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Abstract: The study explores the optimization of evolutionary solver parameters for minimizing total tardiness in single machine 

scheduling, an NP-hard problem with zero ready times included. It investigates various parameter combinations, including population 

sizes, mutation rates, and a constant convergence rate, both above and below default values. The aim is to enhance the solver's 

effectiveness in addressing this complex challenge. The findings contribute to improving scheduling efficiency in manufacturing and 

operations management contexts. 
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1. Introduction 
 

In the contemporary manufacturing landscape, characterized 

by constrained resources, escalating consumer demands, and 

intense competition both domestically and globally, the role 

of scheduling emerges as a pivotal function within any 

manufacturing enterprise. In the context of an increasingly 

globalized and international business environment, the 

imperatives of cost reduction and profit maximization 

continue to drive the strategic decisions of manufacturing 

companies. The impact of manufacturing scheduling on a 

company's operational performance, and consequently its 

sustainability, is significant, particularly when considering 

the correlation between tardiness and operational 

expenses[1]. This study aims to delve into the optimization 

of parameters for an evolutionary solver tasked with 

addressing the challenge of minimizing total tardiness in 

single machine scheduling, a problem denoted as 1││ΣTj 

when using Excel solver. It is assumed that all jobs have 

zero arrival time. The objective is to strategically sequence 

jobs to minimize total tardiness (ΣTj), which is determined 

by the formula Tj = Max{ Cj – dj ,0}, where Tj is the 

tardiness of job j, Cj denotes the completion time, and dj 

represents the due date. This research specifically focuses on 

modifying certain key parameters - population size, mutation 

rate, and convergence- setting them both above and below 

the default values. This approach is undertaken to establish a 

robust and general set of parameters that effectively 

contribute to the minimization of total tardiness, addressing 

the core objective function of this study. 

 

2. Problem Statement 
 

The article aims to optimize the parameters of an 

evolutionary solver to efficiently address the NP-hard 

problem of minimizing total tardiness in single-machine 

scheduling scenarios. It’s study posits a scenario where a 

series of jobs, labeled as j = 1, 2,..., n, are available for 

processing on a single machine. Each job j has an associated 

processing time, denoted as pj, and a due date, represented 

as dj. Once initiated, a job must be completed on the 

machine without interruption. It is important to note that the 

machine is designed to handle only one operation at a time. 

The concept of tardiness in this context arises when the 

completion time of a job (Cj) exceeds its due date (dj). 

 

To effectively address this scheduling challenge, we explore 

various parameter settings to identify an optimal generic set. 

This involves varying the population size, modifying the 

mutation rate, and experimenting with different constant 

values for convergence. The evolutionary algorithm, a 

cornerstone of our approach, incorporates principles of 

natural evolution into the process of finding optimal 

solutions for Solver problems. This algorithm directly 

utilizes the decision variables and problem functions in its 

methodology. It is noteworthy that evolutionary algorithms 

are a staple in most commercial Solver applications. 

 

Specifically, in the context of an Excel solver, there are 

configurable options for evolutionary solving parameters. 

These options are critical for tailoring the evolutionary 

algorithm to effectively respond to the unique demands of 

the scheduling problem at hand, thereby facilitating the 

discovery of rapid improvements and the best possible 

solutions. 

In this research, specific attention was given to: 

 

A) Convergence 

The Convergence parameter in Solver specifies the 

maximum allowable percentage difference in objective 

values for the system to consider it has "converged to the 

current solution" for the predominant portion of the 

population (top 99%). A smaller value in this parameter 

results in a longer computation time but brings the solution 

closer to the ideal. In this research, the Convergence was set 

consistently at two distinct levels: 0.0001, the standard 

default, and 0.1, to observe the differential impacts on the 

solution accuracy. 

 

B) Mutation Rate Parameter 

The Mutation Rate parameter is defined as a value between 

0 and 1, representing the frequency at which certain 
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members of the population undergo modification or 

"mutation" to create new experimental solutions. This rate 

plays a pivotal role in the evolutionary approach by 

influencing the examination of each "generation" or subset 

of the problem. A higher mutation rate increases the 

population's diversity and the probability of identifying 

superior solutions, albeit at the cost of extended total 

solution time. In our study, the mutation rates were set at 

0.75, 0.075 (the default), and 0.0075. 

 

C) Population Size Parameter 

The Population Size parameter indicates the number of 

alternative solution points maintained in the population of 

candidate solutions at any given time by the Evolutionary 

approach. In this study, the population sizes selected for 

evaluation were 100, 50, 25, and 10. 

 

D) Random Seed Parameter 

The Random Seed parameter requires a positive integer, 

serving as a fixed seed for the random number generator 

utilized in the evolutionary method. A consistent seed 

number ensures repeatability of results upon each execution 

of the Solve command. Leaving this field blank allows for a 

new seed generation with each execution, leading to 

variability in the final solution. This study maintains the 

default setting for this parameter. 

 

E) Maximum Time without Improvement Parameter 

This parameter sets the maximum duration the Evolutionary 

approach will run without noticeable improvement in the 

objective value of the best solution in the population. If no 

improvement is detected within this timeframe, Solver will 

halt with a message indicating no further improvement is 

possible. This study does not alter the default setting for this 

parameter. 

 

F) Require Bounds on Variables Option 

By selecting this option, users inform the Evolutionary 

approach that all decision variables in the model must have 

defined lower and upper bounds. Providing bounds improves 

the performance of the Evolutionary approach, especially 

when these bounds are as narrow as possible. This study 

retains the default setting for this option. 

 

G) Structure of the Study 

The remaining sections of this study are organized as 

follows: Section 3 presents a literature review of the Excel 

Solver technique in single machine scheduling. Section 4 

details the solution methodology. Section 5 further 

elaborates on this methodology, and Section 6 concludes the 

study. 

 

3. Literature Review 
 

To effectively minimize total tardiness, the single machine 

total tardiness problem involves scheduling a series of jobs 

on a single machine. Due to the complexity of this problem, 

Du, and Leung[1] classified it as NP-hard, signifying that an 

optimalsolution is not feasible without exhaustive methods. 

In such cases, heuristic approaches, which aim to find near-

optimal solutions efficiently, become valuable 

alternatives.Solutions to combinatorial problems like this 

can be categorized as follows: 

a) Complete enumeration method. 

b) Mathematical modeling. 

c) Implicit enumeration/branch-and-bound method. 

d) Heuristic method. 

 

While complete enumeration, implicit enumeration, and 

mathematical modeling methods yield optimal solutions, 

they are not always practical. For instance, the number of 

sequences to evaluate in complete enumeration grows 

exponentially, making it impractical for larger problems. 

Implicit enumeration methods [2], utilizing branch-and-

bound or dynamic programming, are less time-consuming. 

Innovations in this field include Hirakawa and Yasuhiro's [3] 

rapid optimal algorithm using branch and bound, and Biskup 

et al.'s [2] efficient recursion over Kondakci et al.'s [4] 

branch-and-bound approach. However, these methods can 

suffer from high temporal complexity. 

 

In contrast, mathematical modeling, though capable of 

identifying the optimal sequence to minimize total 

tardiness[5], is limited by the extensive number of variables 

and constraints, making it suitable only for smaller-scale 

problems. Heuristic methods, as developed by Wilkerson 

and Irwin[6], Kim et al.[7], and others, offer more feasible 

solutions for larger problems. For instance, Tian et 

al.[8]identified conditions for polynomial solvability in 

specific cases, and Kiyuzato et al.[9] applied heuristics to 

real-world scheduling in auto parts manufacturing. 

 

Meta-heuristics, as suggested by Feldmann and Biskup [10] 

and Cheng et al. [11], further enhance solution quality. 

These include evolutionary methods, simulated annealing, 

and Ant Colony Optimization (ACO), offering near-optimal 

solutions for complex scheduling problems. 

 

Tuning parameters in evolutionary algorithms is crucial for 

efficient problem-solving. A hybrid parameter tuning 

approach has been proposed to optimize performance 

metrics of these algorithms[12]. Bajwa et al. [13] and Cao et 

al.[14] explored scheduling in group technology systems and 

production workshops, respectively, using these optimized 

algorithms. 

 

Burke and Smith discussed the concept of a memetic 

algorithm, a blend of genetic algorithms and cultural 

evolution models [15]. Moscato and Norman [2] coined the 

term 'memetic algorithm' to describe evolutionary 

algorithms integrated with intensive local search. This 

approach, based on Dawkins' concept of memes [15], allows 

for the adaptation and improvement of ideas, different from 

the rigid transmission of genes. 

 

In this study, an evolutionary algorithm incorporating these 

principles is employed to address the single machine 

scheduling problem. This approach directly utilizes decision 

variables and problem functions in an evolutionary 

framework [16]. 

 

4. Methodology 
 

This section of the study details the experimental 

methodology employed, utilizing the Microsoft Excel 

Solver's Evolutionary algorithm feature. The computational 
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experiments were conducted on a Lenovo laptop equipped 

with a dual 2.2 GHz CPU and 16.0 GB of RAM. 

 

Solver, an add-in tool for Microsoft Excel, enables what-if 

analysis by identifying an optimal value (maximum or 

minimum) for a formula in a designated cell, referred to as 

the objective cell. This process is subject to constraints 

imposed by other formula cells on the worksheet. Solver 

operates using a group of cells known as choice variables, or 

variable cells, which are integral in calculating the formulas 

in both the objective and constraint cells. Through iterative 

modifications to the values of these choice variable cells, 

Solver strives to meet the constraints of the constraint cells 

while achieving the desired result in the objective cell. 

 

In this study, we demonstrate an Excel-based heuristic 

solution strategy for sequencing problems. For illustrative 

purposes, we utilize 'Example 1.1' located in sheet 1 of the 

Excel file. This example, labeled as a T-problem, involves 

the sequencing of 

ten jobs. The experimental setup and the application of the 

Solver tool in this context aim to provide a practical 

demonstration of the algorithm's capabilities in addressing 

complex scheduling challenges. 

 

Table 1: T-problem ten jobs 

Job(j) 1 2 3 4 5 6 7 8 9 10 

Process(pj) 11 19 14 10 20 19 19 16 11 14 

Due date (dj) 57 58 85 148 100 135 75 94 73 125 

 

In this study, we have meticulously developed a series of 

modules for an Excel Solver implementation, designed to 

address various facets of our optimization problem. These 

facets include problem data organization, the generation of 

random numbers employing a uniform distribution, task 

sequencing, performance evaluation, and the execution of 

essential computations. Figure 1, included in the study, 

illustrates the standard layout of our model. The key 

components of this model, essential for the optimization 

process, are described as follows: 

 

A) Data Analysis Module 

(Random Number Generation using Discrete Distribution): 

Situated in Cells S12 to J13, this module is responsible for 

generating random numbers based on a discrete distribution. 

This feature is crucial for introducing variability and 

ensuring the robustness of the model under various data 

scenarios. 

 

B) Objective Function 

Located in Cell S35, the objective function is the 

cornerstone of the model. It defines the goal or the target 

outcome that the optimization process aims to achieve or 

maximize/minimize. 

 

C) Problem Data 

This data is organized in Cells S19 to J21. These cells 

contain the essential information and parameters that define 

the specifics of the optimization problem being addressed. 

 

D) Decision Variables 
These are represented by the sequence in the range S29 to 

J29. Decision variables are pivotal as they are the elements 

that the Solver manipulates to find the optimal solution as 

per the defined objective function. 

 

E) Applicable Constraints: 

These constraints, which will be defined in subsequent 

sections of the study, set the boundaries within which the 

Solver operates. They ensure that the solutions are not only 

optimal but also feasible within the given problem context. 

 

Each of these components plays a vital role in the 

functioning of the optimization model. Their careful 

integration within the Excel Solver framework allows for a 

systematic and efficient approach to solving the optimization 

problem, with clear delineation for analysis and 

interpretation of the outcomes. 
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Figure 1: Solver Excel model for the T-problem example 

 

In our research, we employed Data Analysis in Excel Solver 

to generate random numbers based on a discrete distribution. 

This method was utilized for determining processing times, 

which ranged between 50-150 units, and due date times, set 

between 10-20 units, across all problems addressed in the 

study. Specifically, in Example 1.1, as illustrated in figure 2, 

we generated random numbers considering the number of 

variables (jobs) as 10. The generation involved a single row 

of random numbers, applying a uniform distribution for 

processing times set between 10-20 units and due date times 

ranging from 50-150 units. This procedure was executed 

with a default random seed to maintain consistency and 

replicability in the results. 

 

For other problems beyond Example 1.1, detailed 

explanations and methodologies are provided in the 

corresponding Excel sheets. These sheets serve as a 

comprehensive repository of data and methodologies applied 

across different problem scenarios within the scope of this 

study. The utilization of Excel Solver for random number 

generation ensures a systematic and standardized approach 

to creating varied problem sets, thereby enhancing the 

robustness and applicability of the research findings. 

 
Figure 2: Random Number Generation based Solver Excel 

 

In this model, the highlighted cells in row 29 represent 

decision variables, where permutations of integers 1–10 are 

inserted to determine job sequences. To ascertain processing 

times, located in row 30, a lookup algorithm is employed, 

drawing on the sequence and referencing corresponding data 

cells. The formula used in cell S30, INDEX($J$20:$S$20; 

MATCH (S29; $J$19: $S$19;0)), exemplifies this 

approach and is replicated across adjacent cells to the right. 

 

Subsequently, the completion times in row 31 are computed 

by aggregating the current processing time with the 

completion time of the preceding job within the sequence. 

This mirrors the manual calculation method. The due dates 

in row 32 are similarly deduced, referencing data cells with 

the formula in cell S32 being INDEX ($J$21: $S$21; 
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MATCH (S29; $J$19: $S$19;0), which is also extended to 

the right. Each job's lateness, calculated in row 33, utilizes 

the formula MAX(0;S31-S32) and follows the same right-

hand replication. 

 

The objective function, situated in cell S35, is to minimize 

the sum of tardiness values across all jobs, calculated using 

the formula SUM(J33:S33). To address the optimization 

challenge in this example, the focus is on selecting an 

appropriate sequence in row 29. The tool employed for this 

purpose is the Excel Solver program, particularly its 

Evolutionary Solver algorithm. This sophisticated algorithm, 

one of three available in Solver, is particularly adept at 

solving complex sequencing problems. To initiate the 

algorithm, users access the Solver through the add-ins tab, 

leading to the Solver Parameters box, as demonstrated in 

Figure 3. 

 

This methodological approach illustrates the application of 

the Evolutionary Solver in addressing sequencing issues, 

showcasing its potential in solving complex problems 

through a systematic and structured procedure.) 

 

 
Figure 3: Initial Solver windows 

 

In our research, the utilization of the Solver tool in Excel is 

methodically structured to acquire necessary data by 

specifically designating parameters. The process involves 

the following steps: 

1) Setting the Objective Cell: The cell designated for the 

objective function, in this case, is Cell B8. This cell is 

configured to determine the minimum value of the target 

metric, aligning with the optimization goal of the study. 

2) Defining Variable Cells: The range of variable cells, 

identified as Cells C11 to G11, is established to allow 

Solver to modify these values within specified 

constraints. This range represents the decision variables 

crucial to the optimization process. 

3) Applying Constraints: Constraints are applied to ensure 

that the solutions provided by Solver remain within 

feasible and logical bounds. This step involves selecting 

the objective, variables, and constraints, and then 

incrementally building the Solver model by clicking the 

'Add' button for each element. 

4) Building the Solver Model: The 'Add Objective' 

window is accessed by selecting 'Objective' and clicking 

'Add'. As depicted in Figure 3, Cell S35 is entered as the 

objective function cell, with the option set to 'Minimum'. 

This selection directs Solver to minimize the value in 

Cell S35. Once 'OK' is clicked, the Solver Parameters 

window updates to reflect these settings. 

5) Configuring Decision Variables: As illustrated in 

Figure 4, the 'Add Variable Cells' window is used to 

specify the range of decision variables. By setting this 

range, the Solver is provided with a clear boundary 

within which it can alter values to find an optimal 

solution. 

 

Each of these steps plays a critical role in configuring Solver 

to efficiently address the optimization problem at hand. By 

methodically setting objectives, defining variable cells, and 

applying constraints, the Solver model is tailored to seek the 

most effective solution within the parameters of the study. 

This systematic approach ensures the accuracy and 

relevance of the results generated by Solver. 

 

 
Figure 4: Specifying the variables in the example model 

  

as seen in Figure 5, we go to the Add Constraint window. 

The all-differentconstraints are selected using the pull-down 

window in the center, and the cell reference corresponds to 

the range of decision variables. This constraint ensures that 
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the decision variable cells include a valid permutation (in 

this example, 1–10). To put it another way, the decision cells 

must follow a logical order. Then, by clicking OK, we return 

to the Solver Parameters window. 

 

 
Figure 5: Imposing a constraint in the example model 

 

The Solver Parameters box has been adjusted to reflect the 

problem statement, but one more step remains to complete. 

As illustrated in Figure 6, we select the Evolutionary Solver 

as the solution algorithm using pull-down menu. 

 

 
Figure 6: Choosing the Evolutionary Solver 

 

In The Evolutionary Solver, It will seek out the optimal 

solution it can get, and its success is controlled by a number 

of user-defined parameters that can be set after selecting the 

Options button in the Solver Parameters box, as shown in 

figure 7. The most crucial of these variables is 

 

 
Figure 7: Options button in the Solver Parameters window 

The convergence conditions and stopping that govern the 

search's conclusion to achieve a suitable generic collection 

of parameters, we select some values that are larger and 

lower than default Values in this search: 

 

Population size is changed = 100, 50, 25, 10. 

Mutation rate is changed = 0.75, 0.075 (the default value), 

0.0075. 

Convergence is constant = 0.0001 (the default value), 0.1. 

 

5. Results 
 

Firstly, when we use:  

Population size = 100, 50. 

Mutation rate = 0.75, 0.075 (the default value), 0.0075. 

Convergence = 0.0001 (the default value) 

 

Using parameters 0.75 mutation rate with 100,50 population 

size ,the search to get the best solution has been taken longer 

time than other . It took an average about  42-44 seconds, 3-

12 seconds at 0.075 mutation rate with 100 population size, 

but at the shortest time was between 1-4 seconds when using 

0.075,0.0075 mutation rate with population size 50 . the 

improvement and best solutions are found within 0.01% as 

figure 8 
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Figure 8: Population size is (100,50), Mutation rate is 0.075, 0. 75, 0.0075), and Convergence is 0.0001 

 

Secondly, when we use:  

Population size = 25, 10. 

Mutation rate = 0.75, 0.075 (the default value), 0.0075. 

Convergence = 0.0001 (the default value) 

 

The search to get the best solution has been taken average 

time about  3-13 seconds using parameters 0.75 mutation rate 

with 25 population size, 1-3 seconds at 0.075 mutation rate, 

but using parameters (0.075,0.0075) mutation rate with 

(25,10 ) with constant Convergence at 0.0001 (the default 

value), the improvement and best solutions cannot find 

within 0.0001 as figure9 

*NA is represented as not found optimal solution. 

 

 
Figure 9: Population size is (25,10), 0. 75, 0.075 the default value,  0.0075, and Convergence is 0.0001 the default value.  

 

The other Experiments  Population size is changed = 50, 25, 

10. 

Mutation rate is changed = 0.75, 0.075 (the default value), 

0.0075. 

Convergence is constant = 0.1. 

 

Using parameters 0.75 mutation rate with 50 population size 

, the search to get the best solution has been taken longer 

time than other as the same when we use  0.0001 

convergence previously . It took an average time about  42-

44 seconds, 1.5-2 seconds at 0.075,0.0075 mutation rate. 

 

The improvement and best solutions are found within 

0.1.But  using parameters (0.075,0.0075) mutation rate with 

(25,10 ) with constant Convergence at 0.1 rate, the 

improvement and best solutions cannot find within 0.1 as 

figure10 
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Figure 10: Population size is (50,25,10), Mutation rate is 0. 75, 0.075 the default value,  0.0075, and Convergence is 0. 01. 

 

6. Conclusion 
 

In this study, we explored the optimization of parameters 

within the Evolutionary Solver for single machine 

scheduling problems, aiming to minimize total tardiness. We 

discovered that time constraints within the solver can be 

adjusted according to the user's preference. Notably, runs 

lasting 30 seconds or longer typically yielded satisfactory 

results for sequencing problems involving up to ten jobs, 

although optimal or near-optimal solutions were often 

achieved in considerably less time. The study presents these 

findings, emphasizing the promising nature of the results in 

terms of solution quality and speed, particularly when 

employing an evolutionary algorithm (EA). As detailed in 

Appendix B, EA is demonstrated proficiency in finding 

optimal solutions for smaller problems and showed potential 

for larger problems due to lower computational demands, 

despite not always yielding the best solutions. 

 

Our experiments with the Evolutionary Solver revealed its 

capability to rapidly converge on different total tardiness 

values for various problems. This was observed in a set of 

20 problems involving 10 jobs each. When the Solver was 

run with a time limit of up to 42 seconds,as show in 

appendix figures 11 and 12, optimal solutions were achieved 

in all 20 problems, using parameters such as a Population 

size of 100, 50, 25, a Mutation rate of 0.75, and a 

Convergence of 0.0001 and 0.01. Interestingly, when the 

runtime was reduced to between 1-12 seconds, with a 

Population size of 50, 25, a Mutation rate of 0.075, 0.0075, 

and the same Convergence rates, the Solver still produced 

optimal solutions in all cases. These findings, detailed in 

Appendix A and highlighted in green, indicate that a 

Population size of 50, Mutation rate of 0.075%, and a 

Convergence rate of 0.0001 are the optimal parameters for 

achieving the best solutions within a shorter runtime of 1-3 

seconds. 

 

However, when the Population size was reduced further to 

25, 10, and the Mutation rate and Convergence remained the 

same, the Evolutionary Solver did not produce optimal 

solutions. Attempts to alter the Convergence parameter to 

0.000001 and 0.001 yielded results similar to those with 

0.0001. 

 

In future research, we aim to modify the objective function 

to focus on minimizing total weighted tardiness in parallel 

machine scheduling scenarios with non-zero ready times. 

This adjustment will be tested with the previously mentioned 

parameters to ascertain the feasibility of achieving faster 

optimal solutions. 
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7. Appendix 

 

 
Figure 11.1: 20 Problems solution (the initial and  the  Optimal (best)solution) 
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Figure 11.2: 20 Problems solution (the initial and the Optimal (best) 
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Figure 11.3: Optimal Solver Excel Parameters for 20 problems 

 

 
Figure 121.4 Initial and Optimal solution for 20 problems 
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