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Automatic Fingerpad Customization
for Precise and Stable Grasping of 3D-Print Parts

Joyce Xin-Yan Lim and Quang-Cuong Pham

Abstract—The rise in additive manufacturing comes with
unique opportunities and challenges. Massive part customization
and rapid design changes are made possible with additive
manufacturing, however, manufacturing industries that desire
the implementation of robotics automation to improve production
efficiency could face challenges in the gripper design and grasp
planning due to highly complex geometrical shapes resulting from
massive part customization. Yet, current gripper design for such
objects are often manual and rely on ad-hoc design intuition.
This would be limiting as such grippers would lack the ability to
grasp different objects or grasp points, which is important for
practical implementations. Hence, we introduce a fast, end-to-end
approach to customize rigid gripper fingerpads that could achieve
precise and stable grasping for different objects at multiple
grasp points. Our approach relies on two key components: (i)
a method based on set Boolean operations, e.g. intersections,
subtractions, and unions to extract object features and synthesize
gripper surfaces that conform to different local shapes to form
caging grasps; (ii) a method to evaluate the grasp quality of
synthesized grippers. We experimentally demonstrate the validity
of our approach by synthesizing fingerpads that, once mounted
on a physical robot gripper, are able to grasp different objects
at multiple grasp points, all with tightly constrained grasps.

Index Terms—Gripper design automation, additive manufac-
turing, grasping

I. INTRODUCTION

THE rise in additive manufacturing comes with unique
opportunities and challenges. Massive part customization

and rapid design changes are made possible with additive
manufacturing, to produce parts used for industrial production
or research tasks. However, these parts could consist of highly
complex geometrical shapes due to massive customization,
which results in challenges posed to manufacturing industries
that desire the implementation of robotics automation. A key
challenge is the design of the gripper manipulator and the
planning of grasps for parts produced by additive manufactur-
ing due to massive customization. This is a valid concern as
applying robotics in these areas is an increasing trend [1].

Current gripper design methods for 3D-Print (3DP) parts
are often manual [2] that rely on ad-hoc design intuition
rather than rigorous principles. It would also be difficult for a
single manually designed gripper to be able to grasp different
complex objects or multiple grasp points of one object. In
addition, current automated rigid gripper design processes [3]–
[7] tend to produce gripper fingerpads that are based on
standard household objects with simple geometries and are
also limited to one object at one grasp point. Although these
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Fig. 1. Fingerpad Customization with Set Operators (FCSO): A single
pair of fingerpads is capable of tightly grasping different objects at multiple
poses per object. The figure shows a pair of fingerpads that have been designed
by FCSO to conform optimally and simultaneously to the geometries of four
grasped surfaces (2 objects × 2 poses per object) to form caging grasps.
Physical grasping experiments are available at https://youtu.be/M68YagfUF1g

grippers may be able to achieve high-precision grasping due to
the close conformation between the fingerpads and the object,
they are limiting and not capable of practical implementations
due to the lack of versatility [8].

An alternative would be to use soft grippers to grasp
customized 3DP parts [9]–[14], which are highly versatile
but generally lack precision. However, additional techniques
would also be required to estimate the pose of the object
in grasp. In comparison, customized rigid grippers would
generally be tolerant to marginal initial positioning errors [15],
because the object in grasp would slide nicely into the
geometrical curvature of the gripper that was designed for
the particular object pose, which indicates that additional
techniques to determine the in-hand pose of the object might
not be required.

Thus, due to the challenge posed by massive customization
in additive manufacturing, there is a need for a robust, princi-
pled method that can automatically design grippers for grasp-
ing and manipulating 3DP customized and complex objects,
so that automated tasks could be executed. This is also made
possible due to the opportunity presented by additive manufac-
turing that could include the production of these customized
grippers for 3DP parts. Hence, we introduce a fast, end-to-end
automated approach (Fig. 1) to customize grippers for precise
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Fig. 2. Proposed pipeline for FCSO. It accepts the STL files of the objects, user-defined parameters from a configuration file, and the flat finger model of a
gripper, to automatically return the best grasp surfaces and the best gripper design.

and stable grasping of 3DP parts: Fingerpad Customization
with Set Operators (FCSO). Our approach relies on two key
components:

• A method based on set operators (Boolean intersec-
tion, union, subtraction), to extract object features and
synthesize gripper surfaces that optimally conforms to
different local shapes: either at different grasp points on
the same object, or on different objects to form grasping
by geometric constraints;

• A grasp quality evaluation method for synthesized gripper
surfaces to select the optimal gripper surface. This could
be an extension of existing grasp indicators, such as force
closure [16]–[18], to emphasize the geometric quality of
the grasp for grasps resulting from geometric constraints.

We introduce FCSO in Fig. 2 which consists of five
modules: stable pose generator, grasp sampler, fingerpad cus-
tomization, grasp quality evaluation, and finger design. The
stable pose generator accepts the CAD models of objects and
user-defined parameters, e.g. gripper specifications, number
of stable poses to plan grasps, and size of fingerpad. A set
of stable poses, that rest the objects on a planar surface,
is returned and stable poses are automatically selected by
random. Alternatively, manual selection could be done if
specific poses are desired. At each selected pose, grasps are
sampled to obtain valid grasp surfaces and locations. Sampled
grasps are used in fingerpad customization to extract object
features by Set Boolean operators to get fingerpad geometries
at each grasp location. The fingerpad geometries at each grasp
location are evaluated on their grasp quality to return the best
fingerpad geometry and grasp location. The best fingerpad
geometry is then fused onto a flat finger to obtain the final
customized finger to be mounted on a gripper base.

We aim to leverage the opportunity posed by additive
manufacturing to tackle the challenge of gripper design and
grasp planning for robotic automation in manufacturing in-
dustries that utilize additive manufacturing. The idea is to
automatically obtain the design of the gripper fingerpads for
a set of objects in one print job, and this is possible as our
pipeline only requires the STL files and some user-defined
parameters. After printing the fingerpads, which could be
printed together with the objects, the fingerpads would be

mounted on the gripper and be used in the automation line
to grasp and manipulate these objects. The same process can
be repeated for a different set of objects in a print job. In
the event that the print job is consistent, i.e. for parts that are
mass-produced, the same gripper fingerpad can be re-used,
and only be printed again after certain wear and tear, which
is a generally cheap procedure due to the negligible volume
of these fingerpads compared to the actual parts printed for
production. As such, the customized fingerpads do not have
to be very versatile like soft grippers but require sufficient
versatility such as the capability to pick different objects at
multiple grasp points so that automated tasks can be practically
executed, which is not present in the current state of automated
rigid gripper design.

The rest of the paper is as follows: Section II reviews
related literature, Section III introduces the pipeline of our
algorithm, Section IV details the method for customized
fingerpads. Section V explains the concept for our geometric
grasp quality measure and Section VI evaluates our method
from two perspectives through experiments.

II. RELATED WORK

A. Rigid gripper customization

Previous studies introduced methods to synthesize gripper
finger designs. In [5], appropriate pairs of finger designs are
selected from a pre-configured database consisting of simpli-
fied geometries. A reconfigurable finger design was proposed
in [6] that automatically reconfigures cylindrical fingers to
obtain a three-point grasp on mainly polyhedral objects. In [7],
a method was proposed to extract the geometry of objects
such that fingers generated will enclose the object’s surface,
forming a grasp by geometric constraint. This method was
applied in [3], [4] where an end-to-end pipeline to obtain
customized grippers is limited to individual objects at only
one grasp location.

Recent works for shape optimization include using 3D
generative framework [19] and graph neural network [20].
Another study introduced an optimization procedure to cluster
geometries and produce a set of robust finger designs that
were used to plan grasps of several objects by maximizing
contact area [15]. However, the size of objects is limited as
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the center of gravity must reside within the gripper opening.
Furthermore, unfeasible grasps may occur when an object lies
exactly in the position of the planned grasp after finger design.

Most studies design grippers for household objects with
generally simple geometries such as in the YCB dataset [21],
that may not be applicable to customized objects with complex
geometries which are produced by additive manufacturing.
These objects could be used in research or industrial pro-
duction. Our method is robust enough to design grippers for
complex geometries with fingerpads that provide geometrical
constraints thus achieving secure grasps.

B. Non-rigid grippers

Soft fingers are versatile as they deform to the local ge-
ometry of the object and can better resist external distur-
bances [10], [11]. Studies on hybrid grippers combined soft
and rigid structures [22]–[24] to improve fingertip force, actu-
ation speed, friction, or adaptability. Other soft fingers include
conforming pin pads for adaptive grasping [25] and jamming
pads [12], [13] or variable stiffness [26], [27]. However, soft
fingers generally lack precision.

C. Grasp quality measures

Classical point-contact quality measures were discussed
in [18] for force closure grasps, including analytical methods
using grasp wrench space [28] that simplifies force closure
grasp analysis but cannot take into account the curvature of
object’s surface [29]. Recent works on surface-contact quality
measures include a surface-contact model that parameterizes
the contact area [30], computation of contact profile using
solid geometry intersection and barycentric integration [31],
or calculation of contact profile using 6D friction wrench or
friction cone [11], [32]. However, simple geometries were
used in these works which may be hard to extend to complex
contact profiles in customized fingers.

Caging grasps and immobilization are essentially performed
based on geometrical constraints [29], [33], which make grasps
insensitive to friction changes [15]. A key idea on two-finger
caging grasps is to capture the concavity of the object [34]–
[36] and perform squeezing trajectories [37], stretching opera-
tions [36] or dispersion control [38] to immobilize objects. A
survey [29] discussed types of caging grasps including caging
by environment, 2D, 2.5D, 3D caging, and partial caging,
however, the authors noted that most practical caging grasps
are 2D or 2.5D caging algorithms with parallel jaw grippers.
As our gripper customization aims to form caging grasps, we
focus on the geometrical constraints and omit friction analysis.
We also propose a geometric quality measure to evaluate
grasps with only the contact surfaces.

III. FCSO PIPELINE

This section discusses the specifics of FCSO. It accepts the
CAD models of objects and user-defined parameters to return
a single finger to be mounted on a linear-closing, parallel
gripper base. Note that the fingers on the parallel gripper are
symmetrical and identical, to illustrate that the pipeline could
accept more object poses and geometries.

Fig. 3. Grasp sampling by a sliding pair of rectangular samples (S) along
the lateral axis of an object, with a stride equivalent to L. Each sample pair
has the same color code.

Detailed explanation of each module is as follows: stable
pose generator in Section III-B, grasp sampler in Section III-C,
fingerpad customization in Section IV, grasp quality evaluation
in Section V and finger design in Section III-D.

A. Specifications

We list some specifications used. Software libraries include
trimesh [39] and Blender [40]. Specifications of the worksta-
tion used are Intel Core i7-6700HQ CPU at 2.60GHz × 8 with
a NVIDIA Quadro M1000M graphics card.

B. Stable pose generator

The stable pose generator aims to provide several poses
that naturally rest the objects on a planar surface, prior to
the grasp approach. The stable orientations are estimated with
a quasistatic model [39], [41]. The selection of stable poses
is random and automatic, and the number of selected stable
poses, Np, is pre-defined by the user. If there are specific
requirements or prior knowledge on the poses of an object,
e.g. for assembly tasks, optional manual input or selection
can be conducted. The grasp approach direction is defined in
the axis of the world where the gripper approaches the object.
A top-to-bottom grasp approach (Z-axis) is chosen by default
as side approaches are usually difficult for small objects due
to collisions of the gripper base with the table.

C. Grasp sampler

Many tools can plan initial contact locations for basic grip-
pers, such as Graspit [42] or SynGrasp [43], or learning-based
methods for ambidextrous grasping [44] and multi-affordance
grasping [45]. For customized grippers, the local contours are
key to forming caging grasps, such as in [3], [15]. Thus, the
grasp sampler is required to fully sample the object geometry.
It generates candidate grasps by sliding a pair of rectangular
samples (S) along the axes of objects, with a sampling step
defined as stride (Fig. 3). This was motivated by the sliding
window in neural networks where receptiveness is improved
by adjusting the stride [46]. Similarly, the stride could be
applied in grasp sampling to produce more candidates. A
smaller stride, or smaller sampling step, returns more grasp
candidates. The length (L), width (W ) and thickness (T ) of
S is user-defined. The penetration depth (D) is the amount of
penetration of S into the object mesh, and 0 < D < T .

Feasibility checks are performed on every sampled pair. A
sample pair is valid if a sufficiently large contact area can be
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(a)

(b)

(c)

Fig. 4. Fingerpad customization (without filter) based on the number of geometries (N), while illustrating a three-step procedure on a pair of fingerpads.
(a) Independent Boolean intersections (In) resulting from the intersection of every valid rectangular sample (S) and Gn, which is the nth geometry of
the mesh bounded by the S. The samples are obtained from the grasp sampler (Section III-C); (b) Boolean union of N intersections (MN ); (c) Boolean
subtraction of S and MN to obtain fingerpad (P ) that has a shape which conforms to the mesh at all Gn.

established during grasping, the grasp is collision-free, and the
object can fit into the gripper opening. The number of valid
sample pairs for the mth pose is Ns,m, where m = 1, 2, ..., Np.

D. Finger design

Commercial grippers are often parallel flat finger grippers
with basic flat fingerpads, the CAD model of these basic
fingerpads can be retrieved. The optimal gripper geometry
obtained in Section V is fused onto the flat finger to obtain
the print-ready CAD model of the customized gripper.

IV. FINGERPAD CUSTOMIZATION WITH SET OPERATORS

Caging grasps and immobilization are essentially performed
based on geometrical constraints [29], [33]. Perturbations
would not affect the pose of a caged object, thus the pose could
be precisely determined with prior information on the gripper.
Velasco [7] proposed using Boolean intersections to extract
simple, local geometries of objects so that grippers that con-
form to object shapes can be achieved, but manual grouping is
required before subtraction. We extended this concept in our
method by using a combination of set Boolean operators with
a filter, which allows our method to be sufficiently robust to
different object geometries thus achieving an automated design
process. Set Boolean operators such as intersections, unions,
and subtractions are commutative operations that allow easy
addition of new objects or poses.

A. Fingerpad customization without filter

We define the number of geometries to be extracted as
N and rectangular fingerpad sample, S. The nth geometry
bounded by S and the mesh is Gn, where n = 1, 2, ..., N .
In is the intersection of S with Gn and the union of N
intersections is MN . The customized fingerpad is defined as P .
The method to create P without the automatic filter is shown in
Fig. 4. This method would generally work well if the sampled
geometries are good. An explanation of good geometries is in
Section IV-B.

B. Fingerpad customization with filter

We introduce a volume threshold filter to provide feedback
across local geometries. It automatically differentiates ‘good’
and ‘bad’ geometries obtained from set intersections, thus
improving the robustness of the geometry extraction to achieve
caging grasps. Good geometries are defined as shapes that
would create fingerpads that can achieve caging grasps while
bad geometries would not achieve such restrictions. The dif-
ferentiation is crucial as bad geometries such as flat surfaces,
are supersets of all geometries, i.e. any geometry Gn can be
subtracted from a flat rectangular pad. This also means that
any intricate geometries are absorbed by a flat rectangular
pad. Thus, if any In is flat, MN would also be flat which
results in an undesirable flat fingerpad, P . Fig. 5a shows the
absorption of the good geometries in the presence of a single
bad geometry. This was avoided with the filter in Fig. 5b.

The differentiation of geometries uses a volume ratio (R)
with a constant threshold (th). The volume ratio, R = (VB −
VI)/VB , where VB is the bounding box volume of In, and
VI is the volume of mesh In. If R ≥ th, it indicates that the
geometry is good, and if R < th, it means that the geometry
is bad. This simple yet effective method also filters geometries
that are relatively flat, such as edges with fillets as (VB−VI) ≈
0 which results in smaller Rs. We suggest using th = 0.1,
which was constant in all experiments of this letter.

A limitation of the volume filter (Fig. 6) occurs when the
mesh edges are at an angle which result in invalid values of
R. This is due to excess volume in those empty regions of
the bounding box, which increases R. We require the depth
of geometry of interest, (dn), which is the depth from the
object surface to the point where the bounding box of In fully
encloses the object, to check the validity of R. For each Gn,
if dn = D, any R ̸= 0 is invalid (Example 4 of Fig. 6).
For geometries that lead to invalid R, we cluster the surface
normals of In with similar vector angles. Bad geometries
would have the largest cluster perpendicular to the surface of
S, while good geometries would not. The filtering is complete
as every Gn is either labeled as ‘good’ or ‘bad’.

With the addition of the filter, the creation of P has three
possible cases depending on the labels of every Gn:
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(a) (b)
Fig. 5. Comparing effects of the filter with good and bad geometries. (a) Without filter: Undesirable P , in yellow, obtained in the presence of a single bad
geometry. This shows the need of a filter to differentiate between geometries; (b) With filter: Visible improved performance. Illustrating three possible cases
discussed in Section IV-B, with d1 > 0, d2 > 0, d3 = d4 = 0. In Example C, dB = min(d1, d2) ∗K, whereas in Example D, dB = d2 ∗K.

(a) (b)
Fig. 6. Volume ratio: (a)Volumes in R and the extracted depth of the geometry
of interest (d) in four examples. Note that Vi is a subset of the mesh. Examples
1 and 2 return a large R (good geometries) while Examples 3 and 4 return
R ≈ 0 and R = 0 respectively (bad geometries); (b) Limitation of volume
filter due to empty regions.

1) Only good geometries: The three-step procedure in
Fig. 4 executed, resulting in Example A (Fig. 5b).

2) Only bad geometries: A flat fingerpad with a thickness
of (T −D) is obtained in Example B (Fig. 5b).

3) Mixture of good and bad geometries: For P to achieve
good geometric constraints, the first two steps in Fig. 4
are amended. Intersections are only applied for good ge-
ometries and a flat rectangle block B is included during
the union to cater for the bad geometries (Examples C
and D Fig. 5b).

The depth of the flat rectangular block (dB) depends on dn,
and dn ̸= 0 if and only if the geometries are good. As
such, dB = min(d1, d2, ..., dn) ∗ K, where K is a constant
that affects the degree of ‘flatness’ of P . The minimum is
considered rather than the maximum so that shallow complex
geometries will not be absorbed away by B. We suggest using
K = 1.5 which was constant in all experiments of this letter.

The number of possible fingerpad combinations (C) de-
pends on the number of valid sample pairs and the number
of stable placements for planning (NP ). If NP = 2 and one
pose has three valid pairs of grasp surfaces (Ns,1 = 3) while
other pose has four valid pairs of grasp surfaces (Ns,2 = 3),
C = Ns,1 ∗ Ns,2 = 3 ∗ 4 = 12, meaning that there are 12
possible grippers.

V. GEOMETRIC GRASP QUALITY MEASURE

A quantitative measure is needed to evaluate the grasp
quality of synthesized gripper surfaces as the caging grasps
and immobilization are performed based on a geometrical
constraint [29], [33], which makes grasps insensitive to friction
changes [15]. Thus, we propose a heuristic grasp quality
measure that emphasizes on the geometric grasp quality.

A. Variation of contact normals

In two-finger caging grasps, the concavity of the object is
captured to create geometric constraints that immobilize the
object [34]–[36], which may indicate that the contact surface
between the gripper and object, e.g. concave surfaces, has
sufficient varying contours that resist perturbations. Thus, a
logical heuristic to define geometric grasp quality would be
the representation of the variation of contact surface normals,
where larger variations of surface normals indicate better
grasp.

The variation is quantified by mapping every surface contact
normal of the contact surface between a pair of fingers
and a grasped object to a point on a unit sphere (Fig. 7),
defined as the Radius of the Largest Empty Sphere (RLES).
A larger variation of normals would result in a better grasp
and denser sphere, which leads to a smaller RLES. Thus, a
smaller RLES would indicate a better grasp. It is computed
using a combination of 3D Voronoi vertices and Delaunay
triangulation. Caroli et al [47] showed that the convex hull of
the input points is equivalent to their Delaunay triangulation on
the surface of the sphere. Megan [48] proposed a solution for
the largest empty circle in 2D by using Voronoi vertices, as the
edges of the Voronoi regions are defined as the circumcenters
of the triangles generated by Delaunay. Hence, the spherical
Voronoi vertices are possible centers of an empty sphere that
intersects any Delaunay triangle at its three ends. A search
using KD-trees [49] is conducted to compute the RLES.

B. Total surface contact area

Although the variation of the contact normals may seem
sufficient as a grasp quality measure, the total surface area
in contact with the object during grasp (A) should also
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Fig. 7. Quantifying the variation of contact surface normals of fingerpads
produced at sampled grasp locations with RLES. Every surface contact normal
is mapped to a dot (blue) on a unit sphere. A better grasp would have a larger
variation, leading to more dots and a smaller RLES.

be considered to achieve full geometric constraint, as small
grasping areas may cause unstable grasping even with large
variations of surface normals. A is the sum of the areas of the
finger pair in contact with the object, which is related to the
surface normal variation to a certain extent. A larger contact
surface would have larger variations if the object is not flat.

C. Quantifying geometric quality of grasps
Both the variation of contact normals and total contact area

are deemed to be equally important. Thus, the effective area
(E), is the geometric quality of the ith customized fingerpad at
the mth stable pose, by multiplying the inverse of RLES with
the total surface contact area at m: Ei,m = (1/RLES) ∗Am,
where i = 1, 2, ..., C and m = 1, 2, ..., Np. A larger E depicts
a better quality as it indicates a larger A and better contact
normal variation, i.e. smaller RLES.

Each pair of fingerpads is required to grasp object(s) at
different pose(s), leading to varying qualities across grasps,
i.e. a better grasp may be observed between objects and poses
for the same fingerpad pair. Thus, the min-max concept is
used, where the quality of the ith fingerpad geometry is the
worst possible grasp (minimum E) at the mth stable pose:
Qi = min(Ei,1, Ei,2, ..., Ei,m). The geometric quality of the
best (maximum Q) fingerpad geometry is then defined as the
Qmax = max(Q1, Q2, ..., Qi). In simple terms, the grasp
quality of each gripper is its worst possible grasp and the
best gripper has the highest Q value at its worst grasp across
all grippers.

VI. EXPERIMENTS

We evaluate our proposed pipeline from two perspectives:
(1) Quantitative evaluation of geometric grasp quality measure
(Section VI-A); (2) Qualitative evaluation of generated cus-
tomized fingers for a set of objects and tests of actual pick-and-
place experiments on objects at multiple poses (Section VI-B).
Note that most objects used were real samples from HP Labs
printed for certain industrial tasks. All objects and fingers are
printed by the HP MJF5200 using PA11/PA12.

A. Evaluation of geometric grasp quality measure
We use the Stanford bunny object [50] to evaluate our ge-

ometric grasp quality measure with the following parameters:

TABLE I
RLES, CONTACT AREAS OF FINGERPADS AND

GRASP QUALITY AT TWO OBJECT POSES.

RLES Contact area (A) Grasp quality
i T1 T2 T1 T2 Ei,T1 Ei,T2 Qi

1 0.4217 0.3878 102 17.9 242.2 46.2 46.2
2 0.5079 0.4668 110 103 216.8 221.1 216.8
3 0.5387 0.4553 126 130 234.3 285.9 234.3
4 0.5333 0.3680 103 25.9 193.2 70.4 70.4
5 0.476 0.6297 124 105 261.4 167.1 167.1
6 0.4543 0.5509 149 120 329.0 217.8 217.8
7 0.6040 0.4529 92.7 42.3 153.5 93.4 93.4
8 0.6515 0.5826 117 94.2 180.2 161.7 161.7
9 0.6233 0.4863 146 114.8 235.7 236.1 235.7

• Robotiq Hand-E gripper (linear opening of 50mm) and
its default flat fingers.

• Sampling was conducted with a stride L/5 and S has
dimensions L = 20,W = 20, T = 5, D = 4.

• Two stable placements (Np = 2) with T1 and T2 as the
second and fourth object pose in Fig. 8a respectively.

FCSO returned Ns,1 = 3 for T1 and Ns,2 = 3 for T2

(Fig. 8b). The number of possible customized grippers would
be C = Ns,1 ∗ Ns,2 = 3 ∗ 3 = 9 (Fig. 8c) which were
evaluated using our geometric grasp quality measure. Each
gripper would need to achieve geometric constraints at four
surfaces (two surfaces per grasp position as shown in Fig. 4a).
Table I shows the corresponding RLES value of ith gripper
fingerpad. It also depicts the effective area for the ith fingerpad
geometry at the mth stable pose, Ei,m, and the quality for
the ith fingerpad: Qi = min(Ei,T1, Ei,T2). The best gripper
obtained was i = 9 with the highest Q.

From our experiment, we make two observations: (i) the
quality measure requires considering the variation of contact
normals and contact surface area to be effective; (ii) the mea-
sure is reasonably sufficient in determining the grasp quality as
the result coincides with our intuition. The variation of contact
normals alone may be insufficient as in Table I, the best finger
design would be i = 1 after taking the max-min of the RLES
at every i. By visual inspection, i = 9 (Fig. 8c) would provide
the best geometric constraints due to more contouring details
throughout the fingerpad, which coincides with the result from
our proposed quality measure. This measure was used to obtain
grippers that achieved successful grasps in Section VI-B.

B. Evaluation of customized fingers

We evaluate the grippers from FCSO by conducting actual
pick-and-place experiments for three objects: (1) Intricate cube
(L30xW30xH30), (2) Stanford bunny (L65xW50xH65), and
(3) L-shaped surgical object (L116xW60xH36). The cube and
the L-shaped object are real samples produced in HP Labs for
certain tasks for the industry, while the bunny was also used
in [15], which could serve as a good comparison. These objects
would be more suitable for our aim, rather than datasets with
common household items without customization such as YCB.
The geometrical complexity of customized objects produced
in additive manufacturing for the industry is also evident.

In all experiments, a Universal Robot (UR5e) executed at
15◦/s joint speed and 10◦/s2 joint acceleration was used
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(a) (b)

(c)
Fig. 8. Execution of FCSO a) Stable pose generator (Section III-B) returned four placements of the bunny and the second and fourth poses were randomly
selected; (b) Grasp sampler (Section III-C) returns three valid pairs of grasp surfaces (A, B, and C) for each pose. T1 depicts the bunny looking towards the
left while T2 shows the bunny looking upwards; (c) Fingerpad customization (Section IV) at these grasp surfaces returned nine possible customized fingerpads
that are shown in orange. The gripper fingers (Section III-D) obtained are shown in purple with the corresponding pose and grasp surface combinations.

together with a Robotiq Hand-E parallel gripper that has a
linear opening of 50mm, specifies a grip force of 60N and
closing speed of 20mm/s.

Individual pick-and-place experiments for three objects
were conducted (video link in Fig. 1). Interestingly, our cus-
tomized fingerpads contain the most distinct geometries of the
object that aid in immobilizing the object. Securely grasping
the bunny would seem difficult due to convex geometries and
large dimensions compared to the gripper opening. Intuitively,
the base of the bunny with small contours along the edges
would be the best location to grasp. Our grasp sampler
indeed returned valid samples along these extrusions and these
contours were also present in the gripper. This observation
was evident in both the cube and the L-shaped object, where
the internal geometries of the cube and the zig-zag portion of
the L-shaped object are present in their respective customized
grippers.

A more difficult pick-and-place experiment for different
objects and resting poses was also conducted. Objects used
were the bunny and the L-shape object resting at two different
positions (Fig. 1). The best gripper returned would intuitively
be the combination of the individual-best grippers for both
objects and the result matched our intuition, allowing tightly
constrained grasps across all objects and their resting positions,
illustrating that the ability of FCSO to be sufficiently versatile
for objects in a certain print job. As caging grasps are
essentially performed based on a geometrical constraint [29],
[33], the grasp outcome is highly dependent on the geometry
of the gripper rather than friction changes [15]. Thus, friction
analysis was omitted.

Additionally, as a single symmetrical finger was returned,
it indicates that FCSO had actually planned for 8 different
geometries. As each object was not symmetrical, one grasp

position requires planning for two geometries. Each object was
laid on two different positions, and with one grasp position
for each position, this meant that FCSO has planned for four
geometries per object. This illustrates the potential of FCSO,
as these 8 geometries could had been 8 symmetrical objects.

Objects were manually placed without pose refinement to
show that our customized grippers are robust to marginal
position errors and uncertainty. Precise positioning can be
obtained as the objects slide into contours of the gripper
that conform to their geometries during grasps, as evident in
Fig. 9a. We also did 10 insertion experiments after grasping for
both FCSO fingers and flat fingers, by inserting the 30.4mm
cube into a 30.7mm hole without any pose refinement. For
the FCSO fingers, we achieved a 100% insertion success
rate, while for the flat fingers, only a 10% insertion success
rate was observed. This also showed that FCSO fingers are
capable of high precision, as the initial pose of the cube was
subjected to a positioning error between −2mm and 2mm and
a rotation error between −3◦ to 3◦, yet successful insertion
could be achieved for such a tight hole that only has 0.3mm
allowance. In addition, we evaluated the holding force to show
the stability of the grasps of FCSO fingers against flat fingers
in Fig. 9b. Thus, from these experiments, we demonstrated that
FCSO could design gripper fingerpads that can achieve precise
and stable grasps, which could be implemented in automation
for tasks such as sorting or packing.

VII. CONCLUSION

The rise in additive manufacturing comes with unique
opportunities and challenges. Massive part customization and
rapid design changes are made possible with additive man-
ufacturing, however, manufacturing industries that desire the
implementation of robotics automation to improve production
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(a) (b)
Fig. 9. Precision and stability tests. Note that all fingers including the flat fingers, were printed using Nylon material (PA11/12) even though a color difference
is present. a) Precision test: The cube was rotated between −3◦ to 3◦ before attempting 10 grasps using FCSO fingers and flat fingers. Superimposed images
of the cube after grasping showed that position was constant using FCSO fingers while there were positioning errors (shadow) using flat fingers; (b) Stability
test: Printed flat fingers and FCSO fingers were used to grasp and lift objects upwards for 10cm before applying a downward force (maximum 30N ) on the
objects. Note that grasps were not broken for both cube poses and the bunny at Pose B slipped out of grasp during the lift for flat fingers.

efficiency could face challenges in the gripper design and
grasp planning due to highly complex geometrical shapes
resulting from massive customization. Current methods to
design robot grippers could be by manual ad-hoc design
intuition or automation, which are limiting as the grippers
produced from previous methods lack sufficient versatility for
practical implementation because they tend to be designed for
one object per grasp pose.

Thus, due to the challenge posed by massive customization
in additive manufacturing, there is a need for a robust and
principled method that can automatically design grippers for
3DP customized and complex objects with sufficient versatility
so that automated tasks can be practically executed. Hence,
we introduce a fast end-to-end approach that automatically
customizes optimal grippers that can grasp different objects at
multiple grasping points when given a set of CAD models.
To evaluate the grasp quality, we focus on the geometric
grasp quality of the contact surfaces based on caging grasps
and immobilization. Our geometric grasp quality measure
has shown to be reasonably sufficient in differentiating good
grippers. We also demonstrated that the designed grippers can
grasp multiple objects at different resting poses and are robust
to marginal position errors as objects slide into conforming
contours of the gripper.

A possible limitation could be the number of objects and
scenarios that can be considered. Many objects or positions
could lead to over-subtracting of geometries, which may result
in relatively flat fingerpads. Although we have not addressed
the potential number of objects or geometries that can be used,
we showed that it is possible to have 8 objects. In addition,
this situation would not occur in mass production where the
same set of objects are repeatedly printed. In addition, our
idea is to automatically obtain an optimal gripper for a set of
3DP parts in a print job so that grasping and manipulation
of these parts could be executed for tasks such as automated
sorting or packing. As such, the customized grippers would
not be required to exhibit the same degree of versatility as
soft grippers, but have the advantage of estimating the pose of
the object in-hand as the objects would slide into the contours
of these customized grippers.
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Springer, 2008, vol. 200.

[17] A. Bicchi, “On the closure properties of robotic grasping,” The Interna-
tional Journal of Robotics Research, vol. 14, no. 4, pp. 319–334, 1995.
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