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Abstract: The study explores the optimization of evolutionary solver parameters for minimizing total tardiness in single machine
scheduling, an NP-hard problem with zero ready times included. It investigates various parameter combinations, including population
sizes, mutation rates, and a constant convergence rate, both above and below default values. The aim is to enhance the solver's
effectiveness in addressing this complex challenge. The findings contribute to improving scheduling efficiency in manufacturing and

operations management contexts.
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1. Introduction

In the contemporary manufacturing landscape, characterized
by constrained resources, escalating consumer demands, and
intense competition both domestically and globally, the role
of scheduling emerges as a pivotal function within any
manufacturing enterprise. In the context of an increasingly
globalized and international business environment, the
imperatives of cost reduction and profit maximization
continue to drive the strategic decisions of manufacturing
companies. The impact of manufacturing scheduling on a
company's operational performance, and consequently its
sustainability, is significant, particularly when considering
the correlation between tardiness and operational
expenses[1]. This study aims to delve into the optimization
of parameters for an evolutionary solver tasked with
addressing the challenge of minimizing total tardiness in
single machine scheduling, a problem denoted as 1 | |ZTj
when using Excel solver. It is assumed that all jobs have
zero arrival time. The objective is to strategically sequence
jobs to minimize total tardiness (XTj), which is determined
by the formula Tj = Max{ Cj — dj ,0}, where Tj is the
tardiness of job j, Cj denotes the completion time, and dj
represents the due date. This research specifically focuses on
modifying certain key parameters - population size, mutation
rate, and convergence- setting them both above and below
the default values. This approach is undertaken to establish a
robust and general set of parameters that effectively
contribute to the minimization of total tardiness, addressing
the core objective function of this study.

2. Problem Statement

The article aims to optimize the parameters of an
evolutionary solver to efficiently address the NP-hard
problem of minimizing total tardiness in single-machine
scheduling scenarios. It‘s study posits a scenario where a
series of jobs, labeled as j = 1, 2,..., n, are available for
processing on a single machine. Each job j has an associated
processing time, denoted as pj, and a due date, represented
as dj. Once initiated, a job must be completed on the

machine without interruption. It is important to note that the
machine is designed to handle only one operation at a time.
The concept of tardiness in this context arises when the
completion time of a job (Cj) exceeds its due date (dj).

To effectively address this scheduling challenge, we explore
various parameter settings to identify an optimal generic set.
This involves varying the population size, modifying the
mutation rate, and experimenting with different constant
values for convergence. The evolutionary algorithm, a
cornerstone of our approach, incorporates principles of
natural evolution into the process of finding optimal
solutions for Solver problems. This algorithm directly
utilizes the decision variables and problem functions in its
methodology. It is noteworthy that evolutionary algorithms
are a staple in most commercial Solver applications.

Specifically, in the context of an Excel solver, there are
configurable options for evolutionary solving parameters.
These options are critical for tailoring the evolutionary
algorithm to effectively respond to the unique demands of
the scheduling problem at hand, thereby facilitating the
discovery of rapid improvements and the best possible
solutions.

In this research, specific attention was given to:

A) Convergence

The Convergence parameter in Solver specifies the
maximum allowable percentage difference in objective
values for the system to consider it has “converged to the
current solution" for the predominant portion of the
population (top 99%). A smaller value in this parameter
results in a longer computation time but brings the solution
closer to the ideal. In this research, the Convergence was set
consistently at two distinct levels: 0.0001, the standard
default, and 0.1, to observe the differential impacts on the
solution accuracy.

B) Mutation Rate Parameter
The Mutation Rate parameter is defined as a value between
0 and 1, representing the frequency at which certain
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members of the population undergo modification or
"mutation” to create new experimental solutions. This rate
plays a pivotal role in the evolutionary approach by
influencing the examination of each "generation” or subset
of the problem. A higher mutation rate increases the
population's diversity and the probability of identifying
superior solutions, albeit at the cost of extended total
solution time. In our study, the mutation rates were set at
0.75, 0.075 (the default), and 0.0075.

C) Population Size Parameter

The Population Size parameter indicates the number of
alternative solution points maintained in the population of
candidate solutions at any given time by the Evolutionary
approach. In this study, the population sizes selected for
evaluation were 100, 50, 25, and 10.

D) Random Seed Parameter

The Random Seed parameter requires a positive integer,
serving as a fixed seed for the random number generator
utilized in the evolutionary method. A consistent seed
number ensures repeatability of results upon each execution
of the Solve command. Leaving this field blank allows for a
new seed generation with each execution, leading to
variability in the final solution. This study maintains the
default setting for this parameter.

E) Maximum Time without Improvement Parameter
This parameter sets the maximum duration the Evolutionary
approach will run without noticeable improvement in the
objective value of the best solution in the population. If no
improvement is detected within this timeframe, Solver will
halt with a message indicating no further improvement is
possible. This study does not alter the default setting for this
parameter.

F) Require Bounds on Variables Option

By selecting this option, users inform the Evolutionary
approach that all decision variables in the model must have
defined lower and upper bounds. Providing bounds improves
the performance of the Evolutionary approach, especially
when these bounds are as narrow as possible. This study
retains the default setting for this option.

G) Structure of the Study

The remaining sections of this study are organized as
follows: Section 3 presents a literature review of the Excel
Solver technique in single machine scheduling. Section 4
details the solution methodology. Section 5 further
elaborates on this methodology, and Section 6 concludes the
study.

3. Literature Review

To effectively minimize total tardiness, the single machine
total tardiness problem involves scheduling a series of jobs
on a single machine. Due to the complexity of this problem,
Du, and Leung[1] classified it as NP-hard, signifying that an
optimalsolution is not feasible without exhaustive methods.
In such cases, heuristic approaches, which aim to find near-
optimal  solutions  efficiently, = become  valuable
alternatives.Solutions to combinatorial problems like this
can be categorized as follows:

a) Complete enumeration method.

b) Mathematical modeling.

c) Implicit enumeration/branch-and-bound method.
d) Heuristic method.

While complete enumeration, implicit enumeration, and
mathematical modeling methods yield optimal solutions,
they are not always practical. For instance, the number of
sequences to evaluate in complete enumeration grows
exponentially, making it impractical for larger problems.
Implicit enumeration methods [2], utilizing branch-and-
bound or dynamic programming, are less time-consuming.
Innovations in this field include Hirakawa and Yasuhiro's [3]
rapid optimal algorithm using branch and bound, and Biskup
et al.'s [2] efficient recursion over Kondakci et al.'s [4]
branch-and-bound approach. However, these methods can
suffer from high temporal complexity.

In contrast, mathematical modeling, though capable of
identifying the optimal sequence to minimize total
tardiness[5], is limited by the extensive number of variables
and constraints, making it suitable only for smaller-scale
problems. Heuristic methods, as developed by Wilkerson
and Irwin[6], Kim et al.[7], and others, offer more feasible
solutions for larger problems. For instance, Tian et
al.[8]identified conditions for polynomial solvability in
specific cases, and Kiyuzato et al.[9] applied heuristics to
real-world scheduling in auto parts manufacturing.

Meta-heuristics, as suggested by Feldmann and Biskup [10]
and Cheng et al. [11], further enhance solution quality.
These include evolutionary methods, simulated annealing,
and Ant Colony Optimization (ACO), offering near-optimal
solutions for complex scheduling problems.

Tuning parameters in evolutionary algorithms is crucial for
efficient problem-solving. A hybrid parameter tuning
approach has been proposed to optimize performance
metrics of these algorithms[12]. Bajwa et al. [13] and Cao et
al.[14] explored scheduling in group technology systems and
production workshops, respectively, using these optimized
algorithms.

Burke and Smith discussed the concept of a memetic
algorithm, a blend of genetic algorithms and cultural
evolution models [15]. Moscato and Norman [2] coined the
term 'memetic algorithm' to describe evolutionary
algorithms integrated with intensive local search. This
approach, based on Dawkins' concept of memes [15], allows
for the adaptation and improvement of ideas, different from
the rigid transmission of genes.

In this study, an evolutionary algorithm incorporating these
principles is employed to address the single machine
scheduling problem. This approach directly utilizes decision
variables and problem functions in an evolutionary
framework [16].

4. Methodology

This section of the study details the experimental
methodology employed, utilizing the Microsoft Excel
Solver's Evolutionary algorithm feature. The computational
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experiments were conducted on a Lenovo laptop equipped
with a dual 2.2 GHz CPU and 16.0 GB of RAM.

Solver, an add-in tool for Microsoft Excel, enables what-if
analysis by identifying an optimal value (maximum or
minimum) for a formula in a designated cell, referred to as
the objective cell. This process is subject to constraints
imposed by other formula cells on the worksheet. Solver
operates using a group of cells known as choice variables, or
variable cells, which are integral in calculating the formulas
in both the objective and constraint cells. Through iterative
modifications to the values of these choice variable cells,

Solver strives to meet the constraints of the constraint cells
while achieving the desired result in the objective cell.

In this study, we demonstrate an Excel-based heuristic
solution strategy for sequencing problems. For illustrative
purposes, we utilize 'Example 1.1' located in sheet 1 of the
Excel file. This example, labeled as a T-problem, involves
the sequencing of

ten jobs. The experimental setup and the application of the
Solver tool in this context aim to provide a practical
demonstration of the algorithm's capabilities in addressing
complex scheduling challenges.

Table 1: T-problem ten jobs

Job(j) 1 ]2 ]3] 4

5 6 7 8 9 10

Process(pj) 11 {19 ] 14 | 10

20 19 [ 19 ] 16 | 11 | 14

Due date (dj) | 57 | 58 | 85 | 148

100 | 135 | 75 | 94 | 73 | 125

In this study, we have meticulously developed a series of
modules for an Excel Solver implementation, designed to
address various facets of our optimization problem. These
facets include problem data organization, the generation of
random numbers employing a uniform distribution, task
sequencing, performance evaluation, and the execution of
essential computations. Figure 1, included in the study,
illustrates the standard layout of our model. The key
components of this model, essential for the optimization
process, are described as follows:

A) Data Analysis Module

(Random Number Generation using Discrete Distribution):
Situated in Cells S12 to J13, this module is responsible for
generating random numbers based on a discrete distribution.
This feature is crucial for introducing variability and
ensuring the robustness of the model under various data
scenarios.

B) Objective Function

Located in Cell S35, the objective function is the
cornerstone of the model. It defines the goal or the target
outcome that the optimization process aims to achieve or
maximize/minimize.

C) Problem Data

This data is organized in Cells S19 to J21. These cells
contain the essential information and parameters that define
the specifics of the optimization problem being addressed.

D) Decision Variables

These are represented by the sequence in the range S29 to
J29. Decision variables are pivotal as they are the elements
that the Solver manipulates to find the optimal solution as
per the defined objective function.

E) Applicable Constraints:

These constraints, which will be defined in subsequent
sections of the study, set the boundaries within which the
Solver operates. They ensure that the solutions are not only
optimal but also feasible within the given problem context.

Each of these components plays a vital role in the
functioning of the optimization model. Their careful
integration within the Excel Solver framework allows for a
systematic and efficient approach to solving the optimization
problem, with clear delineation for analysis and
interpretation of the outcomes.
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In our research, we employed Data Analysis in Excel Solver
to generate random numbers based on a discrete distribution.
This method was utilized for determining processing times,
which ranged between 50-150 units, and due date times, set
between 10-20 units, across all problems addressed in the
study. Specifically, in Example 1.1, as illustrated in figure 2,
we generated random numbers considering the number of
variables (jobs) as 10. The generation involved a single row
of random numbers, applying a uniform distribution for
processing times set between 10-20 units and due date times
ranging from 50-150 units. This procedure was executed
with a default random seed to maintain consistency and
replicability in the results.

For other problems beyond Example 1.1, detailed
explanations and methodologies are provided in the
corresponding Excel sheets. These sheets serve as a
comprehensive repository of data and methodologies applied
across different problem scenarios within the scope of this
study. The utilization of Excel Solver for random number
generation ensures a systematic and standardized approach
to creating varied problem sets, thereby enhancing the
robustness and applicability of the research findings.
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Figure 1: Solver Excel model for the T-problem example
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Figure 2: Random Number Generation based Solver Excel

In this model, the highlighted cells in row 29 represent
decision variables, where permutations of integers 1-10 are
inserted to determine job sequences. To ascertain processing
times, located in row 30, a lookup algorithm is employed,
drawing on the sequence and referencing corresponding data
cells. The formula used in cell S30, INDEX($J$20:$5$20;
MATCH (S29; $J$19: $S$19;0)), exemplifies this
approach and is replicated across adjacent cells to the right.

Subsequently, the completion times in row 31 are computed
by aggregating the current processing time with the
completion time of the preceding job within the sequence.
This mirrors the manual calculation method. The due dates
in row 32 are similarly deduced, referencing data cells with
the formula in cell S32 being INDEX ($J$21: $5$21;
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MATCH (S29; $J$19: $S$19;0), which is also extended to
the right. Each job's lateness, calculated in row 33, utilizes
the formula MAX(0;S31-S32) and follows the same right-
hand replication.

The objective function, situated in cell S35, is to minimize
the sum of tardiness values across all jobs, calculated using
the formula SUM(J33:S33). To address the optimization
challenge in this example, the focus is on selecting an
appropriate sequence in row 29. The tool employed for this
purpose is the Excel Solver program, particularly its

Solver Parameters
Set Objective: $5$35
To: Max o Mn
By Changing Variable Cells:

$)$29:45829

Sybject to the Constraints:
$)$29:85829 = AlDifferent

¥ | Make Unconstrained Variables Non-Negative

Sglect a Solving Method:

Solving Method

Evolutionary

Evolutionary Solver algorithm. This sophisticated algorithm,
one of three available in Solver, is particularly adept at
solving complex sequencing problems. To initiate the
algorithm, users access the Solver through the add-ins tab,
leading to the Solver Parameters box, as demonstrated in
Figure 3.

This methodological approach illustrates the application of
the Evolutionary Solver in addressing sequencing issues,
showcasing its potential in solving complex problems
through a systematic and structured procedure.)

Value Of:

Qelete

Reset A}

Load/Save

] | Options

Select the GRG Nonlinear engine for Solver Problems that are smooth noninear. Select the LP Simplex
engine for Inear Solver Problems, and select the Evolutionary engine for Solver problems that are

non-smooth.

Figure 3: Initial Solver windows

In our research, the utilization of the Solver tool in Excel is
methodically structured to acquire necessary data by
specifically designating parameters. The process involves
the following steps:

1) Setting the Objective Cell: The cell designated for the
objective function, in this case, is Cell B8. This cell is
configured to determine the minimum value of the target
metric, aligning with the optimization goal of the study.

2) Defining Variable Cells: The range of variable cells,
identified as Cells C11 to G11, is established to allow
Solver to modify these values within specified
constraints. This range represents the decision variables
crucial to the optimization process.

3) Applying Constraints: Constraints are applied to ensure
that the solutions provided by Solver remain within
feasible and logical bounds. This step involves selecting
the objective, variables, and constraints, and then
incrementally building the Solver model by clicking the
'‘Add' button for each element.

4) Building the Solver Model: The 'Add Obijective'
window is accessed by selecting 'Objective’ and clicking
'‘Add'. As depicted in Figure 3, Cell S35 is entered as the
objective function cell, with the option set to 'Minimum'.
This selection directs Solver to minimize the value in
Cell S35. Once 'OK' is clicked, the Solver Parameters
window updates to reflect these settings.

5) Configuring Decision Variables: As illustrated in
Figure 4, the 'Add Variable Cells' window is used to
specify the range of decision variables. By setting this
range, the Solver is provided with a clear boundary
within which it can alter values to find an optimal
solution.

Each of these steps plays a critical role in configuring Solver
to efficiently address the optimization problem at hand. By
methodically setting objectives, defining variable cells, and
applying constraints, the Solver model is tailored to seek the
most effective solution within the parameters of the study.
This systematic approach ensures the accuracy and
relevance of the results generated by Solver.

Salves Paramneters =
Set Obijecive: 5534 f_‘i_‘
To: Max G Mg Yk OF:

Figure 4: Specifying the variables in the example model

as seen in Figure 5, we go to the Add Constraint window.
The all-differentconstraints are selected using the pull-down
window in the center, and the cell reference corresponds to
the range of decision variables. This constraint ensures that
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the decision variable cells include a valid permutation (in
this example, 1-10). To put it another way, the decision cells

Subject to the Constraints:
£1529: 85579 = AlDifferent

must follow a logical order. Then, by clicking OK, we return
to the Solver Parameters window.

T Add

Change

Delete

Reset All

- f Load/Save

Figure 5: Imposing a constraint in the example model

The Solver Parameters box has been adjusted to reflect the
problem statement, but one more step remains to complete.
As illustrated in Figure 6, we select the Evolutionary Solver
as the solution algorithm using pull-down menu.

{4 Make Unconstrained Variables Non-Negative

v Options

Select a Solving
Method:

Figure 6: Choosing the Evolutionary Solver

In The Evolutionary Solver, It will seek out the optimal
solution it can get, and its success is controlled by a number
of user-defined parameters that can be set after selecting the
Options button in the Solver Parameters box, as shown in
figure 7. The most crucial of these variables is

R 4 e

All Methods | GRG Nonlinear Evolutionany

Corves gende 00001
rtutation Rate 007
Pepulation i 50
Random Secd o
rnximum Time without Improsement a0

[l reguire Bownds on wariables

Figure 7: Options button in the Solver Parameters window

The convergence conditions and stopping that govern the
search's conclusion to achieve a suitable generic collection
of parameters, we select some values that are larger and
lower than default Values in this search:

Population size is changed = 100, 50, 25, 10.

Mutation rate is changed = 0.75, 0.075 (the default value),
0.0075.

Convergence is constant = 0.0001 (the default value), 0.1.

5. Results

Firstly, when we use:

Population size = 100, 50.

Mutation rate = 0.75, 0.075 (the default value), 0.0075.
Convergence = 0.0001 (the default value)

Using parameters 0.75 mutation rate with 100,50 population
size ,the search to get the best solution has been taken longer
time than other . It took an average about 42-44 seconds, 3-
12 seconds at 0.075 mutation rate with 100 population size,
but at the shortest time was between 1-4 seconds when using
0.075,0.0075 mutation rate with population size 50 . the
improvement and best solutions are found within 0.01% as
figure 8
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convergence

population size

mutation Rate

run time to solve problem{seconds)

problem 1

problem 2

problem 3

problem 4

problem 5

problem 6

problem 7

problem 8

problem 9@

problem10

0.0001

100

0.75

42.68

42.2

43.53

41.62

43.22

41.66

4161

43.6

4331

4159

0.075

7.58

1044

5.21

5.38

4.98

4.02

0.0075

535

5.2

4.07

3.25

3.45

0.75

42,1

42.4

41.99

41.13

42,14

5.93

4.66

3.73

5.67

41.83 41.48 43.49 42.21 42.76

50

Solution

convergence population size mutation Rate

run time to solve problem

problem 11

‘ problem 12 ‘ problem 13 |pr0blem 14| problem 15 ‘ problem 16 ‘ problem 17 ‘ problem 18 | problem 19 ‘problem ZU|

0.75 42.76

100

0.0001
50

0.0075

Solution

Secondly, when we use:

Population size = 25, 10.

Mutation rate = 0.75, 0.075 (the default value), 0.0075.
Convergence = 0.0001 (the default value)

The search to get the best solution has been taken average
time about 3-13 seconds using parameters 0.75 mutation rate

4117 42,57 42,06 41.27 42.14 42,67 42,16 42.26

2 2 6 16 19 5 13 33 39
Figure 8: Population size is (100,50), Mutation rate is 0.075, 0. 75, 0.0075), and Convergence is 0.0001

with 25 population size, 1-3 seconds at 0.075 mutation rate,
but using parameters (0.075,0.0075) mutation rate with
(25,10 ) with constant Convergence at 0.0001 (the default
value), the improvement and best solutions cannot find
within 0.0001 as figure9

*NA is represented as not found optimal solution.

e ) run time to solve problem(seconds)
convergence population size mutation Rate
problem 1 problem 2 | problem3 | problem 4 | problem5 | problem6 | problem7 | problem 8 | problem 9 | problem10
0.0001 0.75 12.79 11.59 14.76 1118 11.93 115 3.25 4.38 8.35 346
25 0.075 205 175 207 177 155 1.01 125 1.7 325 113
0.0075 NA 154 1.69 NA 1.65 0.98 1.09 151 NA 1.17
. ) run time to solve problem
population size mutation Rate
problem 11 | problem 12 | problem 13 | problem 14| problem 15 | problem 16 | problem 17 | problem 18 | problem 19 |problem 20
0.75 8.45 1.38 4.663 3.55 2.56 1.48 473 3.60 21 221
0.0001 2 0.075 127 0.99 122 124 164 115 132 134 179 19
0.0075 1.06 091 NA NA NA NA NA NA NA NA

Figure 9: Population size is (25,10), 0. 75, 0.075 the default value, 0.0075, and Convergence is 0.0001 the default value.

The other Experiments Population size is changed = 50, 25,
10.

Mutation rate is changed = 0.75, 0.075 (the default value),
0.0075.

Convergence is constant = 0.1.

Using parameters 0.75 mutation rate with 50 population size
, the search to get the best solution has been taken longer

convergence previously . It took an average time about 42-
44 seconds, 1.5-2 seconds at 0.075,0.0075 mutation rate.

The improvement and best solutions are found within
0.1.But using parameters (0.075,0.0075) mutation rate with
(25,10 ) with constant Convergence at 0.1 rate, the
improvement and best solutions cannot find within 0.1 as
figurel0

time than other as the same when we use

0.0001
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convergence

population size

mutation Rate

run time to solve problem(seconds)

problem 1

problem 2

problem 3

problem 4

problem 5

problem 6

problem 7

problem 8

problem 9

problem10

0.75

4282

419

42.04

40.733

4162

4.56

43.06

421

4128

41.55

0.075

156

L7

1.83

1.81

172

122

141

158

129

166

0.0075

152

115

15

1.37

L46

125

15

156

104

118

0.75

3.27

3.26

10.88

5.5

25.93

0.85

1.58

6.42

2.25

122

0.075

NA

0.87

NA

NA

NA

0.76

NA

NA

NA

NA

0.0075

NA

NA

NA

NA

NA

0.772

NA

NA

NA

NA

problem 11

problem 12

problem 13

problem 14

problem 15

problem 16

problem 17

problem 18

problem 19

problem20

0.75

4146

4117

424

4257

4206

41.27

4214

4267

4216

4226

0.075

183

1.01

1.62

2.04

169

111

172

214

179

1.89

0.0075

1533

0.98

174

2

201

108

184

AL

213

2.23

0.75

845

1.38

4.663

3155

2.56

148

473

3.66

27

2.27

0.075

127

0.99

1.22

1.24

164

115

132

134

179

19

0.0075

1.06

0.91

NA

NA

NA

NA

NA

NA

NA

NA

Figure 10: Population size is (50,25,10), Mutation rate is 0. 75, 0.075 the default value, 0.0075, and Convergence is 0. 01.

6. Conclusion

In this study, we explored the optimization of parameters
within the Evolutionary Solver for single machine
scheduling problems, aiming to minimize total tardiness. We
discovered that time constraints within the solver can be
adjusted according to the user's preference. Notably, runs
lasting 30 seconds or longer typically yielded satisfactory
results for sequencing problems involving up to ten jobs,
although optimal or near-optimal solutions were often
achieved in considerably less time. The study presents these
findings, emphasizing the promising nature of the results in
terms of solution quality and speed, particularly when
employing an evolutionary algorithm (EA). As detailed in
Appendix B, EA is demonstrated proficiency in finding
optimal solutions for smaller problems and showed potential
for larger problems due to lower computational demands,
despite not always yielding the best solutions.

Our experiments with the Evolutionary Solver revealed its
capability to rapidly converge on different total tardiness
values for various problems. This was observed in a set of
20 problems involving 10 jobs each. When the Solver was
run with a time limit of up to 42 seconds,as show in
appendix figures 11 and 12, optimal solutions were achieved
in all 20 problems, using parameters such as a Population
size of 100, 50, 25, a Mutation rate of 0.75, and a
Convergence of 0.0001 and 0.01. Interestingly, when the
runtime was reduced to between 1-12 seconds, with a
Population size of 50, 25, a Mutation rate of 0.075, 0.0075,
and the same Convergence rates, the Solver still produced
optimal solutions in all cases. These findings, detailed in
Appendix A and highlighted in green, indicate that a
Population size of 50, Mutation rate of 0.075%, and a
Convergence rate of 0.0001 are the optimal parameters for
achieving the best solutions within a shorter runtime of 1-3
seconds.

However, when the Population size was reduced further to
25, 10, and the Mutation rate and Convergence remained the
same, the Evolutionary Solver did not produce optimal
solutions. Attempts to alter the Convergence parameter to
0.000001 and 0.001 yielded results similar to those with
0.0001.

In future research, we aim to modify the objective function
to focus on minimizing total weighted tardiness in parallel
machine scheduling scenarios with non-zero ready times.
This adjustment will be tested with the previously mentioned
parameters to ascertain the feasibility of achieving faster
optimal solutions.
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Figure 11.1: 20 Problems solution (the initial and the Optimal (best)solution)
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Figure 11.2: 20 Problems solution (the initial and the Optimal (best)

SORvErpEssE population siss mutation Rate rus time o soive problem( )
problem] | problem2 | problem 3 | problem 4 | problems | problem& | problem7 | problem 8 | problem 9 [problem10
0.73 +2.68 42.2 4333 £1.62 43.22 4166 4161 436 4331 4139
100 0.075 538 198 402 593 1 173 567
0.0073 115 143
0.15 : 4113 [ 4214 | 4183 | 4148 [ 4349 [ 4221 | 4276 |
50
00
15
i
50
01 5 NA
! NA ! NA
0.75 NA NA NA NA NA NA NA NA N&
10 0075 NA NA NA NA NA NA NA NA NA NA
0.0075 NA NA NA NA NA NA NA NA N& NA
Solution Fi ] -] ] 4 [i] 1 £ 30 1

Volume 13 Issue 28, November 2023

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2024



International Journal of Science and Research (1JSR)
ISSN: 2319-7064

problem
convengence | population size mitation Rate run time to solve problem
problem 11 | problem 12 | problem 13 |pu'oh|.¢m 14| problem 15 | problem 16 | problem 17 | problem 18 pmhl!ml'?bmb]m 0
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Figure 11.3: Optimal Solver Excel Parameters for 20 problems
Problem Best solution Initial solution
1 23.0 23.0
2 0.0 95.0
3 25.0 212.0
4 8.0 201.0
5 24.0 34.0
6 0.0 60.0
7 1.0 26.0
8 9.0 127.0
9 90.0 202.0
10 7.0 124.0
11 2.0 64.0
12 2.0 85.0
13 6.0 106.0
14 16.0 210.0
15 19.0 105.0
16 5.0 166.0
17 13.0 155.0
18 33.0 120.0
19 39.0 130.0
20 41.0 64.0
Figure 121.4 Initial and Optimal solution for 20 problems
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