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Abstract—This paper addresses the intricate task of hybrid-
field channel estimation in extremely large-scale MIMO (XL-
MIMO) systems, critical for the progression of 6G communi-
cations. Within these systems, comprising a line-of-sight (LoS)
channel component alongside far-field and near-field scattering
channel components, our objective is to tackle the channel esti-
mation challenge. We encounter two central hurdles for ensuring
dependable sparse channel recovery: the design of pilot signals
and channel estimators tailored for hybrid-field communications.
To overcome the first challenge, we propose a method to derive
optimal pilot signals, aimed at minimizing the mutual coherence
of the sensing matrix within the context of compressive sensing
(CS) problems. These optimal signals are derived using the
alternating direction method of multipliers (ADMM), ensuring
robust performance in sparse channel recovery. Additionally,
leveraging the acquired optimal pilot signal, we introduce a two-
stage channel estimation approach that sequentially estimates the
LoS channel component and the hybrid-field scattering channel
components. Simulation results attest to the superiority of our
co-designed approach for pilot signal and channel estimation over
conventional CS-based methods, providing more reliable sparse
channel recovery in practical scenarios.

Index Terms—Extremely large-scale MIMO, hybrid-field chan-
nel, pilot signal design, channel estimation, Bayes methods.

I. INTRODUCTION

In the transition from the fifth-generation (5G) to the

upcoming sixth-generation (6G) era, the pursuit of signifi-

cantly higher data rates, potentially exceeding 1 Tb/s, has

become a central focus for both the industry and academia

[1]–[5]. One of the key technologies for achieving this am-

bitious goal is the implementation of an extremely large-

scale MIMO (XL-MIMO) system, where a base station (BS)

deploys extremely large antenna arrays to enhance spectral

efficiency [6]. Moreover, high-frequency band systems, such as

millimeter-wave or sub-terahertz bands, offer the advantage of

abundantly available bandwidth. Consequently, high-frequency

XL-MIMO systems are envisioned as a fundamental means

of achieving the enhanced spectral efficiency targeted by 6G.

However, the integration of massive antenna arrays and high-

frequency bands faces fundamental changes in the operational

environments of the wireless communication system.
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The majority of these changes are related to the properties of

electromagnetic fields and are primarily driven by two factors:

the increasing size of antenna apertures and the decreasing

wavelength of signals. The electromagnetic field can be di-

vided into two distinct regions widely known as far-field and

near-field. The boundary separating these regions is defined

by the Rayleigh distance, expressed as Z = 2D2/λ, where

D represents the antenna diameter, and λ is the wavelength

[7]. For instance, in a traditional massive MIMO system with

a 0.1-meter uniform linear array (ULA) operating at a carrier

frequency of 30 GHz, the Rayleigh distance is only 2 meters.

In contrast, in an XL-MIMO system with a 0.5-meter ULA

at 100 GHz, the radiating near-field distance can extend up to

167 meters. Consequently, high-frequency XL-MIMO systems

have the potential to operate in both the far-field and near-

field regions, a departure from the conventional systems that

typically function exclusively in the far-field region.

Due to the increased Rayleigh distance in high-frequency

XL-MIMO systems, the conventional plane wavefront assump-

tion that holds in the far-field region is no longer valid. There-

fore, there is an imperative need to shift from the conventional

plane wavefront assumption to a more precise spherical wave-

front assumption in high-frequency XL-MIMO systems [8].

The spherical wavefront assumption, encompassing both the

angle of arrival and the distance between the transmitter and

receiver in the array steering vector, facilitates the generation

of focused beams in the near-field region, a phenomenon

known as beam-focusing. Beam-focusing techniques offer

new opportunities for wireless communication system design,

including interference mitigation, capacity enhancement, and

improved accessibility [9]. Nonetheless, these techniques also

pose substantial challenges to signal processing, demanding

a reevaluation of channel modeling and communication tech-

niques to accommodate the spherical wavefront. Consequently,

existing wireless communication models and schemes tailored

for far-field operations may become inapplicable. This requires

a thorough exploration of the properties, potential benefits, and

design challenges that arise when high-frequency XL-MIMO

systems operate in both the far-field and near-field regions.

In light of this, several recent studies have shifted their

focus to hybrid-field communication scenarios in XL-MIMO

systems, where both the far-field and near-field regions coexist.

Most of the research related to hybrid-field communication

has concentrated on channel estimation in environments where

distinct scatterers are present in both the far-field and near-

field regions [10]–[12]. By taking advantage of the sparsity

observed in hybrid-field channels due to high-frequency bands,

channel estimation schemes based on orthogonal matching

http://arxiv.org/abs/2403.19105v1
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pursuit (OMP) have been proposed [10]–[12]. The authors in

[10], [11] assumed that the proportion of far-field and near-

field channel components can be known in advance. They

further proposed an OMP-based channel estimation algorithm,

which sequentially estimates the far-field channel components

first and then estimates the near-field channel components.

However, the approaches proposed in [10], [11] have a prac-

tical limitation since they necessitate having specific prior

information regarding the proportion of far-field and near-field

channel components, which is generally unavailable in reality.

On the other hand, in [12], a channel estimation algorithm was

introduced that does not rely on prior knowledge of the propor-

tion of far-field and near-field channel components. However,

it has its limitations – it is susceptible to error propagation

because it estimates the two channel components separately

and sequentially, rather than jointly estimating them.

While there have been several attempts at hybrid-field

channel estimation, as aforementioned, the existing studies

in this domain have limitations that fail to fully capture the

characteristics of hybrid-field channels. Additionally, since

compressive sensing (CS) techniques are employed to exploit

channel sparsity for hybrid-field channel estimation, it is

crucial to appropriately design the sensing matrix of the CS

system to ensure reliable sparse recovery. However, none of

the existing studies that address the hybrid-field channel es-

timation with CS techniques provided solutions for designing

pilot signals, which is a crucial component in constructing the

sensing matrix. These significant challenges have not yet been

addressed in the existing literature.

To address the challenges in hybrid-field channel estimation

for XL-MIMO systems, we devise two algorithms: i) a pilot

signal design based on the alternating direction method of

multipliers (ADMM) and ii) a two-stage sequential channel

estimation algorithm involving line-of-sight (LoS) channel es-

timation and hybrid-field scattering channel estimation. These

algorithms are tailored to the hybrid-field channel charac-

teristics. Specifically, exploiting the inherent sparsity of the

hybrid-field scattering channel due to high-frequency bands,

we formulate the hybrid-field scattering channel estimation as

a CS problem. To enhance the accuracy of sparse channel

recovery, we first tackle the non-convex pilot signal design

problem by minimizing the mutual coherence of the sensing

matrix in the CS problem using the ADMM framework.

Building on the acquired pilot signal, we then sequentially

conduct LoS channel estimation and hybrid-field scattering

channel estimation. To the best of our knowledge, this work

is the first of its kind that investigates pilot signal and channel

estimation co-design for hybrid-field communications. The

contributions of this paper are summarized as follows.

• We introduce a novel co-design of pilot signal and chan-

nel estimator tailored for hybrid-field communications.

By incorporating the LoS channel component and the

hybrid-field scattering channel components, we establish

the hybrid-field channel estimation problem (Section II).

We then present the pilot signal design and the two-

stage channel estimation algorithm, intending to initially

estimate the LoS channel component and subsequently

jointly estimate both the far-field and near-field channel

components (Section III and IV).

• We formulate a problem for obtaining an optimal pilot

signal that minimizes mutual coherence for hybrid-field

communications (Section III-A). Moreover, we develop a

method for solving this mutual coherence minimization

problem, which can be challenging to solve due to non-

convex constraints, by employing the ADMM framework

(Section III-B). To tackle this challenge, we break down

the ADMM-based pilot signal design algorithm into three

steps and utilize the most suitable methods for each step.

• We develop a method for recovering the sparse hybrid-

field channel. Initially, we estimate the LoS channel

component by using a gradient descent method. Subse-

quently, we estimate the hybrid-field scattering channel

by leveraging the Bayesian matching pursuit (BMP)

method (Section IV). In this context, we present the

BMP-based channel estimation algorithm both with and

without prior channel knowledge for the hybrid-field

scattering channel.

• The simulation results validate that the proposed co-

design of the pilot signal and channel estimator yields

superior performance in recovering sparse channels com-

pared to conventional hybrid-field channel estimation

algorithms (Section V).

The remainder of this paper is organized as follows. In

Section II, we offer the preliminaries including the system

model, the hybrid-field channel representation, and the prob-

lem statement. In Section III, we elaborate on the proposed

pilot signal design algorithm based on the ADMM framework.

We delve into the BMP-based hybrid-field channel estimation

algorithms for both scenarios, with and without prior channel

knowledge in Section IV. Section V provides simulation

results, followed by the conclusion in Section VI.

Notation: The following notations are used throughout the

paper. Boldface uppercase, boldface lowercase, and normal

face lowercase letters denote matrices, vectors, and scalars,

respectively; X⊤ and XH denote the transpose and the con-

jugate (Hermitian) transpose of X, respectively; X† denotes

(XHX)−1XH ; The p-norm of vector x is denoted by ‖x‖p
(If p = 2, the norm is denoted by ‖x‖ without the subscript)

and the Frobenius norm of matrix X is denoted by ‖X‖F;

A typical positive integer set {1, 2, . . . , N} is represented by

{1 : N}; ddiag(X) constructs diagonal matrices with the

diagonal elements of X.

II. SYSTEM AND CHANNEL MODELS

In this section, we elaborate on the preliminaries, which

encompass the system model, the hybrid-field channel repre-

sentation, and the problem statement considered for hybrid-

field channel estimation in this paper.

A. System Model

As shown in Fig. 1, we consider a downlink XL-MIMO

communication system in which a base station (BS) is

equipped with an N -element extremely large-scale ULA to

communicate with a single antenna user. The BS transmits

pilot sequences to the user over M time slots for downlink
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Fig. 1. An illustration of a downlink XL-MIMO communication system,
where the channel components are classified into two types based on the
Rayleigh distance: i) far-field and ii) near-field.

channel estimation. The pilot signal received by the user in

the m-th time slot is denoted as ym = h⊤xm + wm, and by

concatenating the received pilot signals over M time slots, the

received pilot signal vector y ∈ CM×1 can be expressed as

y = Xh+w, (1)

where h ∈ CN×1 denotes the channel from the BS to

the user, and it is assumed that the channel remains sta-

tionary during both the pilot and data transmission phases;

X = [x1, . . . ,xM ]⊤ ∈ CM×N represents the transmitted

pilot signals by the BS over M time slots where xm =
[xm,1, . . . , xm,N ]⊤ ∈ C

N×1 is the pilot signal transmitted by

the N BS antenna elements in the m-th time slot; w ∈ CM×1

is the noise vector, and each element of w follows an indepen-

dent and identically distributed (i.i.d.) Gaussian distribution

with zero mean and variance σ2
w, denoted as CN (0, σ2

w).
Furthermore, we assume that the transmitted pilot signal power

from the BS is ‖xm‖2 = Px, ∀m ∈ {1 :M}.
The number of BS antenna elements N is significantly large

in an XL-MIMO system, and thus, the pilot signal vector

dimension M is generally smaller than N . This characteristic

enables the use of various CS techniques that leverage the

sparse channel representation, particularly in extremely high-

frequency bands such as millimeter wave or sub-terahertz

bands [13], [14]. Moreover, it allows a significant reduction

in the pilot transmission duration. The following subsection

will concisely explain the sparse channel representation for

more efficient and effective channel estimation in far-field,

near-field, and hybrid-field scenarios.

B. Hybrid-Field Channel Representation

It is widely recognized that when antennas radiate electro-

magnetic waves in a wireless medium, the waves propagate in

the form of a spherical wavefront. Thus, as illustrated in Fig.

2, an electromagnetic radiation field can be divided into dis-

tinctive far-field and near-field regions based on the Rayleigh

distance, denoted as Z = 2D2

λ , where D and λ represent the

array aperture size and the carrier wavelength, respectively. In

traditional wireless communication, where the communication

Fig. 2. An illustration of the distinction between the near-field region and
the far-field region, which is determined by the Rayleigh distance.

distance is significantly greater than the Rayleigh distance, the

wavefront can be accurately approximated as a plane wave.

However, such an approximation is no longer valid in XL-

MIMO systems, which are anticipated to employ extremely

large antenna arrays and operate in extremely high-frequency

bands. For instance, with an antenna aperture with a diameter

of 0.5 meters at 28 GHz, the Rayleigh distance is approxi-

mately 47 meters [8]. Consequently, considering the typical

coverage area in wireless communications [1], it is highly

likely that both the far-field and near-field regions coexist in

an XL-MIMO system.

For the user located in the far-field region as depicted in

Fig. 1, we consider a hybrid-field channel model where both a

direct path, referred to as an LoS channel component, and scat-

tered paths, i.e., far-field and near-field channel components,

coexist. When the distance between the BS and the scatterer

exceeds the Rayleigh distance, the path components associated

with the scatterer are considered to be in the far-field region.

On the other hand, when the distance between the BS and

the scatterer is shorter than the Rayleigh distance, the path

components related to the scatterer belong to the near-field

region. It is worth noting that path loss is severe in high-

frequency bands, such as millimeter-wave or sub-terahertz

bands. Given the significant propagation distance of the path

by the scatterer far from the LoS channel component, the

signal transmitted by the BS along that path faces challenges

in reaching the user due to the high path loss. Therefore, the

propagation distance of the scattered paths received by the user

will not be significantly different from the LoS path, and the

signals through the LoS path and the scattered paths may arrive

within the same symbol. Consequently, a channel model is

essential to accommodate the hybrid-field scenario, where the

LoS channel component and the two types of scattered paths,

i.e. the far-field and near-field channel components, coexist.

1) LoS Channel Component: To begin, we model the LoS

channel component based on the geometric free-space LoS

propagation assumption [7]. Consequently, the LoS channel
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component can be expressed as
[gLoS
r(n)

e−j2πr(n)/λ
]

N×1
, (2)

where r(n) represents the distance between the n-th BS

antenna element and the user; gLoS denotes the deterministic

channel gain of the LoS channel component. Furthermore, r(n)

can be expressed as
√

r2 + d2(n− 1)2 − 2dr(n− 1) sinϕ,

where r is the distance between the reference antenna element,

i.e., first antenna element, of the BS and the user, and ϕ
denotes the angle of departure (AoD) of the signal directed

to the user.

2) Far-Field Channel Components: In the scattered paths,

the far-field channel components are modeled based on the

free-space path loss model under the far-field plane wave

assumption [15], which is expressed as

hfar =

√

N

Lf

Lf
∑

l=1

gl
rl
fA(θl), (3)

where Lf represents the number of path components between

the BS and the scatterers located in the far-field region; rl
represents the distance between the reference antenna element

of the BS and the l-th scatterer; gl denotes the small scale

channel gain of the l-th path. In addition, the far-field array

response vector fA(θl) is given by

fA(θl) =
1√
N

[1, ejπθl , . . . , ej(N−1)πθl ]H . (4)

Here, θl = 2 d
λ sinϕl where d is the antenna spacing of the

array aperture, typically set as λ/2 to avoid coupling effects

between the antennas. Additionally, ϕl ∈ [−π/2, π/2] denotes

the physical propagation angle of the l-th path. Thus, θl falls

within the range [−1, 1].
To exploit the channel sparsity in channel estimation, we

can express the non-sparse far-field channel hfar concerning a

sparse angular domain channel representation as

hfar = FAhA, (5)

where hA = [hA1 , . . . , h
A

N ]⊤ ∈ CN×1 represents the angular

domain channel; FA = [fA(θ1), . . . , fA(θN )] ∈ CN×N denotes

a spatial discrete Fourier transform (DFT) matrix and is

composed of N orthogonal array response vectors uniformly

sampled from the angular domain covered by the BS; hAn and

fA(θn) are the channel coefficient and the array response vector

corresponding to θn in the angular domain, respectively, where

θn = 2n−N−1
N , ∀n ∈ {1 : N}. Due to the limited number

of scatterers and the severe path loss experienced in high-

frequency bands, the angular domain channel hA typically

exhibits sparsity.

3) Near-Field Channel Components: Similar to the far-field

channel, the near-field channel components are modeled under

the near-field spherical wave assumption [7]. As illustrated in

Fig. 3, the near-field channel can be expressed as

hnear =

√

N

Ln

Ln
∑

l=1

gl
rl
fP(θl,rl), (6)
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Fig. 3. A schematic diagram of the near-field channel model

and the near-field array response vector is given by

fP(θl,rl) =
1√
N

[

e−j 2π
λ

(r
(1)
l

−rl), . . . , e−j 2π
λ

(r
(N)
l

−rl)
]H

, (7)

where r
(n)
l =

√

r2l + d2(n− 1)2 − 2drl(n− 1)θl denotes the

distance between the n-th BS antenna element and the l-th
scatterer.

Unlike the far-field channel, the near-field channel cannot

be directly represented as a sparse angular domain channel

based on the DFT matrix. This limitation arises due to the

energy spread effect of the spherical wave in the near-field

channel, which means that the energy of one near-field path

component is not concentrated in a single direction but instead

spreads in multiple directions. Therefore, when dealing with

the near-field channels, both the impact of the angle and the

distance must be taken into consideration. Therefore, in order

to harness the channel sparsity in the near-field channel, we

rephrase (6) with a sparse polar domain representation as

hnear = FPhP, (8)

where hP ∈ C
NQ×1 and FP ∈ C

N×NQ denote the polar

domain channel and transform matrix, respectively. Note that

it is assumed that the polar domain consists of uniformly

sampled N angles, and each angle within the polar domain is

further divided into Q discrete distance sections. Specifically,

as outlined in [16], distance sections in the polar domain can

be sampled based on the distance ring, which aids in obtaining

lower column coherence for FP. Therefore, the polar domain

transform matrix FP can be written as

FP=
[

fP(θ1,r1,1),...,fP(θ1,r1,Q),...,fP(θN ,rN,1),...,fP(θN ,rN,Q)
]

,

(9)

where each column of FP is a near-field array response vector

with sampled angle θn and sampled distance rn,q for n ∈ {1 :
N} and q ∈ {1 : Q}. As a result, even if the near-field channel

is not sparse in the angular domain, it becomes sparse in the

polar domain through the transformation using FP.

4) Hybrid-Field Channel Model: By taking into account the

LoS and the scattering channel components, we can formulate

a hybrid-field channel model for XL-MIMO in terms of a

sparse mixed angular and polar domain representation as

h=

√

1

L+ 1

[gLoS
r(n)

e−j2πr(n)/λ
]

N×1

+

√

N

L+ 1





Lf
∑

lf=1

glf
rlf

f
A(θlf )+

Ln
∑

ln=1

gln
rln

fP(θln ,rln )



 (10)
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=hLoS + FhA,P, (11)

where L=Lf+Ln denotes the total number of scattered path

components between the BS and all scatterers located within

the coverage area of the BS; N ′=N+NQ for simplicity; F=
√

N
L+1 [F

A,FP] ∈ CN×N ′

denotes the concatenated angular

and polar domain transform matrix; hA,P = [hA;hP] ∈ CN ′×1

represents the concatenated angular and polar domain channel.

It is worth noting that the mixed angular and polar domain

channel representation is constructed by simply concatenating

the angular and polar domain channel representations, result-

ing in a sparse vector hA,P, such that L≪ N ′.

C. Problem Statement

Based on the LoS path and the scattered paths, the received

pilot signal vector (1) can be reformulated as

y = XhLoS +ΨhA,P +w, (12)

where Ψ = XF ∈ CM×N ′

. In this paper, our ultimate goal is

to estimate h from the received pilot signal vector y. We first

target the recovery of hLoS from y and then reconstruct hA,P

from the residual vector y−XhLoS. Although the problem of

recovering hA,P poses an underdetermined system challenge,

because hA,P is a sparse vector, our approach involves utilizing

CS techniques to recover hA,P from y −XhLoS.

However, to achieve this, there is a preliminary challenge

we need to address – ensuring the effective operation of

CS techniques through the well-designed sensing matrix Ψ.

Strictly speaking, since F is fixed, the task involves designing

the pilot signal X in a manner that enables the sensing matrix

to function properly within CS. In the literature, one of the

well-known sufficient conditions for reliable sparse recovery is

the restricted isometry property (RIP). It guarantees sufficient

reconstruction of the sparse signal for a CS system where the

stochastic sensing matrix meets the RIP. Nonetheless, when a

sensing matrix is deterministic, verifying whether it satisfies

the RIP is computationally infeasible. As indicated in [17], the

RIP implies that minimizing the mutual coherence between

the columns of the sensing matrix is crucial for achieving re-

liable recovery performance. Consequently, mutual coherence

is considered a more intuitive and practical measure than the

RIP for assessing whether the sensing matrix ensures reliable

sparse recovery, as noted in [18]. Therefore, we adopt mutual

coherence as the guiding principle for the pilot signal design.

Furthermore, a channel estimation algorithm suitable for the

hybrid-field channel needs to be designed. We devise a two-

stage channel estimation algorithm that sequentially estimates

the LoS channel component and the hybrid-field scattering

channel components. Firstly, a channel estimation algorithm

for the LoS channel component is necessary. Additionally, a

channel estimation algorithm tailored for the hybrid-field scat-

tering channel should be paired with a well-designed sensing

matrix. Unlike the existing sequential hybrid-field scattering

channel estimation algorithms, which do not jointly consider

far-field and near-field channel components, we aim to develop

a channel estimation method that sufficiently captures the char-

acteristics of the hybrid-field scattering channel. Consequently,

we intend to address two key problems throughout this paper:

the design of pilot signal and channel estimator for hybrid-

field communications, to achieve more reliable sparse channel

recovery.

III. PILOT SIGNAL DESIGN FOR HYBRID-FIELD CHANNEL

This section delves into the design of the sensing matrix

through pilot signal design, which was previously mentioned

as the first challenge. In particular, we seek to find a pilot

signal matrix X that minimizes mutual coherence using the

alternating direction method of multiplier (ADMM).

A. Mutual Coherence Minimization Problem

The mutual coherence of a matrix is defined as the maxi-

mum absolute correlation between any two distinct columns

of the matrix [17]. Hence, the mutual coherence C(Ψ) of the

sensing matrix Ψ can be expressed as

C(Ψ) = max
1≤u<v≤N ′

|ΨH
u Ψv|

‖Ψu‖2‖Ψv‖2
, (13)

where Ψu and Ψv respectively represent the u-th and

the v-th column vector of Ψ. For the sake of simplicity,

let ψu,v =
Ψ

H
u Ψv

‖Ψu‖2‖Ψv‖2
hereafter, and denote by ψ =

(ψ1,2, . . . , ψ1,N ′ , ψ2,3, . . . , ψN ′−1,N ′) the mutual coherence

vector, which is comprised of mutual coherence values for

all combinations of two distinct columns in Ψ. Recall that

the sensing matrix can be expressed as Ψ = XF, while the

transform matrix F is predetermined. Thus, the pilot signal

matrix X should be carefully designed to minimize C(Ψ).
Thus, subject to the constraints on the transmit power of

the pilot signal from the BS, we can formulate the mutual

coherence minimization problem P1 to obtain the optimal pilot

signal X∗ that minimizes C(Ψ) as follows:

P1 : min
X

max
1≤u<v≤N ′

|ψu,v| (14a)

s.t. ‖xm‖2 = Px, ∀m ∈ {1 :M}. (14b)

However, solving P1 is challenging because it is non-convex

due to the constant modulus constraints (14b).

In general, optimization techniques on Riemannian mani-

folds are typically employed to address constant modulus con-

straints. However, since conventional optimization techniques

on Riemannian manifolds rely on smooth functions, and non-

smooth optimization techniques do not ensure convergence on

Riemannian manifolds, addressing the non-smooth optimiza-

tion problem on Riemannian manifolds proves to be chal-

lenging. Since the objective function in (14a) is non-smooth

due to the presence of the maximum operator, well-known

optimization techniques on Riemannian manifolds, such as

gradient descent on Riemannian manifolds, cannot be directly

applied to P1. In this case, one might consider updating X

alternatively by solving the gradient descent subproblem on the

Riemannian manifolds for given u and v in all combinations of

u and v through relaxation of the maximum operator. However,

considering that the number of combinations of u and v is on

the order of O(N ′2), hybrid XL-MIMO systems would neces-

sitate alternative updates for a significant number of O(N ′2)
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subproblems, making it a computationally expensive process.

Consequently, to overcome these challenges, a method is

needed to solve the optimization problem by separating the

two problematic factors. Hence, we adopt the ADMM method,

which can decompose the non-smooth objective function and

the constant modulus constraints [19]. It is worth noting

that, while an alternative update algorithm by the gradient

descent subproblems on the Riemannian manifolds incurs

a computational complexity of O(MNN ′2 + N3N ′2) per

iteration, ADMM requires a lower cost of O(MNN ′2+N3).

The key idea of ADMM is to introduce an auxiliary vec-

tor ξ =
(

ξ1, . . . , ξ(N
′

2 )

)

to redefine the objective function.

ADMM provides an equivalent optimization by augmenting

the objective function with constraints, introducing the aux-

iliary variables ξ for the constraints ψ, and enforcing ξ to

approach ψ. Then, P1 can be recast as follows:

P2 : min
ξ,X

‖ξ‖∞ (15a)

s.t. ξ = ψ (15b)

‖xm‖2 = Px, ∀m ∈ {1 :M}, (15c)

where ‖ξ‖∞ = max
1≤i≤(N

′

2 )
|ξi|.

B. Pilot Signal Design

Following the principles of the ADMM framework, we

can define the augmented Lagrangian function for P2, which

includes the objective function, the dual function, and a penalty

term on the objective function:

L(ξ,X,λ) =‖ξ‖∞+I(X)+〈λ, ξ −ψ〉+ ρ

2
‖ξ −ψ‖22, (16)

where λ is the Lagrange multiplier; ρ > 0 is the penalty

parameter; 〈x,y〉 , ℜ{yHx} denotes a vector inner product

operation. Furthermore, I(X) is an indicator function repre-

senting the constant modulus constraints (15c):

I(X) =

{

0, if ‖xm‖2 = Px, ∀m ∈ {1 :M}
∞, otherwise.

(17)

Based on L(ξ,X,λ) in the ADMM framework, we can

solve the problem by alternatively updating ξ, X, and λ. In

consequence, the ADMM algorithm consists of three steps,

and the ADMM iteration steps are as follows:

ξ(l) = argmin
ξ

L(ξ,X(l−1),λ(l−1)), (18)

X(l) = argmin
X

L(ξ(l),X,λ(l−1)), (19)

λ(l) = λ(l−1) + ρ(ξ(l) −ψ(l)). (20)

The ADMM should update the primal variables ξ,X, followed

by updating dual variable λ. However, in the update process

of ξ and X, they can be updated in an arbitrary order, and

even so, convergent results can be achieved [20]. The detailed

process of the ADMM algorithm is described below.

(a) Update ξ: First, the objective function for updating ξ is

min
ξ
‖ξ‖∞ + 〈λ, ξ −ψ〉+ ρ

2
‖ξ −ψ‖22. (21)

In (21), we can modify 〈λ, ξ −ψ〉+ ρ
2‖ξ −ψ‖22 as

〈λ, ξ −ψ〉+ ρ

2
‖ξ −ψ‖22

= ℜ{(ξ −ψ)Hλ}+ ρ

2
‖ξ −ψ‖22 (22)

=
1

2

(

λH(ξ −ψ) + (ξ −ψ)Hλ
)

+
ρ

2
‖ξ −ψ‖22 (23)

=
ρ

2

∥

∥

∥

∥

ξ −ψ +
λ

ρ

∥

∥

∥

∥

2

2

+ C, (24)

where (23) is derived from 〈λ, ξ − ψ〉 = ℜ{(ξ −
ψ)Hλ} = 1

2 (λ
H(ξ − ψ) + (ξ − ψ)Hλ); The constant

C = −λHλ
2ρ is irrelevant to ξ. Therefore, the subproblem

for updating ξ corresponding to (18) is formulated as

Pξ : min
ξ
‖ξ‖∞ +

ρ

2

∥

∥

∥

∥

∥

ξ −ψ(l−1) +
λ(l−1)

ρ

∥

∥

∥

∥

∥

2

2

. (25)

It is worth noting that Pξ is an unconstrained optimization

problem that includes both a least-squares term and an

infinity norm term. This problem falls under the cat-

egory of convex optimization and can be equivalently

transformed into a convex semidefinite problem (SDP).

Consequently, by utilizing convex optimization tools such

as SDPT3 [21], we can obtain the optimal solution ξ∗ that

minimizes the objective function in (25).

(b) Update X: Similar to updating ξ, the subproblem for

updating X corresponding to (19) can be formulated as

PX : min
X

∥

∥

∥

∥

∥

ψ − ξ(l) − λ
(l−1)

ρ

∥

∥

∥

∥

∥

2

2

(26a)

s.t. ‖xm‖2 = Px for ∀m ∈ {1 :M}. (26b)

However, due to the non-convex constant modulus con-

straints (26b), solving PX is challenging. To address

this difficulty, we can harness the smooth Riemannian

manifold structure inherent in the constant modulus con-

straints, which are on the complex oblique manifold

MX = {X ∈ C
M×N : ddiag(XHX) = PxI} [22].

This approach allows us to transform the non-convex

problem PX into an unconstrained optimization problem

on the Riemannian manifold. The core concept behind

Riemannian manifold optimization is to devise a gradient

descent algorithm specifically tailored to the Riemannian

manifold. By employing Riemannian stochastic gradient

descent (SGD) method designed for Riemannian opti-

mization problems, we can find the optimal pilot signal

X∗, which converges towards a Riemannian zero-gradient

point [22].

(c) Update λ: Finally, after updating ξ and X, we update λ

using the dual ascent method as shown in (20).

As a result, we employ ADMM to address and decompose

a mutual coherence minimization problem involving two chal-

lenging factors. Furthermore, within the ADMM framework,

most research utilizing ADMM employs a fixed penalty pa-

rameter ρ. However, using a fixed ρ often results in slower

convergence due to the imbalance between the objective and

the residual. As evident from (16), when ρ is excessively large,
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TABLE I
COMPARISON OF MUTUAL COHERENCE FOR VARIOUS PILOT SIGNALS

Pilot Signal Mutual Coherence

Random binary sequence 0.7996
Unimodular sequence with random phase 0.8015
Zadoff-Chu sequence 0.9574
Proposed ADMM-based sequence 0.4966

the augmented Lagrangian function becomes dominated by the

penalty term. This leads to overemphasizing the primal and

dual residuals, yielding less effective solutions. Conversely, if

ρ is too small, an excessive focus on the objective may fail to

ensure satisfying primal and dual feasibility conditions. There-

fore, we advocate for employing a variable ρ, which gradually

increases from 0.05 to 2.0. This choice aims to achieve

both faster convergence and robust performance. Through this

iterative process, we ultimately arrive at the optimal pilot

signal X∗, which minimizes C(Ψ), thus enhancing sparse

channel recovery performance [19]. The mutual coherence

depending on ρ will be covered in the next subsection.

C. Mutual Coherence for Various Pilot Signals

Table I provides a summary of mutual coherence, as defined

in (13), for various pilot signals in a scenario with a pilot

length of M = 32, N = 128 BS antenna elements, which is

the same environment covered in Section V. The table presents

mutual coherence values for Ψ = XF with different types of

X. The mutual coherence values for well-known conventional

pilot signals, such as random binary sequence, unimodular

sequence with random phase, and Zadoff-Chu sequence, are

presented.

It is observed that the common random sequences, includ-

ing the random binary sequence and unimodular sequence

with random phase, exhibit an average mutual coherence of

approximately 0.8 over independent 1000 trials. In contrast,

the Zadoff-Chu sequence demonstrates considerably higher

mutual coherence of around 0.95. This is because the Zadoff-

Chu sequence is designed to minimize correlations within pilot

signals. As a result, it may not achieve the desired performance

when used in conjunction with the concatenated angular and

polar domain transform matrix F for hybrid-field channel

estimation. However, our proposed ADMM-based pilot signal

design algorithm aims to minimize the mutual coherence of

Ψ, thereby significantly improving mutual coherence. Further-

more, we examine the mutual coherence of a random Gaussian

matrix of the same size as Ψ. Over independent 1000 trials, we

find that the average mutual coherence of the random Gaussian

matrix is 0.6435. This finding affirms the effectiveness of the

proposed pilot signal design algorithm, indicating significantly

good performance.

Specifically, as mentioned earlier, we confirmed that, for

fixed penalty parameters of 0.1, 0.5, 1, and 2, the correspond-

ing mutual coherence values are 0.5990, 0.5239, 0.5675, and

0.6485, respectively. Additionally, the norms of the differences

between ξ and ψ are 7.3988, 0.1279, 0.0825, and 0.0709,

respectively. While a smaller penalty parameter results in

smaller mutual coherence, it is not reasonable to conclude

that the convergence state has been reached due to the rel-

atively large norm of the difference between ξ and ψ. On

the contrary, it can be inferred that the proposed algorithm

has achieved a convergence state, as evidenced by a mutual

coherence of about 0.4966 and a norm difference between

ξ and ψ of 0.0542. These results demonstrate that varying

the penalty parameter facilitates faster convergence and more

robust performance.

IV. TWO-STAGE HYBRID-FIELD CHANNEL ESTIMATION

This section explores the channel estimation algorithm, con-

sidering both the LoS channel component and the hybrid-field

scattering channel components, encompassing both far-field

and near-field channel components, as previously mentioned

in the second challenge. We propose a two-stage hybrid-field

channel estimation algorithm that includes i) LoS channel

estimation and ii) hybrid-field scattering channel estimation.

While the LoS channel component is determined by the

distance and AoD between the BS and the user, the scattering

channel components exhibit stochastic behavior depending on

the scatterers. Consequently, we consider channel estimation

algorithms suitable for the characteristics of each channel

component and intend to sequentially estimate the LoS channel

component hLoS and the hybrid-field scattering channel com-

ponents hA,P from y based on considered channel estimation

algorithms for each stage.

A. LoS Channel Estimation

Since the energy of the LoS channel component is typically

dominant in high-frequency bands, we initially conduct LoS

channel estimation from the received pilot signal vector y. In

(2), the LoS channel component depends on two parameters:

the distance between the reference antenna element of the BS

and the user r, and the AoD of the signal directed to the user ϕ.

Therefore, with X∗ achieved in the previous section1, we treat

the LoS channel estimation problem as a parameter estimation

problem concerning r and ϕ, which can be expressed as

min
r,ϕ

J(r, ϕ) ,
∥

∥y −X∗hLoS
∥

∥ . (27)

We opt for the gradient descent algorithm2, widely em-

ployed for solving parameter estimation problems, in LoS

channel estimation [23]. To initialize the values for r and ϕ
before applying the gradient descent algorithm, we conduct

on-grid coarse parameter estimation. The on-grid coarse pa-

rameter estimation aims to find initial parameters that satisfy

(27) among all candidate parameters {r, ϕ} ∈ Λ, where

1It is worth noting that since Ψ = X∗F, the mutual coherence of Ψ

includes that of X∗ . Therefore, even though X
∗ was designed to minimize the

mutual coherence of Ψ in the previous section, the mutual coherence of X∗

is indeed minimized. We validate that the mutual coherence of X∗ is about
0.48, demonstrating that sufficient recovery performance can be achieved even
when using X

∗, designed in the previous section, for LoS channel estimation.
2One common option to estimate the parameters in h

LoS is to use the
minimum mean square error (MMSE) estimate. However, obtaining a precise
mathematical knowledge of y−X∗hLoS for the feasible set of {r, ϕ} might
be challenging. In such cases, the gradient descent algorithm provides a viable
alternative for the optimization.
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r = rmin, rmin + ∆r, ..., rmax and ϕ = ϕmin, ϕmin +
∆ϕ, ..., ϕmax. Here, rmin, rmax, ϕmin, ϕmax represent lower

and upper boundaries of r and ϕ, respectively, determined by

the communication coverage of the BS. Through the on-grid

coarse parameter estimation, we can obtain

r̂(0), ϕ̂(0) = argmin
{r,ϕ}∈Λ

∥

∥y −X∗hLoS
∥

∥ . (28)

After obtaining the initial parameters r̂(0) and ϕ̂(0), we

employ the gradient descent algorithm to obtain accurate

parameter estimates for LoS channel estimation. We iteratively

refine the two parameters r and ϕ from their initial values r̂(0)

and ϕ̂(0). The objective function J(r, ϕ) is minimized using

an iterative gradient descent method, and the parameters at

t-th iteration are updated as

r̂(t) ← r̂(t−1) − ηr∇rJ
(t−1)(r̂(t−1), ϕ̂(t−1)), (29)

ϕ̂(t) ← ϕ̂(t−1) − ηϕ∇ϕJ
(t−1)(r̂(t−1), ϕ̂(t−1)), (30)

where ηr and ηϕ represent the learning rates ensuring that

J (t)(r̂(t), ϕ̂(t)) ≤ J (t−1)(r̂(t−1), ϕ̂(t−1)). As the number of

iterations increases, the accuracy of the parameter estimates

improves. The gradient descent algorithm for LoS channel

estimation is iterated until the difference in the objective

function between the previous and current iterations is smaller

than a specified threshold ǫ. Therefore, the gradient descent

algorithm yields the parameter estimates r̂ and ϕ̂ and the

LoS channel component estimate ĥLoS. Consequently, by

subtracting X∗ĥLoS from y, we obtain the residual vector

ȳ = y−X∗ĥLoS for hybrid-field scattering channel estimation.

B. Hybrid-Field Scattering Channel Estimation

After estimating ĥLoS, we aim to estimate the hybrid-field

scattering channel components from ȳ. We propose hybrid-

field scattering channel estimation algorithms that leverage

Bayesian matching pursuit (BMP), building upon the optimal

pilot signal introduced in Section III. While various CS

algorithms like OMP, IHT, and BCS have been employed

for channel estimation, Bayesian approaches are known to

offer superior sparse recovery performance compared to other

techniques [24] and are anticipated to exploit the different

distributions of the far-field and near-field channel components

sufficiently. However, Bayesian approaches typically assume

prior knowledge of the sparse signal, often modeling it as

Gaussian. In practical scenarios, this information might be

unavailable, or the sparse signal may follow an unknown dis-

tribution. Consequently, we aim to devise channel estimation

algorithms for both scenarios, with and without prior statistical

information about the hybrid-field scattering channel.

1) With Prior Channel Knowledge: First, we consider the

scenario where prior statistical information about the hybrid-

field scattering channel is available. To employ the Bayesian

framework for estimating the hybrid-field scattering channel,

we establish appropriate statistical assumptions considering

the characteristics of the hybrid-field scattering channel. Based

on experimental measurements from [25], utilizing a Gaussian

distribution as the prior statistical channel model is suitable for

high-frequency systems. Recall that the concatenated angular

and polar domain channel hA,P represents the small scale

channel gain gn divided by the distance rn from the reference

antenna element of the BS to the grid corresponding to the

index n and then to the user in the mixed angular and polar

domain, i.e., hA,Pn = gn/rn for ∀n ∈ {1 : N ′}. Furthermore,

rn can be readily obtained from the estimated position of the

user in the LoS channel estimation stage.

For the hybrid-field scattering channel, {gn}N
′

n=1 are as-

sumed to be drawn from three specific Gaussian distributions,

each modeled by a sparsity pattern sn = ν for ν ∈ {∅,A,P},
implying the support of the sparse channel. We define the

set of indices with sn ∈ {A,P} among {1 : n} as the

support S of the sparse channel. When sn = ∅, it implies

that gn = 0, i.e. {µsn , σsn} = {0, 0}. On the other hand,

when sn = A or P, it means that gn follows the distribution

of the far-field channel CN (0, σ2
A
) or the near-field channel

CN (0, σ2
P
), respectively. Consequently, the angular domain

channel gain {gn}Nn=1 follows either CN (0, σ2
A
) or 0, and

the polar domain channel gain {gn}N
′

n=N+1 follows either

CN (0, σ2
P
) or 0. Remarkably, nonzero channel components in

hA,P imply the presence of the effective scatterer, as illustrated

in Fig. 1. In other words, each element of the sparse pattern

signifies whether the effective scatterer exists at a location

corresponding to that element. To model the effective scatterer,

i.e., the sparsity of hA,P, it is assumed that {sn}N
′

n=1 are i.i.d.

random variables with P(sn) ∈ {p∅, pA,P}, where P(sn) = p∅
and P(sn) = pA,P indicate the probability that the n-th element

of the channel vector is zero and nonzero, respectively. Con-

sequently, the hybrid-field scattering channel can be modeled

using a Bernoulli-complex Gaussian distribution, and the value

of pA,P is considerably smaller than 1, indicating the sparsity

of the channel.

From the statistical model for the hybrid-field scattering

channel in (12), the residual vector ȳ and the sparse channel

hA,P are jointly Gaussian, given the sparsity pattern s:
[

ȳ

hA,P

] ∣

∣

∣

∣

s ∼ CN
([

0

0

]

,

[

Γ(s) ΨK(s)
K(s)ΨH K(s)

])

, (31)

where K(s) is a diagonal matrix with [K(s)]n,n ∈
{0, σ2

A
/r2n, σ

2
P
/r2n}; Γ(s) , ΨK(s)ΨH + σ2

wIM . For channel

estimation, the minimum mean square error (MMSE) estimate

of hA,P conditioned on ȳ can be expressed as

ĥA,P =
∑

s

P(s|ȳ)E
[

hA,P|s, ȳ
]

, (32)

and from (31), we can readily obtain [26]

E
[

hA,P|s, ȳ
]

= K(s)ΨHΓ(s)−1ȳ. (33)

However, it is computationally infeasible to compute P(s|ȳ)
for all possible combinations of s, and obtaining Γ(s)−1

in E
[

hA,P|s, ȳ
]

is challenging. Therefore, to address these

challenges, we choose to utilize BMP for computationally

efficient estimation of s and hA,P.

BMP is a greedy algorithm that sequentially identifies the

nonzero channel components in each iteration, similar to the

other greedy CS algorithms such as OMP. Initially, our objec-

tive is to find s with the largest posterior probability P(s|ȳ).
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Using Bayes’ rule, the posterior probability is expressed as

P(s|ȳ) = P(ȳ|s)P(s)
P(ȳ)

. (34)

Since the value of P(ȳ) is constant for a given ȳ, P(s|ȳ) is

proportional to P(ȳ|s)P(s). Therefore, we define P(ȳ|s)P(s)
in the log domain as the sparsity decision metric α(s, ȳ):

α(s, ȳ) , lnP(ȳ|s)P(s) (35)

=− 1

2
ȳHΓ(s)−1ȳ − 1

2
ln det(Γ(s))

− M

2
ln(2π) +

N ′

∑

n=1

ln psn . (36)

As a result, by using the sparsity decision metric α(s, ȳ), we

can iteratively obtain the optimal sparsity pattern through the

BMP algorithm.

The process of finding the sparsity pattern s initializes from

an initial state (s(0) = 0 and S = [ ]), and the sparsity decision

metric for the initial state can be expressed as

α(s(0), ȳ) = − 1

2σ2
w

‖ȳ‖2 − M

2
ln(2πσ2

w) +N ′ ln p∅. (37)

Then, we identify the element with the largest sparsity decision

metric as the optimal element at each iteration. When the i-
th element of the sparsity pattern is selected as the optimum

at the l-th iteration, the sparsity pattern s(l) is updated by

incorporating this selected i-th element into the sparsity pattern

s(l−1) at the previous iteration, and the index i is included in

S. Moreover, the covariance matrix in α(s, ȳ) is updated as

Γ(s(l)) = Γ(s(l−1)) + σ2
siΨiΨ

H
i /r

2
i . (38)

By using the matrix inversion lemma, the inversion of Γ(s(l))
can be expressed as

Γ(s(l))−1=Γ(s(l−1))−1−σ2
siβ

(l−1)
i q

(l−1)
i (q

(l−1)
i )H/r2i , (39)

where β
(l−1)
i = (1 + σ2

siΨ
H
i q

(l−1)
i /r2i )

−1; q
(l−1)
i =

Γ(s(l−1))−1Ψi. From (36), (39), the sparsity decision metric

at the l-th iteration can be obtained in a recursive form as [27]

α(s(l), ȳ) =α(s(l−1), ȳ) +
σ2
si

2r2i
β
(l−1)
i

∣

∣

∣ȳ
Hq

(l−1)
i

∣

∣

∣

2

+
1

2
lnβ

(l−1)
i + ln

pA,P
p∅

. (40)

Furthermore, {q(l)
n }N

′

n=1 can be updated as

q(l)
n =

[

Γ(s(l−1))−1−σ2
siβ

(l−1)
i q

(l−1)
i (q

(l−1)
i )H/r2i

]

ψn (41)

= q(l−1)
n − σ2

siβ
(l−1)
i q

(l−1)
i (q

(l−1)
i )Hψn/r

2
i . (42)

Since the parameters for selecting the most probable channel

element among the remaining elements can be updated recur-

sively at each iteration, the complexity of computing Γ(s)−1

can be significantly reduced, enabling us to efficiently find s.

Furthermore, by utilizing (33), we can obtain the estimate of

hA,P for s. The detailed process of the proposed BMP-based

hybrid-field scattering channel estimation with prior channel

knowledge is summarized in Algorithm 1.

Algorithm 1: BMP-based Hybrid-Field Scattering

Channel Estimation with Prior Channel Knowledge

1 Initialize: s(0) = 0, α(s(0), ȳ),S = [ ]

2 for l = 1 : L do

3 for n ∈ {1 : N ′} \ S do

4 if l = 1 then

5 q
(l−1)
n = 1

σ2
w
ψn

6 else

7 q
(l−1)
n = q

(l−2)
n −

σ2
sn∗

β
(l−2)
n∗ q

(l−2)
n∗ (q

(l−2)
n∗ )Hψn/r

2
n∗

8 end

9 β
(l−1)
n =

(

1 + σ2
snψ

H
n q

(l−1)
n /r2n

)−1

for

sn ∈ {A,P}
10 α

(l)
n = α(s(l−1), ȳ) +

σ2
sn

2r2n
β
(l−1)
n

∣

∣

∣
ȳHq

(l−1)
n

∣

∣

∣

2

+

1
2 lnβ

(l−1)
n + ln

pA,P

p∅

11 end

12 n∗ ← index with the largest α
(l)
n

13 s(l) = [s(l−1), sn∗ ] and S ← S ∪ {n∗}
14 α(s(l), ȳ) = α

(l)
n∗

15 end

16 Q = [q
(L)
1 , . . . ,q

(L)
N ′ ]

17 ĥA,P = K(s(L))QH ȳ and ĥ = FĥA,P

2) Without Prior Channel Knowledge: Next, we explore a

scenario where prior statistical information about the hybrid-

field scattering channel is unavailable. The absence of prior

statistical information hinders the definition of the sparsity

pattern, allowing only the identification of the support of the

sparse channel denoted as S. Additionally, computing the

MMSE estimate E
[

hA,P|S, ȳ
]

becomes highly challenging.

Instead, the best alternative is to use the best linear unbiased

estimate, which is the ordinary least squares estimate [28]:

E
[

hA,P|S, ȳ
]

=
(

ΨH
S ΨS

)−1
ΨS ȳ, (43)

where ΨS is a submatrix of Ψ consisting of columns indexed

by S.

Similar to the case with prior channel knowledge, we choose

to leverage BMP for estimating S and hA,P. Given S, hA,P

and ȳ are Gaussian, which can be expressed as follows:

hA,P|S ∼ CN (0,K(S)), (44)

ȳ|S ∼ CN (0,ΓS). (45)

Here, if n ∈ S, [K(S)]n,n ∈ {σ2
A
/r2n, σ

2
P
/r2n}; otherwise,

it is zero; KS ∈ CL×L denotes a diagonal matrix com-

prising solely nonzero diagonal elements from K(S); ΓS ,

ΨSKSΨ
H
S +σ2

wIM . Then, we can express the log-likelihood

lnP(ȳ|s), except the constant term in the case with prior

channel knowledge, as − 1
2‖ȳ‖2Γ−1

S

. Furthermore, Γ−1
S can be

derived as follows:

Γ−1
S =

(

σ2
wIM +ΨSKSΨ

H
S

)−1
(46)
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=
1

σ2
w

(

IM −ΨS(σ
2
wK

−1
S +ΨH

S ΨS)
−1ΨH

S

)

(47)

≃ 1

σ2
w

(

IM −ΨS(Ψ
H
S ΨS)

−1ΨH
S

)

, (48)

where (47) is obtained from the matrix inversion lemma; (48)

is derived under the assumption that σ2
w/[K(S)]n,n ≪ ψH

n ψn

for n ∈ S, providing mathematical tractability, as discussed in

[24]. Thus, − 1
2‖ȳ‖2Γ−1

S

can be approximated as − 1
2σ2

w
ȳΠ⊥

S ȳ

where Π⊥
S = I−ΨS(Ψ

H
S ΨS)

−1ΨH
S . Therefore, by omitting

the constant term, the likelihood P(ȳ|S) can be proportionally

expressed as P(ȳ|S) ∝ exp
(

− 1
2σ2

w
‖Π⊥

S ȳ‖2
)

. Consequently,

the sparsity decision metric without prior channel knowledge

can be expressed as

α(S, ȳ) = ln exp

(

− 1

2σ2
w

‖Π⊥
S ȳ‖2

)

(49)

=
1

2σ2
w

∥

∥ΨS(Ψ
H
S ΨS)

−1ΨH
S ȳ

∥

∥

2 − 1

2σ2
w

‖ȳ‖2. (50)

In (43) and (50), the computation of (ΨH
S ΨS)

−1ΨH
S ȳ

is computationally intensive. However, we can express

(ΨH
S ΨS)

−1ΨH
S ȳ in a recursive form, making it computa-

tionally efficient. By calculating the inverse of ΨH
S ΨS and

simplifying using the block inversion formula [29], we can

obtain the following expression:

(ΨH
S ΨS)

−1ΨH
S ȳ =

[

ΨH
S ΨS ΨH

S Ψi

ΨH
i ΨS ΨH

i Ψi

]−1[
ΨH

S ȳ

ΨH
i ȳ

]

(51)

=







Ψ
†
S

(

I− 1
ΨH

i
Π⊥

S
Ψi

ΨiΨ
H
i Π⊥

S

)

ȳ

1
ΨH

i
Π⊥

S
Ψi

ΨH
i Π⊥

S ȳ






.

(52)

Here, when S = S∪{i}, S represents the subset of S obtained

at the previous iteration. Furthermore, i and Ψi denote the

index selected at the current iteration and the i-th column of Ψ,

respectively. Additionally, we define Ψ
†
S = (ΨH

S ΨS)
−1ΨH

S

and Π⊥
S = I−ΨSΨ

†
S . Consequently, we can express α(S, ȳ)

and E
[

hA,P|S, ȳ
]

recursively, enabling us to obtain them

with lower computational complexity. The detailed process of

the proposed algorithm without prior channel knowledge is

summarized in Algorithm 2.

In algorithms 1 and 2, determining the exact value of L can

be challenging because we lack precise information about the

true sparsity of the channel. To ensure an adequate number

of nonzero elements in the sparse channel, it is advisable

to set L slightly higher than the anticipated true sparsity. In

practice, one approach is to set a predefined threshold or limit

for the search process, effectively constraining the search.

This strategy necessitates having some approximate prior

knowledge about the channel sparsity. For high-frequency

systems, real-world measurements indicate that the typical

number of the channel components is around 2 to 6, depending

on the communication environments [30]. Therefore, it is a

reasonable practice to set a fixed number of iterations for

termination with a focus on identifying the most probable

Algorithm 2: BMP-based Hybrid-Field Scattering

Channel Estimation without Prior Channel Knowledge

1 Initialize: S = [ ]

2 for l = 1 : L do

3 for n ∈ {1 : N ′} \ S do

4 if l = 1 then

5 α
(l)
n =
1

2σ2
w

∥

∥ΨS(Ψ
H
S ΨS)

−1ΨH
S ȳ

∥

∥

2 − 1
2σ2

w
‖ȳ‖2

for S = {n}
6 else

7 Compute α
(l)
n = α(S ∪ {n}, ȳ) in (50)

using (52)
8 end

9 end

10 n∗ ← index with the largest α
(l)
n

11 S ← S ∪ {n∗}
12 Update E

[

hA,P|S, ȳ
]

using (52)

13 end

14 ĥA,P = E
[

hA,P|S, ȳ
]

and ĥ = FĥA,P

channel support rather than achieving absolute precision.

V. NUMERICAL RESULTS

In this section, we assess the effectiveness of two proposed

hybrid-field channel estimation methods, which are accom-

panied by the proposed ADMM-based pilot signal design: i)

LoS channel estimation + Algorithm 1 (“BMP w/ CSI”) and ii)

LoS channel estimation + Algorithm 2 (“BMP w/o CSI”). We

compare these methods with the existing hybrid-field chan-

nel estimation algorithms, including hybrid-field OMP (“HF

OMP”) [10] and hybrid-field SD-OMP (“HF SD-OMP”) [11].

Both the existing OMP-based hybrid-field channel estimation

algorithms are greedy methods that sequentially identify the

far-field channel and near-field channel components using the

well-known OMP method. The hybrid-field SD-OMP incorpo-

rates additional rough support detection before the OMP-based

channel estimation. It is noteworthy that the existing methods

do not consider the LoS channel component although it is

usually necessary in high frequency-band communications.

Hence, in the numerical validation of these existing methods,

we integrate the LoS channel component into the far-field

channel components. Furthermore, the four aforementioned

hybrid-field channel estimation algorithms evaluated in this

section all require a similar level of computational complexity,

approximately O((L + 1)MN ′). Therefore, the performance

evaluation is based on the normalized mean square error

(NMSE), defined as NMSE = E

(

‖ĥ−h‖2

‖h‖2

)

. In addition, we

include a Genie-aided-LS algorithm, where perfect channel

knowledge is available, serving as the lower bound for assess-

ing the performance of these algorithms.

We consider a scenario with a pilot length of M = 40,

N = 128 BS antenna elements and a carrier frequency of 50

GHz, corresponding to a Rayleigh distance of 49 meters, for

performance validation. Furthermore, we set the minimum al-

lowable distance of 4 meters between the BS and the scatterer
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Fig. 4. NMSE versus SNR with an LoS path and L = 4 scattered paths for
four hybrid-field channel estimation methods: 1) HF OMP; 2) HF SD-OMP;
3) BMP w/ CSI; 4) BMP w/o CSI.

and the maximum allowable distance of 60 meters between the

BS and the user, and we also employ Q = 4 discrete distance

sections for the polar domain transform matrix. Moreover,

the angle and distance of the scatterers are uniformly and

randomly generated. To obtain precise results, we perform

1,000 independent trials for each channel estimation algorithm.

In the numerical results, the curves with circle, triangle, and

plus sign represent the performance of HF OMP, HF SD-OMP,

and Genie-aided-LS, respectively, while the curves with square

and cross represent the proposed BMP w/ CSI and BMP w/o

CSI, respectively. Furthermore, we define SNR as Px/σ
2
w and

specify that both far-field and near-field small scale channel

gains glf and gln follow CN (0, 1), i.e., σ2
A
= σ2

P
= 1, under

the free-space path loss model as expressed in Eq. (3) and

(6). Additionally, the energy of the LoS channel component is

set equal to the sum of the energies of all scattered channel

components.

Fig. 4 depicts a comparison of NMSE performance ver-

sus SNR with a total of 5 channel components. The fig-

ure shows that the performance of all algorithms improves

as SNR increases. Remarkably, the proposed BMP w/ CSI

consistently exhibits the best channel estimation performance

across all SNR levels. Additionally, BMP w/o CSI demon-

strates significantly improved NMSE performance compared

to HF OMP and HF SD-OMP. Moreover, the two proposed

algorithms approach Genie-aided-LS performance as SNR

increases. However, the existing hybrid-field channel estima-

tion algorithms, i.e., HF OMP and HF SD-OMP, consistently

exhibit poor NMSE values above 0 dB for all SNR levels. It

is worth noting that the two existing studies not only adopt

a sequential method of estimating the far-field channel first

and then the near-field channel but also do not consider pilot

signal design at all for hybrid-field channel estimation. Due

to the sequential estimation for both far-field and near-field

channel components and the absence of pilot signal design,

the two existing methods fail to deliver satisfactory hybrid-

field channel estimation performance. Consequently, this result

0  

1  

Fig. 5. NMSE versus pilot signal length with an LoS path and L = 4 scattered
paths at an SNR of 10 dB for four hybrid-field channel estimation methods:
1) HF OMP; 2) HF SD-OMP; 3) BMP w/ CSI; 4) BMP w/o CSI.

underscores the importance of co-designing pilot signal and

channel estimator suitable for hybrid-field communications to

achieve more reliable sparse channel recovery. Specifically, by

satisfying the high SNR approximation in scenarios with high

SNR, BMP w/o CSI can yield good recovery performance

nearly as good as that of BMP w/ CSI. This implies that in

situations with sufficient power for the pilot signal, fairly ac-

curate hybrid-field channel estimation can be achieved without

prior knowledge of the channel through BMP w/o CSI.

Fig. 5 illustrates a comparison of NMSE performance versus

pilot signal length M with a total of 5 channel components

at an SNR of 10 dB. As shown in Fig. 5, the NMSE per-

formance for four hybrid-field channel estimation algorithms

and Genie-aided-LS generally improves as pilot signal length

M , corresponding to the number of observations in the CS

system, increases. With the increase in pilot signal length,

our two proposed algorithms approach the performance of

Genie-aided-LS. Furthermore, at high SNR, the two proposed

algorithms demonstrate nearly the same NMSE performance,

adhering to the high SNR approximation in BMP w/o CSI.

Moreover, it is evident that the two proposed algorithms can

yield reliable sparse channel recovery with a small number

of pilot signals, approximately M = 35. In contrast, the con-

ventional algorithms show minimal performance improvement

even as the pilot signal length increases. Consequently, under

more sparse channel environments resembling real hybrid-field

channel communications, Figs. 4 and 5 demonstrate that while

the existing methods yield unreliable results, the proposed

algorithms exhibit outstanding channel estimation performance

close to the optimal method.

Fig. 6 illustrates spectral efficiency versus pilot signal

length, considering variations in data transmission power, at

an SNR of 10 dB for the pilot sequence and a total of 5

channel components for BMP w/ CSI3. In the figure, spectral

3Given the two proposed algorithms exhibit nearly the same NMSE
performance at an SNR of 10 dB in Fig. 5, we specifically address spectral
efficiency for BMP w/ CSI.
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Fig. 6. Spectral efficiency versus pilot signal length, considering variations in
transmission power with an LoS path and L = 4 scattered paths at an SNR
of 10 dB for BMP w/ CSI.

efficiency represents the achievable data rate, considering data

transmission power, and pilot transmission power and duration

required for channel estimation. Here, γ stands for the ratio of

data transmission power to pilot transmission power, with the

general condition that data transmission power is smaller than

or equal to pilot transmission power [31]. Furthermore, we

consider a fast-moving user with 20 m/s at a 240 kHz subcar-

rier spacing, implying a channel coherence time of 0.5 ms and

a symbol duration of 4.17 µs [32]. As depicted in the figure,

for all γ values, the proposed BMP w/ CSI can achieve spectral

efficiency close to the optimal method, i.e., the Genie-aided-

LS, with only about M = 40 pilot signals. Additionally, the

spectral efficiencies of the proposed algorithm for each γ with

M = 40 do not significantly differ from the best performance

of the Genie-aided-LS algorithm for the corresponding γ. It is

worth noting that since more pilot signals can be available with

lower pilot overhead under more static environments or wider

subcarrier spacing, implying longer channel coherence time

or shorter symbol duration, it is anticipated that the hybrid-

field channel estimation performance can be further enhanced.

Consequently, these results demonstrate that our approaches

are sufficiently feasible, and the proposed algorithm can yield

fairly good sparse channel recovery, considering practical

communication scenarios in hybrid-field XL-MIMO systems.

Fig. 7 illustrates a comparison of NMSE performance

concerning the number of BS antennas, considering an LoS

channel path and L = 4 scattered channel paths, at an

SNR of 10 dB. The scenario involves 4 fixed scatterers

uniformly and randomly distributed within the communication

coverage of the BS, and over 1000 independent trials, we

assess NMSE performance as the number of BS antennas

varies. The figure shows that with fewer BS antennas, the

Rayleigh distance is considerably small, placing all scatterers

in the far-field region. However, as the number of antennas

increases, the Rayleigh distance also increases, transitioning

the far-field region into a near-field region. Consequently, since

the scatterers are located fixed in the considered scenario, the

Fig. 7. NMSE versus the number of BS antennas, with an LoS path and
L = 4 scattered paths at an SNR of 10 dB, for four hybrid-field channel
estimation methods: 1) HF OMP; 2) HF SD-OMP; 3) BMP w/ CSI; 4) BMP
w/o CSI.

0  

1  

Fig. 8. NMSE versus proportion of near-field channel components, with an
LoS path and L = 5 scattered paths at an SNR of 10 dB, for four hybrid-field
channel estimation methods: 1) HF OMP; 2) HF SD-OMP; 3) BMP w/ CSI;
4) BMP w/o CSI.

communication area changes from the far-field region to the

hybrid-field region and then to the near-field region as the

number of BS antennas increases. As shown in the figure,

sparse channel recovery performance tends to degrade due to

the nature of CS as the number of BS antennas increases [17].

Furthermore, the figure demonstrates that the two proposed

algorithms significantly improve channel estimation accuracy

compared to the existing hybrid-field channel estimation meth-

ods and are fairly comparable to the Genie-aided-LS method.

Consequently, these results affirm that the proposed algorithms

are well-suited for different numbers of BS antennas in a

predefined communication scenario.

Fig. 8 illustrates a comparison of NMSE performance

concerning the proportion of near-field channel components

relative to the total scattered channel components. As shown

in the figure, our two proposed algorithms consistently out-

perform the existing hybrid-field channel estimation algo-
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rithms across all ratios of near-field channel components. As

mentioned earlier, in contrast to the existing algorithms, the

proposed algorithms incorporate additional pilot design for

hybrid-field communications and joint hybrid-field scattering

channel estimation, resulting in superior NMSE performance

that surpasses the existing algorithms and approaches that of

the optimal method. Specifically, despite the existing algo-

rithms having prior information about the ratio of near-field

channel components, our proposed algorithms, lacking such

prior knowledge, demonstrate superior performance. There-

fore, these results indicate that our two proposed algorithms

perform well for all ratios between the two scattered channel

components, even in the absence of prior knowledge about

the ratio. Consequently, Figs. 7 and 8 demonstrate that our

proposed algorithms are well-designed for all scenarios in

XL-MIMO systems, including scenarios with only far-field

or near-field channel components, as well as the hybrid-field

scenario.

VI. CONCLUSION

In this paper, we addressed hybrid-field channel estima-

tion in XL-MIMO systems. We formulated the hybrid-field

channel estimation problem and tackled two key challenges

for hybrid-field channel estimation, To resolve these chal-

lenges, we proposed the ADMM-based pilot signal design

algorithm to minimize the mutual coherence of the sensing

matrix in the CS problem. Then, building upon the proposed

pilot signals, we further developed the two-stage hybrid-

field channel estimation algorithm, incorporating LoS chan-

nel estimation and hybrid-field scattering channel estimation.

Through experimental results, we validated that our co-design

of the pilot signal and channel estimator for the hybrid-field

channel outperforms the existing methods in terms of NMSE

performance. This result underscores the effectiveness of our

proposed approach in enhancing the accuracy and reliability

of hybrid-field channel estimation in XL-MIMO systems.
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