > r2. For KITTI Road dataset, we set k1 to 4,000
and k2 to 6,000 for our MMCert and set k to 10,000 for randomized ablation. For RAVEDESS, we let k1 = 5 and k2 = 1,000
for our MMCert and let k = 3,000 for randomized ablation. The results of these experiments are illustrated in Figures 5
and 6, corresponding to RAVNESS and KITTI Road datasets, respectively. Our findings reveal that our method consistently
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Figure 5. Compare our MMCert with randomized ablation on RAVDESS Dataset.
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Figure 6. Compare our MMCert with randomized ablation on KITTI Road Dataset. Certified Pixel Accuracy (first row), Certified F-score
(second row) and Certified IoU (third row) are considered.
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Figure 7. Impact of N on RAVDESS dataset.

surpasses randomized ablation across all r1-r2 ratios for both datasets. This can be attributed to the fact that randomized
ablation is essentially a special case of our MMCert. Consequently, we can identify a combination of k1 and k2 that yields
equal or better results than randomized ablation. Furthermore, our MMCert is more stable than randomized ablation during
both training and testing phases because our method’s sub-sampled input space is smaller than that of randomized ablation.
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Figure 8. Impact of α on RAVDESS dataset.

Figure 9. Illustration of independent sub-sampling on KITTI Road dataset. Our method repeatedly generate predictions for subsampled
multi-modal inputs. These predictions are then aggregated to get the final prediction.

E. Impact of N and α

We study the impact of N and α on RAVDESS dataset. Figure 7 in Appendix shows the impact of N . We discover that the
certified accuracy improves with an increase in N . This enhancement occurs because a larger N yields tighter lower or upper
bounds for the label probability, given a constant confidence level α. However, the computational cost also grows linearly
with respect to N , reflecting a trade off between computational cost and certification performance. Figure 8 in Appendix
shows the impact of α. We observe that MMCert achieves better performance as α increases. This shows the trade off
between the confidence of the certification and the certification performance.

16


	. Introduction
	. Background and Related Work
	. Adversarial Attacks to Multi-modal Models
	. Existing Defenses

	. Problem Formulation
	. Threat Model
	. Certifiably Robust Multi-modal Prediction

	. Our Design
	. Independent Sub-sampling
	. Certify Multi-modal Classification
	. Certify Multi-modal Segmentation

	. Evaluation
	. Experimental Setup
	. Experimental Results

	. Conclusion
	. Proof of Theorem 1
	. Details About the Datasets
	. Special Cases in Multi-modal Segmentation
	. Experiment Results for the r1>r2 Case
	. Impact of N and 

