
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhancing Evolutionary Solver Efficiency for NP-

Hard Single Machine Scheduling Problems

Mohammed Al-Romema
1
, Mohammed A. Makarem

2

1Department of Industrial & Systems Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Email: mohammadalromaima1992[at]hotmail.com

2Department of Computer Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Email: Makarem.a.Mohammed[at]gmail.com

Abstract: The study explores the optimization of evolutionary solver parameters for minimizing total tardiness in single machine

scheduling, an NP-hard problem with zero ready times included. It investigates various parameter combinations, including population

sizes, mutation rates, and a constant convergence rate, both above and below default values. The aim is to enhance the solver's

effectiveness in addressing this complex challenge. The findings contribute to improving scheduling efficiency in manufacturing and

operations management contexts.

Keywords:Total Tardiness, Np Hard, Single Machine, Scheduling, Evolutionary Solver Parameters

1. Introduction

In the contemporary manufacturing landscape, characterized

by constrained resources, escalating consumer demands, and

intense competition both domestically and globally, the role

of scheduling emerges as a pivotal function within any

manufacturing enterprise. In the context of an increasingly

globalized and international business environment, the

imperatives of cost reduction and profit maximization

continue to drive the strategic decisions of manufacturing

companies. The impact of manufacturing scheduling on a

company's operational performance, and consequently its

sustainability, is significant, particularly when considering

the correlation between tardiness and operational

expenses[1]. This study aims to delve into the optimization

of parameters for an evolutionary solver tasked with

addressing the challenge of minimizing total tardiness in

single machine scheduling, a problem denoted as 1││ΣTj

when using Excel solver. It is assumed that all jobs have

zero arrival time. The objective is to strategically sequence

jobs to minimize total tardiness (ΣTj), which is determined

by the formula Tj = Max{ Cj – dj ,0}, where Tj is the

tardiness of job j, Cj denotes the completion time, and dj

represents the due date. This research specifically focuses on

modifying certain key parameters - population size, mutation

rate, and convergence- setting them both above and below

the default values. This approach is undertaken to establish a

robust and general set of parameters that effectively

contribute to the minimization of total tardiness, addressing

the core objective function of this study.

2. Problem Statement

The article aims to optimize the parameters of an

evolutionary solver to efficiently address the NP-hard

problem of minimizing total tardiness in single-machine

scheduling scenarios. It’s study posits a scenario where a

series of jobs, labeled as j = 1, 2,..., n, are available for

processing on a single machine. Each job j has an associated

processing time, denoted as pj, and a due date, represented

as dj. Once initiated, a job must be completed on the

machine without interruption. It is important to note that the

machine is designed to handle only one operation at a time.

The concept of tardiness in this context arises when the

completion time of a job (Cj) exceeds its due date (dj).

To effectively address this scheduling challenge, we explore

various parameter settings to identify an optimal generic set.

This involves varying the population size, modifying the

mutation rate, and experimenting with different constant

values for convergence. The evolutionary algorithm, a

cornerstone of our approach, incorporates principles of

natural evolution into the process of finding optimal

solutions for Solver problems. This algorithm directly

utilizes the decision variables and problem functions in its

methodology. It is noteworthy that evolutionary algorithms

are a staple in most commercial Solver applications.

Specifically, in the context of an Excel solver, there are

configurable options for evolutionary solving parameters.

These options are critical for tailoring the evolutionary

algorithm to effectively respond to the unique demands of

the scheduling problem at hand, thereby facilitating the

discovery of rapid improvements and the best possible

solutions.

In this research, specific attention was given to:

A) Convergence

The Convergence parameter in Solver specifies the

maximum allowable percentage difference in objective

values for the system to consider it has "converged to the

current solution" for the predominant portion of the

population (top 99%). A smaller value in this parameter

results in a longer computation time but brings the solution

closer to the ideal. In this research, the Convergence was set

consistently at two distinct levels: 0.0001, the standard

default, and 0.1, to observe the differential impacts on the

solution accuracy.

B) Mutation Rate Parameter

The Mutation Rate parameter is defined as a value between

0 and 1, representing the frequency at which certain

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2015

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

members of the population undergo modification or

"mutation" to create new experimental solutions. This rate

plays a pivotal role in the evolutionary approach by

influencing the examination of each "generation" or subset

of the problem. A higher mutation rate increases the

population's diversity and the probability of identifying

superior solutions, albeit at the cost of extended total

solution time. In our study, the mutation rates were set at

0.75, 0.075 (the default), and 0.0075.

C) Population Size Parameter

The Population Size parameter indicates the number of

alternative solution points maintained in the population of

candidate solutions at any given time by the Evolutionary

approach. In this study, the population sizes selected for

evaluation were 100, 50, 25, and 10.

D) Random Seed Parameter

The Random Seed parameter requires a positive integer,

serving as a fixed seed for the random number generator

utilized in the evolutionary method. A consistent seed

number ensures repeatability of results upon each execution

of the Solve command. Leaving this field blank allows for a

new seed generation with each execution, leading to

variability in the final solution. This study maintains the

default setting for this parameter.

E) Maximum Time without Improvement Parameter

This parameter sets the maximum duration the Evolutionary

approach will run without noticeable improvement in the

objective value of the best solution in the population. If no

improvement is detected within this timeframe, Solver will

halt with a message indicating no further improvement is

possible. This study does not alter the default setting for this

parameter.

F) Require Bounds on Variables Option

By selecting this option, users inform the Evolutionary

approach that all decision variables in the model must have

defined lower and upper bounds. Providing bounds improves

the performance of the Evolutionary approach, especially

when these bounds are as narrow as possible. This study

retains the default setting for this option.

G) Structure of the Study

The remaining sections of this study are organized as

follows: Section 3 presents a literature review of the Excel

Solver technique in single machine scheduling. Section 4

details the solution methodology. Section 5 further

elaborates on this methodology, and Section 6 concludes the

study.

3. Literature Review

To effectively minimize total tardiness, the single machine

total tardiness problem involves scheduling a series of jobs

on a single machine. Due to the complexity of this problem,

Du, and Leung[1] classified it as NP-hard, signifying that an

optimalsolution is not feasible without exhaustive methods.

In such cases, heuristic approaches, which aim to find near-

optimal solutions efficiently, become valuable

alternatives.Solutions to combinatorial problems like this

can be categorized as follows:

a) Complete enumeration method.

b) Mathematical modeling.

c) Implicit enumeration/branch-and-bound method.

d) Heuristic method.

While complete enumeration, implicit enumeration, and

mathematical modeling methods yield optimal solutions,

they are not always practical. For instance, the number of

sequences to evaluate in complete enumeration grows

exponentially, making it impractical for larger problems.

Implicit enumeration methods [2], utilizing branch-and-

bound or dynamic programming, are less time-consuming.

Innovations in this field include Hirakawa and Yasuhiro's [3]

rapid optimal algorithm using branch and bound, and Biskup

et al.'s [2] efficient recursion over Kondakci et al.'s [4]

branch-and-bound approach. However, these methods can

suffer from high temporal complexity.

In contrast, mathematical modeling, though capable of

identifying the optimal sequence to minimize total

tardiness[5], is limited by the extensive number of variables

and constraints, making it suitable only for smaller-scale

problems. Heuristic methods, as developed by Wilkerson

and Irwin[6], Kim et al.[7], and others, offer more feasible

solutions for larger problems. For instance, Tian et

al.[8]identified conditions for polynomial solvability in

specific cases, and Kiyuzato et al.[9] applied heuristics to

real-world scheduling in auto parts manufacturing.

Meta-heuristics, as suggested by Feldmann and Biskup [10]

and Cheng et al. [11], further enhance solution quality.

These include evolutionary methods, simulated annealing,

and Ant Colony Optimization (ACO), offering near-optimal

solutions for complex scheduling problems.

Tuning parameters in evolutionary algorithms is crucial for

efficient problem-solving. A hybrid parameter tuning

approach has been proposed to optimize performance

metrics of these algorithms[12]. Bajwa et al. [13] and Cao et

al.[14] explored scheduling in group technology systems and

production workshops, respectively, using these optimized

algorithms.

Burke and Smith discussed the concept of a memetic

algorithm, a blend of genetic algorithms and cultural

evolution models [15]. Moscato and Norman [2] coined the

term 'memetic algorithm' to describe evolutionary

algorithms integrated with intensive local search. This

approach, based on Dawkins' concept of memes [15], allows

for the adaptation and improvement of ideas, different from

the rigid transmission of genes.

In this study, an evolutionary algorithm incorporating these

principles is employed to address the single machine

scheduling problem. This approach directly utilizes decision

variables and problem functions in an evolutionary

framework [16].

4. Methodology

This section of the study details the experimental

methodology employed, utilizing the Microsoft Excel

Solver's Evolutionary algorithm feature. The computational

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2016

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

experiments were conducted on a Lenovo laptop equipped

with a dual 2.2 GHz CPU and 16.0 GB of RAM.

Solver, an add-in tool for Microsoft Excel, enables what-if

analysis by identifying an optimal value (maximum or

minimum) for a formula in a designated cell, referred to as

the objective cell. This process is subject to constraints

imposed by other formula cells on the worksheet. Solver

operates using a group of cells known as choice variables, or

variable cells, which are integral in calculating the formulas

in both the objective and constraint cells. Through iterative

modifications to the values of these choice variable cells,

Solver strives to meet the constraints of the constraint cells

while achieving the desired result in the objective cell.

In this study, we demonstrate an Excel-based heuristic

solution strategy for sequencing problems. For illustrative

purposes, we utilize 'Example 1.1' located in sheet 1 of the

Excel file. This example, labeled as a T-problem, involves

the sequencing of

ten jobs. The experimental setup and the application of the

Solver tool in this context aim to provide a practical

demonstration of the algorithm's capabilities in addressing

complex scheduling challenges.

Table 1: T-problem ten jobs

Job(j) 1 2 3 4 5 6 7 8 9 10

Process(pj) 11 19 14 10 20 19 19 16 11 14

Due date (dj) 57 58 85 148 100 135 75 94 73 125

In this study, we have meticulously developed a series of

modules for an Excel Solver implementation, designed to

address various facets of our optimization problem. These

facets include problem data organization, the generation of

random numbers employing a uniform distribution, task

sequencing, performance evaluation, and the execution of

essential computations. Figure 1, included in the study,

illustrates the standard layout of our model. The key

components of this model, essential for the optimization

process, are described as follows:

A) Data Analysis Module

(Random Number Generation using Discrete Distribution):

Situated in Cells S12 to J13, this module is responsible for

generating random numbers based on a discrete distribution.

This feature is crucial for introducing variability and

ensuring the robustness of the model under various data

scenarios.

B) Objective Function

Located in Cell S35, the objective function is the

cornerstone of the model. It defines the goal or the target

outcome that the optimization process aims to achieve or

maximize/minimize.

C) Problem Data

This data is organized in Cells S19 to J21. These cells

contain the essential information and parameters that define

the specifics of the optimization problem being addressed.

D) Decision Variables
These are represented by the sequence in the range S29 to

J29. Decision variables are pivotal as they are the elements

that the Solver manipulates to find the optimal solution as

per the defined objective function.

E) Applicable Constraints:

These constraints, which will be defined in subsequent

sections of the study, set the boundaries within which the

Solver operates. They ensure that the solutions are not only

optimal but also feasible within the given problem context.

Each of these components plays a vital role in the

functioning of the optimization model. Their careful

integration within the Excel Solver framework allows for a

systematic and efficient approach to solving the optimization

problem, with clear delineation for analysis and

interpretation of the outcomes.

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2017

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Solver Excel model for the T-problem example

In our research, we employed Data Analysis in Excel Solver

to generate random numbers based on a discrete distribution.

This method was utilized for determining processing times,

which ranged between 50-150 units, and due date times, set

between 10-20 units, across all problems addressed in the

study. Specifically, in Example 1.1, as illustrated in figure 2,

we generated random numbers considering the number of

variables (jobs) as 10. The generation involved a single row

of random numbers, applying a uniform distribution for

processing times set between 10-20 units and due date times

ranging from 50-150 units. This procedure was executed

with a default random seed to maintain consistency and

replicability in the results.

For other problems beyond Example 1.1, detailed

explanations and methodologies are provided in the

corresponding Excel sheets. These sheets serve as a

comprehensive repository of data and methodologies applied

across different problem scenarios within the scope of this

study. The utilization of Excel Solver for random number

generation ensures a systematic and standardized approach

to creating varied problem sets, thereby enhancing the

robustness and applicability of the research findings.

Figure 2: Random Number Generation based Solver Excel

In this model, the highlighted cells in row 29 represent

decision variables, where permutations of integers 1–10 are

inserted to determine job sequences. To ascertain processing

times, located in row 30, a lookup algorithm is employed,

drawing on the sequence and referencing corresponding data

cells. The formula used in cell S30, INDEX(J20:S20;

MATCH (S29; J19: S19;0)), exemplifies this

approach and is replicated across adjacent cells to the right.

Subsequently, the completion times in row 31 are computed

by aggregating the current processing time with the

completion time of the preceding job within the sequence.

This mirrors the manual calculation method. The due dates

in row 32 are similarly deduced, referencing data cells with

the formula in cell S32 being INDEX (J21: S21;

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2018

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

MATCH (S29; J19: S19;0), which is also extended to

the right. Each job's lateness, calculated in row 33, utilizes

the formula MAX(0;S31-S32) and follows the same right-

hand replication.

The objective function, situated in cell S35, is to minimize

the sum of tardiness values across all jobs, calculated using

the formula SUM(J33:S33). To address the optimization

challenge in this example, the focus is on selecting an

appropriate sequence in row 29. The tool employed for this

purpose is the Excel Solver program, particularly its

Evolutionary Solver algorithm. This sophisticated algorithm,

one of three available in Solver, is particularly adept at

solving complex sequencing problems. To initiate the

algorithm, users access the Solver through the add-ins tab,

leading to the Solver Parameters box, as demonstrated in

Figure 3.

This methodological approach illustrates the application of

the Evolutionary Solver in addressing sequencing issues,

showcasing its potential in solving complex problems

through a systematic and structured procedure.)

Figure 3: Initial Solver windows

In our research, the utilization of the Solver tool in Excel is

methodically structured to acquire necessary data by

specifically designating parameters. The process involves

the following steps:

1) Setting the Objective Cell: The cell designated for the

objective function, in this case, is Cell B8. This cell is

configured to determine the minimum value of the target

metric, aligning with the optimization goal of the study.

2) Defining Variable Cells: The range of variable cells,

identified as Cells C11 to G11, is established to allow

Solver to modify these values within specified

constraints. This range represents the decision variables

crucial to the optimization process.

3) Applying Constraints: Constraints are applied to ensure

that the solutions provided by Solver remain within

feasible and logical bounds. This step involves selecting

the objective, variables, and constraints, and then

incrementally building the Solver model by clicking the

'Add' button for each element.

4) Building the Solver Model: The 'Add Objective'

window is accessed by selecting 'Objective' and clicking

'Add'. As depicted in Figure 3, Cell S35 is entered as the

objective function cell, with the option set to 'Minimum'.

This selection directs Solver to minimize the value in

Cell S35. Once 'OK' is clicked, the Solver Parameters

window updates to reflect these settings.

5) Configuring Decision Variables: As illustrated in

Figure 4, the 'Add Variable Cells' window is used to

specify the range of decision variables. By setting this

range, the Solver is provided with a clear boundary

within which it can alter values to find an optimal

solution.

Each of these steps plays a critical role in configuring Solver

to efficiently address the optimization problem at hand. By

methodically setting objectives, defining variable cells, and

applying constraints, the Solver model is tailored to seek the

most effective solution within the parameters of the study.

This systematic approach ensures the accuracy and

relevance of the results generated by Solver.

Figure 4: Specifying the variables in the example model

as seen in Figure 5, we go to the Add Constraint window.

The all-differentconstraints are selected using the pull-down

window in the center, and the cell reference corresponds to

the range of decision variables. This constraint ensures that

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2019

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the decision variable cells include a valid permutation (in

this example, 1–10). To put it another way, the decision cells

must follow a logical order. Then, by clicking OK, we return

to the Solver Parameters window.

Figure 5: Imposing a constraint in the example model

The Solver Parameters box has been adjusted to reflect the

problem statement, but one more step remains to complete.

As illustrated in Figure 6, we select the Evolutionary Solver

as the solution algorithm using pull-down menu.

Figure 6: Choosing the Evolutionary Solver

In The Evolutionary Solver, It will seek out the optimal

solution it can get, and its success is controlled by a number

of user-defined parameters that can be set after selecting the

Options button in the Solver Parameters box, as shown in

figure 7. The most crucial of these variables is

Figure 7: Options button in the Solver Parameters window

The convergence conditions and stopping that govern the

search's conclusion to achieve a suitable generic collection

of parameters, we select some values that are larger and

lower than default Values in this search:

Population size is changed = 100, 50, 25, 10.

Mutation rate is changed = 0.75, 0.075 (the default value),

0.0075.

Convergence is constant = 0.0001 (the default value), 0.1.

5. Results

Firstly, when we use:

Population size = 100, 50.

Mutation rate = 0.75, 0.075 (the default value), 0.0075.

Convergence = 0.0001 (the default value)

Using parameters 0.75 mutation rate with 100,50 population

size ,the search to get the best solution has been taken longer

time than other . It took an average about 42-44 seconds, 3-

12 seconds at 0.075 mutation rate with 100 population size,

but at the shortest time was between 1-4 seconds when using

0.075,0.0075 mutation rate with population size 50 . the

improvement and best solutions are found within 0.01% as

figure 8

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2020

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Population size is (100,50), Mutation rate is 0.075, 0. 75, 0.0075), and Convergence is 0.0001

Secondly, when we use:

Population size = 25, 10.

Mutation rate = 0.75, 0.075 (the default value), 0.0075.

Convergence = 0.0001 (the default value)

The search to get the best solution has been taken average

time about 3-13 seconds using parameters 0.75 mutation rate

with 25 population size, 1-3 seconds at 0.075 mutation rate,

but using parameters (0.075,0.0075) mutation rate with

(25,10) with constant Convergence at 0.0001 (the default

value), the improvement and best solutions cannot find

within 0.0001 as figure9

*NA is represented as not found optimal solution.

Figure 9: Population size is (25,10), 0. 75, 0.075 the default value, 0.0075, and Convergence is 0.0001 the default value.

The other Experiments Population size is changed = 50, 25,

10.

Mutation rate is changed = 0.75, 0.075 (the default value),

0.0075.

Convergence is constant = 0.1.

Using parameters 0.75 mutation rate with 50 population size

, the search to get the best solution has been taken longer

time than other as the same when we use 0.0001

convergence previously . It took an average time about 42-

44 seconds, 1.5-2 seconds at 0.075,0.0075 mutation rate.

The improvement and best solutions are found within

0.1.But using parameters (0.075,0.0075) mutation rate with

(25,10) with constant Convergence at 0.1 rate, the

improvement and best solutions cannot find within 0.1 as

figure10

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2021

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 10: Population size is (50,25,10), Mutation rate is 0. 75, 0.075 the default value, 0.0075, and Convergence is 0. 01.

6. Conclusion

In this study, we explored the optimization of parameters

within the Evolutionary Solver for single machine

scheduling problems, aiming to minimize total tardiness. We

discovered that time constraints within the solver can be

adjusted according to the user's preference. Notably, runs

lasting 30 seconds or longer typically yielded satisfactory

results for sequencing problems involving up to ten jobs,

although optimal or near-optimal solutions were often

achieved in considerably less time. The study presents these

findings, emphasizing the promising nature of the results in

terms of solution quality and speed, particularly when

employing an evolutionary algorithm (EA). As detailed in

Appendix B, EA is demonstrated proficiency in finding

optimal solutions for smaller problems and showed potential

for larger problems due to lower computational demands,

despite not always yielding the best solutions.

Our experiments with the Evolutionary Solver revealed its

capability to rapidly converge on different total tardiness

values for various problems. This was observed in a set of

20 problems involving 10 jobs each. When the Solver was

run with a time limit of up to 42 seconds,as show in

appendix figures 11 and 12, optimal solutions were achieved

in all 20 problems, using parameters such as a Population

size of 100, 50, 25, a Mutation rate of 0.75, and a

Convergence of 0.0001 and 0.01. Interestingly, when the

runtime was reduced to between 1-12 seconds, with a

Population size of 50, 25, a Mutation rate of 0.075, 0.0075,

and the same Convergence rates, the Solver still produced

optimal solutions in all cases. These findings, detailed in

Appendix A and highlighted in green, indicate that a

Population size of 50, Mutation rate of 0.075%, and a

Convergence rate of 0.0001 are the optimal parameters for

achieving the best solutions within a shorter runtime of 1-3

seconds.

However, when the Population size was reduced further to

25, 10, and the Mutation rate and Convergence remained the

same, the Evolutionary Solver did not produce optimal

solutions. Attempts to alter the Convergence parameter to

0.000001 and 0.001 yielded results similar to those with

0.0001.

In future research, we aim to modify the objective function

to focus on minimizing total weighted tardiness in parallel

machine scheduling scenarios with non-zero ready times.

This adjustment will be tested with the previously mentioned

parameters to ascertain the feasibility of achieving faster

optimal solutions.

References

[1] G. A. Suer, X. Yang, O. I. Alhawari, J. Santos, and R.

Vazquez, “A genetic algorithm approach for

minimizing total tardiness in single machine

scheduling,” Int. J. Ind. Eng. Manag., vol. 3, no. 3, pp.

163–171, 2012, doi: 10.24867/ijiem-2012-3-120.

[2] B. Alidaee and D. Rosa, “Scheduling parallel machines

to minimize total weighted and unweighted tardiness,”

Comput. Oper. Res., vol. 24, no. 8, pp. 775–788, 1997,

doi: 10.1016/S0305-0548(96)00080-9.

[3] Y. Hirakawa, “Quick optimal algorithm for sequencing

on one machine to minimize total tardiness,” Int. J.

Prod. Econ., vol. 60, pp. 549–555, 1999, doi:

10.1016/S0925-5273(98)00197-2.

[4] R. Panneerselvam, “Simple heuristic to minimize total

tardiness in a single machine scheduling problem,” Int.

J. Adv. Manuf. Technol., vol. 30, no. 7–8, pp. 722–726,

2006, doi: 10.1007/s00170-005-0102-1.

[5] J. E. Holsenback and R. M. Russell, “A heuristic

algorithm for sequencing on one machine to minimize

total tardiness,” J. Oper. Res. Soc., vol. 43, no. 1, pp.

53–62, 1992, doi: 10.1057/jors.1992.6.

[6] J. N. D. Gupta and S. Chantaravarapan, “Single

machine group scheduling with family setups to

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2022

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

minimize total tardiness,” Int. J. Prod. Res., vol. 46,

no. 6, pp. 1707–1722, 2008, doi:

10.1080/00207540601009976.

[7] S. Kondakci, Ö. Kirca, and M. Azizoǧlu, “An efficient

algorithm for the single machine tardiness problem,”

Int. J. Prod. Econ., vol. 36, no. 2, pp. 213–219, 1994,

doi: 10.1016/0925-5273(94)90026-4.

[8] H. Ma et al., “Multi-objective production scheduling

optimization and management control system of

complex aerospace components: a review,” Int. J. Adv.

Manuf. Technol., vol. 127, no. 11–12, pp. 4973–4993,

2023, doi: 10.1007/s00170-023-11707-4.

[9] L. R. Abreu, B. A. Prata, M. S. Nagano, and J. M.

Framinan, “A constraint programming-based iterated

greedy algorithm for the open shop with sequence-

dependent processing times and makespan

minimization,” Comput. Oper. Res., vol. 160, 2023,

doi: 10.1016/j.cor.2023.106386.

[10] P. M. França, A. Mendes, and P. Moscato, “A memetic

algorithm for the total tardiness single machine

scheduling problem,” Eur. J. Oper. Res., vol. 132, no.

1, pp. 224–242, 2001, doi: 10.1016/S0377-

2217(00)00140-5.

[11] E. Y. Louis, “The learning curve: Historical review

and comprehensive survey,” Decis. Sci., vol. 10, no. 2,

pp. 302–328, 1979.

[12] M. Mobin, S. M. Mousavi, M. Komaki, and M.

Tavana, “A hybrid desirability function approach for

tuning parameters in evolutionary optimization

algorithms,” Meas. J. Int. Meas. Confed., vol. 114, pp.

417–427, 2018, doi:

10.1016/j.measurement.2017.10.009.

[13] N. Bajwa, S. Melouk, and P. Bryant, “A hybrid

heuristic approach to minimize number of tardy jobs in

group technology systems,” Int. Trans. Oper. Res., vol.

26, no. 5, pp. 1847–1867, 2019, doi:

10.1111/itor.12406.

[14] W. Cao and B. Chen, “Combinatorial optimization

algorithm for workshop scheduling,” p. 150, 2023, doi:

10.1117/12.2686706.

[15] K. R. Baker and J. W. M. Bertrand, “A dynamic

priority rule for scheduling against due-dates,” J. Oper.

Manag., vol. 3, no. 1, pp. 37–42, 1982, doi:

10.1016/0272-6963(82)90020-1.

[16] “Excel Solver - Change Options for Evolutionary

Solving Method | solver,” 2017.

https://www.solver.com/excel-solver-change-options-

evolutionary-solving-method (accessed Nov. 28,

2023).

7. Appendix

Figure 11.1: 20 Problems solution (the initial and the Optimal (best)solution)

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2023

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 11.2: 20 Problems solution (the initial and the Optimal (best)

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2024

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 13 Issue 28, November 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 11.3: Optimal Solver Excel Parameters for 20 problems

Figure 121.4 Initial and Optimal solution for 20 problems

Paper ID: SR231128074407 DOI: https://dx.doi.org/10.21275/SR231128074407 2025

