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Abstract. Modeling complicated interactions among the ego-vehicle,
road agents, and map elements has been a crucial part for safety-critical
autonomous driving. Previous works on end-to-end autonomous driv-
ing rely on the attention mechanism for handling heterogeneous inter-
actions, which fails to capture the geometric priors and is also com-
putationally intensive. In this paper, we propose the Interaction Scene
Graph (ISG) as a unified method to model the interactions among the
ego-vehicle, road agents, and map elements. With the representation of
the ISG, the driving agents aggregate essential information from the
most influential elements, including the road agents with potential col-
lisions and the map elements to follow. Since a mass of unnecessary
interactions are omitted, the more efficient scene-graph-based frame-
work is able to focus on indispensable connections and leads to bet-
ter performance. We evaluate the proposed method for end-to-end au-
tonomous driving on the nuScenes dataset. Compared with strong base-
lines, our method significantly outperforms in the full-stack driving tasks,
including perception, prediction, and planning. Code will be released at
https://github.com/zhangypl5/GraphAD.
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1 Introduction

The conventional Autonomous Driving (AD) system is manually divided into
multiple sequential modules, including perception 7 prediction ,
planning [10], and control [41]. However, the manual division prevents the system
from being optimized jointly and globally, resulting in sub-optimal performance.
To address this issue, end-to-end autonomous driving algorithms opti-
mize different modules altogether, making the whole system differentiable. With
the potential of reducing accumulated errors and achieving higher performance,
end-to-end algorithms are drawing increasing attention .

In end-to-end driving algorithms, both the prediction [5| and the planning
modules share the same task of predicting future trajectories of agents (i.e.,
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Fig. 1: The Interaction Scene Graph is composed of the Dynamic Scene Graph (DSG)
and the Static Scene Graph (SSG). In DSG, the traffic agents, represented by the round
nodes, pay attention to the surrounding agents by the directed connections. In SSG,
the traffic agents reason about their trajectories based on the connected lanes which
are represented by the rectangular nodes.

road agents in the prediction task and the ego vehicle in the planning task).
The future trajectories are affected by the interactions among the agents and
surrounding environments. Hence, modeling the interactions plays a central role
in conventional end-to-end algorithms, which is commonly concreted by the at-
tention mechanism . However, the attention mechanism, mainly based on
correlations of implicit features, lacks the prior knowledge of geometry about
which driving elements are more important. As a result, the attention-based in-
teractions inevitably waste their modeling capacities on the unimportant driving
elements, while performing worse when being impaired by nuisance elements.
In this paper, we propose the Interaction Scene Graph for end-to-end Auto-
nomous Driving (GraphAD) to enhance the interactions among driving ele-
ments. GraphAD encodes strong prior knowledge of the interactions into a graph
model, the Interaction Scene Graph (ISG). The ISG is a directed graph model
whose nodes represent key driving elements in the environment, including traf-
fic agents and lanes. The driving elements are carefully selected for information
aggregation, such that only important driving elements are represented. The di-
rected edges in the graph represent the interactions between the nodes. Each
node is linked to only a small number of other nodes, making the edges sparse.
As a result, the ISG is a concise and efficient representation of the interactions.
Specifically, the ISG consists of two complementary parts, including the
Dynamic Scene Graph (DSG) and the Static Scene Graphs (SSG), as shown
in Fig. [l The DSG focuses on the interactions among agents. Each node of
DSG corresponds to an agent. Each edge has a weight, measuring the attention
one agent pays to the other. The weights are employed to predict the future
trajectories of the agents. Note that the interactions among agents depend on
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the future trajectories, i.e., an agent would pay more attention to one another
if their trajectories would collide in the future. Hence, the weights in DSG and
the predicted future trajectories are interdependent. The predicted future tra-
jectories can in turn refine the weights in the DSG. So we optimize the DSG and
the predicted future trajectories iteratively. The SSG depicts the interaction be-
tween the agent and the surrounding map elements. Each agent is represented
as a node in the SSG. In the meanwhile, the surrounding lanes in the map are
also represented as nodes. The directed edges come from the agent and go to the
lanes, modeling the attention the agents pay to the lanes. We apply graph neural
networks [18}36] on the DSG and SSG. The extracted features are utilized to
predict the future trajectories of the ego and all other agents. By such means,
we are able to adopt a unified method to accomplish both the prediction and
the planning tasks.

We evaluate our method on the nuScenes dataset [1]. Extensive ablation
studies are conducted to demonstrate the effectiveness of our design choices. We
summarize our main contributions as follows:

— To our knowledge, GraphAD is the first end-to-end autonomous algorithm
which employs a graph model to describe the complex interactions in traffic
scenes. The graph model allows us to introduce strong prior knowledge of
the traffic scene into the algorithm effectively and efficiently.

— We elaborately devise the ISG which concisely presents the heterogeneous
interactions among ego vehicle, traffic agents, and map elements. In particu-
lar, the DSG is able to iteratively refine the prediction of future trajectories
and describe subtle interactive games among agents.

— When compared with strong baselines [11}12}/16], our method achieves state-
of-the-art performance on multiple tasks.

2 Related Work

2.1 End-to-end Autonomous Driving.

Instead of adopting a modular paradigm in the traditional AD framework, end-
to-end methods, which aim to output future actions based on sensor inputs, have
attracted considerable attention. When formulated in an end-to-end manner, the
whole framework can be optimized towards the ultimate planning task with high
computational efficiency [4}/12]. Some pioneering approaches attempt to directly
predict the planned trajectory while lacking explicit supervision of intermediate
perception and prediction tasks [1532,/40,/41,48]. Considering the transparency
and interpretability for safety, recent works [2}(3}/11}|12}/16,/45] introduce requisite
preceding tasks in the end-to-end framework, thus unifying perception, predic-
tion, and planning into a holistic model. For instance, UniAD [12|, which regards
task-specific queries as a powerful tool for message passing throughout the AD
pipeline, has achieved remarkable performance in both multi-object tracking,
online mapping, motion forecasting, occupancy prediction, and planning. Fu-
sionAD [45] extends the capacity of UniAD [12] with multi-modal input. In the
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meantime, some researchers focus on the impact of different privileged inputs.
VAD [16] contends that end-to-end AD can be performed in a fully vectorized
manner with high efficiency, while OccNet [35] attempts to perform the planning
task based on the predicted occupancy.

Despite previous methods that have gained impressive performance, the in-
teractions between traffic agents and the surrounding environment are not fully
explored. In this work, we propose the Interaction Scene Graph to explicitly
model the heterogeneous interactions between the dynamic and static driving
elements.

2.2 Graph Neural Networks.

Thanks to the success of Graph Neural Networks in graph data, GNNs [6}[18]/36]
have been widely adopted in various fields, such as object detection [341[37}[42],
skeleton-based action recognition |20} 43|, person re-identification [44]. Also,
GNN-related advances attract researchers in the autonomous driving commu-
nity, several studies propose to leverage the ability of GNNs for scene percep-
tion and motion prediction. GNN3DMOT [38] and PTP [39] attempt to model
inherit interactions among detected targets for 3D multi-object tracking. For
online mapping, LaneGCN |[24] constructs a lane graph from an HD map, and
TopoNet [21] introduces relation modeling among lane and traffic elements with
a learned scene knowledge graph. In multi-agent motion forecasting, both mov-
ing agents and map elements are designed as nodes in graph construction, and
the introduction of the relationship among them would benefit trajectory pre-
diction [30,33]. HDGT [14] devises a heterogeneous graph and explicitly models
all semantics and relations in the scene. Different from prior works, GraphAD
is the first to capture the interactions among dynamic agents and static map
elements in the end-to-end AD framework. Also, GraphAD proposes to consider
the potential movements of dynamic agents in graph construction by introducing
the trajectory proposals.

3 Method

The overall framework of GraphAD is presented in Fig. [2| First, with multi-
view video sequences, camera parameters, and ego-poses as input, the image
features are extracted by the image encoder and then lifted to the Bird-Eye-
View (BEV) features. The multi-frame BEV features are further aggregated to
form the spatiotemporal scene representation. Second, GraphAD employs two
transformer decoders, i.e. the TrackFormer and the MapFormer, to extract the
structured representations for the dynamic and static driving elements. Third,
the Interaction Scene Graph is explicitly constructed to model the interactions
among the ego vehicle, dynamic elements, and static elements, by considering the
potential movements. Finally, the graph-aggregated ego query feature, combined
with ego status features and high-level driving command, is processed by the
planning head to predict the ego-vehicle trajectory. We elaborate on the designs
of these steps in the following sections.
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Fig. 2: GraphAD features the graph-based interactions between the structured in-
stances in the driving environment, including the dynamic traffic agents and the static
map elements. GraphAD first constructs the spatiotemporal scene feature on the Bird-
Eye-View as the unified representation for downstream tasks. Then, GraphAD extracts
the structured instances by the TrackFormer and the MapFormer. Taking these in-
stances as graph nodes, GraphAD proposes the Interaction Scene Graph to iteratively
refine the features of dynamic nodes, by considering the inter-agent and agent-map in-
teractions. Finally, the processed node features are utilized for motion prediction and
end-to-end planning.

3.1 Spatiotemporal Scene Representation

Image Encoder. The image encoder includes a backbone network for multi-scale
feature extraction and a neck for fusing these features. Formally, with the multi-
view images I € RN X3XHixWr a5 input, the image encoder creates the extracted
visual features Foq € RVX*C1 xHyxWp , where NN is the number of camera views, Cy
is the channel number, (H;, W;) and (H, Wj) are the input and downsampled
image sizes. The output visual feature can contain the fundamental semantics
and geometry of the surrounding environment.
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Image-to-BEV Transformation. To build a unified scene representation for tem-
poral aggregation and multi-task inference, we lift the multi-view image fea-
tures to BEV representations with the Lift-Splat-Shoot paradigm [13}22,(31].
Specifically, the image features Ff, at time ¢ are processed to create the con-
text features Ft e RNXCXHIxWi and categorical depth distributions D*
RN*DxHixWi where ' is the channel number and D is the number of depth
bins. The outer product F%_, @ D? is then computed as lifted feature point cloud
Pt ¢ RVPHWixC  Finally, the voxel-pooling is employed to process the feature
points and generate the BEV feature Fi, ,, € REXHXW 4t time ¢.

Temporal Feature Aggregation. The multi-frame BEV features {FtBEV}ﬁ;“[CW_T_H,
where .y, is the current time and 7" € Ny is the number of frames, are first
warped into the ego-centric coordinate system at the current time so that the
ego-motion misalignment is removed. Afterward, the aligned multi-frame BEV
features are concatenated along the channel dimension and further processed by
a convolutional BEV encoder. The output spatiotemporal BEV feature Fggy €
RCxHXW will serve as the unified spatiotemporal scene representation for down-
stream tasks.

3.2 Structured Element Learning

Based on the spatiotemporal scene features, the extraction of structured ele-
ments, including traffic agents and map elements, is important for safety-critical
planning in autonomous driving. Therefore, GraphAD utilizes the TrackFormer
and the MapFormer to predict these driving-related instances.

TrackFormer. With the spatiotemporal BEV representation, the TrackFormer
aims to perform end-to-end 3D object detection and tracking. Following the de-
sign of |12|, we employ two groups of object queries and the transformer decoder
to solve the problem. Specifically, one group of track queries, which corresponds
to previously detected objects, is still required to predict the updated 3D bound-
ing boxes of the same object identities. The other group of detection queries is
responsible for the objects which are visible for the first time. For each times-
tamp, the positive queries, including the tracked and newborn, will serve as the
track queries for the next timestamp. The transformer decoder layer includes
the self-attention between all object queries and the deformable attention for
attending to the spatiotemporal BEV features.

MapFormer. To better capture the geometric constraints of map elements, we
follow recent practices |16}26] to learn vectorized representations of local maps.
Specifically, the MapFormer utilizes the instance-level and point-level queries to
form the hierarchical map queries, which are processed by a similar transformer
decoder as in TrackFormer. Finally, the output map queries are projected to the
class scores and a series of BEV coordinates of potential map elements. To fully
capture the map information, four kinds of elements are modeled, including the
lane centerline, lane divider, road boundary, and pedestrian crossing.
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3.3 Interaction Scene Graph

With the extracted driving instances in structured formats, including traffic
agents and map elements, the key challenge lies in how the network can per-
ceive heterogeneous interactions. These interactions, including the driving game
between dynamic agents, or the simple centerline-following heuristics, are im-
portant for forecasting the future of the surrounding environment and making
driving decisions. To this end, we construct the Interaction Scene Graph to cap-
ture these heterogeneous interactions. As an iterative process, the Interaction
Scene Graph functions in three steps. First, all dynamic and static elements
are formulated as graph node representations, including explicit geometry and
implicit features. Second, the Interaction Scene Graph is constructed based on
strong geometric priors. Third, the graph node features are updated based on
the established graph edges, which are further processed to update the geometry.
The detailed formulation is elaborated in the following paragraphs.

Graph Node Representation. The Interaction Scene Graph is constructed on the
structured nodes of traffic agents and map elements. Each graph node is designed
to include both the explicit geometry and the implicit features. Note that the
ego-vehicle is treated as one of the traffic agents to participate in graph-based
interactions.

Specifically, the graph nodes of traffic agents, i.e. dynamic graph nodes, are
organized as one set P¢ = {p?,... ,pﬁlvd}, where Ny is the number of dynamic
graph nodes. Also, p;-’l = (xf7 fid) represents the node representation with its tra-
jectory proposal x¢ € RM¢*2 a5 BEV coordinates and its node feature f¢ € R
with C, channels, where My is the time horizon of trajectory prediction. The
trajectory proposals are the trajectory predictions from the previous layer. For
the first layer, the clustering results from k-means are utilized instead. The im-
plicit node features are computed as the combination of previous node features,
queries from the TrackFormer, embeddings of trajectory proposals, and learn-
able intention embeddings, following [12]. For the unified formulation, we treat
different modalities of the same agent as different dynamic graph nodes.

Similarly, the graph nodes of map elements, i.e. static graph nodes, are or-
ganized as the other set P* = {p3,... ,p‘j\,s}7 where Ny is the number of static
graph nodes and p; = (x7,f’) represents one map element by a series of BEV
coordinates x; € RM:*2 with M, points and its node feature f{ € R with
Cy channels. The structured predictions from the MapFormer, including the
BEV coordinates and the output query features, are directly utilized as the
static graph nodes. Since the map elements in the driving scenes usually serve
as constant environment constraints, their node features are not updated in the
iterative layers.

Graph Connection Construction. To capture the heterogeneous interactions be-
tween all graph nodes, the Interaction Scene Graph consists of the Dynamic
Scene Graph (DSG) and the Static Scene Graph (SSG). The Dynamic Scene
Graph is formulated as G¢ = (P?, E?) by using the traffic agents as dynamic
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graph nodes, which intends to model the driving game between these agents. The
Static Scene Graph is formulated as G* = (P9, P*, E®) by incorporating both
the dynamic and static graph nodes, which focuses on providing the appropriate
map information for the dynamic agents. For both DSG and SSG, we follow the
same high-level philosophy for computing the edge connections. Specifically, we
compute the pair-wise distances between graph nodes and connect each node
to its K nearest neighbors. Despite the straightforward formulation, the design
choices of pair-wise distance functions are still underexplored.

Existing graph-based methods [14,/37] usually exploit the pair-wise distance
in feature or coordinate spaces. However, the heterogeneous and evolutionary
interactions in the constructed scene graph, with dynamic agents and map ele-
ments, cannot be well processed by existing approaches. To this end, we propose
to utilize the geometric distances based on trajectory proposals to measure the
correlations between graph nodes. On the Dynamic Scene Graph, the distance
Hd(pg, p?) between two dynamic graph nodes is computed as the minimal dis-
tance between their trajectory proposals at each time, as in Eq. :

Mg
H(p, pj) = min x] (1) — x5 () |2, (1)
where x¢(t) refers to the predicted future position at time ¢. On the Static Scene

Graph, the distance H*(p¢, p‘;) between a dynamic node and a static node is
computed as the minimal distance between the dynamic trajectory proposal and
the static map coordinates, as in Eq. :

70 p3) = i (i [ 0) = 3 (1) ©)
P, pj) = L { IO |IX; X 25
where x¢(t) refers to the predicted future position at time ¢ and x; (k) refers

to the k-th coordinate point of the predicted map element. When the pair-wise
distances are computed, the nearest K graph nodes with minimal distances are
selected as the graph neighbors.

Graph Feature Aggregation. Since the interaction connections have been estab-
lished, the final part is to refine the node feature by aggregating the information
from its connected neighbors. A simple yet effective approach is proposed for the
feature aggregation in the Interaction Scene Graph. Specifically, the feature of
each neighbor node is concatenated with the target node and then processed by a
Multi-Layer Perceptron (MLP). Finally, the permutation-invariant max-pooling
is employed to aggregate the processed neighbor features into the target node.
Also, the Dynamic Scene Graph and Static Scene Graph share the same approach
for graph feature aggregation. At the end of each iteration layer, the updated
features of dynamic agents are utilized to predict their multi-modal trajecto-
ries, including the probability score and the trajectory points for each modality.
The predicted trajectory points are further used to update the geometric node
features into the next iteration layer.
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3.4 Planning Head

Planning Head Structure. The input information for the planning head includes
the high-level driving command, the ego-status features, and the processed ego-
query from the Interaction Scene Graph. The three groups of features are con-
catenated and processed by a simple MLP for the final planning predictions.

Ego-status Features. The ego-status information, which mainly includes the ve-
locity, acceleration, and angular velocity, is important for the open-loop planning
performance. Therefore, we use a small Multi-Layer Perceptron (MLP) to encode
the ego-status information, along with the history trajectories of the ego-vehicle,
into the ego-status features.

Occupancy-based Post-optimization. To further avoid the collision with other
road agents and ensure the driving safety, we follow the implementation of
UniAD [12] to train an occupancy head, whose predictions can be utilized to
post-optimize the predicted planning trajectories.

3.5 Training

Loss Functions. The loss functions include the depth estimation loss Lgeptn,
the TrackFormer loss Lirqcr, the MapFormer loss L4y, the motion trajectory
loss Lyotion, the occupancy loss L., and the planning loss Lpan. GraphAD is
end-to-end trained with the summation of multi-task losses:

L= ['depth + »Ctrack: + ['map + ['motion + »Cocc + ['plan~ (3)

Specifically, we use binary cross-entropy for Lgep:n, and follow existing meth-
ods [12,/16] for training other tasks.

Multi-stage Training. With only the image backbone network initialized from
ImageNet [19]-pretrained weights, GraphAD is trained in three stages. First,
GraphAD is trained to jointly predict the 3D object detection and vectorized
map elements. Second, we freeze the image backbone and train GraphAD for
tracking, vectorized map, and graph-based motion prediction. Finally, we further
add the tasks of occupancy prediction and planning for end-to-end training.

4 Experiments

Our experiments are conducted on the challenging nuScenes dataset [1], where
1000 complex driving scenes are included, and each scene roughly lasts for 20
seconds. In data collection, six cameras with various views are utilized for cap-
turing the driving scene, thus covering 360° FOV horizontally. For annotations,
over 1.4M 3D bounding boxes of 23 categories are provided in total, and the
key-frames are annotated at 2 Hz.
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4.1 Implementation Details

For benchmark results, GraphAD adopts the input size of 640 and ResNet101-
DCN |[7] as the image backbone. The image neck generates feature maps with 512
channels and 16x downsampling. For image-to-BEV transformation, GraphAD
uses the method in BEVDepth [22] to generate the BEV features with 80 chan-
nels. Four frames of BEV features are fused to create the spatiotemporal scene
representation F gy € R256%200x200 The TrackFormer strictly follows the set-
tings of UniAD [12], while the MapFormer uses 100 map queries and a six-layer
transformer decoder. The Interaction Scene Graph stacks three iterative layers
for motion prediction with six modalities. The number of neighbours is set to 24
for the Dynamic Scene Graph and 8 for the Static Scene Graph. For ego-status
features in the planning head, we follow the preprocessing of CAN-bus informa-
tion from VAD [16]. For ablation studies, we adopt the input size of 256 x 704
and ResNet50 as the image backbone.

4.2 Metrics

We follow the same evaluation protocol of previous state-of-the-art method
UniAD [12]. Specifically in tracking task, AMOTA and AMOTP are introduced
to evaluate the perception performance. For motion prediction task, we employ
widely-used metrics to evaluate the capability of our model, including End-to-
end Prediction Accuracy (EPA), Average Displacement Error (ADE), Final Dis-
placement Error (FDE), and Miss Rate (MR). In the evaluation of planning,
Displacement Error (DE, L2 distance) and Collision Rate (CR) are commonly
used to evaluate the planning performance, where the collision rate is considered
as the main metric. Specifically, we follow UniAD to calculate DE and CR values
at each planning step.

Table 1: Benchmark results for open-loop planning performance. { denotes
LiDAR-based methods. * represents the reproduced results with official checkpoints.
GraphAD achieves the state-of-the-art planning performance.

L2 (m) | Collision (%) |

Method 1s 2s ) 3s Avg. 1s 2s (35) Avg.
NMPT |46] - - 2.31 - - - 1.92 -

SA-NMPT [46] - - 205 - - - 159 -

FFf [10] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO' [17] 067 136 278 1.60 | 004 009 088 0.33
ST-P3 [11] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD [12] 0.48 0.96 1.65 1.03 0.05 0.17  0.71 0.31
VAD™ |16] 0.54 1.15 1.98 1.22 0.00 0.33 1.07 0.47
GPT-Driver |28| 0.27 0.74 1.52 0.84 0.07 0.15 1.10 0.44
Agent-Driver [29] | 0.22  0.65 1.34 0.74 | 0.02 0.13 0.48 0.21

GraphAD ‘0.32 0.61 1.10 0.68 | 0.03 0.07 0.25 0.12
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4.3 Benchmark Results

Planning Results. As shown in Tab. [[ GraphAD achieves the state-of-the-art
performance for open-loop planning on the nuScenes validation set. When com-
pared to the second best method, Agent-Driver [29], GraphAD achieves a 42.9%
reduction of collision rate, which demonstrates the effectiveness of the proposed
Interaction Scene Graph for aggregating information from related traffic agents
and map elements.

Prediction Results. The benchmark results for motion prediction on the nuScenes
validation set are summarized in Tab.[2] GraphAD achieves the best performance
with 0.68 minADE and 0.514 EPA, significantly outperforming the previous best
method UniAD [12]. The improved performance on motion prediction validates
the enhanced capacity of Interaction Scene Graph in modeling the map guidance
and intention interaction from other driving instances.

Table 2: Benchmark results for motion-forecasting.

Method minADE(m)l  minFDE(m)] MRJ EPA?T
Constant Pos. 5.80 10.27 0.347 -

Constant Vel. 2.13 4.01 0.318 -

PnPNet [25] 1.15 1.95 0.226 0.222
ViP3D [5] 2.05 2.84 0.246 0.226
UniAD [12] 0.71 1.02 0.151 0.456
GraphAD 0.68 0.98 0.161 0.514

Perception Results. In Tab.[3] GraphAD achieves significant improvements over
the existing state-of-the-art methods, including UniAD and MUTRS3D. Benefits
from the reliable perception results, the downstream tasks would have more
potential to obtain accurate motion forecasting and planning results.

Table 3: Benchmark results for multi-object tracking.

Method AMOTA? AMOTPJ Recallf IDS|
ViP3D [5] 0.217 1.625 0.363 -
QD3DT [9] 0.242 1.518 0.399 -
MUTR3D [47] 0.294 1.498 0.427 3822
UniAD {12] 0.359 1.320 0.467 906
GraphAD 0.397 1.267 0.486 497

4.4 Ablation Studies

To demonstrate the effectiveness of the proposed Interaction Scene Graph, we
conduct extensive ablation studies on the nuScenes validation set.

Table 4: The ablation studies for the Interaction Scene Graph.

DSG SSG minADE(m)]  minFDE(m)| MR
v 0.683 1.014 0.165
v 0.684 1.018 0.167

v v 0.665 0.989 0.160

Attention Attention 0.678 1.000 0.160
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Effectiveness of Interaction Scene Graph. In Tab. [d] we ablate the influence of
Dynamic Scene Graph (DSG) and Static Scene Graph (SSG) on the motion pre-
diction of traffic agents. We can observe that both types of scene graphs make
significant contribution to the performance boost. Since the DSG can model the
driving game between dynamic agents and the SSG is able to provide explicit
map constraints, both types of graph-based interactions can provide valuable
and complementary information for the trajectory prediction. For comprehensive
evaluation, we also implement an attention-based variant, where the inter-agent
and agent-map interactions are entirely realized by the vanilla attention mecha-
nism. However, we find the attention-based variant, without explicit geometric
prior, fails to extract valid information and generates inferior performance.

Table 5: The ablation studies for the choices of node similarity functions.

Similarity minADE(m)| minFDE(m)] MR
Feature Distance 0.673 0.993 0.160
Current Distance 0.677 0.999 0.160

Trajectory Distance 0.665 0.989 0.160

Design choices of graph node distance. In Tab. [5] we analyze the influence of
different methods for computing the distance between graph nodes. “Feature
Distance” and “Current Distance” denote distances in the feature space and
distances between current locations respectively, while “Trajectory Distance” is
the distance between potential trajectories. Since the distance function directly
determines which neighbour nodes will participate in the feature aggregation,
its design choice is of vital importance. From the experimental results, we can
find that the proposed trajectory distance significantly outperforms the current
distance because it explicitly considers the potential interactions in the future,
which is crucial for accurate trajectory estimation. On the other hand, the geo-
metric distance on trajectories also outperforms the feature distance. It is pos-
sibly because the graph nodes, including both traffic agents and map elements,
with different sources and modalities have heterogeneous features.

Table 6: The ablation studies for the graph feature aggregation methods.

Method minADE(m)]  minFDE(m)] MR]
Attention 0.682 1.017 0.170
MLP + Avg-pooling 0.680 1.014 0.164
MLP + Max-pooling 0.665 0.989 0.160

Design choices of methods for graph feature aggregation. In Tab.[6 we compare
different methods for aggregating the neighbour node features to update the ver-
tex. As observed in the table, MLP-based aggregation methods performs better
than attention-based methods. Furthermore, the max-pooling operation outper-
forms the avg-pooling method, reaching 0.665m minADE, 0.989m minFDE and
0.160 MR. Thus, we choose MLP with max-pooling as default setting.

Design choices of planning head. In Tab. [T} we explore the effects of different
components for the planning task, where “Graph” refers to the proposed In-
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Table 7: The ablation studies for designs in the planning head.

Graph  Ego-states Post-optim. Planning
L2 (m) | Col. (%) {
1.39 1.13
1.35 1.07
v 0.65 0.63
v 0.64 0.47
v v 0.73 0.15
v v 0.74 0.22

teraction Scene Graph, “Ego-states” means the utilization of ego-vehicle status,
and “Post-optim.” represents the optimization strategy with the predicted occu-
pancy. The following effects can be observed: (1) The incorporation of ego-state
features can bring a significant improvement on the planning performance, since
the information, like velocity and acceleration, makes it much easier to recover
the ego-trajectory. (2) Whether or not the ego-state features are utilized, the
proposed method of Interaction Scene Graph consistently improves the planning
performance. (3) The post-optimization with the predicted occupancy plays an
important role in ensuring the driving safety, by avoiding the potential collisions
with explicit adjustments. With all above components, GraphAD, with smaller
input sizes and image backbone, achieves a remarkable collision rate of 0.15%.

Modality[1] Modality[2] Modality[3]
] ol |
/ 1] a I p ’ a 1]
.5
Modality[4] Modality[5] odality[6] B Vertex Agent
[ Lane Divider
[ Ped. Crossing
[ Boundary
[ centerline
~ [
] ol t ! a0 L

Fig. 3: The qualitative visualization of the Dynamic Scene Graph. The agent
of interest, marked by the red dot, has 6 different modalities of future trajectories. With
each motion intention, this agent interacts with the most influential traffic agents, which
are denoted by the connections. Faraway connections are omitted for clarity.
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4.5 Qualitative Results

To qualitatively evaluate our method for better understanding, we visualize
both the intermediate interactions and the final results of GraphAD. As shown
in Fig. 3] the agent of interest has 6 predicted future trajectories for different
potential intentions. The dynamic scene graph for each trajectory automatically
links the agent to other traffic agents nearby. With these explicit geometry pri-
ors, the agent can focus on the interactions with the important agents. From the
cases in Fig. 4] GraphAD enables the ego vehicle to maneuver safely in complex
situations like road junction and opposite meeting. These planning abilities re-
sults from the accurate motion prediction and necessary inter-agent interactions,
based on the proposed graph designs.

KEEP FORWARD

Fig. 4: The qualitative visualization of the planning trajectories. The images
from six cameras are shown on the left. The predicted trajectories of traffic agents and
the planning result of the ego vehicle are shown on the right. The color intensities of
these trajectories vary according to the probability p and the time ¢. The red arrows
highlight the environments which most likely influence the ego vehicle planning.

5 Conclusion

In this paper, we propose a new end-to-end autonomous driving algorithm,
GraphAD, which employs an elaborately designed graph to describe heteroge-
neous interactions in complex traffic scenes. The graph explicitly encodes key
driving elements and their relations, allowing us to introduce strong prior knowl-
edge into the algorithm. As a consequence, GraphAD achieves state-of-the-art
performance in both the prediction and the planning tasks. The way using graphs
to encode more complex interactions among diverse traffic instances, such as
traffic lights and routing decisions, needs further exploration.
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