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Abstract 
In medical imaging, access to data is commonly limited due to patient privacy restrictions and the 

issue that it can be difficult to acquire enough data in the case of rare diseases.[1] The purpose of this 

investigation was to develop a reusable open-source synthetic image generation pipeline, the GAN Image 

Synthesis Tool (GIST), that is easy to use as well as easy to deploy. The pipeline helps to improve and 

standardize AI algorithms in the digital health space by generating high quality synthetic image data that 

is not linked to specific patients. Its image generation capabilities include the ability to generate imaging 

of pathologies or injuries with low incidence rates. This improvement of digital health AI algorithms 

could improve diagnostic accuracy, aid in patient care, decrease medicolegal claims, and ultimately 

decrease the overall cost of healthcare.  The pipeline builds on existing Generative Adversarial Networks 

(GANs) algorithms, and preprocessing and evaluation steps were included for completeness.  For this 
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work, we focused on ensuring the pipeline supports radiography, with a focus on synthetic knee and 

elbow x-ray images.  In designing the pipeline, we evaluated the performance of current GAN 

architectures, studying the performance on available x-ray data.  We show that the pipeline is capable of 

generating high quality and clinically relevant images based on a lay person's evaluation and the Fréchet 

Inception Distance (FID) metric.  

 

1 Introduction 
 

The purpose of this investigation was to address data shortages and patient privacy concerns in 

the medical imaging space by generating synthetic imaging data, specifically knee and elbow radiographs. 

Ultimately, this work provides groundwork towards a standardized methodology for generating clinically 

realistic synthetic medical images on a large scale in order to increase access to data and improve clinical 

algorithms. 

 

2 Background 
 
2.1 Research Problem 

 

Though there are recognized benefits of artificial intelligence (AI) algorithms in the healthcare space, 

they require robust amounts of training data in order to be useful. Access to this data can be hindered by 

patient privacy protections. Furthermore, rarity of certain pathologies of interest also add to data scarcity. 

The combination of the aforementioned limitations greatly decreases the participation of smaller entities 

and independent researchers in the development of healthcare AI compared to larger institutions and/or- 

medical systems who have data access advantages. These hindrances create timeline delays and are 

prohibitive to rapid development across the domain in clinical AI. 

 

Data access can be streamlined through partnerships between developers and specific data providers, 

such as a hospital and/or medical system. However, the available data is often subpopulation specific. 

This results in siloed algorithm development where the algorithms are only applicable to a small 

population and can be difficult to scale for universal purposes. Furthermore, this creates difficulties 

comparing and regulating algorithms, particularly across geographic entities and different healthcare 

systems. These hurdles in access to data, lead to delays to project timelines and limitations to innovation 

relating to these data. Given the substantial cost and time barriers to access, the innovation in clinical AI 

has lagged compared to other fields.  

 

The majority of research in general AI has been targeted toward creating larger and more complex 

models. However, with this increase in model size, access to larger amounts of data becomes more 

important than model architecture [2]. Additionally, when the size of the data used is large enough, 

simpler models have comparable performance to robust architectures [3]. This highlights a significant 

need for large amounts of training data. In fact, current predictions indicate that synthetic data will make 

up most data used for training models by 2030 [4]. This prediction illustrates the case for processes to 

easily supplement AI practitioners with useful synthetic data, as will be provided with the proposed 

pipeline.  

 

In addition to a general need for synthetic data, there is also an increasing need for standardizing the 

evaluation of healthcare-related AI models. There is currently no agreed-upon standard evaluation metric 

for generative models [5]. The current pipeline supports these challenges by offering a standardized 

method for generating large datasets of synthetic medical images. In turn, this provides a pathway toward 
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“gold standard datasets” which can be used to compare performance between algorithms developed on 

disparate populations, as well as provide insights to shape the regulatory process of AI models for 

medical imaging. 

 
2.2 Related Work 

 

To remedy the lack of publicly available medical images, researchers have experimented with 

various frameworks for generating medical images over the years. According to a 2020 study, the most 

popular frameworks for generating synthetic medical data have been autoencoders, U-nets, and 

Generative Adversarial Networks (GANs)[6]. Recently U-nets and GANs have become the most common 

approaches to this task, with the popularity of GANs outpacing that of U-nets [6]. In addition to the 

availability of data, there is emerging research in creating GAN architectures designed for more complex 

imaging modalities, such as Computed Tomography (CT) scans [7]. 

 

Researchers in both academia and industry have expressed a strong interest in progressing 

medical AI, especially in the domain of radiology, as it is a popular clinical application of AI [8]. 

Specifically, radiographs of the pediatric elbow can create confusion due to the abundance of growth 

plates present on pediatric elbow radiographs.  As such, injuries may be missed leading to delays in care, 

suboptimal outcomes, and medicolegal consequences, with the end result being an ultimate increase in 

healthcare costs.  Google recently published a blog about the use of GANs in dermatologic image data 

[9], [10]. The National Institutes for Health (NIH) publicly released medical image datasets in 2018, and 

Stanford University releases similar datasets to the public on an ongoing basis   [11], [12].  

 

3 Methodology 
 
3.1 Generative Adversarial Networks (GANs) 

 

A generative adversarial network (GAN) is a state-of-the-art deep learning generative model that 

is comprised of two competing neural networks. The first one is a generative network that seeks to create 

increasingly realistic-looking data based on real data. In the case of the current study, the real data and the 

data that the generative network is working to emulate are medical images, specifically knee and elbow x-

rays. The second network that comprises the GAN is a discriminative network that attempts to discern 

whether the generated data is real by comparing it with real data [13].  

 

Training starts when the generator presents random noise to the discriminator, which is also 

presented with real data separately. The discriminator then tries to determine which data is real and which 

data is synthetic. The error from the discriminator is then backpropagated to the generator and the 

discriminator. As a result, both networks ultimately improve. Training continues until convergence is 

reached and either the generator stops making improvements or the discriminator can no longer 

discriminate between the images created by the generator and the training data. 

 
3.2 Selecting a GAN  

 

The current project surveyed several GAN architectures (including SinGAN, DCGAN, 

AnycostGAN, GIREAFFE, and IMAGINE) that have been recently developed [14], [15], [16], [17], [18].  

Ultimately, the current project utilized StyleGAN3 for the pipeline due to its superior performance and 

ease of use [19]. StyleGAN3’s ease of use was considered greater because of the availability of its code 

repository, wider adoption, and community support. The high image quality of its output also contributed 

to why StyleGAN3 was utilized. StyleGAN3 was also one of the most recently published architectures at 
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the time of this investigation. By using StyleGAN3, high-quality synthetic images trained on various 

medical image datasets were successfully produced. 

 

StyleGAN3 was developed by a research team at NVIDIA in late 2021 and at the time of this 

writing is the iteration of the StyleGAN family of frameworks. The model is implemented in PyTorch and 

has the ability to train a network on single- and multi-class datasets. It improves upon past versions of 

StyleGAN (such as StyleGAN2, StyleGAN, and Progressive Growing of GANS) and leverages the past 

success of those architectures including a style-based generator (which is a more complex architecture 

that allows for scale-specific control of image generation), the elimination of various artifacts, and the 

ability to stabilize training with limited data (e.g. 1000’s of images) [19]. 

 

3.3 Pipeline 

 

 
Figure 1: Pipeline Diagram 

 
3.3.1 Diagram/Overview 

 

The purpose of the pipeline is to make medical image generation with GANs easier to use for 

researchers and society. The pipeline was designed to be an “end-to-end” to ensure ease of use. As such, 

the pipeline incorporates every step of the modeling process, which includes data preprocessing, training 

of the GAN, image generation, and evaluation of the synthetic images.  

 

The model also allows users to customize certain parameters to suit their individual purposes. 

One aspect they can set is the portion of the pipeline that they wish to run. For example, a user can 

indicate that they want to run the preprocessing and training steps and forego the generation and 

evaluation steps. In addition, there are several hyperparameters specific to StyleGAN3 that the user may 

experiment with to achieve the highest quality results for their dataset. These hyperparameters are 

detailed in the StyleGAN3 repository documentation. 

 

To easily create a container environment for the pipeline with the necessary packages, a Docker 

file in the repository was included. It is important to note that the pipeline requires access to at least one 

GPU because the training process can be computationally intensive. To that end, the pipeline is platform 

agnostic. In other words, it can be run via local GPU, remote GPU, job scheduler, etc. This means that 

users are responsible for any scripts/configurations necessary to run the pipeline on their GPU 

platform(s). As an example, the documentation includes instructions for running the pipeline in a SLURM 

environment. 

 

3.3.2 Preprocessing 
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StyleGAN3 has certain requirements of the image data which must be met in order to run 

training. These requirements include ensuring that the image data is formatted to be in the shape of a 

square, has a resolution that is a power of two, and the data is contained within in a zipped file. 

Additionally, any image labels must be contained in a separate JSON file. The GIST preprocessing script 

includes functions to help the user easily ensure that these requirements are met before training begins. If 

needed, the user also has the option to split the data into a train/test set. 

 
3.3.3 Training and Generation 

 

The Stylegan3 repository includes sufficient functionality for training a model and generating 

images from that model. As such, we leverage that functionality directly and include it in the pipeline 

with minimal to no changes. Stylegan3 takes in the dataset and trains a GAN model as described in 

section 3.1. In addition to training directly from data, users also have the option to use provided pretrained 

networks for transfer learning and continued training. All training runs are saved as pickled models. The 

StyleGAN3 repository includes hyperparamters which can be used to control how Stylegan3 trains on the 

data provided. The default hyperparameters (such as generator learning rate, discriminator learning rate, 

and batch size) have been optimized to work for the majority of cases. The repository’s readme file 

includes general guidelines and recommendations on which configurations are best to start with, as well 

as which direction to tune the hyperparameter values based on performance. The current investigation has 

found that the default configurations were sufficient. Additionally, it was observed that hyperparameter 

tuning did not lead to noticeable improvement in performance over the recommended starting values. 

 

The StyleGAN3 repository also includes a script for generating synthetic images based on a 

previously trained model. Generating synthetic images can be an important component of initial 

experimentation, as it allows for manual inspection of the images. Additionally, this enables the user to 

create datasets of synthetic images from their trained models.  

 

3.3.4 Evaluation (FID score, GAN-train/GAN-test) 

 

The Stylegan3 repository includes multiple quantitative metrics for evaluating performance such 

as FID score, precision, recall, and equivariance, for evaluation of image quality. The FID score is widely 

accepted for evaluating GAN performance [20]. The FID score is calculated by comparing the generated 

images distribution with the training image distribution and can be re-calculated for every exported 

model.  

 

These quantitative metrics are helpful in terms of evaluation, but they do not capture all the issues 

found in the resulting synthetic images. These unrealistic issues present in the synthetic images were 

defined as “artifacts”. Examples of artifacts found, such as improper joint formation, x-ray blurriness, and 

bone curvature, were found as this investigation experimented with training. These examples are shown in 

section 4.2. It is recommended to perform a qualitative check on the synthetic images, such as a manual 

inspection for artifacts, in addition to a quantitative check, in order to create a more well-rounded 

understanding of performance.  
 

Because the quantitative metrics provided by Stylegan3 did not capture these artifacts, another 

quantitative approach from the literature was added to GIST. This approach, known as the “Gan-

train/Gan-test” approach, is based on the work of Shmelkov et. Al [21]. “Gan-train/Gan-test” calculates a 

score for two machine learning classifiers. The first is trained on GAN-generated synthetic images and 

then tested on a holdout set of real images. The second approach is trained on real images and tested on 

synthetic images. The resulting metrics, such as precision and recall, indicate the performance of the 

model. 
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3.4 Data 

 

Various publicly available x-ray datasets were used in the construction and testing of the pipeline. 

These datasets are listed in Table 1. The datasets ranged in image complexity. For example, the 

KneeXrayOA-simple dataset ensured each image contained the exact same view of the knee and that the 

knee was centered in the image, filling the entirety of the space [22]. Conversely, the MURA elbow 

dataset was more complex with straight, lateral, and oblique views for every elbow [23]. Furthermore, the 

x-ray was not always centered in the image and would often contain additional objects, such as a 

radiologist tag. These additional complexities made it more challenging for the GAN to achieve similar 

model performance across the two datasets. 

 

Additional complexity was present in the University of Maryland elbow radiographs. This dataset 

was collected specifically for the purposes of this study and was approved by an Institutional Review 

Board from the University of Maryland School of Medicine. These radiographs were of the pediatric 

elbow and thus had the presence of various growth plates, elbow in different stages of 

development/ossification, and a lack of standardized rotation on the views.  The attempted benefit of this 

dataset was the realistic data that, in theory, could utilize AI technology in the future. 

Table 1: Datasets used 

3.5 Experimentation 

 

3.5.1 Initial Experimentation 

 
 For each dataset, the GIST pipeline was utilized to train models, generate synthetic images, and 

evaluate the performance of the GAN. While the platform is agnostic to the GPU environment used, the 

pipeline ran on a high-performance compute environment using SLURM, an open-source job scheduler 

for Linux and Unix-like kernels. 

 

An example training process for the KneeXrayOA dataset can be seen in Figure 2. The generator 

begins by presenting a random collection of pixels to the discriminator. As the error is backpropagated, 

the model improves, and one begins to see the x-ray of the knee form. Training continues to progress until 

convergence is reached and a fairly realistic knee x-ray remains.  

 

Name of Dataset Location Type of Data 
Image 

Count 
Shortcomings/Challenges 

KneeXrayOA-

simple 
Kaggle 

Osteoarthritic Knee X-

Rays (JPG) 
10k 

-Similarity of images 

-Lack of labels (e.g.: medical implants) 

-Light saturation 

MURA Stanford 
Musculoskeletal 

Radiographs (PNGs) 
5k (elbow) 

-Inconsistent positioning of x-ray 

-Lack of labels 

UMD Elbow 
University of 

Maryland 

Elbow X-Rays 

(DICOM) 
< 1k 

- Dataset Size 

- Inconsistent positioning of X-ray 



©2023 The MITRE Corporation. ALL RIGHTS RESERVED 

 
Figure 2: GAN training progression 

As training progressed, the fid50_full score was leveraged, which calculated the FID score for the 

current model against the training set of images. Eventually, convergence was reached. In addition to 

observing the fid50_full score, synthetic images from the models at the point of convergence were 

generated and manually inspected for artifacts. Depending on model performance, the hyperparameters 

were tuned, data was added, and data augmentation was performed in attempts to improve the model 

performance.  

 

While the two public datasets used in this study had sufficient data for training, medical image 

datasets are often small in size due to the issues previously mentioned. Therefore, future users of the 

pipeline may not have access to as much data for training. As such, an investigation was performed to 

determine if a threshold (minimal) amount of data was required for convergence of the fid50_full score, 

and a lack of artifacts. In other words, what minimal training dataset size is required for successful image 

generation. This could inform future users if they had enough data to pursue use of the pipeline. To 

establish this threshold, the same experiment was run for various training dataset sizes and the 

performance was evaluated. Due to the use of the PyTorch package, it was not guaranteed that two 

training runs, trained on the same dataset with the same hyperparameter values, would converge to the 

exact same result. This implies that a direct comparison between runs may include slightly different 

results; an implication which was validated by the later analysis. However, the overall comparison is still 

useful as the variability between the same runs was less than the difference between runs with varying 

amounts of data, or different hyperparameters.  

 

3.5.2 Hyperparameter Tuning 

 
In deep learning, hyperparameter tuning tests the adjustment of model architecture and training 

changes, and their impact on performance. Due to the structure of GAN architecture, and the competition 

between the two neural networks, GANs are particularly sensitive to hyperparameter tuning. Specifically, 

the parameters are at risk of oscillating and becoming unstable. Therefore, hyperparameter tuning can 

require much effort and experimentation. Of the hyperparameters present in the StyleGAN3 model, the 

authors suggest beginning tuning with the most impactful hyperparameters first. Based on author 

suggestion, the hyperparameters that were turned included batch size, gamma (R1 regularization), and 

discriminator learning rate [19]. 

 

3.5.3 Threshold Data Requirements 

 
Increased image complexity can include greater variability within the x-ray image, such as the view 

or angle of a joint. It can also include a greater number of bones/ossification centers and organs present in 
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the image. In order to ensure that any models trained on this data have sufficient ability to capture this 

complexity, a larger image count in the training data is required. Due to this need for additional data, the 

current study investigated if a minimum threshold amount of data could be established to achieve quality 

synthetic x-rays. Different training dataset sizes were used from the MURA elbow dataset and 

performance was evaluated via the FID score, as well as, manual inspection for artifacts. Six different 

training runs were conducted using 100, 200, 300, 400, 500, and 781 images, respectively. The largest 

dataset of 781 images represented the total count of right elbow lateral view x-rays from the MURA 

elbow dataset. The dataset size was used for the other experiments mentioned above.  

 

In addition to training base models on different dataset sizes, the effect of dataset size on transfer 

learning was also explored. A base model trained on the MURA lateral elbow dataset was trained until it 

reached convergence. The model was then used for transfer learning where the new training was built 

upon the base model but uses the varying dataset sizes to continue training.  

 

3.5.4 Clinician Evaluation  

 
In order to further evaluate the performance of the pipeline on x-rays, a “blind test” was 

conducted. 50 images from the KneeXrayOA Knee training dataset were selected, along with 50 synthetic 

generated knee images. These images were re-labelled and randomly shuffled. A “ground truth” dataset of 

20 images was also selected from the training set to be a representative sample of the distribution of 

classes found in the overall dataset. The “ground truth” dataset was meant to orient the participant, an 

orthopedist with ample experience interpreting x-rays, on the appearance of knee x-rays from this dataset. 

The participant then labelled each image in the blind set as either “real” or “synthetic”. 

 

3.5.5 Gan-train/Gan-test 

 
The knee osteoarthritic dataset was used to test the performance of the “Evaluate” section of the 

pipeline. A model was trained that differentiated between the five classes of x-ray image and was saved at 

the point of convergence according to the FID score. The evaluate section of the pipeline was then run 

using this model, and performance metrics were recorded. For context, these classes are similar enough in 

appearance that a layperson would also find differentiation challenging. So then manual analysis was then 

performed looking solely at two more differentiated classes, class 0 (lowest level of osteoarthritis) and 

class 3 (second-highest level of osteoarthritis). The reason class 3 was selected over class 4 (highest level 

of osteoarthritis) is because of the low number of images present in class 4.  

 

Three pretrained classification models from the torchvision models package were trained 

according to the “Gan-train/Gan-test” framework. These models included inception, resnet101, and vgg19 

[24], [25], [26] Each model was trained according to a base implementation, meaning they were trained 

on real images, as well as, evaluated on real images, a “gan-train” implementation meaning they were 

trained on synthetic images and evaluated on real images, and a “gan-test” implementation meaning they 

were trained on real images and evaluated on synthetic images. 

 

4 Results 
 

4.1 Training Results: FID score convergence across x-ray types 

 
The FID score is relative to the complexity of the data measured. As the complexity of the set of 

images increases, so will the FID score. Therefore, convergence at a lower FID score for one type of x-

ray image does not necessarily indicate improvement over models for different x-rays that have 
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converged at a higher score. For example, when training on the Knee-OA data, the model converged to a 

FID score of 65.23 while the model trained on the MURA data converged to a 75.89. Run count for 

training times varied among the different datasets based on both image complexity and the number of 

images used for training.  

 

 

4.2 Image Generation Results: Qualitative analysis of image artifacts 
 

Various artifacts were noted during the manual inspection of the generated x-ray images. Using 

the MURA elbow dataset, the various artifacts that were noted were due to the complexity of the differing 

views of the elbow. After subsetting the dataset to only the lateral view of the elbow, the artifacts 

underwent a noticeable improvement. The human elbow is a hinge joint (Figure 3, a1). We found that this 

particular joint type does not render particularly well when synthetically generated. However, after 

training using only the lateral view of the elbow joint, we saw the hinge portions begin to render more 

accurately to the true structure of the joint (Figure 3, a2). An unrealistic curvature of the bone was also 

seen in the ulna forearm bone (Figure 3, b1) which also improved (Figure 3, b2). The training dataset 

contained images of x-rays, where the x-ray was a much smaller portion of the overall image. In certain 

cases, the model did not render these smaller x-rays particularly well (Figure 3, c1) though improvement 

was seen on training of the lateral subset (Figure 3, c2).     

 

 

 
Figure 3: Elbow artifacts 

 

4.3 Hyperparameter Tuning 

 

After increasing and decreasing key hyperparameter values in varying combinations, it was 

discovered that tuning did not contribute significant improvements over the base model recommended by 

the authors. Results of the top performing combinations of hyperparameters are shown in Figure 4. While 

there was marginal improvement in some cases, it was not greater than the variability seen across the 

same runs and could also be a result of additional training time. 
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Figure 4: Results of Hyperparameter Tuning 

4.4 Training Dataset Size 

 

 The results of training on varying dataset size according to FID score can be seen in Figure 5. 

FID score performance improved with increasing size of the training dataset, though notably after the 

dataset size increased to 200+ images, improvement in the FID score was fairly marginal with increasing 

dataset size. Images were generated during training at every 20th training iteration, and the generated 

images at the point of convergence were inspected for artifacts. The smaller training datasets (500 images 

or fewer) produced images with artifacts present. Some examples of these artifacts can be found in Figure 

6. However, the run trained on 781 images produced no artifacts. Therefore, in this case the FID score 

alone was not sufficient for determining the quality of the images, as the smaller datasets converged to a 

similar (albeit larger) FID score than the largest dataset of 781 images. For lateral elbow x-rays, a 

threshold training dataset size of greater than 500 images is required to generate realistic, artifact-free 

images. It should be noted that the complexity of images will vary across the anatomy being x-rayed, as 

well as, the view of the x-ray. Thus, this threshold is meant to serve as a rough baseline for lateral elbow 

x-rays but should not be construed as applicable to any x-ray type.  
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Figure 5: FID Score Results of Varying Training Dataset Size 

 
Figure 6: Artifacts discovered when training on smaller datasets 

 

This analysis is further supported by the results from leveraging transfer learning. Performance of 

each model that continued training from the base model improved with dataset size. The results can be 

seen in Figure 7. In the figure we can see that each time a smaller dataset was used, the generated images 

included artifacts. This denotes inferior performance, especially when compared with the base model 

trained on 781 images, whose results can be seen in Figure 3 a2, b2, and c2. This suggests that in order to 

generate images free from artifacts, a model will need at least 750 images for training.  
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Figure 7: Results of transfer learning using smaller datasets 

 

4.5 Clinician’s Evaluation  

 

 The blind test resulted in an accuracy of 53%, a precision of 58%, and a recall of 58%. These 

results suggest that the participant could not differentiate between the real and synthetic images. This in 

turn suggests that the model performed well in generating realistic images.  

  

4.6 Gan Train Gan Test Evaluation  

 

The results of the Gan-train/Gan-test evaluation can be seen in Figure 10. Most of the “gan-train” 

and “gan-test” models performed worse according to accuracy when compared to the “base” model (the 

control) for each classification type. In the case of Gan Train, where the classifiers were trained on 

synthetic data and evaluated on real data, the accuracies were all 17.03%-18.53% different than the base 

model. There was greater variability in the Gan Test results, where the classifiers were trained on real 

data and evaluated on synthetic data. In this case, the Inception classifier performed best at only a 5.68% 

difference compared to the base accuracy, while Resnet101 (22.66% difference) and VGG19 (31.87% 

difference) performed worse. However, these models outperformed a dummy classifier which would have 

a 50% accuracy. This suggests that the synthetic images have predictive power for a classification model, 

though admittedly less than real images. 

 

 

   Accuracy Precision Recall F1 Score 

Inception 

Base 78.36 78.43 78.37 78.35 

Gan Train 65.87 68.78 65.87 64.49 

Gan Test 74.03 76.56 74.04 73.41 

Resnet101 

Base 82.69 83.00 82.69 82.65 

Gan Train 69.71 73.77 69.71 68.36 

Gan Test 65.86 69.94 65.86 64.02 

VGG19 

Base 82.21 83.10 82.21 82.09 

Gan Train 68.27 73.21 68.27 66.48 

Gan Test 59.61 63.54 59.61 56.46 
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Table 2: Evaluation Results 

 

5 Discussion 
We have presented an open-source pipeline for the purposes of making the development and 

evaluation of synthetic medical imagery more accessible. To demonstrate the effectiveness of the 

pipeline, we worked with two radiology image datasets. When the pipeline’s performance was evaluated, 

it was found that it performed well according to the FID score, manual inspection, and the blind test, 

suggesting that the pipeline can be used to make realistic medical imagery.  

 

Some important lessons learned and suggested best practices discovered through this process should 

be noted. The amount and structure of classes in the training data makes a difference for model training 

performance. Model performance and quality increases with access to more data as shown in Figure 5 and 

Figure 6. Models tend to perform better when trained on distinct classes. For example, training a model 

on only the lateral view of the elbow, rather than every view treated as a single class, will improve 

performance. Additionally, while hyperparameter tuning can prove useful and increase performance, 

model architecture recommendations are often already optimized for best results.  

 

5.1 Further Research 

 

The quantitative analysis is not sufficient alone for the purpose of evaluating model performance. 

Metrics such as the fid score are generally very useful but did not capture the artifacts present in the 

generated images. Because of this, manual inspection was required. The field could be improved by 

expanding existing metrics and developing more robust new metrics that can easily catch artifacts. This 

would in turn decrease the need for human-in-the-loop inspection.  

 

The fact that the blind test participant could not distinguish between “real” and “fake” images is 

significant as it indicates the images are realistic and therefore potentially useful. Since this pipeline was 

created with the intention of supporting clinical AI with synthetic datasets, the natural next step is to test 

the performance of machine learning classifiers trained on this synthetic data and tested on real data to see 

if the synthetic images are useful from a machine learning perspective. The “gan train gan test” portion of 

the pipeline is an initial step in this analysis. 

 

 It is the goal that clinicians and data science practitioners who are not experienced with deep 

learning can use the current investigation’s pipeline to more easily create synthetic images for their 

clinical AI. While the current pipeline is limited to two-dimensional images, there is already research into 

architectures for generating three-dimensional images, like CT-scans, which could broaden the scope of a 

future pipeline. 

 

5.2 Further Development 

 

In addition to supplemental research, further development could also encourage adoption of the pipeline. 

The current pipeline is designed to work “off the shelf” for users, but requires at least a basic level of 

programming expertise to clone and use the repo. This could be a rate limiting step or put the pipeline out 

of reach for some potential users. To mitigate this burden, the coding requirement could be removed if the 

pipeline was housed as a web hosted product. Such a product would require a basic user interface, 

backend services to store the data and run the pipeline on a gpu instance. As a result, it may require a fee 

to cover the cost of hosting and using cloud-based services. 

  

6 Conclusion 
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The pipeline in the current study was created to allow greater access to both clinicians and data 

scientists who are interested in creating realistic synthetic data but are not well-equipped enough in their 

technical expertise to make use of repositories like StyleGAN3 off the shelf. Developing that technical 

experience requires extensive training, time, and money to acquire. The current investigation’s pipeline 

abstracts away these deep learning architectures for the user.  

 

It is the goal that this pipeline can be used for the quick curation of synthetic datasets and can 

contribute to clinical AI research efforts as a result. Overall, the investigation has been successful at 

making a pipeline for practitioners to generate synthetic x-ray images for themselves. This is not limited 

to x-ray images, as any two-dimensional image will work.  

 

The current study has also indicated potential for future work, to include the development of a set 

of more robust evaluation metrics, further testing of models trained or tested on synthetic data, as well as, 

research into more complex imaging modalities, such as CT scans and magnetic resonance imaging 

(MRI) images.   
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