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Abstract

Video Anomaly Detection (VAD), aiming to identify ab-
normalities within a specific context and timeframe, is cru-
cial for intelligent Video Surveillance Systems. While recent
deep learning-based VAD models have shown promising re-
sults by generating high-resolution frames, they often lack
competence in preserving detailed spatial and temporal co-
herence in video frames. To tackle this issue, we propose
a self-supervised learning approach for VAD through an
inter-patch relationship prediction task. Specifically, we in-
troduce a two-branch vision transformer network designed
to capture deep visual features of video frames, address-
ing spatial and temporal dimensions responsible for mod-
eling appearance and motion patterns, respectively. The
inter-patch relationship in each dimension is decoupled into
inter-patch similarity and the order information of each
patch. To mitigate memory consumption, we convert the
order information prediction task into a multi-label learn-
ing problem, and the inter-patch similarity prediction task
into a distance matrix regression problem. Comprehensive
experiments demonstrate the effectiveness of our method,
surpassing pixel-generation-based methods by a significant
margin across three public benchmarks. Additionally, our
approach outperforms other self-supervised learning-based
methods.

1. Introduction
The Intelligent Video Surveillance System is designed

to identify anomalous objects in real-time, encompassing
both anomalous activities and anomalous entities. Anoma-
lous objects are generally recognized as those significantly
deviating from other objects within a specific environment.
The demarcation between normal and abnormal objects is
contingent on the context and subjects involved. Video
Anomaly Detection (VAD) specializes in this task, serv-
ing as a pivotal component of an Intelligent Video Surveil-
lance System. As the volume of video data continues to
exponentially increase across diverse scenarios, VAD as-

sumes a critical role in the realms of computer vision and
pattern recognition. The advent of deep learning has led
to substantial advancements in VAD. However, challenges
persist due to the scarcity of anomalous activities, result-
ing in anomaly detection datasets containing far fewer pos-
itive samples (anomalies) than negative samples. Further-
more, some abnormal events may remain incompletely un-
derstood, even after their occurrence.

To enhance the anomaly perception of VAD models, pre-
vious studies propose to transform the anomaly detection
task into a high-resolution frames generation task. These
methods fall into two main categories based on the gen-
erated content: reconstruction-based and prediction-based
models. As its name implies, reconstruction-based VAD
methods focus on recovering input frames using generative
models. In this approach, frames with high reconstruction
errors are identified as anomalies during the inference stage.
On the other hand, prediction-based VAD methods consider
the temporal coherence between video frames. During the
training stage, they aim to generate the frame at time t us-
ing the preceding t − 1 frames of a video sequence. In the
inference process, anomalies are detected by examining the
difference between the predicted and actual frames.

The aforementioned generation-based VAD methods ex-
hibit promising performance. However, their effective-
ness is constrained by their exclusive emphasis on the low-
level pixel information of video frames, neglecting their
high-level features. Additionally, the exceptional gener-
alization ability of deep learning-based models results in
well-reconstructed or predicted frames containing anoma-
lous objects. To overcome these limitations, we introduce
a novel method that leverages spatio-temporal coherence
within video frames as the cornerstone for anomaly detec-
tion.

Specially, we design a inter-patch relationship prediction
task as the self-supervised learning objective for VAD.

In this paper, we aim to design a more effective method
that can reduce the impact of problems such as model over-
fitting and closed world, while also modeling the deep con-
textual spatio-temporal information of events to improve the
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Figure 1. The extraction process of a STC and the dividing process
of spatial and temporal cubes.

accuracy of VAD. Inspired by [14], we propose a novel self-
supervised learning method for VAD, by solving the ran-
dom spatio-temporal patche order predicting pretext task.
More specifically, we will divide the spatio-temporal cubes
(STCs) extracted by the object extractor into patches, and
then embed a random order of position encoding. The
model will accomplish this by performing a self-supervised
task of predicting the correct order, facilitating the mod-
eling of events. This challenging self-supervised task has
the potential to empower the model to learn deep features
of videos and capture spatio-temporal relations, thereby ad-
dressing the challenges mentioned above.

To achieve it, we propose a Patche Spatio-Temporal Re-
lation Prediction method (PSTRP) based on the two-stream
Vision Transformer (ViT) [5] for VAD. we use the rear-
ranged positions of shuffled ViT patches as labels for the
self-supervised task, as illustrated in Figure 2. The model
outputs an order prediction matrix, as shown in Figure 3.
The two-stream ViT structure of PSTRP can learn the spa-
tial and temporal information of STC respectively through
the patche order prediction task. At the same time, we use
the designed distance constraint module to enable the model
to predict the relations between patches at the same time, so
that the model can learn spatio-temporal context features.

Our contributions are summarized as follows:
• PSTRP simultaneously integrates appearance and mo-

tion features to enhance the dataset for object-level
anomaly detection, and address the issue of model
false negatives.

• PSTRP is the first to design a video jigsaw task tailored
for ViT. It trains ViT to predict patche order, replacing
reconstruction or frame prediction-based methods.

• PSTRP introduces the distance constraint module to
constrain the model in learning richer spatio-temporal
information, which further enhances the novelty of
anomaly detection.

2. Related Work

In recent years, there have been numerous contributions
in the field of deep learning for Video Anomaly Detec-

tion [1,3,7,9,20,25,27,29–31,35,37–41,43,44,46,48,49].
These contributions can be broadly categorized into three
parts: Reconstruction-Based VAD, Prediction-Based VAD
and Self-Supervised Learning VAD.

2.1. Video Anomaly Detection.

With the development of deep learning, deep learning-
based methods have achieved extraordinary results in var-
ious fields [11, 16, 34, 36]. Deep learning is also used for
video anomaly detection. The main difference between
deep learning-based VAD and classical VAD lies in the
fact that deep learning-based methods support end-to-end
learning. The entire network can be trained at once, al-
lowing for a more direct learning of task-related represen-
tations from raw data. Existing deep learning-based meth-
ods are typically categorized into the following two types.
Reconstruction-Based Method. The reconstruction-based
method involves training the model to learn representations
of normal video behavior and using these representations
for the reconstruction of video frames. Hasan et al. [10] uti-
lized the extracted features as input to a fully connected neu-
ral network-based autoencoder to learn the temporal regu-
larity in the video. Cong et al. [4] utilized sparse coding and
dictionary learning methods to detect abnormal events by
modeling normal behavior. Gong et al. [9] used a memory-
augmented autoencoder (MemAE) to improve the perfor-
mance of the autoencoder based unsupervised anomaly de-
tection methods.
Prediction-Based Method. Methods of this kind utilize
Deep Neural Networks to predict future frames, inter-frame
relations, or other tasks, enabling the model to learn the
spatio-temporal relations within the video. Anomalies in
the video may lead to an increase in prediction errors. In
pioneering works such as Liu et al. [18], network is trained
to predict future video frames. During the prediction phase,
anomalies are detected by contrasting the predicted frames
with the actual frames. Huang et al. [12] presents a frame-
work of appearance-motion semantics representation con-
sistency that uses the gap of appearance and motion se-
mantic representation consistency to detect anomalies.Cao
et al. [2] propose a novel two-stream framework, which de-
tects the abnormal events by context recovery and knowl-
edge retrieval.

2.2. Self-Supervised Learning Methods.

Self-supervised learning is a technique in which a net-
work learns to model data by completing a pretext task with
automatically generated labels. Some existing VAD works,
such as [46], adopt the close test as the pretext task for mod-
eling features by training Deep Neural Networks to infer de-
liberately erased patches from incomplete video events. [7]
employs multi-task self-supervised learning to enhance the
learning of various feature types, including the arrow of
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Figure 2. The framework of PSTRP. STC is divided into small patches spatially and temporally. After passing through embedding layer,
randomized positional coding are embedded to these patches (The correct position order is determined by the order of colors from darkest
to lightest). One vision transformer is dedicated to spatial patch order prediction and appearance feature learning (the upper transformer
encoder module), while another is focused on temporal patch order prediction and motion feature capturing (the transformer encoder
module in the lower part). The predictions of the model indicate the anomaly scores.

time, motion irregularity, and knowledge distillation task.
Difference from these existing self-supervised learning

based methods, we propose a novel approach for anomaly
detection. Our method utilizes a patch relation prediction
pretext task tailored for Vision Transformer. Unlike lo-
cal perception in traditional DNNs, our method leverages
the global perception capabilities of ViT, allowing for bet-
ter understanding of the overall structure when dealing with
the entire STC. The model learns to model appearance and
motion information of the video by capturing features from
patches cut in different ways. Additionally, we introduce a
distance constraint module such that our method can learn
deep video features and temporal relations.

3. Method

In the realm of unsupervised Video Anomaly Detection,
the majority of approaches are focused on crafting mod-
els that characterize normal behavior, utilizing deviations
as criteria for identifying anomalies. In our pursuit of a
more advanced video modeling approach, we draw inspira-

tion from [14] and propose a self-supervised task based on
ViT patch order prediction. Specifically, we temporaly and
spatialy divide the detected STC pass these divided patches
through the embedding layer. Random positional embed-
dings are then added to these patches, and then train the
model to distinctly capture the spatio-temporal features of
events and accurately predict patch order. This pretext task
proves to be more challenging, thereby enabling better mod-
eling of both the temporal and spatial features of the video
and providing greater global awareness compared to con-
ventional Deep Neural Networks (DNNs). This enhanced
understanding facilitates a more comprehensive grasp of the
global spatio-temporal structure within the video.

3.1. Overview

The proposed PSTRP model consists of three major
components: the object extraction module, order prediction
module, and distance constraint module. As illustrated in
Fig. 2, the object extraction module is utilized to extract
Regions of Interest (ROIs) from each frame of the video.
Subsequently, according to the positions of the ROIs in
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each frame, the patches in the same position of i frames
before and after are cropped to form STCs. These STCs
are then spatially and temporally sliced to generate inputs
for the order prediction module. Following the embedding
layer, these patches will be embedded with randomized po-
sitional coding. PSTRP is designed as a two-stream ViT,
with one ViT dedicates to spatial patch order prediction and
appearance feature learning. Another one focuses on tem-
poral patch order prediction and motion feature modeling.
Throughout training, ViT is optimized to minimize predic-
tion errors. Distance constraints are also incorporated to
require ViT predicting correct inter-patch relations simulta-
neously, thereby the model is constrained to learn accurate
spatio-temporal context information. The model’s predic-
tions serve as anomaly scores. During the inference phase,
the model is tasked with predicting the order of patches
based on the input STC. When the STC contains normal
events, the model exhibits high prediction accuracy. How-
ever, its performance deteriorates significantly in the pres-
ence of anomalies. This results in small prediction errors for
normal samples and significant errors for anomalies, which
are then used as a criterion for anomaly detection.

3.2. Event extraction

Object-level anomaly detection offers a promising solu-
tion for addressing challenges associated with submerged
anomalous objects [8, 12, 33, 46]. However, concerns arise
about potential omissions of anomalous events by the model
due to the incompleteness of object detection, especially
when anomalous objects are not represented in the set of
object categories provided in the training dataset.

To address this concern, we adopt the object extraction
method proposed by [42]. Firstly, we employ the YOLOv3
[32] model pre-trained on the COCO dataset [17] to extract
ROIs from the video frames, which represent appearance
ROIs. Simultaneously, we compute the gradient difference
between neighboring frames to obtain action ROIs. Con-
catenating the sets of these two types of ROIs by the ex-
traction operation mentioned in [42] , the final video frames
that encapsulate spatio-temporal ROIs information can be
obtained. Following this, for the tth frame, we crop patches
of i frames before and after at the same positions of its ROIs
and resized to a same size to form the STCs. This process
yields an STC of length 2i + 1, serving as an input to the
model.

3.3. Patch spatio-temporal relations prediction

For self-supervised learning, we designed two types of
pretext tasks based on ViT patches. The patch order pre-
diction module is designed to capture the deep feature from
video. The distance constrain module is designed to learn
the correct patch spatio-temporal relation. Next, we will
introduce these two parts in detail.
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Figure 3. Relation matrix.

Patch order prediction module. We partition the STC
along both spatial and temporal dimensions to derive spatial
patches and temporal patches separately. Specifically, for a
given input STC of size L × C × W × H (where L is the
length of the frame sequence, C is the channel number), it
can be divided into n2

s spatial patches of size L×C×W
ns

× H
ns

and nt temporal patches of size 1 × C × W × H . Here,
nt = L. Subsequently, the obtained spatial patches and
temporal patches are gone through the embedding layer for
random positional encoding. We utilize this spatio-temporal
position order as the order labels s and t for the patch order
prediction task. The encoded temporal patches and spatial
patches are separately fed into a two-stream Vision Trans-
former, where one stream predicts the correct spatial order,
and another one predicts the temporal order of the patches.
The output consists of patch order prediction matrices MS

and MT , which can effectively transfer a sorting task into
a classification task. In Fig. 3(a), we show an n × n patch
order prediction matrix, n ∈ [2ns, nt] (the size is deter-
mined according to the values of ns and nt in the specific
task, here we show the case of n = 4). For example, pA,2

denotes the probability that the positional encoding of the
patch A is 2. Here, A corresponds to the spatio-temporal
cube in Fig. 1, which is divided by STC in the temporal or
spatial dimensions.

We employ cross-entropy loss for the order prediction
task in the training process:{

LS = CE(MS , s)

LT = CE(MT , t)
, (1)

where M represents the patch order prediction matrix. s
and t represent the labels of the patches’ order.

By completing the spatio-temporal patch order predic-
tion task, the model can capture the deeper spatio-temporal
features of videos, which will be more helpful to improve
the anomaly detection accuracy.
Distance constraint module. To enhance the performance
of the model, especially for the more challenging task of
predicting the order of patches, we introduce a distance con-
straint module in this paper. In simpler terms, to handle
more complex tasks effectively, we designed this module to
guide the encoder in learning the accurate relations among
patches. For spatial patches, we quantify the relations dis-
tance by computing the sum of Canberra distances between
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edge vectors in each direction. This approach provides a
representation of the distance between patches. For tem-
poral patches, we employ the cosine distance to depict the
correlation between them. A smaller distance in this con-
text implies a stronger correlation between patches, indicat-
ing a higher likelihood that they form a neighboring pair.
For a given STC, we establish two patch relation matrices
Dcanberra and Dcosine to store the canberra distance and
cosine distance between patches, respectively, as shown in
Figure 3(b). For example, d1,2 represents the distance value
between patch 1 and patch 2. The size is as same as the
patch order prediction matrix. Obviously, D is a symmet-
ric matrix, and the elements on the diagonal are all zeroes.
The two types of relation matrices shown in Figure 3 jointly
supervise the model to learn the correct patches’ relations.
The algorithm for calculating the inter-patch relation ma-
trices Dcanberra and Dcosine are shown in Alg. 1, where

c(pi, pj) = pi(h, 1, c)− pj(−h, 1, c), (2)

di,j =

4∑
h=1

3∑
c=1

|c(pi, pj)|
|pi|+ |pj |

, (3)

di,j =
pi · pj

|pi| · |pj |
. (4)

During the training process, the matrices Dcanberra and
Dcosine serve as labels for predicting inter-patch relations.
Consequently, the model is trained to capture depth rela-
tions information within the spatio-temporal context in both
spatial and temporal dimensions. This enables the model to
effectively model the spatio-temporal context relations in-
herent in the video data. For relation prediction, we use the
L2-norm loss function:

LCan =
∥∥∥D̂Canberra −DCanberra

∥∥∥2
2

LCos =
∥∥∥D̂Cosine −DCosine

∥∥∥2
2

, (5)

where D represent the inter-patch relation matrix. And then
the total loss function can be established as follows.

L = λsLS + λtLT + λcanLCan + λcosLCos, (6)

where λ denotes the weight of each loss function.

3.4. Anomaly Detection on Testing Data

When identifying anomalies, our approach aligns with
[38]. By ensuring the minimum values are on the diagonal,
we utilize the patch order prediction matrix to derive the
object-level regularity scores rs and rt, as follows:{

rs = min(diag(Ms))

rt = min(diag(Mt))
. (7)

Algorithm 1 Framework of ensemble learning for our sys-
tem.
Require:

Spatio-Temporal Object Cubes
Ensure:

Dcanberra, Dcosine

1: Divide the object cubes into spatial and temporal
patches of equal size, following the same procedure as
the patch order prediction module;

2: Create a Canberra distance matrix Dcanberra to
establish pairwise correspondences between spatial
patches. Additionally, establish a cosine distance ma-
trix Dcosine for pairwise correspondences between
temporal patches;

3: For each pair of spatial patches, calculate the edge vec-
tor pi in the direction h of the vector patch i, and sub-
tract the edge vector pj in the opposite direction −h
of the spatial patch j. Determine the magnitude of the
difference c(pi, pj) by the Equation 2 in that direction;

4: Calculate the correlation distance di,j using Equation
3 for pairs of spatial patches in each of the four direc-
tions (up, down, left, right). After computing all possi-
ble combinations of spatial patch pairs, obtain the inter-
patch relation matrix Dcanberra;

5: Treat each pair of temporal patches as calculation vec-
tors pi and pj and calculate the correlation distance di,j
using Equation 4 for the pair of temporal patches. After
computing all possible combinations of temporal patch
pairs, obtain the inter-patch relation matrix Dcosine;

6: return Dcanberra, Dcosine.

Hence, if the model predicts a position label incorrectly, the
corresponding regularity score for that object will be small.
Subsequently, we compute the frame-level regularity scores
Rs and Rt by selecting the minimum value of the regularity
scores across all objects in the frame:{

Rs = min(rs1, rs2, ...)

Rt = min(rt1, rt2, ...)
. (8)

This implies that the presence of just one anomalous ob-
ject in a video frame will directly impact the regularity score
for that frame. In line with [6,38,44], we proceed to normal-
ize the irregularity scores for all frames within each video:{

Rs =
Rs−min(Rs)

max(Rs)−min(Rs)

Rt =
Rt−min(Rt)

max(Rt)−min(Rt)

. (9)

The regularity scores obtained from the two streams
(spatial patch order prediction and temporal patch order pre-
diction) are weighted and combined through summation to
yield the ultimate regularity score R:

R = ωs ∗Rs + ωt ∗Rt. (10)
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Here, ωs and ωt are set to 0.5 to ensure that both predic-
tion tasks equally contribute to the global regularity score.
Consequently, if either of the prediction tasks is not per-
formed accurately, it has an impact on the overall regularity
score.

The ultimate anomaly score S is then calculated as fol-
lows:

S = 1−R. (11)

4. Experiment

4.1. Datasets

Our experiments were carried out on three public video
anomaly detection datasets. Both training and testing sets
are defined for each dataset, with anomalous events ex-
clusively included during testing. It is noteworthy that all
datasets were gathered outdoors.
UCSD Ped2. [26] The Ped2 dataset comprises 16 normal
training videos and 12 test videos at a resolution of 240 ×
360 pixels. The videos are captured from a fixed scene with
a camera positioned above and pointed downward. Training
video clips exclusively feature normal pedestrian behavior,
such as walking. Abnormal events in the dataset include
instances of bikers, skateboarding, and cars.
CUHK Avenue. [21] The Avenue dataset includes 16 nor-
mal training videos and 21 test videos at a resolution of
360 × 640 pixels. The videos are collected from a fixed
scene using a ground-level camera. The training video clips
contain only normal behavior, while abnormal events en-
compass activities like throwing objects, loitering, running,
movement in the wrong direction, and the presence of ab-
normal objects.
ShanghaiTech Campus. [19] The ShanghaiTech dataset
stands out as the largest publicly available dataset for Video
Anomaly Detection. It consists of 330 training videos and
107 test videos from 13 different scenes, all at a resolution
of 480 × 856 pixels. This dataset presents challenges with
complex light conditions and camera angles. Anomalies
within the dataset encompass robberies, jumping, fights, car
invasions, and bike riding in pedestrian areas.

4.2. Implementation Details

We utilize YOLOv3 pretrained on COCO for extracting
object bounding boxes with the object extraction module.
To exclude objects with low confidence levels, we adopt
the configurations, for Ped2, Avenue, and ShanghaiTech
datasets, we set confidence thresholds of 0.5, 0.8, and 0.8,
respectively. These confidence thresholds remain consistent
across both the training and test sets.
Evaluation Metrics. Following the widely used evaluation
metrics in the field of VAD, we concatenate all the frames
in dataset and compute the overall frame-level Area Under

the Receiver Operating Characteristic curve (AUROC) to
evaluate the performance of our proposed method.
Training Details. In the training phase, we resize each ob-
ject’s ROI to a size of 64× 64, while ensuring that the pixel
values in all frames are normalized to the range [0, 1]. Our
method achieves optimal results with L = 7 on Ped2 and
Avenue, and L = 9 on STC. For the weights of the loss
function, we set λs = λt = 1 and λcan = λcos = 0.1. The
regularity score weights are established as ωs = ωt = 0.5.
We employ the Adam optimizer [15] for training, with
weight decay and settings β1 = 0.9 and β2 = 0.99. The
initial learning rate is set to 1× 10−4 for Ped2 and Avenue,
and 2 × 10−4 for ShanghaiTech. Training epochs are con-
figured at 50, 100, and 100 for Ped2, Avenue, and Shang-
haiTech, respectively, with a batch size of 96. The model is
trained on a single NVIDIA RTX 3090 GPU.

4.3. Experimental Results

To verify the effectiveness of our proposed PSTRP
framework for video anomaly detection, we compare it
against various state-of-the-art methods on three bench-
mark datasets. Table 1 illustrates the performance of our
method on Avenue achieving state-of-the-art results com-
pared to other methods. This demonstrates the sensitivity
to abnormal events and the superior ability of our method
to detect the anomaly in video. For the Ped2 and Shang-
haiTech datasets, although our method did not achieve the
best performance, it still outperforms the vast majority of
existing methods. We also have conducted an analysis to
understand these results. These datasets are characterized
by a larger volume, encompassing a broader spectrum of
anomaly event types, and featuring more complex and di-
verse moving objects. In Section 4.4, our ablation experi-
ments on the depth of the Vision Transformer used in our
approach suggest that increasing the depth has the potential
to further enhance the model’s performance. In the future,
we can try to continue to improve the performance of our
model by increasing the size of ViT.

4.4. Ablation Study and Analysis

Ablation analysis for various units. To validate the per-
formance enhancement of the object optimization module
and distance constraint module in video anomaly detection,
we conducted several sets of ablation experiments to indi-
vidually assess their effectiveness. First, we conducted ab-
lation experiments to assess the effectiveness of the object
detection optimization module and the distance constraint
module. The results are presented in Table 2. The findings
in Table 2 indicate that incorporating the distance constraint
module alone leads to an improvement in our method, with
performance enhancements of 1.4%, 1.3%, and 2.1% on the
three datasets, respectively. This suggests that refining mo-
tion object detection is effective in enhancing the accuracy
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Figure 4. Illustrations of anomaly score that denotes the reconstruction error in Ped2, Avenue and SHTech datasets. Orange region in graph
denotes the time sequences that abnormal situation exists in video frames. As shown in graph, anomaly scores (Red curve) dramatically
increase with the high reconstruction error when the abnormal frames start.

Methods Ped2 Avenue SHTech

O
th

er
s

AnomalyNet [49] 94.9 86.1 N/A
SCL [22] N/A 80.9 N/A
Unmasking [13] 82.2 80.6 N/A
DeepOC [41] 96.9 86.6 N/A
Scene-Aware [35] N/A 89.6 74.7
MPED-RNN [27] N/A N/A 73.4

R
ec

on
st

ru
ct

io
n

Conv-AE [10] 90.0 70.2 60.9
ConvLSTM-AE [23] 88.1 77.0 N/A
MemAE [9] 94.1 83.3 71.2
Stacked RNN [24] 92.2 81.7 68.0
MNAD [30] 90.2 82.8 69.8
AMC [29] 96.2 86.9 N/A
CDDA [3] 96.5 86.0 73.3
Zhong et al. [48] 97.7 88.9 70.7

Pr
ed

ic
tio

n

FFP [18] 95.4 84.9 72.8
AnoPCN [44] 96.8 86.2 73.6
AMMC-Net [1] 96.9 86.6 73.7
MNAD [31] 97.0 88.5 70.5
ROADMAP [39] 96.3 88.3 76.6
MPN [25] 96.9 89.5 73.8
DLAN-AC [43] 97.6 89.9 74.7

H
yb

ri
d

ST-CAE [47] 91.2 80.9 N/A
MPED-RNN [28] N/A N/A 73.4
AnoPCN [45] 96.8 86.2 73.6
IntegradAE [37] 96.8 86.2 73.6
HF2-VAD [20] 99.3 91.1 76.2
VEC-A [46] 96.9 90.2 74.7
VEC-AM [46] 97.3 89.6 74.8

SS
L CAC [40] N/A 87.0 79.3

SS-MTL [7] 97.5 91.5 82.4
Jigsaw* [38] 98.2 91.6 83.4
PSTRP 98.7 92.5 80.4

Table 1. AUROC(%) performance on Ped2, Avenue, and Shang-
haiTech datasets. Results marked with * are reproducible results
under the same computational conditions as our method (RTX
4090).

of video anomaly detection. When the object detection op-
timization module is added alone, the model’s performance
improves by 0.2%, 2.4%, and 1.9%, indicating that the ob-

OPT DCS Ped2 Avenue SHTech
× × 96.0 88.9 77.9
× ✓ 97.4(+1.4) 90.2(+1.3) 80.0(+2.1)
✓ × 96.2(+0.2) 91.3(+2.4) 79.8(+1.9)
✓ ✓ 98.7(+2.1) 92.5(+3.6) 80.4(+2.5)

Table 2. Ablation studies of each component in our PSTRP on
three benchmarks. (OPT: object optimization, DCS: distance con-
straint)

ject detection optimization module positively influences the
model in correctly learning the spatio-temporal relations of
the patches. This enables the model to capture deep spatio-
temporal features. Combining both modules results in the
best performance, the effectiveness of our added modules is
demonstrated through ablation learning. This enhancement
allows the model to learn deep features and spatio-temporal
relations within the video data.
Various pretext tasks For various combinations of the
number of patches, we define a range of pretext tasks and
conduct experiments on three benchmark datasets. Table
3 presents the results. It can be seen that for the tempo-
ral order prediction, Ped2 and Avenue exhibit the best per-
formance at T = 7, while SHTech performs optimally at
T = 9. In terms of the spatial order prediction, Avenue
achieves its peak performance at S = 16, while the opti-
mal performance is observed at S = 16 and S = 9 for
Ped2 and SHTech, respectively. Simultaneously, it is no-
table that the model’s performance gradually improves with
the incremental increase of T and S initially. However, the
model encounters challenges in adaptation when the num-
ber of patches reaches a certain level due to the complexity
introduced by the increased patches.

Size of backbone We also compare the performance among
backbones of different sizes. As shown in Table 4, we
employ ViT-B, ViT-L, and ViT-H as the backbone for our
anomaly detection method on the three benchmark datasets,
respectively. The experimental results indicate that as the
size of ViT gradually increases, the AUROC also shows a
gradual improvement. Due to the memory limitations of
the graphics card, we did not test with a larger scale of ViT.
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Task T S Ped2 Avenue SHTech
1 5 4 93.1 86.4 74.9
2 5 9 95.7 90.8 78.2
3 7 4 96.2 88.5 77.5
4 7 9 98.7 91.6 79.3
5 7 16 95.2 92.5 76.9
6 9 9 96.7 89.3 80.4
7 9 16 94.3 90.1 76.0

Table 3. Performance in terms of AUROC(%) was evaluated
across three datasets for varying combinations of patches quan-
tities.

Backbone Ped2 Avenue SHTech
ViT-B/64 96.1 88.9 73.6
ViT-L/64 98.3 90.0 78.5
ViT-H/64 98.7 92.5 80.4

Table 4. AUROC performance (%) on different sizes of ViT back-
bones.

However, we infer that the performance of our method can
be further enhanced by continuing to increase the size of the
backbone.

4.5. Qualitative Results

In Fig. 4, we visualise the anomaly scores obtained
for videos containing anomalies detected by our method.
We evaluate the consistency between the model’s anomaly
scores and the ground truth on the UCSD Ped2 and CUHK
Avenue and Shanghai Tech datasets. Specifically, we eval-
uated the model’s ability to detect cars entering and exiting
the field of view in UCSD Ped2, and people with anoma-
lous behaviours in CUHK Avenue, as well as the ability
to detect cyclists riding on the pavement in Shanghai Tech.
The results from Fig. 4 show that the anomaly scores show
a sharp increase when anomalous behaviours are present,
whereas the anomaly scores show low values in the time in-
terval without anomalies, which suggests that our method
is capable of identifying a wide range of anomalies and is
highly robust to anomalous behaviour recognition. Also, it
shows that our method is highly sensitive to the occurrence
of anomalies and is capable of accurately detecting the in-
tervals of anomaly events.

5. Conclusions
In this paper, we introduced a novel self-supervised

learning method based on the pretext task of predicting the
patch spatio-temporal order. To achieve this, we proposed
a model called PSTRP based on a two-stream vision trans-
former for video anomaly detection. Object detection op-
timization, as well as distance constraints modules, were
incorporated to enable the model to capture deep video

features and spatio-temporal relations, which can distin-
guish abnormal situations from complex environments and
moving objects. Extensive experiments on three datasets
demonstrated the effectiveness of our method, showcasing
competitive performance.
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