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Abstract In this article, we propose a novel Stabilized Physics Informed
Neural Networks method (SPINNs) for solving wave equations. In general,
this method not only demonstrates theoretical convergence but also exhibits
higher efficiency compared to the original PINNs. By replacing the L2 norm
with H1 norm in the learning of initial condition and boundary condition,
we theoretically proved that the error of solution can be upper bounded by
the risk in SPINNs. Based on this, we decompose the error of SPINNs into
approximation error, statistical error and optimization error. Furthermore, by
applying the approximating theory of ReLU3 networks and the learning theory
on Rademacher complexity, covering number and pseudo-dimension of neural
networks, we present a systematical non-asymptotic convergence analysis on
our method, which shows that the error of SPINNs can be well controlled if
the number of training samples, depth and width of the deep neural networks
have been appropriately chosen. Two illustrative numerical examples on 1-
dimensional and 2-dimensional wave equations demonstrate that SPINNs can
achieve a faster and better convergence than classical PINNs method.
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1 Introduction

During the past few decades, numerical methods of Partial differential equa-
tions (PDEs) have been widely studied and applied in various fields of scientific
computation [1,2,3,4]. Among these, due to the central significance in solid
mechanics, acoustics and electromagnetism, the numerical solution for wave
equation attracts considerable attention, and a lot of work has been done to
analyze the convergence rate, improve the solving efficiency and deal with
practical problems such as boundary conditions. For many real problems with
complex region, however, designing an efficient and accurate algorithms with
practical absorbing boundary conditions is still difficult, especially for prob-
lems with irregular boundary. Furthermore, in high-dimensional case, many
traditional methods may become even intractable due to the Curse of Dimen-
sionality, which leads to an exponential increase in degree of freedom with the
dimension of problem.

More recently, inspired by the great success of deep learning in fields of
natural language processing and computational visions, solving PDEs with
deep learning has become as a highly promising topic [5,6,7,8,9,10]. Several
numerical schemes have been proposed to solve PDEs using neural networks,
including the deep Ritz method (DRM) [11], physics-informed neural networks
(PINNs) [12], weak adversarial neural networks(WANs) [13] and their exten-
sions [14,15,16]. Due to the simplicity and flexibility in its formulation, PINNs
turns out to be the most concerned method. In the field of wave equations, re-
searchers have successfully applied PINNs to the modeling of scattered acoustic
fields [17], including transcranial ultrasound wave [18] and seismic wave [19].
In these works, all of the authors observed an interesting phenomenon that
training PINNs without any boundary constraints may lead to a solution un-
der absorbing boundary condition. In another word, the waves obtained by
PINNs without boundary loss will be naturally absorbed at the boundary.
This phenomenon, in fact, greatly improves the application value of PINNs
in wave simulation, especially for inverse scattering problems. On the other
hand, although PINNs have been widely used in the simulation of waves, a
rigorous numerical analysis of PINNs for wave equations and more efficient
training strategy are still needed.

In this work, we propose the Stabilized Physics Informed Neural Networks
(SPINNs) for simulation of waves. By replacing the L2 norm in initial condition
and boundary condition with H1 norm, we obtain a stable PINNs method,
in the sense that the error in solution can be upper bounded by the risk
during training. It is worth mentioning that, in 2017 a similar idea called
Sobolev Training has been proposed to improve the efficiency for regression
[20]. Later in [21] and [22], the authors generalized this idea to the training of
PINNs, with applications to heat equation, Burgers’ equation, Fokker-Planck
equation and elasto-plasticity models. One main difference between our model
and these works is that, we still use the L2 norm, rather than H1 norm for the
residual and initial velocity in the loss of SPINNs. This designing, as we will
demonstrate, turns out to be a sufficient condition to guarantee the stability,
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which also enables us to achieve a lower error with same and even less training
samples. Furthermore, based on this stability, we firstly give a systematical
convergence rate analysis of PINNs for wave equations. In general, our main
contributions are summarized as follows:

Main contributions
• We propose a novel Stabilized Physics Informed Neural Networks method

(SPINNs) for solving wave equations, for which we prove that the error in
solution can be bounded by the training risk.

• We numerically show that SPINNs can achieve a faster and better con-
vergence than original PINNs.

• We present a systematical convergence analysis of SPINNs. According to
our result, once the network depth, width, as well as the number of training
samples have been appropriately chosen, the error between the numerical so-
lution uϕ from SPINNs and the exact solution u∗ can be arbitrarily small in
the H1 norm

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

∥ûϕ − u∗∥H1(ΩT ) ≤ ε.

The rest of this paper is organized as follows. In Section 2, we describe the
problem setting and introduce the SPINNs method. In Section 3, we study
the convergence rate of the SPINNs method for solving wave equations. In
Section 4, we present several numerical examples to illustrate the efficiency of
SPINNs. Finally in Section 5 the main conclusion will be provided.

2 The Stabilized PINNs method

In this section, we would introduce a stabilized PINNs (SPINNs) method for
solving the wave equation. For completeness, we first list the following no-
tations of neural networks and function spaces we will use. After that, the
formulation of SPINNs will be presented.

2.1 Preliminary

Let D ∈ N, we would call function f a neural network if it is implemented by:

f0(x) = x,

fl(x) = ρl(Alfl−1 + bl), for l = 1, · · · ,D − 1,

f : = fD(x) = ADfD−1 + bD,

where Al = (a
(l)
ij ) ∈ Rnl×nl−1 , bl = (b

(l)
i ) ∈ Rnl .And ρl : Rnl → Rnl , is the

active function. The hyper-parameters D and W := max{Nl, l = 0, · · · ,D}
are called the depth and the width of the network, respectively. Let Φ be a set
of activation functions and X be a Banach space, the normed neural network
function class can be defined as

N (D,W, {∥ · ∥X ,B}, Φ) := {f : f is implemented by a neural network with
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depth D and width W, ∥f∥X ≤ B, ρ(l)i ∈ Φ for each i and l}.

Next, we introduce several standard function spaces, including the continuous
function space and Sobolev space:

C(Ω) := {all the continuous functions defined on Ω},
Cs(Ω) := {f : Ω → R | Dαf ∈ C(Ω)}, |α| ≤ s,

C(Ω) := {all the continuous functions defined on Ω}, ∥f∥C(Ω) := max
x∈Ω

|f(x)|,

Cs(Ω) := {f : Ω → R | Dαf ∈ C(Ω)}, |α| ≤ s, ∥f∥Cs(Ω) := max
x∈Ω,|α|≤s

|Dαf(x)|,

Lp(Ω) :=

{
f : Ω → R|

∫
Ω

|f |p dx <∞
}
,

∥f∥Lp(Ω) :=

[ ∫
Ω

|f |pdx
]1/p

,∀p ∈ [1,∞),

L∞(Ω) := {f : Ω → R | ∃C > 0 s.t.|f | ≤ C a.e.} ,
∥f∥L∞(Ω) := inf{C | |f | ≤ C a.e.},

Hs(Ω) :=
{
f : Ω → R | Dαf ∈ L2(Ω), |α| ≤ s

}
,

∥f∥Hs(Ω) :=

∑
|α|≤s

∥Dαf∥2L2(Ω)

1/2

.

2.2 Stabilized PINNs for wave equations

Considering the following wave equation:
utt −∆u = f, (x, t) ∈ ΩT ,

u(x, 0) = φ(x), x ∈ Ω,

ut(x, 0) = ψ(x), x ∈ Ω,

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, T ],

(1)

where∆u =
∑d

i=1 uxixi , Ω = (0, 1)d and ΩT = Ω×[0, T ]. Through this article,
we would assume this problems defines a unique solution:

Assumption 1 Assume (1) has a unique strong solution u∗ ∈ C2(ΩT ) ∩
C(ΩT ).

Without loss of generality, we further assume that f, φ, ψ, g and their
derivatives are L∞ bounded by a constant κ. Denote B ≜ max{2∥u∗∥C2(ΩT ), κ

4}.
Instead of solving problem (1) by traditional numerical methods, we turn to
formulate (1) as a minimization problem on C2(ΩT ) ∩ C(ΩT ), with the loss
functional L being defined as:

L(u) := ∥utt(x, t)−∆u(x, t)− f∥2L2(ΩT ) + ∥u(x, 0)− φ(x)∥2H1(Ω)

+ ∥ut(x, 0)− ψ(x)∥2L2(Ω) + ∥u(x, t)− g(x, t)∥2H1(∂ΩT ). (2)
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Remark 1 Different from the original loss in PINNs, we adopt H1-norm in
stead of L2-norm in the learning of initial position and boundary condition.
This modification, as we will demonstrate, offers advantages in both theoretical
analysis and numerical computation.

With assumption 1, we know that u∗ is also the unique minimizer of loss
functional L such that L(u∗) = 0. Let |Ω| and |∂Ω| be the measure of Ω and

∂Ω, namely, |Ω| :=
∫
Ω
1dx, |∂Ω| :=

∫
∂Ω

1dx and |T | :=
∫ T

0
1dt, then L(u) can

be equivalently written as

L(u) = |Ω||T |EX∈U(Ω),T∈U([0,T ])

(
utt(X,T )−∆u(X,T )− f(X,T )

)2

+ |Ω|EX∈U(Ω)

[(
u(X, 0)− φ(X)

)2
+

d∑
i=1

(
uxi

(X, 0)− φxi
(X)

)2
+
(
ut(X, 0)− ψ(X)

)2]
+ |∂Ω||T |EY ∈U(∂Ω),T∈U([0,T ])

[(
u(Y, T )− g(Y, T )

)2
+
(
ut(Y, T )− gt(Y, T )

)2
+

d∑
i=1

(
uxi

(Y, T )− gxi
(Y, T )

)2]
(3)

where U(Ω), U(∂Ω), U([0, T ]) are uniform distribution on Ω, ∂Ω and [0, T ],
respectively. To solve minimization of L(u) approximately, a Monte Carlo dis-
crete version of L will be used:

L̂(u) = |Ω||T |
NK

N∑
n=1

K∑
k=1

(
utt(Xn, Tk)−∆u(Xn, Tk)− f(Xn, Tk)

)2

+
|Ω|
N

N∑
n=1

[(
u(Xn, 0)− φ(Xn)

)2
+

d∑
i=1

(
uxi(Xn, 0)− φxi(Xn)

)2
+
(
ut(Xn, 0)− ψ(Xn)

)2]
+

|∂Ω||T |
MK

M∑
m=1

K∑
k=1

[(
u(Ym, Tk)− g(Ym, Tk)

)2
+
(
ut(Ym, Tk)− gt(Ym, Tk)

)2
+

d∑
i=1

(
uxi

(Ym, Tk)− gxi
(Ym, Tk)

)2]
(4)

where {Xn}Nn=1,{Ym}Mm=1 and {Tk}Kk=1 are independent and identically dis-
tributed random samples according to the uniform distribution U(Ω), U(∂Ω)
and U([0, T ]), respectively. With this approximation, we would solve the orig-
inal problem (1) by using the empirical risk minimization:

ûϕ = arg min
uϕ∈P

L̂(uϕ), (5)
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where the admissible set P refers to the deep neural network function class
parameterized by ϕ. In this work, we will choose P as the ReLU3 network
function space, to ensure P ⊂ C2(ΩT ) ∩ C(ΩT ). More precisely,

P = N (D,W, {∥ · ∥C2(ΩT ),B}, {ReLU
3}),

{D,W} will be given later to ensure the desired accuracy. The ReLU3 activa-
tion function is defined by

ρ(x) =

{
x3, x ≥ 0,

0, others.

In practical, the minimizer of problem (5) is usually obtained through some
optimization algorithm A. We would denote the minimizer as uϕA .

3 Convergence analysis of SPINNs

In this section, we will present a systematical error analysis of SPINNs for wave
equations. To begin with, we first review some basic notations and theorem in
the PDEs theory on wave equations.

For wave equation, its total energy consists of two parts: kinetic energy U
and potential energy V , both of which can be expressed by multiple integrals,

U =
1

2

∫
Ω

u2tdx,

V =
1

2

∫
Ω

(
d∑

i=1

u2xi

)
dx,

and their sum is called energy integral, the total energy of the wave equation
(1) excluding a constant factor is denoted as,

E(t) =

∫
Ω

(
u2t +

d∑
i=1

u2xi

)
dx. (6)

Theorem 1 (Energy stability) We denote E0(t) :=
∫
Ω
u2dx, which stands

for the square norm estimation of u. We have the energy inequality as below.

E(t) + E0(t) ≤ C(T )(E(0) + E0(0) +

∫ T

0

∫
Ω

f2dxdt

+ 2

∫ T

0

∫
∂Ω

|ut| · ∥∇u∥dsdt).

Proof See Appendix 6.1 for details.
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3.1 Risk decomposition

By the definition of u∗ and uϕA , we can decompose the risk in SPINNs as

L(uϕA)− L(u∗) =L(uϕA)− L̂(uϕA) + L̂(uϕA)− L̂(ûϕ) + L̂(ûϕ)
− L̂(u) + L̂(u)− L(u) + L(u)− L(u∗)

=

[
L̂(ûϕ)− L̂(u)

]
+

[
L(uϕA)− L̂(uϕA)

]
+

[
L̂(u)− L(u)

]
+

[
L(u)− L(u∗)

]
+

[
L̂(uϕA)− L̂(ûϕ)

]
,

where u is an arbitrarily element in P. Since L̂(ûϕ) − L̂(u) ≤ 0, and u is an
arbitrarily element in P, we have:

L(uϕA)− L(u∗) ≤ 2 sup
u∈P

∣∣∣∣L(u)− L̂(u)
∣∣∣∣︸ ︷︷ ︸

εsta

+ inf
u∈P

∣∣∣∣L(u)− L(u∗)
∣∣∣∣︸ ︷︷ ︸

εapp

+

[
L̂(uϕA

)− L̂(ûϕ)
]

︸ ︷︷ ︸
εopt

Thus, we have decomposed the total risk into approximation error (εapp), sta-
tistical error (εsta) and optimization error (εopt). While the approximation
error describes the expressive power of ReLU3 network, the statistical error is
caused by the discretization of the Monte Carlo method and the optimization
error represents performance of the solver A we use. In this work, we compro-
misely assume that the neural network can be well trained such that εopt = 0,
and leave the optimization error as future study. In this case, it can be found
that ûϕ = uϕA .

3.2 Lower bound of risk

Next, based on the energy stability of wave equations, we shall present a lower
bound of risk L(ûϕ)−L(u∗) in SPINNs. As we will demonstrate later, the risk
can be arbitrary small if the network and sample complexity have been well
chosen, and thus we can assume L(ûϕ) − L(u∗) < 1. Let v = ûϕ − u∗ be the
error between numerical solution and exact solution, we have

vtt −∆v = (ûϕ)tt −∆ûϕ − f ≜ f̃ , x ∈ Ω, t ∈ [0, T ],

v(x, 0) = ûϕ(x, 0)− φ(x), x ∈ Ω,

vt(x, 0) = (ûϕ)t(x, 0)− ψ(x), x ∈ Ω,

v(x, t) = ûϕ(x, 0)− g(x, t), x ∈ ∂Ω, t ∈ [0, T ],

(7)

and ∥v∥C2(ΩT ) ≤
3
2B. By applying theorem (1) to equation (7), we obtain

∥ûϕ − u∗∥2H1
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=

∫
Ω

(
v2t +

d∑
i=1

v2xi

)
dx+

∫
Ω

v2dx

≤C(T )

(
E(0) + E0(0) +

∫ T

0

∫
Ω

f̃2dxdt+ 2

∫ T

0

∫
∂Ω

|vt| · ∥∇v∥dsdt

)

≤C(T )

(∫
Ω

(vt(x, 0)
2 +

d∑
i=1

vxi
(x, 0)2)dx+

∫
Ω

v(x, 0)2dx

+

∫ T

0

∫
Ω

((ûϕ)tt −∆ûϕ − f)2dxdt+ 3
√
dB
∫ T

0

∫
∂Ω

|vt|dsdt

)

≤C(T )

(∫
Ω

(vt(x, 0)
2 +

d∑
i=1

vxi
(x, 0)2)dx+

∫
Ω

v(x, 0)2dx

+

∫ T

0

∫
Ω

((ûϕ)tt −∆ûϕ − f)2dxdt+ 3
√
dB|∂ΩT |(

∫ T

0

∫
∂Ω

v2t dsdt)
1
2

)
≤C(T )

(
∥(ûϕ)tt −∆ûϕ − f∥2L2(ΩT ) + ∥(ûϕ)t(x, 0)− ψ(x)∥2L2(Ω)

+∥ûϕ(x, 0)− φ(x)∥2H1(Ω) + 3
√
dB|∂ΩT |∥ûϕ(x, t)− g(x, t)∥H1(∂ΩT )

)
≤C(T )

(
L(ûϕ) + 3

√
dB|∂ΩT |L(ûϕ)

1
2

)
≤C(T )(1 + 3

√
dB|∂ΩT |)L(ûϕ)

1
2 (L(ûϕ) < 1)

≤γ
(
L(ûϕ)− L(u∗)

) 1
2

, (L(u∗) = 0)

where we define γ(T, d,B, |∂ΩT |) ≜ C(T )(1 + 3
√
dB|∂ΩT |). Combined this

lower bound with previous risk decomposition, we can arrive at:

∥ûϕ − u∗∥4H1
≤ γ2(εapp + εsta). (8)

3.3 Approximation error

By applying the following lemma proved in our previous work, we can get the
upper bound of approximation error:

Lemma 1 ∀u ∈ C3(ΩT ) and ε > 0, there exist a ReLU3 network uϕ with
depth [log2d] + 2 and width C(d, ∥u∥C3(ΩT ))(

1
ε )

d+1 such that

∥u− uϕ∥C2(ΩT ) ≤ ε.

Proof A special case of Corollary 4.2 in [23].
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Theorem 2 Under the Assumption 1 and the condition that u∗ ∈ C3(ΩT ),
for any ε > 0, if we choose the following neural network function class:

P = N ([log2d] + 2, C(d, |Ω|, |∂Ω|, |T |, ∥u∗∥C3(ΩT ))(
1

ε
)d+1,

{∥ · ∥C2(ΩT ), 2∥u
∗∥C2(ΩT )}, {ReLU

3}),

then the approximation error εapp ≤ C(d, |ΩT |, ∂ΩT |)ε2.

Proof See Appendix 6.2 for details.

3.4 Statistical error

The following theorem demonstrates that with sufficiently large sample com-
plexity, the statistical error can be well controlled:

Theorem 3 Let D,W ∈ N,B ∈ R+. For any ε ≥ 0, if the number of samples
satisfy: 

N = C(d, |Ω|,B)D4W2(D + log(W))( 1ε )
2+δ,

K = C(d, |T |,B)D2fK(D,W)( 1ε )
k1 ,

M = C(d, |∂Ω|,B)fM (D,W)( 1ε )
k2 ,

where fK(D,W) ≥ 1, fM (D,W) ≥ 1, δ is an arbitrarily small number such
that {

k1 + k2 = 2 + δ,

fk(D,W) · fM (D,W) = D2W2(D + log(W)),

then we have:

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

sup
u∈P

|L(u)− L̂(u)| ≤ ε

Proof See Appendix 6.3 for details.

3.5 Convergence rate of SPINNs

With the preparation in last two sections on the bounds of approximation and
statistical errors, we will give the main results in this section.

Theorem 4 Under the Assumption 1 and the condition that u∗ ∈ C3(ΩT ).
For any ε > 0, if we choose the parameterized neural network class

P = N ([log2d] + 2, C(d, |Ω|, |∂Ω|, |T |, ∥u∗∥C3(ΩT ))(
1

ε2
)d+1,

{∥ · ∥C2(ΩT ), 2∥u
∗∥C2(ΩT )}, {ReLU

3})
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and let the number of samples be
N = C(d, |Ω|,B)( 1

ε4 )
d+3+δ,

K = C(d, |T |,B)( 1
ε4 )

k1+k̃1 ,

M = C(d, |∂Ω|,B)( 1
ε4 )

k2+k̃2 ,

where k̃1, k̃2 ≥ 0, δ is arbitrarily small such that{
k1 + k2 = 2 + δ,

k̃1 + k̃2 = d+ 1,

then we have:

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

∥ûϕ − u∗∥H1(ΩT ) ≤ ε

Proof By theorem 2, if we set the neural network function class as:

P = N ([log2d] + 2, C(d, |Ω|, |∂Ω|, |T |, ∥u∗∥C3(ΩT ))(
1

ε2
)d+1,

{∥ · ∥C2(ΩT ), 2∥u
∗∥C2(ΩT )}, {ReLU

3}) (9)

the approximation error can be arbitrarily small:

εapp ≤ ε4

2γ2
(10)

Without loss of generality we assume that ε is small enough such that

∥ûϕ∥C2(ΩT ) ≤ ∥u∗ − ûϕ∥C2(ΩT ) + ∥u∗∥C2(ΩT ) ≤ 2∥u∗∥C2(ΩT ).

By theorem 3, when the number of samples be:
N = C(d, |Ω|,B)( 1

ε4 )
d+3+δ,

K = C(d, |T |,B)( 1
ε4 )

k1+k̃1 ,

M = C(d, |∂Ω|,B)( 1
ε4 )

k2+k̃2 ,

(11)

where δ is an arbitrarily positive number and{
k1 + k2 = 2 + δ,

k̃1 + k̃2 = d+ 1,
(12)

we have:

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

εsta ≤ ε4

2γ2
(13)

Combining (8), (10) and (13) together, we get the final result:

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

∥ûϕ − u∗∥H1(ΩT )

≤E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

[γ2 (L(ûϕ)− L(u∗))]1/4

≤ε. (14)
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4 Numerical Experiments

In this section, we would use SPINNs to solve wave equation in both one
dimension and two dimension.

4.1 1D example

Consider the following 1D wave equation on Ω = [−2, 2] from t = 0 to t =
T = 8: 

utt = uxx, x ∈ Ω, 0 ≤ t ≤ 8,

u(0, x) = 0, x ∈ Ω,

ut(0, x) = 0, x ∈ Ω,

u(t,−2) = sin(0.8πt), 0 ≤ t ≤ 8,

u(t, 2) = 0, 0 ≤ t ≤ 8.

(15)

For the training with SPINNs, we use a four-layer ReLU3 network with 64
neurons in each layer to approximate the solution. We choose the Adam al-
gorithm to implement the minimization, and the initial learning rate is set as
1E-3.

As for sample complexity, we train SPINNs with 10000 interior points, 500
boundary points (250 for each end) and 250 initial points in each epoch, all of
which are sampled according to a uniform distribution (see (a) in Figure 1).
Further more, to obtain a better accuracy, we apply GAS method [24] as an
adaptive sampling strategy. After every 250 epochs, we would adaptively add
600 inner points, 30 boundary points and 15 initial points based on a Gaussian
mixture distribution. The GAS procedure will be repeated for 10 times. See
[24] for more details. For evaluation, we use the central difference method with
a fine mesh (dx = 0.01, dt = 0.009) to obtain a reference solution ucdm (see
(b) in Figure 1) , with which we can calculate the following relative error by
using numerical integration:

Relative error =
∥uϕ − ucdm∥2

∥ucdm∥2
.

Figure 2 demonstrates the numerical result of PINNs and SPINNs for (15)
after NG times of adaptive sampling by GAS. As we can see, the SPINNs
method converges faster than the classical PINNs, e.g., after 5 times of adap-
tive sampling, SPINNs have already captured all the six peaks of standing
waves generated by the superposition of reflected wave and right-traveling
waves. Furthermore, we present the relative error of PINNs and SPINNs in
Figure 3, which shows that our method can achieve a lower relative error at
the early stage of training. On the other hand, with the times of adaptive
sampling increasing, the classical PINNs can also arrive at a comparable ac-
curacy, which has also been revealed by (g) in Figure 2. These results reflect
the fact that training with SPINNs can speed up the convergence in solution,
especially when the number of samples is relatively small.
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Fig. 1 Collection points (left) and reference solution (right) in [0, T ]×Ω. The red, green and
blue points stand for the initial points, boundary points and interior points correspondingly.

4.2 2D example

Consider the following 2D wave equation on Ω = [−2, 2]2 from t = 0 to t = 1:

utt = uxx + uyy, x ∈ Ω, 0 ≤ t ≤ 1,

u(0, x, y) = sin(2π
√
x2 + y2),

√
x2 + y2 < 1,

u(0, x, y) = 0,
√
x2 + y2 ≥ 1,

ut(0, x, y) = 0, (x, y) ∈ Ω,

u(t, x, y) = 0, (x, y) ∈ ∂Ω, 0 ≤ t ≤ 1,

(16)

For the training with SPINNs, based on the experiment, we choose a three-
layer ReLU3 network with 512 neurons in each layer to approximate the so-
lution. The optimization algorithm and the initial learning rate are kept as
before.

As for sample complexity, we train SPINNs with 2000 interior points, 4000
boundary points (1000 for each edge) and 1000 initial points in each epoch,
all of which are sampled according to a uniform distribution. For evaluation,
we use the central difference method with a fine mesh (dx = dy = 0.01,
dt = 0.004) to obtain a reference solution ucdm, with which we can calculate
the pointwise absolute error |ucdm − uϕ|. As we can observe from Figure 4
and Figure 5, the SPINNs method can achieve a lower pointwise error, after
training for same epochs. This superiority, in fact, can be understood as that
learning with derivative information improves accuracy in the fitting of initial
condition.

5 Conclusion

In this work, we propose a stabilized physics informed neural networks method
SPINNs for wave equations. With some numerical analysis, we rigorously prove
SPINNs is a stable learning method, in which the solution error can be well
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(a) NG = 2, uPINNs (b) NG = 2, uSPINNs

(c) NG = 5, uPINNs (d) NG = 5, uSPINNs

(e) NG = 8, uPINNs (f) NG = 8, uSPINNs

(g) NG = 11, uPINNs (h) NG = 11, uSPINNs

Fig. 2 The numerical result of PINNs and SPINNs for equation (15).
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Fig. 3 The relative error of PINNs and SPINNs.

controlled by the loss term. Based on this, a non-asymptotic convergence rate
of SPINNs is presented, which provide people with a solid theoretical foun-
dation to use it. Furthermore, by applying SPINNs to the simulation of two
wave propagation problems, we numerically demonstrate that SPINNs can
achieve a higher training accuracy and efficiency, especially when the number
of samples is limited. On the other hand, how to extend this method to more
difficult situations such as high dimensional problems and how to handel the
optimization error in our convergence analysis are still needed to be studied.
We will leave these topics as our future research.
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6 Appendix

6.1 Appendix for energy integral of wave equations

According to the Gaussian formula, we have∫
Ω

(
d∑

i=1

(utxi
uxi

) + ut(

d∑
i=1

uxixi
)

)
dx =

∫
Ω

(∇ · (ut∇u))dx

=

∫
∂Ω

ut∇u · nds, (17)
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(a) t = 0, uϕ (b) t = 0, |ucdm − uϕ|

(c) t = 0.1, uϕ (d) t = 0.1, |ucdm − uϕ|

(e) t = 0.2, uϕ (f) t = 0.2, |ucdm − uϕ|

(g) t = 0.3, uϕ (h) t = 0.3, |ucdm − uϕ|

Fig. 4 The numerical result for (16) after 10000 epochs training of PINNs.
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(a) t = 0, uϕ (b) t = 0, |ucdm − uϕ|

(c) t = 0.1, uϕ (d) t = 0.1, |ucdm − uϕ|

(e) t = 0.2, uϕ (f) t = 0.2, |ucdm − uϕ|

(g) t = 0.3, uϕ (h) t = 0.3, |ucdm − uϕ|

Fig. 5 The numerical result for (16) after 10000 epochs training of SPINNs.
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where n is the unit outer normal vector. Combine (6) and (17),we have

dE(t)

dt
= 2

∫
Ω

(
ututt +

d∑
i=1

uxiuxit

)
dx

= 2

∫
Ω

(
ututt − ut

d∑
i=1

uxixi

)
dx+ 2

∫
∂Ω

ut∇u · nds

= 2

∫
Ω

utfdx+ 2

∫
∂Ω

ut∇u · nds

≤
∫
Ω

(u2t + f2)dx+ 2

∫
∂Ω

|ut| · ∥∇u∥ds. (18)

Multiply both sides of the inequality (18) by e−t,

d(e−tE(t))

dt
≤ e−t

(∫
Ω

f2dx+ 2

∫
∂Ω

|ut| · ∥∇u∥ds
)
. (19)

Then, integrating the equation (19) from 0 to t,

E(t) ≤ et
(
E(0) +

∫ t

0

e−τ

∫
Ω

f2dxdτ + 2

∫ t

0

e−τ

∫
∂Ω

|ut| · ∥∇u∥dsdτ
)

For any t ∈ [0, T ],

E(t) ≤ C1

(
E(0) +

∫ T

0

∫
Ω

f2dxdt+ 2

∫ T

0

∫
∂Ω

|ut| · ∥∇u∥dsdt

)
, (20)

C1 is a constant that is only related to T . Further we have

dE0(t)

dt
=

∫
Ω

2uutdx ≤
∫
Ω

u2dx+

∫
Ω

u2tdx ≤ E0(t) + E(t) (21)

Multiply both sides of the above equation (21) by e−t,

d

dt
(e−tE0(t)) ≤ e−tE(t) (22)

Integrating the equation (22) from 0 to t,

E0(t) ≤ etE0(0) + et
∫ t

0

e−τE(τ)dτ (23)

For any t ∈ [0, T ],

E0(t) ≤ C2 (E0(0) + E(t)) , (24)

C2 is a constant that is only related to T . Combine (20) and (24),we have,

E(t) + E0(t) ≤ C

(
E(0) + E0(0) +

∫ T

0

∫
Ω

f2dxdt (25)

+ 2

∫ T

0

∫
∂Ω

|ut| · ∥∇u∥dsdt

)
. (26)

C is a constant that is only related to T .
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6.2 Appendix for approximation error

[Proof of theorem 2] According to lemma 1, we know that for u∗ ∈ C3(ΩT ), ε >
0, there exist aReLU3 network with depth [log2d]+2 and width C(d, ∥u∗∥C3(ΩT ))(

1
ε )

d+1,

such that ∥v(x, t)∥C2(ΩT ) = ∥u∗ − ûϕ∥C2(ΩT ) ≤ ε. Hence,

εapp ≤ |L(ûϕ)− L(u∗)|
= ∥(ûϕ)tt(x, t)−∆ûϕ(x, t)− f∥2L2(ΩT ) + ∥ûϕ(x, 0)− φ(x)∥2H1(Ω)

+ ∥(ûϕ)t(x, 0)− ψ(x)∥2L2(Ω) + ∥ûϕ(x, t)− g(x, t)∥2H1(∂ΩT )

≤ ∥vtt∥2L2(ΩT ) + ∥∆v∥2L2(ΩT ) + ∥v(x, 0)∥2H1(Ω) + ∥vt(x, 0)∥2L2(Ω) + ∥v∥2H1(∂ΩT )

≤ C(d, |ΩT |, |∂ΩT |) · ε2.

6.3 Appendix for statistical error

We will give the precise computation on the upper bounds of statistical error
in this section. To begin with, we first introduce several basic concepts and
results in learning theory.

Definition 1 (Rademacher complexity) The Rademacher complexity of
a set A ⊆ RN is defined by

ℜ(A) = E{σk}N
k=1

[
sup
a∈A

1

N

N∑
k=1

σkak

]
,

where {σk}Nk=1 are N i.i.d Rademacher variables with p(σk = 1) = p(σk =
−1) = 1

2 .
Let Ω be a set and F be a function class which maps Ω to R. Let P be

a probability distribution over Ω and {Xk}Nk=1 be i.i.d. samples from P . The
Rademacher complexity of F associated with distribution P and sample size
N is defined by

ℜP,N (F) = E{Xk,σk}N
k=1

[
sup
u∈F

1

N

N∑
k=1

σku(Xk)

]
.

Lemma 2 Let Ω be a set and P be a probability distribution over Ω. Let
N ∈ N. Assume that ω : Ω → R and |ω(x)| ≤ B for all x ∈ Ω, then for any
function class F mapping Ω to R, there holds

ℜP,N (ω(x)F) ≤ BℜP,N (F),

where ω(x)F := {u : u(x) = ω(x)u(x), u ∈ F}.

Proof See [25] for the proof.
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Definition 2 (Covering number) Suppose that W ⊂ R. For any ε > 0 ,let
V ⊂ Rn be an ε-cover of W with respect to the distance d∞, that is, for any
ω ∈ W , there exists a v ∈ V such that d∞(u, v) < ε, where d∞ is defined by
d∞(u, v) := max1≤i≤n |ui − vi|. The covering number C(ε,W, d∞) is defined
to be the minimum cardinality among all ε-cover of W with respect to the
distance d∞.

Definition 3 (Uniform covering number) Suppose that F is a class of
functions from Ω to R. Given n sample Zn = (Z1, Z2, · · ·Zn) ∈ Ωn,F|Zn

⊂ Rn

is defined by

F|Zn
⊂ Rn = {(u(Z1), u(Z2), · · · , u(Zn)) : u ∈ F}.

The uniform covering number C∞(ε,F , n) is defined by

C∞(ε,F , n) = max
Zn∈Ωn

C(ε,F|Zn , d∞).

Lemma 3 Let Ω be a set and P be a probability distribution over Ω. Let
N ∈ N≥1,and F be a class of functions from Ω to R such that 0 ∈ F and the
diameter of F is less than B,i.e.,∥u∥L∞(Ω) ≤ B,∀u ∈ F . Then

ℜP,N (F) ≤ inf
0<δ<B

(
4δ +

12√
N

∫ B

δ

√
log(2C∞(ε,F , N))dε

)
.

Proof This proof is base on the chaining method, see [26].

Definition 4 (Pseudo-dimension) Let F be a class of functions from X to
R. Suppose that S = {x1, x2, · · · , xn} ⊂ X. We say that S is pseudo-shattered
by F if there exists y1, y2, · · · , yn such that for any b ∈ {0, 1}n, there exists a
u ∈ F satisfying

sign(u(xi)− yi) = bi, i = 1, 2, · · · , n,

and we say that {yi}ni=1 witnesses the shattering. The pseudo-dimension of F ,
denoted as Pdim(F), is defined to be the maximum cardinality amoong all
sets pseudo-shattered by F .

Lemma 4 (Theorem 12.2 in [27]) Let F be a class of real functions from
a domain X to the bounded interval [0,B].Let ε > 0. Then

C∞(ε,F , n) ≤
Pdim(F)∑

i=1

(
n
i

)(B
ε

)i
,

which is less than ( enB
ε·Pdim(F) )

Pdim(F) for n ≥ Pdim(F).
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Next, to obtain the upper bound, we would decompose the statistical error
into 24 terms by using triangle inequality:

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

sup
u∈P

|L(u)− L̂(u)| ≤

24∑
j=1

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

sup
u∈P

|Lj(u)− L̂j(u)|

where

L1 = |Ω||T |EX∼U(Ω),T∼U([0,T ]) (utt(X,T ))
2
,

L2 = |Ω||T |EX∼U(Ω),T∼U([0,T ])

(
d∑

i=1

uxixi
(X,T )

)2

,

L3 = |Ω||T |EX∼U(Ω),T∼U([0,T ]) (f(X,T ))
2
,

L4 = −2|Ω||T |EX∼U(Ω),T∼U([0,T ])

(
d∑

i=1

utt(X,T )uxixi(X,T )

)
,

L5 = −2|Ω||T |EX∼U(Ω),T∼U([0,T ]) (utt(X,T )f(X,T )) ,

L6 = 2|Ω||T |EX∼U(Ω),T∼U([0,T ])

(
d∑

i=1

uxixi
(X,T )f(X,T )

)
,

L7 = |Ω|EX∼U(Ω) (u(X, 0))
2
,

L8 = |Ω|EX∼U(Ω) (φ(X))
2
,

L9 = −2|Ω|EX∼U(Ω) (u(X, 0)φ(X)) ,

L10 = |Ω|EX∼U(Ω)

(
d∑

i=1

uxi
(X, 0)2

)
,

L11 = |Ω|EX∼U(Ω)

(
d∑

i=1

φxi(X)2

)
,

L12 = −2|Ω|EX∼U(Ω)

(
d∑

i=1

uxi
(X, 0)φxi

(X)

)
,

L13 = |Ω|EX∼U(Ω) (ut(X, 0))
2
,

L14 = |Ω|EX∼U(Ω) (ψ(X))
2
,

L15 = −2|Ω|EX∼U(Ω) (ut(X, 0)ψ(X)) ,

L16 = |∂Ω||T |EY∼U(∂Ω),T∼U([0,T ]) (u(Y, T ))
2
,

L17 = |∂Ω||T |EY∼U(∂Ω),T∼U([0,T ]) (g(Y, T ))
2
,

L18 = −2|∂Ω||T |EY∼U(∂Ω),T∼U([0,T ]) (u(Y, T )g(Y, T )) ,

L19 = |∂Ω||T |EY∼U(∂Ω),T∼U([0,T ]) (ut(Y, T ))
2
,

L20 = |∂Ω||T |EY∼U(∂Ω),T∼U([0,T ]) (gt(Y, T ))
2
,
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L21 = −2|∂Ω||T |EY∼U(∂Ω),T∼U([0,T ]) (ut(Y, T )gt(Y, T )) ,

L22 = |∂Ω||T |EY∼U(∂Ω),T∼U([0,T ])

d∑
i=1

(
uxi(Y, T )

2
)
,

L23 = |∂Ω||T |EY∼U(∂Ω),T∼U([0,T ])

d∑
i=1

(
gxi

(Y, T )2
)
,

L24 = −2|∂Ω||T |EY∼U(∂Ω),T∼U([0,T ])

d∑
i=1

(uxixi(Y, T )gxi(X,T )) ,

and L̂j(u) is the empirical version of Lj(u). The following lemma states that
each of these 24 terms can be controlled by the corresponding Rademacher
complexity.

Lemma 5 Let {Xn}Nn=1, {Ym}Mm=1, {Tk}Kk=1 be i.i.d samples from U(Ω), U(∂Ω), U([0, T ]),
then we have

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

sup
u∈P

∣∣∣∣Lj(u)− L̂j(u)

∣∣∣∣ ≤ C(d,B)ℜU,N (Fj)

for j = 1, 2, · · · , 24, where:

F1 = {±f : ΩT → R| ∃u ∈ P s.t. f(x, t) = utt(x, t)
2},

F2 = {±f : ΩT → R| ∃u ∈ P 1 ≤ i ≤ j ≤ d s.t. f(x, t) = uxixi
(x, t)uxjxj

(x, t)},
F4 = {±f : ΩT → R| ∃u ∈ P 1 ≤ i ≤ d s.t. f(x, t) = utt(x, t)uxixi

(x, t)},
F5 = {±f : ΩT → R| ∃u ∈ P s.t. f(x, t) = utt(x, t)},
F6 = {±f : ΩT → R| ∃u ∈ P 1 ≤ i ≤ d s.t. f(x, t) = uxixi

(x, t)},
F7 = {±f : Ω → R| ∃u ∈ P s.t. f(x) = u(x, 0)2},
F9 = {±f : Ω → R| ∃u ∈ P s.t. f(x) = u(x, 0)},
F10 = {±f : Ω → R| ∃u ∈ P 1 ≤ i ≤ j ≤ d s.t. f(x) = uxi

(x, 0)uxj
(x, 0)},

F12 = {±f : Ω → R| ∃u ∈ P 1 ≤ i ≤ d s.t. f(x, t) = uxi
(x, 0)},

F13 = {±f : Ω → R| ∃u ∈ P s.t. f(x) = ut(x, 0)
2},

F15 = {±f : Ω → R| ∃u ∈ P s.t. f(x) = ut(x, 0)},
F16 = {±f : ∂ΩT → R| ∃u ∈ P s.t. f(x, t) = u(x, t)2|∂Ω},
F18 = {±f : ∂ΩT → R| ∃u ∈ P s.t. f(x, t) = u(x, t)|∂Ω},
F19 = {±f : ∂ΩT → R| ∃u ∈ P s.t. f(x, t) = ut(x, t)

2|∂Ω},
F21 = {±f : ∂ΩT → R| ∃u ∈ P s.t. f(x, t) = ut(x, t)|∂Ω},
F22 = {±f : ∂ΩT → R| ∃u ∈ P 1 ≤ i ≤ j ≤ d s.t. f(x, t) = uxi

(x, t)uxj
(x, t)|∂Ω},

F24 = {±f : ∂ΩT → R| ∃u ∈ P 1 ≤ i ≤ d s.t. f(x, t) = uxi
(x, t)|∂Ω}.

Proof The proof is based on the symmetrization technique, see lemma 4.3 in
[25] for more details.
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Lemma 6 Let Φ = {ReLU,ReLU2, ReLU3}. There holds

F1 ⊂ N1 := N (D + 5, (D + 2)(D + 4)W, {∥ · ∥C(ΩT ),B
2}, Φ),

F2 ⊂ N2 := N (D + 5, 2(D + 2)(D + 4)W, {∥ · ∥C(ΩT ),B
2}, Φ),

F4 ⊂ N4 := N (D + 5, 2(D + 2)(D + 4)W, {∥ · ∥C(ΩT ),B
2}, Φ),

F5 ⊂ N5 := N (D + 4, (D + 2)(D + 4)W, {∥ · ∥C(ΩT ),B}, Φ),

F6 ⊂ N6 := N (D + 4, (D + 2)(D + 4)W, {∥ · ∥C(ΩT ),B}, Φ),

F7 ⊂ N7 := N (D + 1),W, {∥ · ∥C(ΩT ),B
2}, Φ),

F9 ⊂ N9 := N (D,W, {∥ · ∥C(ΩT ),B}, Φ),

F10 ⊂ N10 := N (D + 2, 2(D + 2)W, {∥ · ∥C(ΩT ),B
2}, Φ),

F12 ⊂ N12 := N (D + 2, (D + 2)W, {∥ · ∥C(ΩT ),B}, Φ),

F13 ⊂ N13 := N (D + 3, (D + 2)W, {∥ · ∥C(ΩT ),B
2}, Φ),

F15 ⊂ N15 := N (D + 2, (D + 2)W, {∥ · ∥C(ΩT ),B}, Φ),

F16 ⊂ N16 := N (D + 1,W, {∥ · ∥C(ΩT ),B
2}, Φ),

F18 ⊂ N18 := N (D,W, {∥ · ∥C(ΩT ),B}, Φ),

F19 ⊂ N19 := N (D + 3, (D + 2)W, {∥ · ∥C(ΩT ),B
2}, Φ),

F21 ⊂ N21 := N (D + 2, (D + 2)W, {∥ · ∥C(ΩT ),B}, Φ),

F22 ⊂ N22 := N (D + 3, 2(D + 2)W, {∥ · ∥C(ΩT ),B
2}, Φ),

F24 ⊂ N24 := N (D + 2, (D + 2)W, {∥ · ∥C(ΩT ),B}, Φ).

Proof The proof is an application of proposition 4.2 in [25]. Take F1 as an
example, since u ∈ P, we have ut ∈ N (D + 2, (D + 2)W, {∥ · ∥C1(ΩT ),B}, Φ)
and utt ∈ N (D + 4, (D + 2)(D + 4)W, {∥ · ∥C(ΩT ),B}, Φ). Notice the square

operation can be implemented as x2 = ReLU2(x) +ReLU2(−x), thus we get
that u2tt ∈ N (D + 5, (D + 2)(D + 4)W, {∥ · ∥C(ΩT ),B2}, Φ).

Lemma 7 (Proposition 4.3 in [25]) For any D,W ∈ N,

Pdim(N (D,W, {ReLU,ReLU2, ReLU3})) = O(D2W2(D + logW)).

Now we are ready to prove Theorem 3 on the statistical error.

Proof (The proof of Theorem 3) According to lemma 3 and lemma 6,
• For i = 1, 2, 4, 5, 6, when the sample numbers n = NK > Pdim(Fi),

we have

ℜP (X ),NK(Fi) ≤ inf
0<δ<Bi

(
4δ +

12√
NK

∫ Bi

δ

√
log(2C∞(ε,Fi, N))dε

)
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≤ inf
0<δ<Bi

4δ +
12√
NK

∫ Bi

δ

√√√√log

(
2

(
eNKBi

ε · Pdim(Fi)

)Pdim(Fi)
)
dε


≤ inf

0<δ<Bi

(
4δ +

12Bi√
NK

+
12√
NK

∫ Bi

δ

√
Pdim(Fi)log

(
eNKBi

ε · Pdim(Fi)

)
dε

)
(27)

Let t =

√
log
(

eNKBi

ε·Pim(Fi)

)
, then ε = eNKBi

Pdim(Fi)
e−t2 . Denoting:

t1 =

√
log

(
eNKBi

Bi · Pdim(Fi)

)
, t2 =

√
log

(
eNKBi

δ · Pdim(Fi)

)
we have: ∫ Bi

δ

√
log

(
eNKBi

ε · Pim(Fi)

)
dε

=
2eNKBi

Pdim(Fi)

∫ t2

t1

t2e−t2dt

=
2eNKBi

Pdim(Fi)

∫ t2

t1

t

(
−e−t2

2

)′

dt

=
eNKBi

Pdim(Fi)

[
t1e

−t21 − t2e
−t22 +

∫ t2

t1

e−t2dt

]
≤ eNKBi

Pdim(Fi)

[
t1e

−t21 − t2e
−t22 + (t2 − t1)e

−t21

]
≤ eNKBi

Pdim(Fi)
t2e

−t21

≤ Bi

√
log

(
eNKBi

δ · Pdim(Fi)

)
(28)

Substitute (28) into (27) and choose δ = Bi

(
Pdim(Fi)

NK

) 1
2 ≤ Bi, we have:

ℜP (X ),NK(Fi) ≤ inf
0<δ<Bi

(
4δ +

12Bi√
NK

+
12√
NK

∫ Bi

δ

√
Pdim(Fi)log

(
eNKBi

ε · Pdim(Fi)

)
dε

)

≤ inf
0<δ<Bi

(
4δ +

12Bi√
NK

+
12Bi

√
Pdim(Fi)√
NK

√
log

(
eNKBi

δ · Pdim(Fi)

))

≤ 28

√
3

2
Bi

(
Pdim(Fi)

NK

) 1
2

√
log

(
eNK

Pdim(Fi)

)
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≤ 28

√
3

2
Bi

(
Pdim(Ni)

NK

) 1
2

√
log

(
eNK

Pdim(Ni)

)

≤ 28

√
3

2
max{B,B2}

(
H1

NK

) 1
2

√
log

(
eNK

H1

)
(29)

where

H1 = C1(D + 2)2(D + 4)2(D + 5)2W2[(D + 5) + log(2(D + 2)(D + 4)W)].

The last step above is due to lemma 7.
• For i = 7, 9, 10, 12, 13, 15, when the sample numbers n = N > Pdim(Fi),

we can similarly prove that

ℜU(Ω),N (Fi) ≤ 28

√
3

2
max{B,B2}

(
H2

N

) 1
2

√
log

(
eN

H2

)
(30)

where

H2 = C2(D + 2)2(D + 3)2W2[(D + 3) + log(2(D + 2)W)].

• For i = 16, 18, 19, 21, 22, 24, when the sample numbers n = MK >
Pdim(Fi), we have

ℜU(∂ΩT ),MK(Fi) ≤ 28

√
3

2
max{B,B2}

(
H3

MK

) 1
2

√
log

(
eMK

H3

)
(31)

where

H3 = C3(D + 2)2(D + 3)2W2[(D + 3) + log(2(D + 2)W)].

• For i = 3, we have,

E{Xn}N
n=1,{Tk}K

k=1

∣∣∣∣L3 − L̂3

∣∣∣∣
= |Ω||T |E{Xn}N

n=1,{Tk}K
k=1

∣∣∣∣EX∼U(Ω),T∼U([0,T ])f(X,T )
2 − 1

NK

N∑
n=1

K∑
k=1

f(Xn, Tk)
2

∣∣∣∣
≤ |Ω||T |

√√√√E{Xn}N
n=1,{Tk}K

k=1

∣∣∣∣EX∼U(Ω),T∼U([0,T ])f(X,T )2 −
1

NK

N∑
n=1

K∑
k=1

f(Xn, Tk)2
∣∣∣∣2

=
|Ω||T |
NK

√√√√E{Xn}N
n=1,{Tk}K

k=1

N∑
n=1

K∑
k=1

∣∣∣∣EX∼U(Ω),T∼U([0,T ])f(X,T )2 − f(Xn, Tk)2
∣∣∣∣2

=
|Ω||T |
NK

√
NK · EX1∼U(Ω),T1∼U([0,T ])

∣∣∣∣EX∼U(Ω),T∼U([0,T ])f(X,T )2 − f(X1, T1)2
∣∣∣∣2

=
|Ω||T |
NK

√
NKσ(f(X,T )2)
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= |Ω||T |σ(f(X,T )
2)√

NK

where σ(f(X,T )) is the standard deviation of f(X,T ). With the bound of f ,
we can further obtain,

σ2(f(X,T )2) = E
(
(f(X,T )2)2

)
−
(
E(f(X,T )2)

)2
≤ 1

|Ω||T |

(∫
ΩT

(f(X,T )2)2dXdT

)
≤ 1

|Ω||T |

(∫
ΩT

κ4dXdT

)
≤ 1

|Ω||T |
· |Ω||T |B

= B

then we have,

EX∼U(Ω),T∼U([0,T ])

∣∣∣∣L3 − L̂3

∣∣∣∣ ≤ |Ω||T |
√

B
NK

.

• Similarly, for i = 8, 14, 17, 20,

EX∼U(Ω),T∼U([0,T ])

∣∣∣∣L8 − L̂8

∣∣∣∣ ≤ |Ω|
√

B
N
,

EX∼U(Ω)

∣∣∣∣L14 − L̂14

∣∣∣∣ ≤ |Ω|
√

B
N
,

EY∼U(∂Ω),T∼U([0,T ])

∣∣∣∣L17 − L̂17

∣∣∣∣ ≤ |∂Ω||T |
√

B
MK

,

EY∼U(∂Ω),T∼U([0,T ])

∣∣∣∣L20 − L̂20

∣∣∣∣ ≤ |∂Ω||T |
√

B
MK

.

• For i = 11,

σ2(

d∑
i=1

φxi
(x)2) = E

(
(

d∑
i=1

φxi
(x)2)2

)
−

(
E(

d∑
i=1

φxi
(x)2)

)2

≤ 1

|Ω|

∫
Ω

(
d∑

i=1

φxi(x)
2

)2

dx


≤ 1

|Ω|

[∫
Ω

(dκ2)2dx

]
≤ d2B
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then we have,

EX∼U(Ω)

∣∣∣∣L11 − L̂11

∣∣∣∣ ≤ d|Ω|
√

B
N
.

• Similarly, for i = 23,

EY∼U(∂Ω),T∼U([0,T ])

∣∣∣∣L23 − L̂23

∣∣∣∣ ≤ d|∂Ω||T |
√

B
MK

.

Hence, we have,

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

sup
u∈P

|L(u)− L̂(u)|

≤
24∑
j=1

E{X,Y,T} sup
u∈P

|Lj(u)− L̂j(u)|

≤ 28

√
3

2
max{B,B2}

(
5|Ω||T |C1

(
H1

NK

) 1
2

√
log

(
eNK

H1

)
+

6|Ω|C2

(
H2

N

) 1
2

√
log

(
eN

H2

)
+ 6|∂Ω||T |C3

(
H3

MK

) 1
2

√
log

(
eMK

H3

))
(
|Ω||T |

√
B
NK

+ (2 + d)|Ω|
√

B
N

+ (2 + d)|∂Ω||T |
√

B
MK

)
,

where C1, C2, C3 are constants associated with dimensionality d and bound B.
Hence, for any ε ≥ 0, if the number of samples satisfies:

N = C(d, |Ω|,B)D4W2(D + log(W))( 1ε )
2+δ,

K = C(d, |T |,B)D2fK(D,W)( 1ε )
k1 ,

M = C(d, |∂Ω|,B)fM (D,W)( 1ε )
k2 ,

where: {
k1 + k2 = 2 + δ,

fk(D,W) · fM (D,W) = D2W2(D + log(W)).

with restriction fK(D,W) ≥ 1, fM (D,W) ≥ 1, and δ is arbitrarily small. Then
we have:

E{Xn}N
n=1,{Ym}M

m=1,{Tk}K
k=1

sup
u∈P

|L(u)− L̂(u)| ≤ ε.
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