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Abstract— Optimization algorithms have a rich and funda-
mental relationship with ordinary differential equations given
by its continuous-time limit. When the cost function varies
with time – typically in response to a dynamically changing
environment – online optimization becomes a continuous-time
trajectory tracking problem. To accommodate these time vari-
ations, one typically requires some inherent knowledge about
their nature such as a time derivative.

In this paper, we propose a novel construction and analysis
of a continuous-time derivative estimation scheme based on
“dirty-derivatives”, and show how it naturally interfaces with
continuous-time optimization algorithms using the language
of ISS (Input-to-State Stability). More generally, we show
how a simple Lyapunov redesign technique leads to provable
suboptimality guarantees when composing this estimator with
any well-behaved optimization algorithm for time-varying costs.

I. INTRODUCTION

Optimization problems form the basis of a vast array of
engineering problems [21]. While optimization with respect
to a static cost function is a classical field of study, more
and more applications are being deployed in dynamic envi-
ronments, leading to real-time unpredictable changes in the
optimization cost function [3], and any small improvement
in this setting is extremely beneficial to a variety of tasks.

Optimization algorithms are commonly analyzed in the
discrete-time setting. However, numerous classical algo-
rithms such as gradient descent, Nesterov acceleration [14],
and their variants can be viewed as discretization schemes of
continuous-time ODEs (Ordinary Differential Equations) [2],
[18]. When modeled as such, properties of these algorithms
(like convergence and stability) can be analyzed via the
many tools of control and nonlinear systems theory, such
as Lyapunov stability [10]. This view point also impacts the
study of time-varying or online optimization. Under some
convexity assumptions, time-varying optimization can be an-
alyzed as a trajectory tracking problem [19] by determining
how closely the resulting solution x(t) tracks the ideal time-
varying minimizer trajectory x∗(t) = argminx f(x, t), a
widely studied problem in continuous-time control theory.

In the time-varying setting, the literature generally takes
one of two approaches. The first is to pick an algorithm
developed for the time-invariant case and proving that it is
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robust to some level of time-variation of the cost function. In
[16] the author derives tracking error bounds for the classical
gradient descent method, and [24] gives regret bounds in
the Online Convex Optimization (OCO) setting under slow
variations. The second approach, instead, tries to redesign
or adapt an optimization method by directly incorporating
knowledge of the time variation. In continuous-time, multiple
works add a time-varying correction term to the continuous-
time analogue of Newton’s method, as under ideal conditions
that fully compensates for the time variation [5], [17], [19],
with some works also analyzing time-varying constraints [4].

As one might expect, incorporating knowledge of the
time variations in the cost can often bring massive per-
formance/stability benefits. However, this typically requires
having direct knowledge of the time-variation in the form
of a time derivative, such as ∂

∂t∇xf(x, t). This may not
constitute a problem in some applications, such as a control
task where we want to track a known reference trajectory,
but many others do not allow for this kind of knowledge
ahead of time. In [20], this time derivative is approximated
via finite differences, but their analysis is tailored to their
specific discrete-time algorithm and hard to generalize. An-
other option, pursued in this work, is to study a general
derivative estimation technique, and under what conditions
the interconnection of such an estimator with an optimization
algorithm results in a well-behaved system.

Derivative estimation has a rich history, from numerous
variants of finite difference [6], [11], [15] to interpolation-
based [12] schemes. Notably, many observers and state
estimation methods from control theory can be adapted
to perform derivative estimation (related to the notion of
flatness for dynamical systems [7]), of which high-gain
observers [1], [9] are a notable example. The so-called
dirty-derivative originates from PID control [8], [13] as a
common approximation to implement a “derivative” term
in the control signal, but has received little interest from
a theoretical point of view. This filter is the basis of the
extended derivative estimator we introduce in this work. The
ability of this construction to interface with the framework
we develop is crucial for our analysis.

Our contribution is summarized as follows: 1) We in-
troduce a framework to adapt continuous-time static op-
timization algorithms to include time-varying knowledge,
and establish when this is possible through the language of
ISS (Input-to-State Stability) theory [22]. 2) We provide a
novel construction of a general derivative estimator based on
dirty-derivatives, and we derive explicit IOS (Input-to-Output
Stability) [23] estimation error bounds. 3) We establish that
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the dynamical system resulting from the interconnection of
such an adapted optimization algorithm and our derivative
estimator results, also, is an IOS system. This translates to
robust behavior and bounds on the time-varying minimizer
tracking error ∥x(t)− x∗(t)∥.

II. PROBLEM STATEMENT

We consider a convex optimization task where the cost
function varies with time. More explicitly, consider a feasible
set X ⊆ Rn, a set of parameter vectors Θ ⊆ Rp and a time
domain T ⊆ R≥0, alongside a cost function f : X ×Θ → R.
Assuming that the parameters change with time according to
some unknown function θ : T → Θ, we seek to design an
Ordinary Differential Equation (ODE):

ẋ = g(x) + u, (1)

with x ∈ X , g : X → Rn, and u : T → Rn such that its
solution, x(t), minimizes the time-varying function f for all
t ∈ T. Because the time-varying law of the parameters is
unknown, g and u cannot be designed using knowledge of
differential properties of θ, such as its time derivative θ̇(t),
but we may use its current value θ(t).

We make the following common assumptions:
Assumption 1: The function f is smooth and strongly

convex for every fixed θ ∈ Θ. I.e., there exists µ ∈ R>0

such that:

f(x, θ) ≥ f(x′, θ) +∇xf(x
′, θ)⊤(x− x′) +

µ

2
∥x− x′∥22,

for all x, x′ ∈ X , and θ ∈ Θ.
Under these conditions, there exists a (unique) minimizing

trajectory described as x∗(θ(t)) = argminx∈X f(x, θ(t)),
and we then seek to minimize a tracking error with respect
to this trajectory. I.e., we design g and u in (1) such that
x−x∗ converges to a neighborhood of the origin, the size of
which may depend on the magnitude of the time-variations
in f .

III. ONLINE OPTIMIZATION

Classically, continuous-time algorithms in the form (1)
arise as the continuous limit of iterative algorithms, with
the prime example being the gradient flow ẋ = ∇xf(x).
Multiple works have shown the effectiveness of gradient
flows, even in online optimization tasks, when the time
variations are slow [16].

A related family of methods directly incorporates knowl-
edge of the time-variations in the cost function. A typical
candidate for this approach is the continuous limit of New-
ton’s method:

ẋ = − (∇xxf(x, θ))
−1 ∇xf(x, θ) + u. (2)

Here ∇xxf(x, θ) denotes the Hessian matrix associated with
a time-varying f(x, θ). When augmenting (2) with time
variation knowledge, one often considers the correction:

u(t) = − (∇xxf(x, θ))
−1 ∇xθf(x, θ)θ̇, (3)

where ∇xθf(x, θ) is the partial derivative of the gradient of
f with respect to θ. For a detailed analysis of (2)-(3), see [4].

Traditionally, the performance of (1) is analyzed purely
through the lens of stability, but here we consider the slightly
more general view of input-to-state stability (ISS) [22]. For a
fixed θ, consider the corresponding minimizer x∗(θ). Then,
we say (1) is ISS with respect to u if:

∥x(t)− x∗(θ)∥ ≤ β(∥x(t0)− x∗(θ)∥, t− t0) + κ(∥u(t)∥∞),
(4)

for all t0 ≤ t ∈ T, where κ is a class K function, β is a
class KL function, ∥·∥ denotes the usual vector 2-norm, and
∥u(t)∥∞ is the essential supremum of u over [t0, t].1

ISS has an equivalent Lyapunov characterization. Equation
(4) is equivalent to the existence of a radially unbounded
function V : Rn × Rp → R≥0 with V (x∗(θ), θ) = 0 and
α1, α2, α3, α4 ∈ K that satisfy:

α1(∥x− x∗∥) ≤ V (x, θ) ≤ α2(∥x− x∗∥),
V̇ (x, θ) = ∇xV (x, θ)ẋ ≤ −α3(V (x, θ)) + α4(∥u(t)∥).

(5)
Note that when u = 0, the system is (uniformly) globally
asymptotically stable.

We observe that, under some mild conditions, any ODE (1)
that satisfies this ISS property for the family of time-invariant
optimization problems, can be adapted into a robust ODE for
the time-varying optimization problem, and formalize this
assertion.

Lemma 1: Consider system (1) and suppose g is such that
for any fixed value of θ ∈ Θ and its corresponding minimizer
x∗(θ), system (1) is ISS with respect to u. Let V (x, θ) be
a corresponding family of Lyapunov functions differentiable
with respect to θ with bounded ∥∇θV (x, θ)∥ < ∞. Then, if
θ(t) is a smooth function of time, any continuous u : T →
Rn satisfying:

∇xV (x, θ)u+∇θV (x, θ)(θ̇ + d) ≤ 0, (6)

renders (1) ISS with respect to the signal d : T → Rp when
considering the time-varying minimizer x∗(θ(t)). I.e., the
following inequality holds for some β ∈ KL and κ ∈ K:∥∥x(t)− x∗(θ(t))

∥∥ ≤ β
(∥∥x(0)− x∗(θ(0))

∥∥, t)+ κ(∥d∥∞).
(7)

In later sections the signal d will be used to model the
estimation error on θ̇.

Proof: We follow the same basic steps as in Lyapunov
redesign for ISS [22]. Taking the time derivative of V (x, θ)
we have:

V̇ (x, θ) = ∇xV (x, θ)(g(x) + u) +∇θV (x, θ)θ̇

= ∇xV (x, θ)g(x) +∇xV (x, θ)u+∇θV (x, θ)θ̇

≤ −α3(V (x, θ)) +∇xV (x, θ)u+∇θV (x, θ)θ̇

≤ −α3(V (x, θ))−∇θV (x, θ)d

≤ −α3(V (x, θ)) + αd(∥d∥),

1A class K function κ : R≥0 → R≥0 is strictly increasing with κ(0) =
0. A class KL function β : R×R → R is a continuous function such that
β(·, s) ∈ K and β(r, ·) is strictly decreasing with lims→∞ β(r, s) = 0.



where we have used (5) in the first inequality and defined
αd(∥d∥) = supx,θ(∥∇θV (x, θ)∥)∥d∥. Then, the existence of
β and κ satisfying (7) immediately follows by equivalence
with the Lyapunov characterization of ISS.

This approach applies generically to any continuous-time
algorithm that is asymptotically stable for the entire class of
static problems encountered, such as strongly convex costs.
In this way, Lemma 1 provides a framework for adapting
a sufficiently well-behaved continuous-time algorithm to the
time-varying scenario.

Remark 1: A choice of u satisfying (6) always exists
as long as ∇xV (x, θ) ̸= 0 whenever ∇θV (x, θ) ̸= 0.
As a special case, this is always satisfied for the choice2

V (x, θ) = 1
2∥∇xf(x, θ)∥2. Under Assumption 1 on f , this

is a Lyapunov function for (2) and the correction (3) always
satisfies condition (6) with d = 0.

Remark 2: If condition (6) is not always satisfied, we
can still obtain a weaker version of Lemma 1 as long as
there is a finite threshold V ∈ R≥0 such that V (x, θ) > V
implies ∇xV (x, θ) ̸= 0. In that case the result reduces to
ISpS (input-to-state practical stability).

IV. DERIVATIVE ESTIMATION

In Lemma 1, we showed how online optimization meth-
ods can be designed by exploiting knowledge of the time
variations in the function. Unfortunately, the class of control
inputs in (6) is characterized by explicit knowledge of θ̇,
which is generally unavailable in the online scenario. To
remedy this issue, we consider an extension of the classical
continuous-time differentiation scheme, sometimes called
dirty-derivative [13], and provide a proof of convergence.

The dirty-derivative operator approximates the derivative
of a signal w : T → R and is described by the transfer
function:

σs

s+ σ
, (8)

where σ ∈ R>0 determines how fast the filter defined by the
transfer function tracks the derivative of w.

We generalize (8) to estimate derivatives up to some
order k, additionally resulting in a flexible choice of error
bounds. The proposed estimator follows a recursive structure,
where Ŵi(s) is the Laplace transform of the i-th estimated
derivative for i ∈ {1, 2, . . . , k}:

Ŵi(s) =
σisi

(s+ σ)i
W (s) +

(s+ σ)i − σi

s(s+ σ)i
Ŵi+1(s)

Ŵk(s) =
σksk

(s+ σ)k
W (s).

(9)

A block diagram of (9) for k = 3 is shown in Fig. 1. Each
derivative estimated by (9) converges exponentially to a ball
around the true derivative whose size is a function of the
magnitude of the (k + 1)-th derivative of w.

2A simple computation shows that ∇xV (x, θ) = ∇xxf(x, θ)∇xf(x, θ)
and ∇θV (x, θ) = ∇xθf(x, θ)∇xf(x, θ). Therefore, ∇θV ̸= 0 implies
∇xf ̸= 0 which in turns implies ∇xV ̸= 0 because of strong convexity
of f .

Fig. 1. System (9) estimating the first three derivatives of a signal U(s).

We are now in the position to prove our previous claim
for the dirty-derivative-based system (9). Note that we use
w(i) to denote the i-th derivative of w.

Theorem 1: Let w : R≥0 → R be a k+1 times differen-
tiable input signal and ŵi : R≥0 → R for i = {1, 2, . . . , k}
be the i-th estimate produced by (9) when fed w. Then, for
all t ≥ 0:∥∥ŵi(t)− w(i)(t)

∥∥ ≤ βi,σe
−γiσt +

αi

σk+1−i

∥∥w(k+1)(t)
∥∥
∞,

(10)
for some βi,σ ∈ R>0 dependent on initial conditions, and
γi, αi ∈ R>0. In particular:

lim
t→∞

∥ŵi(t)− w(i)(t)∥ ≤ αi

σk+1−i
∥w(k+1)(t)∥∞. (11)

Proof: Let us define the estimation error of the i-th
derivative of w as ei = ŵi − w(i). Then, for i = k the
Laplace transform of the error is:

Ek = Ŵk − skW =
σksk

(s+ σ)k
W − skW

=
σk − (s+ σ)k

(s+ σk)
skW = − (s+ σ)k − σk

s(s+ σk)
sk+1W

= −Fk(s)s
k+1W,

(12)
where we define Fi(s) for i ∈ {1, 2, . . . , k} as:

Fi(s) =
(s+ σ)i − σi

s(s+ σ)i
. (13)

For i < k the error is:

Ei = Ŵi − siW

=
σisi

(s+ σ)i
W +

(s+ σ)i − σi

s(s+ σ)i
Ŵi+1 − siW

=
σi − (s+ σ)i

(s+ σi)
siW +

(s+ σ)i − σi

s(s+ σ)i
Ŵi+1

=
(s+ σ)i − σi

s(s+ σ)i

(
Ŵi+1 − si+1W

)
=

(s+ σ)i − σi

s(s+ σ)i
Ei+1

= Fi(s)Ei+1.

(14)

Because the transfer function Fi(s) corresponds to the state-
space system in Lemma 2 (see the appendix3), we can apply

3Inspecting the system defined in Lemma 2, this can be easily verified by
computing Cn(sI−An)−1Bn. Because An,σ is in controllable canonical
form, det (sI −An)−1 = (s + σ)n, and due to Cn and Bn, we
only need to compute the top left cofactor of sI − An, which equals
s−1 ((s+ σ)n − σn).



its result recursively (denoting the internal state of Fi as xei ):

∥ei(t)∥ ≤ ∥xei(0)∥bi,σe−diσt +
ai
σ
∥ei+1(t)∥

≤ ∥xei(0)∥bi,σe−diσt

+
ai
σ

(
∥xei+1(0)∥bi+1,σe

−di+1σt +
ai+1

σ
∥ei+2(t)∥

)
...

≤
k∑

j=i

((
j−1∏
ℓ=i

aℓ
σ

)
∥xej (0)∥bj,σe−djσt

)

+

 k∏
j=i

aj

 ∥w(k+1)(t)∥∞
σk+1−i

.

Because the first term is a sum of exponentially decay-
ing terms with a common σ in the exponent, there exist
βi,σ, γi, αi ∈ R>0 such that:

k∑
j=i

((
j−1∏
ℓ=i

aℓ
σ

)
∥xej (0)∥bj,σe−djσt

)
≤ βi,σe

−γiσt, k∏
j=i

aj

 ∥w(k+1)(t)∥∞
σk+1−i

≤ αi
∥w(k+1)(t)∥∞

σk+1−i
.

(15)

Remark 3: Although this result is for a scalar signal, it
immediately generalizes to estimating k-derivatives of an m-
dimensional signal w : T → Rm by running m copies of the
estimator in parallel; one for each scalar component of w.

Remark 4: The asymptotic error bound in Theorem 1
approaches zero for σ → ∞, but with a rate that scales
differently with the order of derivative i ≤ k. In particular,
higher-order derivatives are more difficult to estimate, and
the size of the ball to which we are guaranteed to converge
scales inversely with powers of the derivative order.

Remark 5: In the special case where the signal w : T →
R is described by a k-degree polynomial, the (k + 1)-th
derivative vanishes, and

∥∥w(k+1)(t)
∥∥
∞ = 0. Theorem 1 then

guarantees that the estimates converge exponentially to the
exact values of the derivatives of w for any choice of σ.

V. FRAMEWORK FOR TIME-VARYING OPTIMIZATION

Both the online optimization algorithms designed via
Lemma 1 and the dirty derivative scheme in Theorem 1 come
with ISS-style convergence guarantees (specifically, Theo-
rem 1 gives an IOS (input-to-output stability) result [23]).
Because of these results, we can cascade these systems and
preserve their convergence properties. In particular, Lemma 1
shows that a well-behaved (in the ISS sense) time-invariant
optimization algorithm can be adapted into a time-varying
one assuming knowledge of θ̇. We now present our main
contribution, and show that the estimates produced by our
dirty-derivative scheme (9) can be used in place of θ̇ while
still preserving input-to-output stability of the interconnected
system. We formalize this notion in the following theorem.

Theorem 2: Consider a system (1) satisfying the assump-
tions of Lemma 1, and let θ̂1 : T → Θ be the estimate of θ̇

provided by a dirty-derivative estimator (9) of order k when
fed θ as input. Then, if u is selected such that:

∇xV (x, θ)u+∇θV (x, θ)θ̂1 ≤ 0, (16)

the combination of system (1) and the estimator is
IOS (input-to-output stable) with respect to the signal
σ−kθ(k+1)(t) when considering the time-varying minimizer
x∗(θ(t)). I.e., with outputs x̃(t) = x(t) − x∗(θ(t)) and
e1 = θ̂1 − θ̇ there exist β′

σ ∈ KL and κ′ ∈ K such that:∥∥∥(x̃(t), e1(t))∥∥∥ ≤

β′
σ

(∥∥∥(x̃(0), xe(0)
)∥∥∥, t)+ κ′

(
σ−k

∥∥θ(k+1)
∥∥
∞

)
,

(17)

where xe denotes the full internal state of the dirty-derivative
error system.

Proof: We first observe that by (16):

0 ≥ ∇xV (x, θ)u+∇θV (x, θ)θ̂1

= ∇xV (x, θ)u+∇θV (x, θ)(θ̇ + (θ̂1 − θ̇))

= ∇xV (x, θ)u+∇θV (x, θ)(θ̇ + e1).

(18)

Then, by applying Lemma 1 with d = e1 we can write:∥∥x(t)− x∗(θ(t))
∥∥ ≤ β

(∥∥x(0)− x∗(θ(0))
∥∥, t)+ κ(∥e1∥∞),

and:∥∥∥(x̃(t), e1(t))∥∥∥ ≤ ∥x̃(t)∥+ ∥e1(t)∥

=
∥∥x(t)− x∗(θ(t))

∥∥+ ∥e1(t)∥
≤ β

(∥∥x(0)− x∗(θ(0))
∥∥, t)+ κ(∥e1∥∞)

+ β1,σe
−γ1σt +

α1

σk

∥∥θ(k+1)(t)
∥∥
∞.

By the nonlinear superposition principle [22, Section 3.1],
only the essential supremum norm for t → ∞ matters, so
we can substitute the essential supremum norm ∥e1(t)∥∞ by
a limsup limt→∞∥e1(t)∥ ≤ α1

σk

∥∥θ(k+1)(t)
∥∥
∞:∥∥∥(x̃(t), e1(t))∥∥∥ ≤

[
β
(∥∥x̃(0)∥∥, t)+ β1,σe

−γ1σt
]

+
[
κ
(α1

σk

∥∥θ(k+1)(t)
∥∥
∞

)
+

α1

σk

∥∥θ(k+1)(t)
∥∥
∞

]
.

By composition of class K functions, and because β1,σe
−γ1σt

is monotonically decaying with time with β1,σ dependent on
the initial conditions of the internal error system’s state, there
exist β′

σ ∈ KL and κ′ ∈ K such that (17) holds.

Theorem 2, together with Lemma 1 and our dirty-
derivative estimator, provide a general framework to adapt
a continuous time-invariant optimization algorithm to an on-
line time-varying algorithm. Notably, explicit time derivative
knowledge of θ is not necessary, since we can approximate it
while retaining the stability properties of the ideal algorithm,
and the performance of the optimization algorithm can be
improved arbitrarily by increasing the gain σ. However,
in practice the presence of measurement noise on θ, or a
discrete implementation of the continuous time algorithm
will limit how high σ can be set. The effect of noise on
our proposed construction is explored empirically in the
following section.



VI. EXPERIMENTS

In this section we demonstrate in simulation the effective-
ness of our proposed derivative estimation scheme (9), and
its application to a time-varying optimization task where we
use it to estimate the time-varying correction in Lemma 1.

A. Derivative Tracking

We first show the system (9) tracking the first derivative
of a sinusoidal signal w(t) = sin (5t− 2) for σ ∈ {5, 20}
(see Fig. 2). As expected, the tracking is significantly better
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Fig. 2. Plot of the first derivative of the signal w(t) = sin(5t − 2) and
its estimates for σ ∈ {5, 20}.

for the bigger value of σ. In a practical scenario, we may
only have access to a corrupted version of w, perturbed by
some noise n(t), i.e., w̃(t) = w(t) + n(t), and we want our
estimation to reject this noise effectively. Noise rejection is
practically relevant even when the signal is fully measurable,
as a typical time-discretization of (9) is equivalent to the
continuous system working with bounded noise.

In Fig. 3, we show first-derivative tracking of the same
signal w(t) = sin (5t− 2) for σ ∈ {5, 20} corrupted by
zero mean Gaussian noise with var (n) = 0.01.

Even with high σ, the estimator closely tracks the true
derivative while rejecting most of the high frequency noise.

B. Time-Varying Optimization with Derivative Estimator

We now show a simple application of (9) in a time-varying
optimization context. We pick a time-varying loss function:

f(x, θ) =
1

2
∥x− θ(t)∥2,

θ(t) =
[
cos (5t− 2) sin (5t− 2) cos2 (5t− 2)

]T
,

that we minimize using the continuous-time generalization of
Newton’s method (2) with the time-varying correction (3).

In the simulation, we consider an estimated correction
û(t) = − (∇xxf(x, θ))

−1 ∇xθf(x, θ)θ̂1 where we use our
dirty derivative construction (9) to estimate θ̇(t) from just
the available signal θ(t). In Fig. 4 we compare our achieved
loss over time with the loss achieved using the ideal correc-
tion (3).
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Fig. 3. Plot of the first derivative of the signal w(t) = sin(5t − 2) and
its estimates for σ ∈ {5, 20} when w is corrupted by Gaussian noise.
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Fig. 4. Loss (over time) of the online Newton’s method with ground truth
(blue) and estimated (red, yellow) time derivative information.

Fig. 4 shows that our loss trajectory approximates the ideal
one, settling closer to zero loss with higher values of σ.
Practically, however, higher values of σ tend to amplify the
effects of noisy measurements, preventing us from scaling σ
arbitrarily high. We repeat the experiment with the derivative
estimator being fed a signal θ(t) with each component cor-
rupted by Gaussian noise with zero mean and 0.01 variance.
In Fig. 5 the experiment results show again good robustness
to the added noise.

VII. CONCLUSIONS

We have presented a framework to adapt a time-invariant
continuous-time optimization algorithm to incorporate a cor-
rection term compensating for the time-variation, and showed
that popular methods, such as (2), are suitable for this. We
then provided a novel general purpose construction of a
derivative estimator with explicit error bounds, and showed
that using these estimates in place of true time derivative
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knowledge in the adapted algorithm results in an IOS system.
This provides robustness and convergence results for the
tracking error with respect to the true time-varying minimizer
of the cost function. Finally, we verified our theory via a set
of proof-of-concept simulation experiments.

In future studies we intend to extend the current framework
and results to not only the time-varying parameter problem
θ(t) studied here, but to the full closed-loop interaction with
a solution dependent parameter vector θ(x(t)).

APPENDIX

Lemma 2: Consider the LTI SISO dynamical system:{
ẋ(t) = An,σx(t) +Bnu(t)

y(t) = Cnx(t),
(19)

where x : T → Rn, u, y : T → R, σ ∈ R>0, and the matrices
An,σ ∈ Rn×n, Bn ∈ Rn×1, and Cn ∈ R1×n are:

An,σ =


0 1 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 1

−
(
n
0

)
σn −

(
n
1

)
σn−1 . . . −

(
n

n−1

)
σ

 ,

Bn =
[
1 0 . . . 0

]T
, Cn =

[
1 0 . . . 0

]
.

Then, there exist bn,σ, dn, an ∈ R>0 such that for all t ∈ T,
the output y of (19) satisfies:

∥y(t)∥ ≤ ∥x(0)∥bn,σe−dnσt +
an
σ
∥u(t)∥∞. (20)

Proof: We first introduce some notation. Let λ(·) and
λ(·) respectively denote the highest and lowest eigenvalues
of a symmetric matrix. Let us define An ∈ Rn×n as:

An =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−
(
n
0

)
−
(
n
1

)
−
(
n
2

)
. . . −

(
n

n−1

)

 .

Note that because An and An,σ are in companion form,
their characteristic polynomials are (λ+ 1)n and (λ+ σ)n,
respectively. Then, let Pn be the positive definite solution of
the Lyapunov equality AT

nPn + PnAn = −I . Pn exists and
is unique, as all the eigenvalues of An are negative.

To analyze the properties of (19), we introduce the fol-
lowing change of variables:

z1 = σn−1x1

z2 = σn−2x2

...
zn = xn.

(21)

Then, the dynamics of z can be written as:

ż(t) = σAnz(t) + σn−1Bnu(t)

= σ


0 1 . . . 0

0 0
. . .

...
...

...
. . . 1

−
(
n
0

)
−
(
n
1

)
. . . −

(
n

n−1

)

 z(t) + σn−1


1
0
...
0

u(t).

(22)
Let us now introduce the Lyapunov function Vn : Rn → R≥0

defined as Vn(z) = zTPnz and compute its time derivative
(we omit the t argument on Vn, z, and u for clarity):

V̇n = żTPnz + zTPnż

= (σAnz + σn−1Bnu)
TPnz + zTPn(σAnz + σn−1Bnu)

= −σzT z + 2σn−1uBT
nPnz

≤ −σ∥z∥2 + σ

2
∥z∥2 + 2

σ
∥Bn∥2∥Pn∥2σ2(n−1)u2

≤ − σ

2λ(Pn)
Vn +

2λ
2
(Pn)

σ
σ2(n−1)u2,

(23)
where the third equality holds because Pn is the solution of
AT

nPn + PnAn. Then, by Grönwall’s Lemma it holds that:

Vn(t) ≤ Vn(0)e
− σ

2λPn
t
+

4λ
3

Pn

σ2
σ2(n−1)u2(t)

=⇒ ∥z(t)∥ ≤ ∥z(0)∥
(
λPn

λPn

) 1
2

e
− σ

4λPn
t

+ 2

(
λ
3

Pn

λPn

) 1
2

σn−2∥u(t)∥∞.

(24)

From the definition of y and reversing the change of variables
we can observe that:

∥y∥ = ∥x1∥ =
∥z1∥
σn−1

≤ ∥z∥
σn−1

,

∥z(0)∥ ≤ max
(
1, σn−1

)
∥x(0)∥,

(25)

so:

∥y(t)∥ ≤ max

(
1

σn−1
, 1

)
∥x(0)∥

(
λPn

λPn

) 1
2

e
− σ

4λPn
t

+ 2

(
λ
3

Pn

λPn

) 1
2 ∥u(t)∥∞

σ
.

(26)



Then, if we define bn,σ ∈ KL∞ and an ∈ R>0 as:

bn,σ(r, t) = rmax
(
1, σn−1

)(λPn

λPn

) 1
2

e
− σ

4λPn
t
,

an = 2

(
λ
3

Pn

λPn

) 1
2

,

(27)

we can finally write:

∥y(t)∥ ≤ bn,σ (∥x(0)∥, t) + an
∥u(t)∥∞

σ
. (28)
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