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REMARKS ON J-TAME INFLATION

PRANAV CHAKRAVARTHY, JORDAN PAYETTE, AND MARTIN PINSONNAULT

Abstract. We give a complete and self-contained exposition of the J-tame inflation lemma:
Given any tame almost complex structure J on a symplectic 4-manifold (M,ω), and given
any compact, embedded, J-holomorphic submanifold Z, it is always possible to construct a
deformation of symplectic forms ωt in classes [ωt] = [ω] + tPDZ, for 0 ≤ t less than an upper
bound 0 < T that only depends on the self-intersection Z · Z. The original proofs of this
fact make the unwarranted assumption that one can find a family of normal planes along Z

that is both J invariant and ω-orthogonal to TZ — which amounts, in effect, to assuming the
compatibility of J and ω along Z. We explain how the original constructions can be adapted to
avoid this assumption when Z has nonpositive self-intersection, and we discuss the difficulties
with this line of argument in general to establish the full inflation when Z has positive self-
intersection. We overcome this problem by proving a ‘preparation lemma’, which states that
prior to inflation, one can isotope ω within its cohomology class to a new form that still tames
J and which is compatible with J along the submanifold Z.

1. Introduction

1.1. The inflation lemma. Let (M,ω) be a symplectic 4-manifold and let Z ⊂M be a compact,
embedded, symplectic submanifold without boundary. The inflation lemma states that we can
always deform the symplectic form ω in the direction of PD[Z] within the symplectic cone of M ,
and that the size of the deformation only depends on the self-intersection of Z. Different versions
of the inflation lemma can be found in the litterature, depending mainly on the compatibility
condition we impose between the deformed symplectic form and an auxiliary almost complex
structure J for which Z is J-holomorphic. In this paper, we are mainly concerned with the so
called J-tame, or "tame-to-tame", inflation lemma, namely,

Lemma 1.1 (Tame-to-tame inflation [10, 2]). Let (M,ω) be a symplectic 4-manifold, J a tame
almost complex structure, and let Z ⊂ M be a compact, embedded, J-holomorphic curve without
boundary. There exist symplectic forms taming J in class [ω] + tPD[Z], for t ∈ [0, T ), where

T =

{
∞ if Z · Z ≥ 0
ω(Z)
Z·Z if Z · Z < 0.

The proofs of the tame-to-tame inflation lemma given in [10] and [2] both assume that the
symplectic normal bundle νZ along the submanifold Z is J-invariant. But this is the case if, and
only if, J is compatible with ω on TZM . In this situation, νZ coincides with the Riemannian nor-
mal bundle defined by the associated metric gJ(x, y) := ω(x, Jy). However, even if we start from
an ω compatible almost complex structure J , the inflated form in class [ω] + tPD[Z] contructed
in [10, 2] only tames J . We call this weaker version of inflation "compatible-to-tame". Whilst
this statement suffices for applications such as McDuff’s "deformation to isotopy lemma" [9], the
compatible-to-tame inflation is insufficient for showing the stability of homotopy type of sym-
plectomorphism groups as done in [10, 13] and in many other papers that use similar inflation
arguments. Nevertheless, as explained in [1], the proofs in the above papers can be salvaged
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by relying on a weaker version of the tame inflation lemma based on Li-Zhang’s comparison of
J-symplectic cones [6] and which holds for manifolds with b+2 = 1.

Lemma 1.2 (Weak b+2 = 1 J-compatible inflation [1]). Let M be a symplectic 4-manifold with
b+2 = 1. Given a compatible pair (J, ω) and a J-holomorphic embedded curve Z, there exists a
symplectic form ω′ compatible with J such that [ω′] = [ω] + tPD(Z), t ∈ [0, T ) where T = ∞ if

Z · Z ≥ 0 and T = ω(Z)
(−Z·Z) if Z · Z < 0.

Although this version currently suffices for most current applications, it relies on global results
about the symplectic cone, a situation that considerably limits the applicability of inflation ar-
guments. Therefore, it is highly desirable to prove the tame-to-tame inflation lemma using only
local arguments that hold for all 4-manifolds.

As explained below, it is easy to fix the original proofs of the tame-to-tame inflation lemma in
the cases Z ·Z = 0 and Z ·Z < 0. The proofs consist in constructing a suitable representative of the
Thom class of Z. These direct arguments have the advantage of being adaptable to more general
situations such as normal crossing divisors with ω-orthogonal crossings or higher dimensional
hypersurfaces. This is why we provide a complete exposition. Unfortunately, in the case of curves
of strictly positive self-intersection Z ·Z = m > 0, the original approach imposes an upper bound
on the inflation parameter and only produces symplectic forms in classes

[ω] + tPD[Z] for t < T ∼ C(J) · 1

m

where C(J) is a constant that approaches 0 as J moves further away from being compatible with ω
along Z. This is why, in the case Z ·Z > 0, we take another route and show that the tame-to-tame
inflation process can be performed in two steps. First, we isotope the symplectic form ω near the
embedded J-holomorphic curve Z so that J is compatible with the new form along Z. Then, we
apply the compatible-to-tame inflation process. The main result of this paper is thus the following
"preparation lemma" that allows us to perform the first step.

Lemma 1.3 (Preparation lemma). Let J be an almost complex structure tamed by a symplectic
form ω on a 4-manifold M . Given an embedded J-holomorphic curve Z, we can isotope ω (within
its cohomology class) to a new form ω′ taming J and such that J and ω′ are compatible along Z.

This approach, which only relies on local considerations, establishes the tame-to-tame inflation
process in full generality and has the advantage of working along embedded J-holomorphic curves
of arbitrary self-intersections. As an immediate corollary, we obtain an equivariant version of
inflation, namely,

Corollary 1.4 (Equivariant J-inflation lemma). Suppose (M,ω) is equipped with a symplectic
group action of a compact group G. Let Z be a G-invariant embedded symplectic submanifold of
(M,ω) such that Z is holomorphic with respect to an invariant ω-tame almost complex structure
J . Then there exists a family of invariant symplectic forms taming J in class [ω] + tPD[Z], for
λ ∈ [0, T ), where

T =

{
∞ if Z · Z ≥ 0
ω(Z)
−Z·Z if Z · Z < 0

.

Proof. By Lemma 1.1, there is a path ωt of non-invariant symplectic forms in cohomology classes
[ω] + tPD[Z], for t < T . Averaging ωt under the group action defines a new path ω̃t :=

∫
G
ωtdg.

Since the G action preserves the classes [ω] and [Z], as well as the orientation class [ω]2, it also
preserves PD[Z]. Consequently, [ω̃t] = [ωt]. Furthermore, as J is invariant under the G action,
ω̃λ is a path of invariant symplectic forms taming J . �

Remark 1.5. Recall that Donaldson’s "tame-to-compatible" conjecture [3] states that on any 4-
manifold, if an almost complex structure J is tamed by a symplectic form ω, then there exists a
cohomologous symplectic form ω′ that is compatible with J . Clearly, the Preparation lemma 1.3
follows directly from Donaldson’s conjecture, and it seems relevant to list 4-manifolds for which
it is known to hold. The first breakthrough came from the work of Taubes [15] who showed that
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the conjecture holds for generic J on surfaces with b+2 = 1. Later, Li and Zhang [5] proved
that it holds for CP 2, for rational ruled surfaces, and for rational surfaces with b2 − 1 disjoint
exceptional J-curves. To our knowledge, the most recent advance on this problem is the work of
Tan and al. [14] which proves Donaldson’s conjecture for 4-manifolds satisfying a specific Hodge-
theoretic condition, including all 4-manifolds with b+2 = 1. In particular, combining this later result
with the work of McDuff [11] showing that the only symplectic 4-manifolds that contain embedded
spheres of non-negative self-intersections are blow-ups of rational or ruled manifolds, and assuming
the tame-to-tame inflation lemma holds whenever Z ·Z ≤ 0, it follows that the preparation lemma
is still essential when Z is a surface of genus g(Z) ≥ 1 and of self-intersection Z · Z ≥ 1. ≬

2. Preliminary considerations

We begin with some elementary observations that will be useful in restating the tameness and
compatibility conditions of J along Z in terms of suitable norms. This will be used in the proof of
the tame-to-tame inflation lemma in the case Z · Z ≤ 0 given in Section 3, as well as in the proof
of the preparation lemma that occupies the rest of the document.

2.1. Spaces of tame and compatible pairs (ω, J). Let V be a 2n-dimensional real vector
space. Let J be a complex structure on V , i.e., J2 = −1. We say that a 2-form ω on V :

(1) tames or is adapted to J if the 2-tensor ω ◦ (1⊗J) is positive-definite, i.e., if v ∈ R2n \ {0}
implies ω(v, Jv) > 0,

(2) that it is J-invariant if ω ◦ (J ⊗ J) = ω, i.e if ω(Jv, Jw) = ω(v, w) for all v, w ∈ R
2n,

(3) and that it is compatible with J if it is both adapted to J and J-invariant.

We note that a 2-form ω that is adapted to J is automatically nondegenerate (hence ω is a
symplectic 2-form) and that the tameness condition is an open one.

The sets

Ωτ (J) := {ω | ω tames J} and Ωc(J) := {ω | ω is compatible with J}
are easily seen to be convex. We note that Ωc(J) is the fixed-point set of the involution

ι : Ωτ (J) → Ωτ (J) : ω 7→ ι(ω) := ω ◦ (J ⊗ J) .

This map is well-defined: ι(ω) is clearly a 2-form and the calculation

ι(ω)(v, Jv) = ω(Jv, J2v) = −ω(Jv, v) = ω(v, Jv)

shows that ι(ω) tames J if (and only if) ω does.
The map

π : Ωτ (J) → Ωc(J) : ω 7→ 1

2
(ω + ι(ω))

is a "conical fibration" in the sense that its fibers are (double) cones. Indeed, for ω ∈ Ωτ (J) and
t ∈ [0, 1], if we set ωt := (1− t)ω+ tι(ω), then we have ωt ∈ Ωτ (J), ι(ωt) = ω1−t and π(ωt) = ω1/2.

As a result, we see that Ωτ (J) deformation retracts onto Ωc(J). We also observe that for
ω ∈ Ωτ (J), we have ω ∈ Ωc(J) if and only if ωt ≡ ω for all t ∈ [0, 1].

Finally, we note that Ωτ (J) = Ωc(J) when V is 2-dimensional, i.e., any tame pair (ω, J) is in
fact compatible, as is easily seen by considering a basis 〈v, Jv〉 of V such that ω(v, Jv) = 1.

2.2. Symplectic splitting. We shall be primarily concerned with a four dimensional vector space
V equipped with a tame linear pair (ω, J). We also suppose that a J-invariant 2-dimensional
subspace V1 ⊂ V is given. (Typically, V will be the tangent space TpM at p ∈ Z, and V1 will
be the subspace TpZ.) We denote j1 : V1 ⊂ V the canonical injection, J1 := J |V1 the induced
complex structure and ω1 := j∗1ω the induced symplectic form. It is clear that (ω1, J1) is tame
(hence compatible) on V1. We also consider the symplectic orthogonal subspace V2 := V ω1 of V1,
and write j2 : V2 → V for the canonical injection and ω2 = j∗2ω for the induced symplectic form. V
splits as a direct sum V1⊕V2, and we denote πk : V → Vk the corresponding canonical projections.
It follows that ω = π∗

1ω1 + π∗
2ω2.
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2.3. Working in a symplectic basis. It is convenient to work in a symplectic basis of (V, ω)
that is compatible with the splitting V = V1 ⊕ V2. With respect to such a basis, ω and J are
represented by the block-matrices

ω =

(
ω1 0
0 ω2

)
and J =

(
J1 B
0 J2

)
, where ω1 = ω2 = JT0 =

(
0 1
−1 0

)
.(2.1)

The condition J2 = −1 amounts to the system of equations

J2
1 = J2

2 = −1 and J1B +BJ2 = 0 .(2.2)

Hence the matrix J2 determines a complex structure (also denoted) J2 on V2. Like the complex
structure J1 on V1, the complex structure J2 on V2 admits a basis-free expression, namely Jk =
πk ◦ J ◦ jk for k = 1, 2. (This is most easily proved by representing the πk’s and the jk’s as
block-matrices.)

2.4. Canonical scalar products. In this particular setting, the tame pair (ω, J) determines two
canonical (i.e., basis-independent) scalar products on V . The first one, denoted gJ , is the one
usually associated to such a pair, namely, the symmetrization

gJ(v, w) =
1

2

(
ω(v, Jw) + ω(w, Jv)

)
.

The second one, simply denoted g, is defined in terms of the symplectic splitting. Since the pair
(ω, J) is tame, it follows that the pairs (ω1, J1) and (ω2, J2) are tame, and thus compatible, on V1
and V2 respectively. By compatibility, the 2-tensors g1 = ω1 ◦ (1⊗ J1) and g2 = ω2 ◦ (1⊗ J2) are
scalar products on V1 and V2. We define the scalar product g = g1 ⊕ g2 on V = V1 ⊕ V2, which is
thus represented in the above basis by the matrix

g =

(
JT0 J1 0
0 JT0 J2

)
.(2.3)

We stress that from its very definition, the scalar product g on V is invariantly defined, in the
sense that it does not depend on the precise symplectic basis we chose in the previous paragraph.
Moreover, 2.3 shows that g depends only on the splitting of V , on ω and on the complex structures
J1 and J2 induced by J . Remarkably, and that is a crucial point in the whole discussion, g does
not depend on the "skew" part of J given by the operator B = π1 ◦ J ◦ j2 : V2 → V1.

2.5. Working in a unitary basis. It is convenient to work with symplectic bases of V1 and
V2 such that J1 = J2 = J0 as matrices. This can be done since the pairs (ω1, J1) and (ω2, J2)
are compatible. The metric g is then represented by the identity matrix, which shows that the
choices of such symplectic bases of V1 and V2 are uniquely determined up to rotations in each Vk
separately.

2.6. Norm of the skew part. Interpreting the skew part B of J as a linear map V2 → V1, we
may consider its operator norm N := ‖B‖ with respect to the scalar products g2 and g1. Working
in a basis as in the previous paragraph and using 2.2, we compute that

(2.4) B =

(
a b
b −a

)
,

from which it is easily seen that N =
√
a2 + b2. Although the matrix B is determined only up

to left and right actions of SO(2), its norm N is independent of the specific basis picked: it is an
intrinsic invariant of the pair (ω, J). As we shall explain below, N measures how far the tame pair
(ω, J) is from being compatible.
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2.7. Tameness and compatibility conditions. Given a matrix B of the form (2.4), let JB be
the endomorphism represented by the block matrix

(
J0 B
0 J0

)
.

We note that

BT = B, J0B = −BJ0 =

(
−b a
a b

)
, B2 = (a2 + b2)I, and that J2 = −I.

Lemma 2.1. The linear pair (ω, JB) is tame if and only if N = ‖B‖ < 2.

Proof. Given (v, w) ∈ V1 ⊕ V2 of norm 1, we have

(vT wT )ωJB

(
v
w

)
= (vT JT0 wT JT0 )

(
J0v +Bw
J0w

)
= ‖J0v‖2 + ‖J0w‖2 − vT J0Bw(2.5)

= 1− vT J0Bw ≥ 1− ‖J0B‖‖v‖‖w‖ ≥ 1−N/2

where equalities hold when v and J0Bw are colinear and ‖v‖ = ‖w‖ = 1/
√
2. The pair (ω, J) is

tame if and only if the above lower bound is positive, namely if and only if N < 2. �

For later use, we also note that

‖JB‖ := max
‖v‖2+‖w‖2=1

∥∥∥∥JB
(

v
w

)∥∥∥∥ =
√
‖J0v +Bw‖2 + ‖J0w‖2(2.6)

≤
√
‖v‖2 + ‖w‖2 + 2‖v‖‖w‖N +N2‖w‖2 ≤

√
1 +N +N2 ≤ 1 +N .

3. Tame-to-tame inflation via Thom forms

In the this section, we prove the tame-to-tame inflation lemma in the cases Z · Z = 0 and
Z · Z < 0 following closely the original arguments given in [10] and [2]. We also point out why
this approach fails for surfaces with Z · Z > 0.

3.1. Case of surfaces with trivial normal bundles. After rescaling, we can suppose ω(Z) = 1.
By Weinstein’s symplectic neighborhood theorem, a neighborhood of Z can be symplectically
identified with the product Z ×D2(r0), equipped with the product symplectic form ω = σ+ dx ∧
dy = σ + rdr ∧ dθ, where D2(r0) ⊂ R2 is a standard disc of some radius r0 > 0, and where
σ = ω|TZ . Let J be a tame almost complex structure for which Z = Z × {0} is J-holomorphic.
Given any p ∈ Z, we can find local symplectic coordinates (x1, y1, x2, y2) that are unitary at p
and for which Z is given by x2 = y2 = 0. We write tangent vectors as pairs (u, v) in which u is
horizontal and v is vertical. In these coordinates ω and J are represented by the block matrices

ω =

(
J0 0
0 J0

)
, J =

(
A B
C D

)
.

It follows that near p ∈ Z,

0 < gJ
(
(u, v), (u, v)

)
= ||(u, v)||2J := ω

(
(u, v), J(u, v)

)

= u⊺J⊺

0Au+ u⊺J⊺

0Bv + v⊺J⊺

0Cu+ v⊺J⊺

0Dv.

Note that at p itself, the matrix J takes the form

(3.1) Jp =

(
J0 B0

0 J0

)
where B0 =

(
a b
b −a

)
.

Let g be the scalar product on TZM defined as in section 2.4. Because the matrices A and D are
nondegenerate in a neighborhood of Z, we can extend g in a neighborhood of p by setting

g
(
(u, v), (u′, v′)

)
:= u⊺J⊺

0Au
′ + v⊺J⊺

0Dv
′

= gA
(
u, u′

)
+ gD

(
v, v′

)
.

Let ‖ · ‖g be the associated norm.
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We observe that, in some possibly smaller neighborhood Z ×D(r1), r1 ≤ r0, the tameness of J
implies that ||J⊺

0B||g < 2, so that

(3.2) |u⊺J⊺

0Bv| ≤ ||J⊺

0B||g · ||u||A · ||v||D ≤ 1

2
||J⊺

0B||g ·
(
||u||2A + ||v||2D

)
≤ ǫ1

(
||u||2A + ||v||2D

)

where 0 < ǫ1 < 1. (The middle inequality is just the rearrangement inequality applied to the
positive numbers ||u||A and ||v||D.) Near Z, the same ideas apply to the matrix J⊺

0C, but because
C(0) = 0, we can factor r out of ||J⊺

0C||g so that, in some possibly smaller neighborhood Z×D(r2),
r2 ≤ r1,

(3.3) |u⊺J⊺

0Cv| ≤ ||J⊺

0C||g · ||u||A · ||v||D ≤ 1

2
rǫ2 ·

(
||u||2A + ||v||2D

)

for some constant ǫ2 > 0. So, in some neighborhood of p ∈ Z, we have
∣∣u⊺J⊺

0Bv
∣∣ ≤ ǫ1

(
u⊺J⊺

0Au+ v⊺J⊺

0Dv
)

and
∣∣v⊺J⊺

0Cu
∣∣ ≤ rǫ2

(
u⊺J⊺

0Au+ v⊺J⊺

0Dv
)

for some constants 0 < ǫ1 < 1 and 0 < ǫ2.
Given t ≥ 0, we want to define a taming symplectic form ω′ in class [ω] + tPD(Z). Note

that the Thom class of Z can be represented by the form ρ(r)rdr ∧ dθ, where ρ : [0, R] → R+

is a non-increasing cutoff function that is constant near 0, that vanishes near R, and such that∫
D(R)

ρ(r)rdrdθ = 1. Set ωf = σ + f(r)rdr ∧ dθ for some f(r) ≥ 1. Near p ∈ Z we can write

ωf((u, v), J(u, v)) = u⊺J⊺

0Au+ u⊺J⊺

0Bv + fv⊺J⊺

0Cu + fv⊺J⊺

0Dv

and ∣∣∣u⊺J⊺

0Bv + fv⊺J⊺

0Cu
∣∣∣ ≤

∣∣∣u⊺J⊺

0Bv
∣∣∣+
√
f
∣∣∣
(√

fv⊺
)
J⊺

0Cu
∣∣∣(3.4)

≤ ǫ1

(
u⊺J⊺

0Au + v⊺J⊺

0Dv
)
+ ǫ2r

√
f
(
u⊺J⊺

0Au+ fv⊺J⊺

0Dv
)

(3.5)

≤ ǫ1

(
u⊺J⊺

0Au + fv⊺J⊺

0Dv
)
+ ǫ2r

√
f
(
u⊺J⊺

0Au + fv⊺J⊺

0Dv
)

=
(
ǫ1 + ǫ2r

√
f
)(
u⊺J⊺

0Au + fv⊺J⊺

0Dv
)

It follows that ωf tames J near p whenever
(
ǫ1 + ǫ2r

√
f
)
< 1. Consequently, in order to prove

the tame-to-tame inflation lemma for Z · Z = 0, we have to show that given t ≥ 0 arbitrarily
large, we can find a function f ≥ 1 and a radius 0 < R ≤ r2 such that: (i) f = 1 outside D(R),
(ii) ǫ1 + ǫ2r

√
f < 1 in D(R), and (iii) the integral of f − 1 over D(R) is t. Now, the inequality

ǫ1 + ǫ2r
√
f < 1 is equivalent to

1 ≤ f(r) <
(1− ǫ1)

2

r2ǫ22
which can be achieved by taking R small enough. Moreover, since

∫

D(R)

rdrdθ

r2

is unbounded, we can make the integral of f on D(R) as large as we want. Repeating the same
argument for finitely many charts covering Z, this shows that we can find some R > 0 and some
function f : D(R) → R such that ωf tames J and [ωf ] = [ω] + tPD(Z).

3.2. Case of surfaces with negative normal bundles. The case of a surface of negative self-
intersection is similar but requires a different local model. Suppose that Z ⊂M is J-holomorphic
and that Z · Z = −m < 0. We can rescale ω so that ω(Z) = 1. A neighborhood of Z can
be identified with a tubular neighborhood of the zero section 0 of the symplectic normal bundle
π : N → Z. Let P ⊂ N be the unit sphere bundle seen as a principal U(1)-bundle, and let β be a
connection one-form on P such that dβ = mπ∗σ. Let Π : N \0 → P be the Gauss map, and define
the 1-form α = Π∗β on N \ 0. Note that α has a pole of order 1 along Z while r2α is everywhere
smooth. Weinstein’s theorem implies that ω is isotopic to the standard form

ω0 = π∗(σ) +
1

2
d(r2α)
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near Z. We define

ωf := π∗(σ) +
1

2
d(r2α)− d(f(r)α) = (1 +

1

2
mr2 −mf)π∗σ +

(
1− f ′

r

)
rdr ∧ α

for some non-increasing function f(r) ≥ 0 with support in a tubular neighborhood of Z. By
Stokes’ theorem, the cohomology class of ωf is [ω] + f(0) PD(Z). In particular, for such a form to
tame J , we must have 0 ≤ f(r) < 1/m on Z, and if 0 < M ′ < 1/m is the inflation parameter we
want to reach, we must have f(0) =M ′.

Pick p ∈ Z and choose a local symplectic frame compatible with the horizontal and vertical
splitting given by the connection. With respect to such a frame, we have

ω0

(
(u, v), (u′, v′)

)
= u⊺J⊺

0 u
′ + v⊺J⊺

0 v
′

and

ωf
(
(u, v), (u′, v′)

)
= au⊺J⊺

0 u
′ + bv⊺J⊺

0 v
′

where

a := 1− mf

1 + 1
2mr

2
and b := 1− f ′

r
.

Since we suppose 0 ≤ f(r) < 1/m is non-increasing, we have

0 < a < 1 and 1 ≤ b

where a = a(r) is non-decreasing and bounded below by a0 := a(0) = 1−mf(0) = 1−mM ′ > 0.
We can now write

ωf
(
(u, v), J(u, v)

)
= a
(
u⊺J⊺

0Au+ u⊺J⊺

0Bv
)
+ b
(
v⊺J⊺

0Cu + v⊺J⊺

0Dv
)

= ω0

(
(u, v), J(u.v)

)
− mf

1 + 1
2mr

2

(
u⊺J⊺

0Au+ u⊺J⊺

0Bv
)
− f ′

r

(
v⊺J⊺

0Cu+ v⊺J⊺

0Dv
)
.

Given any 0 < ǫ1 < 1 and R′ > 0 such that

(3.6)
∣∣u⊺J⊺

0Bv
∣∣ ≤ ǫ1

(
u⊺J⊺

0Au+ v⊺J⊺

0Dv
)

for all r ≤ R′, we have

a
∣∣u⊺J⊺

0Bv
∣∣ ≤ ǫ1

√
a
(
au⊺J⊺

0Au+ v⊺J⊺

0Dv
)

(3.7)

≤ ǫ1
√
a
(
au⊺J⊺

0Au+ bv⊺J⊺

0Dv
)
.(3.8)

Similarly, if ǫ > 0 is such that, for r ≤ R′, we have

∣∣v⊺J⊺

0Cu
∣∣ ≤ rǫ

(
u⊺J⊺

0Au + v⊺J⊺

0Dv
)

then we can set ǫ2 = ǫ/
√
a0 to get

(3.9) b
∣∣v⊺J⊺

0Cu
∣∣ ≤ rǫ2

√
b
(
au⊺J⊺

0Au+ bv⊺J⊺

0Dv
)
.

Note that for any fixed inflation parameter 0 < M ′ < 1/m, both constants ǫ1 and ǫ2 are indepen-
dent of f and only depend on J , R′, and on the chosen symplectic frame. We then have

∣∣au⊺J⊺

0Bv + bv⊺J⊺

0Cu
∣∣ ≤ a

∣∣u⊺J⊺

0Bv
∣∣+ b

∣∣v⊺J⊺

0Cu
∣∣

≤
(
ǫ1
√
a+ rǫ2

√
b
)(
au⊺J⊺

0Au+ bv⊺J⊺

0Dv
)
.

To ensure tameness of J , we want
(
ǫ1
√
a+ rǫ2

√
b
)
< 1. Since we always have ǫ1

√
a < 1, we can

rewrite this as

rǫ2
√
b < 1− ǫ1

√
a.
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Recall that the function f must be supported in an arbitrarily small neighborhood of Z, must be
non-increasing, and must be equal to M ′ near Z. We will take f to be a smoothing of a function
h of the form

h(r) =






M ′ 0 ≤ r ≤ R1(
M ′

log(R2/R1)

)
·
(
log(R2)− log(r)

)
R1 ≤ r ≤ R2

0 R2 ≤ r

for some constants 0 < R1 < R2 < R < R′. We can assume that the smoothing f is non-increasing

and is supported in [0, R]. Writing c = M ′

log(R2/R1)
, it follows that −f ′(r) ≤ c/r, so that

rǫ2
√
b = rǫ2

√
1− f ′/r = ǫ2

√
r2 − rf ′ ≤ ǫ2

√
r2 + c.

Observe that we can always choose 0 < R1 < R2 < R with R small enough such that, for all
r < R, we have

ǫ2
√
r2 + c = ǫ2

√
r2 +

M ′

log(R2/R1)
< 1− ǫ1 < 1− ǫ1

√
a.

This shows that a suitable function f(r) can be locally constructed near every point p ∈ Z. Since
f(r) depends only on r, we can repeat the same argument in finitely many charts covering Z to
find a suitable function defined in a whole tubular neighborhood of Z.

3.3. Case of surfaces with positive normal bundles. We now explain the appearance of an
upper bound T ∼ C(J) · 1

m on the inflation parameter t when we apply the previous arguments in
the case of a surface of strictly positive self-intersection. Suppose that Z ⊂ M is J-holomorphic
and that Z ·Z = m > 0. As before, we work in a neighborhood of the zero section in the symplectic
normal bundle endowed with the form

ω0 = π∗(σ) +
1

2
d(r2α)

where σ = ω|Z and where α is obtained from a connection one-form β such that dβ = −mπ∗σ.
Given M ′ > 0, we define

ωf := π∗(σ) +
1

2
d(r2α)− d(f(r)α) = (1− 1

2
mr2 +mf)π∗σ +

(
r − f ′

r

)
rdr ∧ α

for some suitable non-increasing function f(r) ≥ 0 which takes the value M ′ near Z, and with
support in an arbitrarily small neighborhood of Z.

In a local symplectic frame compatible with the horizontal splitting given by the connection,
we have

ω0

(
(u, v), (u′, v′)

)
= u⊺J⊺

0 u
′ + v⊺J⊺

0 v
′

while

ωf
(
(u, v), (u′.v′)

)
= au⊺J⊺

0 u
′ + bv⊺J⊺

0 v
′

where a and b are functions of r given by

a = 1 +
mf

1− 1
2mr

2
and b = 1− f ′

r
≥ 1.

This time, for r < 1/
√
m, we have

a ≥ 1 and b ≥ 1.

As before,

ωf
(
(u, v), J(u, v)

)
= a
(
u⊺J⊺

0Au+ u⊺J⊺

0Bv
)
+ b
(
v⊺J⊺

0Cu+ v⊺J⊺

0Dv
)

Given 0 < ǫ1 < 1 and 0 < ǫ2 such that

(3.10)
∣∣u⊺J⊺

0Bv
∣∣ ≤ ǫ1

(
u⊺J⊺

0Au+ v⊺J⊺

0Dv
)
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and ∣∣v⊺J⊺

0Cu
∣∣ ≤ rǫ2

(
u⊺J⊺

0Au+ v⊺J⊺

0Dv
)

we have
∣∣au⊺J⊺

0Bv + bv⊺J⊺

0Cu
∣∣ ≤ a

∣∣u⊺J⊺

0Bv
∣∣+ b

∣∣v⊺J⊺

0Cu
∣∣

≤ ǫ1
√
a
(
au⊺J⊺

0Au+ v⊺J⊺

0Dv
)
+ rǫ2

√
b
(
u⊺J⊺

0Au+ bv⊺J⊺

0Dv
)

≤
(
ǫ1
√
a+ rǫ2

√
b
)(
au⊺J⊺

0Au+ bv⊺J⊺

0Dv
)

We want
(
ǫ1
√
a + rǫ2

√
b
)
< 1. In particular, for r very close to 0, we have f = M ′ and f ′ = 0,

which implies a ≥ 1 +mM and b = 1. Consequently,

M ′ = f(r) <

(
1− ǫ21
ǫ21

)(
1− 1

2mr
2

m

)
<

(
1− ǫ21
ǫ21

)
1

m

Looking back at equation (3.2), we see that 1
2‖B‖g < ǫ1 < 1 near p ∈ Z. Therefore the last

inequalities impose an upper bound on M ′ of the form

M ′ < C(J) · 1

m

where C(J) approaches 0 as N(J) := ‖B‖g approaches its supremum 2.

Remark 3.1. In [10] and [2], the block-matrix expression for J given in equation (3.1) is assumed
to satisfy B = C = 0 along Z, which is only possible when the symplectic normal bundle νZ is
J-invariant. In turns, this implies that J is compatible with ω along Z. Under this compatibility
assumption, the inequality

∣∣u⊺J⊺

0Bv
∣∣ ≤ ǫ1

(
u⊺J⊺

0Au+ v⊺J⊺

0Dv
)

that is used above to go from equation (3.4) to equation (3.5) can be improved to
∣∣u⊺J⊺

0Bv
∣∣ ≤ rǫ′1

(
u⊺J⊺

0Au+ v⊺J⊺

0Dv
)

for some ǫ′1 > 0. The extra r factor is what makes the slightly simpler arguments given in [10]
and [2] work in the compatible case even if Z is of positive self-intersection. ≬

4. Initial considerations towards the Preparation Lemma

We shall deduce the Preparation lemma from the following statement1:

Theorem 4.1. There is a diffeomorphism ψ ∈ Diff(M, id on Z) ∩ Diff0(M) i.e. which fixes Z
pointwise and is isotopic to the identity, such that ψ∗J is compatible with ω along Z and is ω-tame
everywhere. Moreover, ψ can be chosen C0-small and supported in any open neighborhood of Z.

The preparation lemma readily follows from this Theorem: denoting by {ψt}0≤t≤1 the isotopy

between ψ0 = idM and ψ1 = ψ, we get a path ωt = (ψ−1
t )∗ω of cohomologous closed 2-forms such

that ω0 = ω and ω1 =: ω′, with ω′ taming J over the whole of M and compatible with it along Z.

Remark 4.2. In fact, the above isotopy {ψt}0≤t≤1 can be chosen so that Z is fixed pointwise and
Jt = ψ∗

t ω is ω-tamed for all 0 ≤ t ≤ 1. A first way to see this is by slightly refining our proof
of Theorem 4.1, using Remark 6.4 to define an appropriate isotopy and applying Lemma 5.1 to
it. Another way is to start with the ψ given by Theorem 4.1 and apply Moser’s path argument
to change the isotopy: more precisely, the symplectic form ω′ := (ψ−1)∗ω is compatible with J
along Z and cohomologous to ω. Hence the path ωs := (1 − s)ω + sω′ (s ∈ [0, 1]) consists of
cohomologous forms that are all symplectic, as they all tame J , and which all coincide with ω on
TZ. By a refinement of Moser’s trick (cf. Remark 6.2), this path between ω and ω′ is induced by
pullbacks along a diffeotopy of M fixing Z pointwise. ≬

1In what follows, given a diffeomorphism ψ of M and a bundle morphism J of TM , we shall write ψ∗J for the
bundle morphism (ψ∗J)p(v) = [(Tpψ)−1 ◦ Jψ(p) ◦ (Tpψ)](v) where v ∈ TpM .
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4.1. Overview of the argument. Let TZM denote the tangent bundle of M restricted to Z. It
is relatively easy to construct an isotopy of automorphisms Ψt : TZM → TZM (lifting the identity
id : Z → Z), t ∈ [0, s], such that Ψ∗

tJ is ω-tame and Ψ∗
sJ is compatible with ω; see Section 4.2

below. Due to the large flexibility present within the category of smooth manifolds, it seems
reasonable to expect Ψs to be the restriction to TZM of the differential of a diffeomorphism ψ of
M . This easily follows from the ‘Whitney extension-type’ result proved in Section 7. Whether such
an extension ψ of Ψs can be found such that ω tames ψ∗J everywhere makes the problem much
more delicate. The purpose of Section 5 is to obtain a quantitative control over the ω-tameness
of almost complex structures under the action of sufficiently C1-small diffeomorphisms with given
supports. Granted this, our strategy consists in finding a suitable constant ǫ > 0 and a partition
t0 = 0 < t1 < · · · < td = s of the interval [0, s] such that the C1-norm of ψtiψ

−1
ti−1

is bounded by

ǫ. Starting with t1, we iteratively find extensions of the automorphisms ΨtiΨ
−1
ti−1

whose supports
form a nested sequence of tubular neighborhoods chosen in such a way that the control over the
C1 norm suffices to ensure tameness of the pull-back of J everywhere on M . Roughly speaking,
finding such a nested sequence of supports is possible as the "degree of compatibility" of ω and J
improves near Z after each step. The details are provided in Section 6.

4.2. Isotopy of the tangent bundle TZM . Our first step in the proof of Theorem 4.1 consists
in establishing the existence of an appropriate isotopy of fiberwise linear automorphisms of TZM .
This motivates the considerations of this section.

The ωt-orthogonal to V1 = R2 ⊕ 0 is the subspace Wt := {(tJ0Bv, v) | v ∈ R2}. For t ∈ [0, 1],
we define the map

Lt : V2 = 0⊕ R
2 → V1 = R

2 ⊕ 0 : v 7→ tJ0Bv .

From them, we construct the following diffeotopy of V = V1 ⊕ V2 = R2 ⊕ R2:

Ψt : R
2 ⊕ R

2 → R
2 ⊕ R

2 : (u, v) 7→ (u+ α(t)Lt(v), α(t)v) (t ∈ R)

where α(t) := (1−N2 t(1− t))−1/2. (This is well-defined precisely because N < 2.) Each map Ψt
is indeed invertible, with inverse

Ψ−1
t (u, v) = (u− Lt(v), α(t)

−1v) .

By similar arguments as in Section 2.7, we get the estimate

‖Ψt − Id‖ := max
‖u‖2+‖v‖2=1

‖Ψt(u, v)− (u, v)‖ ≤
(
(α(t)− 1)2 + (tNα(t))2

)1/2
.(4.1)

Straightforward calculations also yield

Ψ∗
tωt := ΨTt ωtΨt = ω and Ψ∗

tJ := Ψ−1
t JΨt =

(
J0 (1 − 2t)α(t)B
0 J0

)
.(4.2)

We stress that all the objects we just defined have basis-free descriptions, and are thus canoni-
cally associated with the pair (ω, J).

Consider N(t) := ‖(1 − 2t)α(t)B‖ = |1 − 2t|α(t)N , where the norm is still computed with
respect to the standard scalar product on R4. We note that t 7→ N(t) is symmetric about t = 1/2,
is decreasing over [0, 1/2], and satisfies N(0) = N and N(1/2) = 0. Consequently and since N < 2,
N(t) < 2 for all t ∈ [0, 1], which means that all pairs (ω,Ψ∗

tJ) – equivalently, all pairs (ωt, J) –
are tame for t ∈ [0, 1].

In view of Equation 4.2, all complex structures Ψ∗
tJ determine the same complex structures on

V1 and V2, namely J1 and J2. Accordingly, from the discussion in Section 2.4, for each t ∈ [0, 1],
the canonical metric associated with the tame pair (ω,Ψ∗

tJ) is equal to the canonical metric g
associated with (ω, J). It hence follows that for each t ∈ [0, 1], N(t) is the norm of the skew part
of Ψ∗

tJ .
In conclusion, given the tame pair (ω, J), the corresponding pairs (ω,Ψ∗

tJ) are tame for all
t ∈ [0, 1] and they all define the same canonical structures (V1, V2, J1, J2, g) on (V, ω). Moreover,
fromN(1/2) = 0, we see that the pair (ω,Ψ∗

1/2J) is compatible. For the purpose of the preparation

lemma, we only need to focus on the time-interval t ∈ [0, 1/2].
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4.3. A technical lemma.

Lemma 4.3 (Estimates on |Ψt|). Using notation from the setup in Section 2: let N = ‖B‖ < 2.

For ǫ > 0, if 0 ≤ t′ < t ≤ 1/2 satisfy t− t′ <
ǫ√
2

(
1

N
− 1

2

)
, then ‖Ψt ◦Ψ−1

t′ − Id‖ < ǫ.

Proof. If N = 0, then Ψt = Ψt′ for all t, t′ ∈ [0, 1/2] and the claim is clear. Hence we consider

N > 0. For convenience, set C := ǫ/
√
2.

First, we note that

(Ψt ◦Ψ−1
t′ )(u, v) =

(
u− Lt′(v) +

α(t)

α(t′)
Lt(v) ,

α(t)

α(t′)
v

)
.

Hence

(Ψt ◦Ψ−1
t′ )(u, v)− (u, v) =

(
−Lt′(v) +

α(t)

α(t′)
Lt(v) ,

(
α(t)

α(t′)
− 1

)
v

)

=

((
α(t)

α(t′)
t− t′

)
J0Bv ,

(
α(t)

α(t′)
− 1

)
v

)
.

Thus

‖Ψt ◦Ψ−1
t′ − Id‖2 = max

‖u‖2+‖v‖2=1
‖(Ψt ◦Ψ−1

t′ )(u, v)− (u, v)‖2

=

(
α(t)

α(t′)
t− t′

)2

N2 +

(
α(t)

α(t′)
− 1

)2

≤
[(

α(t)

α(t′)
− 1

)
t+ (t− t′)

]2
N2 +

(
α(t)

α(t′)
− 1

)2

≤
[(

α(t)

α(t′)
− 1

)
1

2
+ (t− t′)

]2
N2 +

(
α(t)

α(t′)
− 1

)2

.

The last inequality follows since 0 ≤ t′ < t ≤ 1/2, which implies (α(t)/α(t′))− 1 > 0. It therefore
suffices to prove that (α(t)/α(t′)) − 1 < C whenever t − t′ < C((1/N) − (1/2)), since this would
give the sought-after estimate ‖Ψt ◦Ψ−1

t′ − Id‖2 ≤ 2C2 = ǫ2. For this, we compute
(
α(t)

α(t′)
− 1

)
≤ 1

2

(
α(t)

α(t′)
+ 1

)(
α(t)

α(t′)
− 1

)
=

1

2

((
α(t)

α(t′)

)2

− 1

)

=
N2[t(1− t)− t′(1 − t′)]

2[1−N2t(1− t)]
=
N2(1− (t+ t′))(t− t′)

2[1−N2t(1 − t)]

<
N2(t− t′)

1− (N2/4)
<
C((1/N)− (1/2))

(1/N2)− (1/4)
=

C

(1/N) + (1/2)
< C .

�

5. Quantitative stability of the local tameness condition

Let’s consider a closed symplectic manifold (M,ω). Morally, our aim in this section is to get
some quantitative control over the variation of the "degree of tameness" between two almost com-
plex structure J and ψ∗J in terms of the C1-size of the diffeomorphism ψ. The exact statement
is given in Lemma 5.1 below, whose formulation requires some preliminary setup.

We fix a finite open atlas {(Ui, φi : Ui → Rn)}Ni=1 of M by Darboux charts for ω. Shrinking the
open sets if necessary, we may and shall require that the pullbacks gi := φ∗gstd of the standard
Euclidean metric gstd are all equivalent to g|Ui for some given auxiliary Riemannian metric g on
M ,2 in the sense that there exists K > 0 such that K−1gi(v, v) ≤ (g|Ui)(v, v) ≤ Kgi(v, v) for all
v ∈ TUi and all i.

2The symbol ‘g’ was used to denote the canonical scalar product in Section 2.4. Our recycling of the symbol
is voluntary, as we shall pick during the proof of the preparation lemma an auxiliary Riemannian metric g which
coincides with the canonical scalar product along Z.
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It is well known that there exists an open cover (Vi)
N
i=1 of M refining (Ui)

N
i=1 such that Vi ⊂ Ui

for all 1 ≤ i ≤ N . We fix such a refinement and we define

δc := min
1≤i≤N

distg(Vi,M \ Ui) > 0 .

We shall assume that δc is smaller than both 1 and the injectivity radius of the metric g on M .
Given an almost complex structure J on Ui, for each 1 ≤ i ≤ N , we define the continuous

function
Υi[J ] : Ui → R : p 7→ Υi[J ](p) := min

v∈(Si)pM
ωp(v, Jpv)

where (Si)pM := {v ∈ TpUi : (gi)p(v, v) = 1} is the sphere bundle defined by the metric gi. We
observe that J is ω-tame over the whole of M if and only if all the functions Υi[J ] are positive on
their respective domains.

For each 1 ≤ i ≤ N , given a bundle endomorphism F of TUi (over the identity id|Ui) and a
subset S ⊂ Ui, we set

‖F‖C0(S) := sup
p∈S

max
v∈SpM

[(gi)p(Fpv, Fpv)]
1/2 .

Typically, we shall consider F = J or F = dJ , where J is an almost complex structure and dJ is
computed with respect to the coordinates given by the chart φi.

We shall consider the group Diff(M) of smooth diffeomorphisms of M to be equipped with the
C1-Whitney topology (see [4, Chapter 2]). In this context, we have:

Lemma 5.1. Given any constants C > 0 and η > 0, there exists a constant δ = δC,η > 0 such
that the following holds:

(a) Let B = BC,η ⊂ Diff(M) be the set of those diffeomorphisms satisfying

distg(p, ψ(p)) < δ for all p ∈M

and ‖Tpψ − Id‖gi < δ for all 1 ≤ i ≤ N and all p ∈ Vi.

(b) Given any ψ ∈ B, set

S := S(ψ) = {q ∈M : distg(q, supp(ψ)) < max
x∈M

distg(x, ψ(x)) }.

(c) Given an almost complex structure J on M and a ψ ∈ B, let λ := λ(J, ψ) > 0 be such
that the estimates

‖J‖C0(S∩Ui) < λC and ‖dJ‖C0(S∩Ui) < λC

hold for all 1 ≤ i ≤ N .

Then for all 1 ≤ i ≤ N , we have

‖Υi[ψ∗J ]−Υi[J ]‖C0(Vi) := max
p∈Vi

|Υi[ψ∗J ](p)−Υi[J ](p)| < λη .

Proof. We introduce a small parameter 0 < δ′ < δc/4 < 1/4, whose value we shall further con-
strain in the course of the proof, and we set δ := δ′/(1 + δ′), i.e., δ′ = δ/(1− δ) < 1/3.

Step 1 - Definition of B. First, we restrict attention to the (open) set

B0 := {ψ ∈ Diff(M) : ∀p ∈M, distg(p, ψ(p)) < δ } .
Clearly, ψ ∈ B0 if and only if ψ−1 ∈ B0. Given ψ ∈ B0 and p ∈ Vi, we observe that
distg(ψ(p),M \ Ui) > 3δc/4, so that ψ(Vi) ⊂ Ui. Moreover, if q ∈ M satisfies distg(p, q) < δc/4,
then distg(ψ(p), ψ(q)) < 2δ′ + δc/4 ≤ 3δc/4, so that ψ(q) ∈ Ui.

Let’s consider some i and work in the chart (Ui, φi), thought of as a subset of Rn equipped with
the standard metric gstd, so that the tangent spaces at different points of Ui can be identified via
the local connection d. Consider the (open) set

Bi := {ψ ∈ B0 : ∀p ∈ Vi, ‖Tpψ − Id‖gstd < δ } .
Hence, given p ∈ Vi and ψ ∈ Bi, we have

‖Tpψ − Id‖gstd < δ′ and ‖Tψ(p)(ψ−1)− Id‖gstd < δ′ .
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We take B :=
⋂N
i=1Bi (which implicitly depends on the value of the parameter δ).

Step 2 - Estimates on Υ. Consider some ψ ∈ B and put µ := maxp∈M distg(p, ψ(p)), S0 :=

supp(ψ) and S := {q ∈ M : ∃p ∈ S0, distg(p, q) < µ}. (Of course, µ < δ′.) Consider an almost
complex structure J on M and λ > 0 as in the statement (b) of the Lemma.

Let p ∈ (M \S0)∩ Vi. We can find a small open set p ∈ U ⊂ (M \ S0)∩ Vi, so that ψ|U = id|U
and ψ∗J |U = J |U . Hence Υi[ψ

∗J ]−Υi[J ] = 0 on such U .
Let p ∈ S0 ∩ Vi. We observe that the open g-ball U of radius δ′ centered at p is contained in

S ∩Ui, and that the image of this ball under ψ lies inside Ui and ψ(p) ∈ U . We may thus work in
the Darboux chart (Ui, φi), which we shall think of as a subset of Rn equipped with the standard
metric gstd. In particular, ω = ωstd at every point of Ui. We note that distgstd(p, ψ(p)) < Kδ′ =: L

for all p ∈ Vi. Since ‖dJ‖ < λC on S ∩ Ui and a fortiori on U , integrating dJ along the g-
geodesic segment between p and ψ(p), we get ‖Jψ(p) − Jp‖ < λCL. This and ‖Jp‖ < λC yield
‖Jψ(p)‖ < λC(L + 1). For v ∈ (Si)pM , we compute

‖ωstd‖−1
∣∣ωψ(p)(v, (ψ∗J)pv)− ωp(v, Jpv)

∣∣ ≤ ‖Tψ(p)(ψ−1) · Jψ(p) · Tpψ − Jp‖
≤ ‖(Tψ(p)(ψ−1)− Id) · Jψ(p) · (Tpψ − Id)‖

+ ‖(Tψ(p)(ψ−1)− Id) · Jψ(p)‖
+ ‖Jψ(p) · (Tpψ − Id)‖+ ‖Jψ(p) − Jp‖

≤ λC(L+ 1)δ2 + 2λC(L + 1)δ + λCL < λC′δ′

where C′ = C(4K + 3) (recall that δ′ ≤ 1 by assumption). Let’s now require δ′ < η/C′‖ωstd‖.
Considering v ∈ (Si)pM such that ωp(v, Jpv) = Υi[J ](p) if Υi[ψ

∗J ](p) ≥ Υi[J ](p) or such that
ωp(v, (ψ

∗J)pv) = Υi[ψ
∗J ](p) if Υi[ψ

∗J ](p) < Υi[J ](p), we conclude

|Υi[ψ∗J ](p)−Υi[J ](p)| < λη .

As this is true for all p ∈ S0 ∩ Vi and for all i, this completes the proof. �

6. Proof of the Preparation lemma

We prove Theorem 4.1 in this section.

6.1. Setup. Let (M,ω) be a closed symplectic 4-manifold, J be an ω-tame almost complex struc-
ture, ιZ : Z ⊂ M be an embedded closed J-holomorphic curve and W an open neighborhood of
Z in M .

6.1.1. Linear level. For each p ∈ Z, the data (TpM,TpZ, ωp, Jp) is of the type studied in Section
2.2. Hence, as in Section 2.4, we have the canonical scalar product gp at each p ∈ Z, thereby
obtaining the canonical metric g on TZM associated to J . Since our linear algebraic arguments
depend smoothly on the given data, the metric g is smooth. We can extend this bundle metric
to a Riemannian metric on the whole of M ; we fix such an auxiliary metric g. This metric is
compatible with ω on TZM .

At each p ∈ Z, we have the number NJ(p) ∈ [0, 2) given by the norm of the skew part of Jp,
which vanishes if and only if the tame pair (ωp, Jp) is compatible (see Section 2.6). Allowing p ∈ Z
to vary, we thus obtain a continuous function NJ : Z → [0, 2) whose maximum—which exists by
compactness of Z—we denote ‖NJ‖.

For t ∈ [0, 1/2], we consider the linear diffeotopy Ψt : TZM → TZM associated to J defined
in Section 4.2, and we consider the corresponding path Jt := Ψ∗

tJ of ω-tame almost complex
structures on TZM . Recall that J1/2 is in fact ω-compatible.

In its essence, using Lemmata 7.1 and 5.1, the following proof aims to extend Ψt (more properly,
a time discretization thereof) to an ambient diffeotopy ψt :M →M such that the almost complex
structures ψ∗

t J are ω-tame over the whole of M .



14 P. CHAKRAVARTHY, J. PAYETTE, AND M. PINSONNAULT

6.1.2. Darboux charts. Moving towards the setting of Section 5, we want to construct a suitable
finite open atlas {(Ui, φi : Ui → R4)}Ni=1 of M by Darboux charts for ω. This open cover will split

into two parts: the first part {(Uj, φj : Uj → R4)}N ′

j=1 will cover some neighborhood of Z in M
in some specific way, whereas the second part will simply be chosen to cover the rest of M and
avoid (a compact neighborhood of) Z. Only the first part will be of genuine interest to us, and
we construct it as follows.

We first consider a finite open cover (Yj)
N ′

j=1 of Z by Darboux charts for ι∗zω over which the
ω-symplectic normal bundle ν of Z (which is also the g-metric normal bundle of Z) trivializes
both as a ω-symplectic and as a g-metric vector bundle, i.e., for each 1 ≤ j ≤ N ′, we are given
a vector bundle trivialization τj : ν|Yj → Yj × R2 such that τ∗j ωstd = ω|ν and τ∗j gstd = g|ν along

the fibers of ν. Roughly speaking, the following lemma proves that the data {(Yj , τj)}N
′

j=1 extend

to Darboux charts {(Uj, φj)}N
′

j=1 covering a neighborhood of Z in M :

Lemma 6.1. Consider the data {(Yj , τj)}N
′

j=1 given above. There exist an open refinement {Zj}N
′

j=1

of {Yj}N
′

j=1 covering Z and Darboux charts {(Uj , φj : Uj → R4)}N ′

j=1 for ω covering a neighborhood
of Z in M such that Uj ∩ Z = Zj and Tφj |(ν|Zj) = τj |Zj.

Proof. We may think of the Darboux chart Yj as an open subset of R2 equipped with the
standard symplectic form. We equip the set M ′ := Yj × R2 ⊂ R4 with the standard symplectic
form and with the (compatible) standard metric. Of course, Yj×R2 can also be understood as the
(symplectic and orthogonal) normal vector bundle ν′ of Yj ∼= Yj × {0} in M ′. The trivialization
τj can then be thought of as an isomorphism between the symplectic normal bundles ν of Yj in
M and ν′ of Yj in M ′ covering the symplectic diffeomorphism id : Yj → Yj .

The result then follows from Weinstein’s Symplectic neighborhood theorem (see e.g. [8, The-
orem 3.4.10]). To apply this theorem, since the sets Yj are not compact submanifolds, we only

need to shrink them a little to get compact submanifolds with boundaries Zj , whose interiors Zj
we may require to still form an open cover of Z.

�

Remark 6.2. In [8], the Symplectic neighborhood theorem (Theorem 3.4.10) is deduced from the
Moser isotopy lemma (Lemma 3.2.1). However, by itself, this lemma does not imply the part of
the theorem which we use in the proof of Lemma 6.1 to get Tφj|(ν|Zj) = τj |Zj. Rather, it follows
from the stronger equation (3.2.5) established in the proof of the Moser isotopy lemma. ≬

We now have the atlas {(Ui, φi : Ui → R4)}Ni=1 of M by Darboux charts for ω. We note that
for those charts Uj (1 ≤ j ≤ N ′) that cover Z, the Darboux coordinates at points of Zj = Z ∩Uj
determine a unitary basis as in Section 2.5, thereby allowing us to use the estimates proved in
Section 2. We also fix some open refinement {(Vi)}Ni=1 of {(Ui)}Ni=1.

The atlas also determine the functionals Υi defined in Section 5. We thus have two criteria to
test the tameness of a pair (ω, J ′) on Z (assuming Z is a J ′-curve): either as the positivity of the
functions Υi[J

′] or as the positivity of the function 2−NJ′ . In view of Equation 2.5, we see that
for p ∈ Zj , we have Υj [J

′](p) ≥ 1−NJ′(p)/2.

6.1.3. Whitney’s extension theorem. We shall need the following "controlled" version of Whitney’s
extension theorem, whose proof is postponed to Section 7:

Proposition 6.3 (Whitney extension for diffeomorphisms). Let Φ : TZM → TZM be a bundle
automorphism over the identity map id : Z → Z defining a holonomic 1-jet data along Z for
diffeomorphisms of M , i.e., whose restriction Φ|TZ : TZ → TZ is the identity. There exist
constants ǫ0 > 0 and κ ≥ 1 such that the following holds:

If ‖Φ−Id‖C0(Z∩Uj) < ǫ1 for all 1 ≤ j ≤ N ′ and some ǫ1 < ǫ0, then there exists a diffeomorphism
φ of M which is diffeotopic to idM and whose differential along Z equals Φ. Moreover, φ can be
chosen with maxp∈M distg(p, φ(p)) as small as desired, and such that ‖dφ − Id‖C0(V j)

< κǫ1 for

all 1 ≤ j ≤ N . Furthermore, the diffeomorphism φ can be chosen such that its 2-jets along Z
coincide with any given holonomic 2-jet extension of Φ along Z.
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Remark 6.4. As explained in Remark 7.2, the diffeotopy between φ and idM may be taken so as
to restrict to the identity on Z at all times. ≬

6.1.4. Thin neighborhood. We fix a relatively compact open neighborhood W of Z as in the state-
ment of Theorem 4.1. We may assume that W is contained within the union of the charts Vj
(1 ≤ j ≤ N ′) that cover Z and that W avoids the charts Uj (j > N ′).

6.2. Choice of parameters. We select appropriate values of the free parameters that appear in
the Lemmata that we shall use later in the proof.

6.2.1. Choice of η. We introduce a small parameter η > 0. We require that η < (1− ‖NJ‖/2)/2,
or equivalently that ‖NJ‖ < 2(1 − 2η), which is possible since J = J0 is ω-tame. We recall from
Section 4.2 that the function t 7→ ‖NJt

‖ := maxp∈Z NJt
(p) is decreasing for t ∈ [0, 1/2], so that

‖NJt
‖ < 2(1− 2η) for all t ∈ [0, 1/2].

6.2.2. Choice of C. We proceed here to fix an appropriately value for the constant C in Lemma
5.1. First, we can certainly pick C so large that

‖J0‖C0(W∩Uj) < C and ‖dJ0‖C0(W∩Uj) < C

for all 1 ≤ j ≤ N ′.
Secondly, let’s imagine that the linear diffeotopy Ψt of TZM extends to an ambient diffeotopy

ψ̃t of M , and consider the corresponding almost complex structures J̃t = ψ̃∗
t J . It is clear that

the quantities (J̃t)Uj
and (dJ̃t)Uj

are continuous functions on Uj × [0, 1/2], and that their values

along Z are expressible in terms only of the 1-jets of J along Z and of the 2-jets of ψ̃t along Z

(i.e., of some 2-jet extension of Ψt); for instance, we know that J̃t|Z = Jt|Z = Ψ∗
tJ |Z. We could

then select C to be larger than all of the norms ‖J̃t‖C0(Z∩Uj) and ‖dJ̃t‖C0(Z∩Uj) for 1 ≤ j ≤ N ′

and t ∈ [0, 1/2].

Since we have not proved the existence of any such extensions ψ̃t at this point, we shall instead
select an arbitrary 2-jet extension of Ψt continuous over Z × [0, 1/2], e.g., we could impose that
the (well-defined) normal-normal part of the 2-jet extension of the 1-jet Ψt (which is the only part
of the any 2-jet extension which is not already determined by the 1-jet Ψt) to vanish identically
on Z × [0, 1/2]. Using the above expressions—that could be made explicit, but we only need their
existence—to define the quantities Jt|Z (already given in fact by Ψ∗

tJ |Z) and dJt along Z for all
t ∈ [0, 1/2], it becomes clear that we can take C so large that

‖Jt‖C0(Z∩Uj) < C and ‖dJt‖C0(Z∩Uj) < C

for all 1 ≤ j ≤ N ′ and all t ∈ [0, 1/2].

6.2.3. Choice of ǫ. On the one hand, given the value C that we just fixed and the value η that we
selected earlier, Lemma 5.1 determines a parameter δ := δC,η > 0 and a corresponding open set
B = BC,η ⊂ Diff(M). On the other hand, under our current setup, Lemma 7.1 determines two
parametesr ǫ0 > 0 and κ ≥ 1. We pick 0 < ǫ < min{δ/κ, ǫ0} (which is implicitly related to η).

6.2.4. Choice of time partition. We partition the time-interval [0, 1/2] into d intervals

0 = t0 < t1 < · · · < td = 1/2

such that

ti+1 − ti <
ǫ√
2

(
1

‖NJ‖
− 1

2

)

for all 0 ≤ i ≤ d− 1.
For 0 ≤ i ≤ d, we set Ψi := Ψti and Ji = Jti for simplicity. It is also convenient to introduce

the notation Φi = Ψi+1 ◦ Ψ−1
i for 0 ≤ i ≤ d − 1; we note that each Φi comes with some induced

2-jet extension. In view of Lemma 4.3, for all 0 ≤ i ≤ d− 1, we have ‖Φi − Id‖C0(Z) < ǫ.

6.3. Proof of Theorem 4.1. The proof proceeds by induction over i ∈ {0, 1, . . . , d− 1}.
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6.3.1. Induction hypothesis. We assume that for some 0 ≤ i < d, we have constructed an ambient
smooth diffeomorphism ψi of M whose 2-jet along Z coincides with the given 2-jet extension of
Ψi, and such that the globally defined almost complex structure Ji := ψ∗

i J is everywhere ω-tame.
By assumption, this statement holds for i = 0, since we can simply take ψ0 = idM .

6.3.2. Induction step. We focus our attention to within a thin open neighborhood Wi of Z inside
W , selected according to the following two constraints. First, along Z, we know that ‖(Ji)|p‖gj < C
and ‖(dJi)p‖gj < C for all p ∈ Z and 1 ≤ j ≤ N ′, where we used the notations gj := τ∗j gstd. Since

those norms depend continuously on p ∈M , we can select Wi so thin that we have ‖(Ji)|p‖gj < C
and ‖(dJi)p‖gj < C for all p ∈ Wi and 1 ≤ j ≤ N ′. Secondly, along Z, we know that ‖NJi

‖ <
2(1 − 2η), hence that Υj [Ji] > 2η along Z ∩ Uj for all 1 ≤ j ≤ N ′. By continuity of Ji, we may
select Wi so thin that Υj [Ji] > η on Wi ∩ Uj for all 1 ≤ j ≤ N ′.

Given a subset X ⊂ M and θ > 0, write Xθ := {q ∈ M : distg(q,X) < θ}. Let’s take

0 < θi < δ so small that Z2θi ⊂Wi. We set Yi := Zθi, so that Y θii ⊆ Z2θi .
We consider the bundle morphism Φi : TZM → TZM , which satisfies ‖Φi− Id‖C0(Z) < ǫ, along

with its corresponding 2-jet extension. By choice of ǫ and in view of Lemma 6.3, Φi and its 2-jet
extension extend to an ambient diffeomorphism φi ∈ Diff(M) with compact support within Yi,
such that maxp∈M distg(p, φi(p)) < θi and such that ‖dφi− Id‖C0(V j)

< δ for all 1 ≤ j ≤ N . This

means that φi belongs to the set B obtained in Step 6.2.3.
We set ψi+1 := φi ◦ψi and Ji+1 := φ∗i Ji = ψ∗

i+1J . It remains to prove that the almost complex
structure Ji+1 is ω-tame over the whole of M . Since Ji+1 = Ji on the complement of Wi, it suffices
to prove that Ji+1 is ω-tame on each Vj with 1 ≤ j ≤ N ′.

Let’s set Si := (supp(φi))
θi . Hence Si ⊆ Y θii ⊆ Z2θi ⊆Wi and thus

‖Ji‖C0(Si∩Uj) < C and ‖dJi‖C0(Si∩Uj) < C

for all 1 ≤ j ≤ N ′. Lemma 5.1 is therefore applicable (with λ = 1), so that for all 1 ≤ j ≤ N ′, we
have

|Υj [Ji+1]−Υj [Ji]|C0(Vj)
< η .

Consequently, for all 1 ≤ j ≤ N ′ and all p ∈ Wi ∩ Vj , we have

Υj [Ji+1](p) ≥ Υj[Ji](p)− |Υj [Ji+1](p)−Υj [Ji](p)| > η − η = 0 ,

proving that Ji+1 is ω-tame at p. Since Wi is covered by the Vj ’s with 1 ≤ j ≤ N ′, this proves
that Ji+1 is ω-tame everywhere on Wi.

6.3.3. Conclusion. In the end of the induction, we obtain a diffeomorphism ψ = ψd (isotopic
to the identity) and an ω-tame almost complex structure J ′ = Jd = ψ∗J whose restriction to
TZM is ω-compatible. This concludes the proof of the Preparation lemma modulo the proof of
Proposition 6.3 that is given in the next section.

7. Whitney extension-type results

The Whitney extension-type result used in the proof of the preparation lemma — namely
Proposition 6.3 — is a version of the more general Lemma 7.1 below reformulated within the
specific setup of Section 6. Although these kinds of extension results may be well-known to
experts, we have not been able to find anywhere in the literature statements giving sufficient
control both over the C1 norms and over the supports of the extended diffeomorphisms. For this
reason, we provide a proof of Lemma 7.1 in this section.

We consider a closed n-manifold M and a closed embedded k-submanifold Z ⊂ M of positive
codimension. Given a vector bundle ν : E → M , we shall denote by νZ : EZ → Z its pullback
or restriction to Z. We say that a r-jet data along Z (for some type of smooth maps from M to
some other manifold) is holonomic if it satisfies suitable compatibility relations for it to stand a
chance to be the r-jet of some genuine smooth map defined near Z, namely that the parts of the
r-jet involving the tangent directions to Z are obtained as derivatives (along Z) of lowest order
parts of the r-jet (so that only the parts of the r-jet purely transverse to Z can be chosen freely).
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Our goal in this section is to establish some versions of Whitney extension theorem on manifolds,
that is, roughly speaking, to find sufficient conditions for some 1-jets data along Z to be the
differential along Z of some function on M . The main result of this section is:

Lemma 7.1 (Whitney extension for diffeomorphisms). Let Ψ : TZM → TZM be a bundle auto-
morphism over the identity map id : Z → Z defining a holonomic 1-jet data along Z for diffeo-
morphisms of M , i.e., whose restriction Ψ|TZ : TZ → TZ is the identity. If Ψ is sufficiently close
to the identity bundle morphism, there exists a diffeomorphism ψ of M which is diffeotopic to idM
and whose differential along Z equals Ψ. Moreover, ψ can be chosen to be sufficiently C1-close and
arbitrarily C0-close to the identity and supported in an arbitrary open set U ⊃ Z. Furthermore,
the diffeomorphism ψ can be chosen such that its 2-jets along Z coincide with any given holonomic
2-jet extension of Ψ along Z.

Remark 7.2. Recall that for any ψ sufficiently C1-close to the identity, ψ can be interpreted as a
smooth section of T ∗∆ where ∆ ⊂M ×M denotes the diagonal. By a linear interpolation between
this section and the zero section of T ∗∆, we obtain a diffeotopy between ψ and the identity. If ψ
restricts to the identity on Z ⊂M , so does this whole diffeotopy. ≬

To prove the previous lemma, we shall show that it can be reformulated as a particular instance
of the following :

Lemma 7.3 (Whitney extension for sections). Let ν : E → M be a vector bundle of rank q and
let F : TZM → EZ be a bundle morphism over the identity id : Z → Z defining a holonomic 1-jet
data along Z for sections of ν, i.e., which vanishes on TZ ⊂ TZM . Then there exists a smooth
section f :M → E of ν which vanishes on Z and whose differential along Z is F . Moreover, f can
be chosen to be arbitrarily C0-small and supported in an arbitrary open set U ⊃ Z. Besides, if F
is close to the zero morphism, then f can be taken comparably C1-small. Furthermore, the section
f can be chosen such that its 2-jets along Z coincide with any given holonomic 2-jet extension of
F along Z.

Proof of Lemma 7.1 assuming Lemma 7.3. Fix a Riemannian metric g on M . Consider the diag-
onal ∆ := {(x, x) ∈ M ×M |x ∈ M} and ∆Z := ∆ ∩ (Z × Z). It is well-known that its tangent
bundle T∆ and its normal bundle ν∆ : E → M in M ×M are both isomorphic to TM (in a
canonically way for T∆ and in standard way for ν∆ using the metric g). Moreover, the Riemann-
ian exponential map exp : E → M ×M determines a diffeomorphism between some sufficiently
small tubular neighborhoods of the zero section of ν∆ in E and of the diagonal ∆ in M ×M .
Through exp, sufficiently C1-small smooth sections of ν∆ exactly correspond to the (graphs of
the) diffeomorphisms of M that are sufficiently C1-close to the identity.

We now consider the bundle automorphism Ψ from Lemma 7.1. The graph of Ψ is the bundle
monomorphism

gr Ψ : TZM → TZM ⊕ TZM : v ∈ TpM 7→ (v,Ψ(v)) ∈ TpM ⊕ TpM .

By the previous bundle isomorphisms and in view of the canonical isomorphism T∆Z
(M ×M) ∼=

T∆Z
M ⊕ T∆Z

M ∼= TZM ⊕ TZM , we can interpret gr Ψ as the bundle map

gr Ψ : T∆Z
∆ → T∆Z

(M ×M) : (v, v) ∈ T(p,p)∆ 7→ (v,Ψ(v)) ∈ T(p,p)(M ×M) .

Postcomposing this map with the projection T∆Z
(M ×M) → (ν∆)∆Z

, we see that Ψ determines a
bundle morphism F : T∆Z

∆ → (ν∆)∆Z
which vanishes on T (∆Z) ⊂ T∆Z

∆ and which is sufficiently
C1-small. Lemma 7.3 then implies the existence of a sufficiently C1-small section f : ∆ → E which
vanishes on ∆Z and whose differential along ∆Z is F . Under exp, this section f corresponds to
the sought-after diffeomorphism ψ of M . Clearly, if f is C0-small (respectively, supported in U),
then ψ is C0-close to the identity (respectively, supported in U).

Finally, it is clear that there is a correspondence between holonomic 2-jet extensions of Ψ and
holonomic 2-jet extensions of F , and similarly a correspondence between 2-jets of ψ and 2-jets of
f along Z. �

We now turn to the proof of Lemma 7.3. The general strategy is to use Whitney’s original
extension theorem [16] to prove a local version of the Lemma and then to use a partition of unity
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argument to deduce the global version. For convenience, we recall here the statement of Whitney’s
theorem (essentially as given in [12, Section 1.5.6], referring to [16] or to [7, Chapter 1.4] for its
proof):

Theorem 7.4 (Whitney’s extension theorem for C∞-functions). Let Ω be an open set in Rn and
X be a closed subset of Ω. Suppose that for each n-tuple α = (α1, . . . , αn) of non-negative integers,
there is given a continuous function fα on X. Then the following statements are equivalent:

(1) There exists f ∈ C∞(Ω) for which Dαf |X = fα for all α;
(2) For any α, any integer m ≥ 0 and any compact set K ⊂ X, it holds that

fα(x) =
∑

|β|≤m

1

β!
fα+β(y)(x − y)β + o(|x− y|m)(7.1)

uniformly as |x− y| → 0 with x, y ∈ K.

Proof of Lemma 7.3.

Step 1 - Local existence. Let p ∈ Z and consider a small open chart p ∈ V ⊂ M centered at p
such that ν trivializes over V . In this way, we can assume that Z is a (relatively) closed embedded
submanifold in an open ball M = V of Rn, that E = V × Rq and that F : Z × Rn → Z × Rq,
F (z, v) = (z, F (1)(z, v)) where F (1) is a z-wise v-linear map thought of as a formal first-order
differential. Let’s only consider the more difficult case when a 2-jet extension of F is also given,

i.e., a bundle map F̃ : Z × Rn × (Rn × Rn) → Z × Rq,

F̃ (z, v, w(1), w(2)) = (z, F (1)(z, v) + F (2)(z, w(1), w(2))) ,

where F (2) is a z-wise w-bilinear map thought of as a formal Hessian operator. Working with each
component of Rq separately, we may assume q = 1.

In fact, we can further assume that Z is given in the local coordinates x1, . . . , xn by the equations

xk+1 = · · · = xn = 0. Since each of the Rn factors intervening in the domains of F and F̃ are to be
interpreted as the tangent space of M at a point of Z, we parametrize them with the coordinates

v1, . . . , vn, w
(1)
1 , . . . , w

(1)
n and w

(2)
1 , . . . , w

(2)
n respectively, all thought of as being ‘the same as’ the

coordinates x1, . . . , xn. For this reason, for p ∈ Z, TpZ is given in each of the three R
n by setting

the last n − k coordinates equal to 0, e.g., TpZ is given in the first Rn factor by the equations
vk+1 = · · · = vn = 0.

By the assumptions on F , we have that F (1)(x, v) =
∑n

j=k+1 fj(x)vj for some smooth functions

fj : Z → R. It is convenient to set fj = 0 for 1 ≤ j ≤ k. Similarly, we have F (2)(x,w(1), w(2)) =∑n
r,s=1 frs(x)w

(1)
r w

(2)
s for some smooth functions frs : Z → R. Moreover, since F̃ is a holonomic

2-jet extension of F , for all 1 ≤ r, s ≤ n, we have frs = fsr and frs(x) = (∂xr
fs)(x).

(i) frs = fsr for all 1 ≤ r, s ≤ n;
(ii) frs(x) = (∂xr

fs)(x) for all 1 ≤ r ≤ k and 1 ≤ s ≤ n.

It follows in particular that frs = 0 for r, s ≤ k.
Now, for each multi-index α = (α1, . . . , αn), we select a function fα : Z → R as follows (we use

the notations |α| =∑n
i=1 αi, α≤k = (α1, . . . , αk, 0, . . . , 0) and α>k = (0, . . . , 0, αk+1, . . . , αn)):

(1) For α = (0), f(0) = 0.
(2) When |α| = 1: for α(j) = (α(j)i)1≤i≤n where α(j)i := δji (the Kronecker delta) and

1 ≤ j ≤ n, we set fα(j)
(x) := fj(x).

(3) When |α| = 2: for α(rs) := α(r) + α(s) where 1 ≤ r, s ≤ n, we set fα(rs)
(x) := frs(x) =

fsr(x).
(4) When |α| ≥ 3: if |α|≤k = 0, we may pick any function for fα, say fα = 0; otherwise, we

set fα = ∂α≤k
fα>k

.

We observe that the identity fα = ∂α≤k
fα>k

holds in fact for every α, and that fα = 0 identically
on Z whenever α>k = (0).



REMARKS ON J-TAME INFLATION 19

We claim these choices satisfy Condition 7.1. Indeed, since we need to consider points x, y ∈
K ⊂ Z, the product (x− y)β vanishes whenever β>k = (0). Hence, for any α, any integer m ≥ 0
and any compact set K ⊂ Z, it holds that

fα(x) = (∂α≤k
fα>k

)(x)

=
∑

|β|≤m,β>k=(0)

1

β!
(∂α≤k+βfα>k

)(y)(x − y)β + o(|x− y|m)

=
∑

|β|≤m,β>k=(0)

1

β!
fα+β(y)(x− y)β + o(|x − y|m)

=
∑

|β|≤m

1

β!
fα+β(y)(x− y)β + o(|x − y|m)

uniformly as |x−y| → 0 with x, y ∈ K, where the second equality follows from Taylor’s theorem and
the last equality follows since the product (x−y)β vanishes whenever β>k 6= (0) and x, y ∈ K ⊂ Z.

Hence Condition 7.1 is fully established. Theorem 7.4 thus implies the existence of a smooth
function f : V → R that vanishes on Z and whose differential along Z equals F .

Step 2 - Global existence. For each p ∈ Z, consider a small open set Vp centered at p as in
Step 1 and denote fp : Vp → E the corresponding local solution. Since Z is compact, there is a
thin compact neighborhood Z ′ ⊃ Z covered by sets V1 := Vp1 , . . . , Vm := Vpm , and the collection
V := (V0 := M \ Z ′, V1, . . . , Vm) is a finite open cover of M . Let (χ0, χ1, . . . , χm) be a smooth
partition of unity subordinated to V ; we note that

∑m
j=1 χj(x) = 1 on Z ′.

Define the smooth section f : M → E by f(x) :=
∑m

j=1 χj(x)fj(x). It clearly vanishes on Z.
By Step 1, at each point p ∈ Z, the 2-jets of the functions fj defined at this point are all equal.
Hence, for p ∈ Z, we compute in any chart containing p:

dfp =

m∑

j=1

[d(χj)p fj(p) + χj(p) d(fj)p] =

m∑

j=1

[0 + χj(p)Fp] = Fp ,

and similarly

d2fp =

m∑

j=1

[d2(χj)p fj(p) + 2d(χj)p d(fj)p + χj(p) d
2(fj)p]

=
m∑

j=1

[d2(χj)p 0 + 2d(χj)p Fp + χj(p)F
(2)
p ] = F (2)

p .

This proves the existence of a section f extending the given holonomic 2-jet data along Z.

Step 3 - C0 and C1 control. Replacing f by its multiplication with a bump function that equals
1 in a neighborhood of Z and that is supported in a thin tubular neighborhood of Z, we may
ensure that f is supported in any neighborhood U ⊃ Z. Furthermore, since f vanishes on Z and
Z is compact, by taking U thin enough, f can be made arbitrarily C0-small.

To prove the last claim, fix some metrics on M and E and consider the corresponding metric
connection ∇. Define

K := max
p∈Z

max
v∈TpM , ‖v‖=1

‖F (p, v)‖ .

For p ∈M , let r(p) := dist(p, Z) denote the geodesic distance from p to Z.
Fix an extension f of F as given above and consider the tubular neighborhood U of Z of geodesic

radius R. Since M is compact and f is smooth, there exists C > 0 such that ‖(∇vf)(p)‖ ≤
K + Cr(p) for all p ∈ M and for all v ∈ TpM of norm 1. Hence, by taking R small enough and
since f vanishes on Z, we obtain that ‖f(p)‖ ≤ 2Kr(p) for all p ∈ U . For later convenience, we
shall also assume that R < K/C.

Let ρ : [0,+∞) → [0, 1] be a smooth non-increasing function supported in [0, R] such that
ρ = 1 near 0 and which is approximately affine on [0, R], so that |ρ′(x)| < 2/R. Then the function



20 P. CHAKRAVARTHY, J. PAYETTE, AND M. PINSONNAULT

f̃(p) := ρ(r(p))f(p) still extends F as in the Lemma and is supported in U . Moreover, given p ∈ U
and v ∈ TpM of norm 1, we estimate

‖(∇f̃p)(v)‖ ≤ |(dρ)p(v)| ‖f(p)‖+ |ρ(p)| ‖(∇vf)(p)‖
≤ (2/R) 2Kr(p) + (K + Cr(p)) ≤ 5K + CR ≤ 6K .

This proves that if F is close to the zero morphism, i.e if K is small, then there exists an extension
f̃ of F which is comparably C1-small over the whole of M . �
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