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Abstract

Addressing the limitation of context length in
large language models for code-related tasks is
the primary focus of this paper. Existing LLMs
are constrained by their pre-trained context
lengths, leading to performance issues in han-
dling long complex code sequences. Inspired
by how human programmers navigate code, we
introduce Hierarchical Rotary Position Embed-
ding (HiRoPE), a novel approach that enhances
the traditional rotary position embedding into
a hierarchical format based on the hierarchical
structure of source code. HiRoPE offers easy
integration into existing LLMs without extra
training costs. Our method is extensively eval-
uated with various LLMs, demonstrating stable
performance in tasks such as language model-
ing and long code completion. We also intro-
duce a new long code understanding task with
real-world code projects, in hopes of promoting
further development in this code-related field.
Theoretically and experimentally, we find that
HiRoPE also addresses the out-of-distribution
issue in position encoding. Our HiRoPE signif-
icantly expands the context length capabilities
of LLMs, enabling inference at lengths expo-
nentially greater than the training length.

1 Introduction

Large language models (LLMs) such as LLaMA-2
(Touvron et al., 2023b), and CodeLLaMA (Rozière
et al., 2023) have achieved significant performances
in code-related tasks. These Transformer-based
models excel in code comprehension and genera-
tion but face a notable challenge: the limitation
of maximum context length. LLMs are typically
pre-trained with a context length ranging from 2k
to 16k tokens, which often proves insufficient for
complex, extended source code. Exceeding this
length limitation during inference may lead to per-
formance degradation for these code models, par-
ticularly in tasks like project-level code completion
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Traditional Position Index

The token at position 10000

(…preceding tokens…) return a + b
idx=10000
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The token, in the 9th function,
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def func9()…
return a + b

9th function

10000th token

10000th token

def func1()…

Figure 1: Illustration of the hierarchical position in
source code, such as function-level and token-level po-
sitions. We also show a simplified abstract syntax tree
of the code in the bottom left corner.

or long code generation.
Various methods have been developed to extend

the context window of LLMs. Some approaches
involve fine-tuning on extensive texts (Xiong et al.,
2023; Chen et al., 2023b,a; Peng et al., 2023),
which can be resource-intensive and potentially
lead to overfitting and loss of performance on
shorter sequences. There are also some training-
free methods (Xiao et al., 2023; Han et al., 2023;
Ding et al., 2023). However, these methods usually
use window attention rely on local information, and
ignore the long dependency in code. It is essential
to incorporate certain structural characteristics of
the code into position encoding to efficiently model
these long-distance code dependencies.

Our work diverges from these methods by fo-
cusing on the hierarchical information of source
code in position encoding, inspired by how human
programmers navigate code. Traditional positional
encoding uses token counts for positioning, and
treats code as plain text. However, human pro-
grammers often use hierarchical information in the
code, representing positions in the code efficiently
through multi-level hierarchical positions. We pro-
pose a hierarchical position approach that identifies
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token positions within specific levels, such as func-
tions or statements. Figure 1 shows the comparison
of the traditional position and our hierarchical po-
sition. It is clear that the hierarchical positional
encoding, benefiting from the full utilization of
structural information in the code, can more con-
veniently locate positional information within long
code sequences. This method could more effec-
tively model long dependencies in source code.

Following such inspirations, we introduce a
novel approach, Hierarchical Rotary Position Em-
bedding (HiRoPE), which enhances the popular
rotary position embedding (RoPE) (Su et al., 2024)
into a hierarchical format. HiRoPE differentiates
itself by extracting hierarchical information from
the source code and splitting the RoPE dimension
to represent different hierarchical levels. It simul-
taneously models token-level relative location and
higher-level relative location information. We also
add a window mechanism to ensure stability with
short texts, aligning with traditional positional en-
coding.

HiRoPE is a plug-and-play solution, easily inte-
grated into existing LLMs without additional train-
ing costs. Our extensive experiments with popu-
lar LLMs on tasks like language modeling and to-
ken completion in long code contexts (CodeParrot,
2022) demonstrate its effectiveness. We compare
HiRoPE with existing length extrapolation meth-
ods using long code benchmarks such as LCC (Guo
et al., 2023) and RepoBench (Liu et al., 2023a). We
also introduce a new long code understanding task
named code symbol understanding with real-world
code libraries. Theoretically and experimentally,
we find that HiRoPE effectively addresses the out-
of-distribution issue (Liu et al., 2023b) in position
encoding. Our HiRoPE significantly expands the
context length capabilities of LLMs, enabling in-
ference at lengths exponentially greater than the
training length. We believe our work with HiRoPE
not only addresses a critical length limitation in
LLM applications but also opens new avenues for
long-structured data modeling research.

In summary, we make the following main contri-
butions:

• We propose Hierarchical RoPE (HiRoPE), en-
hancing the traditional rotary position embed-
ding into a hierarchical format based on the
hierarchical structure of source code, provid-
ing improved extrapolation capabilities.

• We conducted comprehensive experiments

with LLMs on various long code tasks involv-
ing language modeling and code completion.
We also introduce a new long code under-
standing task with real-world code projects,
in hopes of promoting further development in
this code-related field.

• We demonstrate that HiRoPE effectively ad-
dresses the out-of-distribution issue in posi-
tion encoding, enabling inference at lengths
exponentially greater than the training length.

2 Preliminary

We first introduce rotary position embedding in
Transformer in Section 2.1. While existing work
usually regards source code as plain text for model-
ing, we will also introduce the ignored hierarchical
information in source code in Section 2.2.

2.1 Rotary Position Embedding in
Transformer

Transformer models require explicit positional in-
formation to be injected, typically in the form of po-
sitional encodings, to represent the order of inputs.
Recently, the rotary position embedding (RoPE)
(Su et al., 2024) has become one of the most popu-
lar and elegant position encoding strategies and is
adopted by various LLMs (Touvron et al., 2023a,b;
Rozière et al., 2023). The main point of the RoPE
method is using absolute position encoding to show
relative position information. Formally, given a po-
sition index m ∈ [0, L) and an embedding vector
x := [x0, x1, . . . , xd−1]

⊤, where d is the dimen-
sion of the attention head, RoPE defines a complex
function f(x,m) as follows:

f(x,m) = [(x0 + ix1)e
imθ0 , (x2 + ix3)e

imθ1 , . . . ,

(xd−2 + ixd−1)e
imθd/2−1 ]⊤

(1)

where i :=
√
−1 is the imaginary unit and θj =

10000−2j/d.
With RoPE, the self-attention score can be cal-

culated as:

a(m,n) = Re⟨f(q,m), f(k, n)⟩

= Re

d/2−1∑
j=0

(q2j + iq2j+1)(k2j − ik2j+1)e
i(m−n)θj


=

d/2−1∑
j=0

[(q2jk2j + q2j+1k2j+1) cos((m− n)θj)

+ (q2jk2j+1 − q2j+1k2j) sin((m− n)θj)]

=: a(m− n)
(2)



Here q and k are the query and key vector for a spe-
cific attention head. At each layer, RoPE is applied
on both query and key embeddings for computing
attention scores. We can observe that the calcu-
lated attention score is only dependent on relative
position m − n through trigonometric functions,
which reflects the core of RoPE that uses the ab-
solute position to represent the relative distance.
Existing studies show that when dealing with long
plain text, the RoPE will meet O.O.D issues where
the value of m− n during inference is unseen (Liu
et al., 2023b), leading to poor performances.

2.2 Hierarchical Position in Source Code

Most LLMs treat source code as plain text, pro-
cessing it as if it were ordinary natural language.
However, it is essential to take the structural in-
formation of code into mind. Source code can be
transformed into abstract syntax trees, and these
tree structures contain rich hierarchical position in-
formation. For example, the code snippets usually
can be split into several class or function units, and
each class/function contains various types of code
blocks and statements. Figure 1 shows an illustra-
tion of the simplified abstract syntax tree for a code
snippet in the bottom left corner. This higher-level
positional information contains rich semantics of
source code, making it easy for human program-
mers to locate and refer to different semantic parts.
Therefore, in many existing program representation
tasks, this hierarchical information plays a very im-
portant role (Allamanis et al., 2018; Zhang et al.,
2023). However, for today’s large language models,
this high-level hierarchical positional information
is almost ignored. In this paper, we try to incorpo-
rate this hierarchical information into the position
encoding method.

3 Hierarchical RoPE

In this paper, we propose HiRoPE, a hierarchical
rotary position encoding for source code model-
ing. Our proposed HiRoPE requires two modified
stages: ❶ Hierarchical Format: We first take
the step to transfer the existing rotary position em-
bedding into a hierarchical format. We verify our
approach theoretically and find that the hierarchi-
cal format can bring stable extrapolation ability for
RoPE. ❷ Window Mechanism. To ensure perfor-
mance stability without further training, we also
add a window mechanism, so that when dealing
with short texts, our proposed method is consistent

with the original positional encoding. An illustra-
tion of our HiRoPE is shown in Figure 2.

3.1 Hierarchical format
Unlike previous work that encodes the information
of each position as a number index m ∈ [0, L), we
use a h-dimensional vector to represent the hierar-
chical position index from high-level to low-level,
where h is a hyperparameter that indicates how
many levels of information we consider in the en-
coding. We begin with a simple case that we set
h = 2 and each token position can be represented
as (m1,m2). We use the higher and lower dimen-
sions in RoPE respectively to represent these two
hierarchical position indexes, so the Equation 1 can
be rewritten as:

f ′(x,m1,m2) =

[(x0 + ix1)e
im1θ0 , . . . , (xds−2 + ixds−1)e

im1θds/2−1 ,

(xds + ixds+1)e
im2θds/2 , . . . , (xd−2 + ixd−1)e

im2θd/2−1 ]⊤

(3)

There are a total of d dimensions in RoPE, and we
use the lower ds dimensions to represent the hierar-
chical index of m1, and the remaining dimensions
to represent m2. When we apply it to self-attention,
we can get a new calculation of the attention score:

hierarchicalAttn = Re⟨f(q,m1,m2), f(k, n1, n2)⟩

=

ds/2−1∑
i=0

[(q2ik2i + q2i+1k2i+1) cos((m1 − n1)θi)

+ (q2ik2i+1 − q2i+1k2i) sin((m1 − n1)θi)]

+

d/2−1∑
j=ds/2+1

[(q2jk2j + q2j+1k2j+1) cos((m2 − n2)θj)

+ (q2jk2j+1 − q2j+1k2j) sin((m2 − n2)θj)]

=: a′(m1 − n1,m2 − n2)
(4)

The attention score a′(. . . ) we ultimately obtained
through the inner product is quite elegant. It in-
cludes the relative position distance of various hi-
erarchical levels, and this form can be similarly
extended to the representation of more hierarchical
positional structures. It indicates that the RoPE has
the potential to be transformed into a hierarchical
form, and we can use the hierarchical position in-
dex in the source code for this new form of RoPE,
as shown in the left part of Figure 2.

The original RoPE sets θj to 10000−2j/d, which
means that the lower the dimension, the higher its
frequency, and the more emphasis on modeling the
relative position information of short distances (Pal
et al., 2023). Therefore, in our hierarchical format,
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Figure 2: Overview of our HiRoPE. We transfer the existing position encoding method into a hierarchical format
(i.e.,, function-level and token-level) and apply it across different dimensions. We also add a window mechanism to
ensure performance stability (in this figure we set Lwindow to 3).

we use those low dimensions to represent token-
level information, and high dimensions to represent
higher-level hierarchical information, such as the
function level or statement level in source code.

3.2 Window Mechanism

To ensure performance stability without further
training, we follow existing extrapolation methods
(Xiao et al., 2023; Han et al., 2023) and add a win-
dow mechanism. Specifically, when dealing with
short code snippets, we believe that existing LLMs
have already mastered the ability to model these
short semantic structures from vast pre-training
code datasets. Therefore, when calculating the at-
tention score, we directly use the original RoPE for
those parts that are shorter than a specific length
Lwindow. And for those long context parts that the
distance is larger than Lwindow, we transfer them to
the new hierarchical format by adding Lwindow − 1
to each high-level distance. Our subsequent experi-
ments have proved that even without any additional
training, this window mechanism can bring strong
stability, making the model’s performance applica-
ble in various scenarios with arbitrary input lengths.
An illustration of the final HiRoPE is shown in the
right part of Figure 2.

4 Experiment Setup

In this section, we aim to answer the following
research questions through a series of experiments.
Details of the evaluation dataset statistics are shown
in Table 1.

Task Dataset Avg. Length Samples

Long Code
Language Modeling CodeParrot

0-2048 1031.46 100
2048-4096 3667.76 100
4096-8192 7074.57 100
8192-16384 14353.94 100

Long Text
Language Modeling ReRoPE-eval 21367.55 200

Code Symbol
Understanding Real-world Code Project 12976.89 56

Long Code
Completion

LCC 17855.73 300
RepoBench 21103.42 300

Table 1: Statistics of the evaluation datasets

RQ1. How is the language modeling capa-
bility of HiRoPE on long code sequences? We
evaluate HiRoPE’s language modeling ability on
CodeParrot-valid dataset (CodeParrot, 2022) in
Section 5.1.

RQ2. How is the language modeling capa-
bility of HiRoPE on long natural language se-
quences? The natural language lacks the explicit
hierarchical structure information found in code,
so we have made some modifications: we set every
128 tokens as a segment, and encode it as higher-
level position information. We use the evaluation
dataset from ReRoPE-eval (Su, 2023) in Section
5.2.

RQ3. How does HiRoPE perform in under-
standing real-world, long-code projects? To eval-
uate the effect of the method in real long-code sce-
narios, we design a new evaluation task on real
code projects: Code Symbol Understanding in
Section 5.3. Given a long code file, the model
is required to output all the function names and
class names defined in it. We extract long code



LLaMA-2 ShearedLLaMA TinyLLaMA Vicuna

Para. 7B 1.3B 1.1B 7B

Lpretrain 4096 4096 2048 2048

Vocab Size 32000 32000 32000 32000

Hidden Size 4096 2048 2048 4096
Attention Head 32 16 32 32
RoPE Dim 128 128 64 128

Table 2: Statistics of base LLMs

files from popular open-sourced code repositories,
especially those newly updated code projects to
avoid data leakage. Details of these code projects
are shown in Table 6.

RQ4. How does HiRoPE perform on existing
benchmarks for long code completion? We
further perform the evaluation using two long code
completion benchmarks: LCC (Guo et al., 2023)
and RepoBench (Liu et al., 2023a) in Section 5.4.

RQ5. What is the impact of various settings
in HiRoPE? To demonstrate that each setting in
the design of our HiRoPE works, we carry out
extensive ablation studies that include the dimen-
sions’ split settings, the window mechanism, and
the high-level segment split strategy in Section 5.5.

4.1 Base LLMs

The models used include LLaMA-2 (7B) (Touvron
et al., 2023b), Sheared-LLaMA (1.3B) (Xia et al.,
2023), TinyLlama (1.1B) (Zhang et al., 2024), and
Vicuna (7B) (Chiang et al., 2023). This model
choice is driven by their widespread use and popu-
larity, as well as the constraints of our computing
capabilities. Details are provided in Table 2.

Considering training on long context sequences
is resource-intensive and time-consuming, we fo-
cus on those popular length extrapolation methods
without training, including NTK (bloc97, 2023),
ReRoPE (Su, 2023) and Self-Extend (Jin et al.,
2024). These methods have shown impressive per-
formance on long context language modeling.

4.2 Inference Settings

In our experiments, our HiRoPE uses a two-layer
hierarchy, accounting for the position index at the
token and function/class levels of the source code
based on tree-sitter (Brunsfeld et al., 2024). For
long context in natural language, we make some
modifications and set every 128 tokens as a higher-
level segment. We set the split dimension half of
the total: ds = 0.5 ∗ dtotal, and choose a window
length: Lwindow = 512. We keep the hyperparam-
eters the same for those state-of-the-art baselines

for a fair comparison. We use greedy search decod-
ing for generation. We use 4 A6000 GPUs for all
experiments.

5 Results and Analyses

5.1 Long Code Language Modeling

Language modeling is the most fundamental and
the least requirement for a LLM. We evaluate Hi-
RoPE’s language modeling ability on CodeParrot-
valid dataset. We divide the original dataset into
different length intervals. The experiment results
are shown in Table 3. A smaller loss and a smaller
ppl indicate a stronger language modeling capacity
of the corresponding model. Conversely, a larger
acc suggests a stronger capability of the respective
model in code completion on the given dataset. The
origin indicates that we directly use the original
setting of the model to evaluate.

Experiments show that original LLMs perform
badly on the long code language modeling task.
Even when the length slightly exceeds the pre-
training length, the ppl of all models exceed 45,
demonstrating their essential lack of modeling and
understanding capabilities for longer codes. When
we apply length extrapolation methods, all meth-
ods can reduce the loss and ppl into an acceptable
range for those long source codes, and our HiRoPE
almost outperforms all other baselines. Specifi-
cally, for ultra-long code sequences (length over
8192), HiRoPE achieves the best results in all met-
rics and under all settings. This fully demonstrates
the advantages of our HiRoPE in modeling long
sequence codes. Our method also shows general-
ization abilities. The four models evaluated have
differences in model parameters, pre-training data,
and pre-training length, yet our method has shown
very good results on all these models.

It is worth noting that our method does not im-
pair the model’s performance on shorter code. We
noted that some popular length extension meth-
ods, such as NTK, can impair the performance on
short code. Thanks to our window mechanism, our
method stays on par with the baseline model on
shorter datasets (length 0-2048) and even surpasses
the baseline on some metrics. HiRoPE demon-
strates consistently excellent language modeling
capabilities in various code length scenarios.

5.2 Long Text Language Modeling

In addition to testing the ability of language mod-
eling on long code, we also evaluate its effects on



Dataset Length: 0-2048 2048-4096 4096-8192 8192-16384

Para. Lpretrain loss ↓ ppl ↓ acc ↑ loss ↓ ppl ↓ acc ↑ loss ↓ ppl ↓ acc ↑ loss ↓ ppl ↓ acc ↑

LLaMA-2 7B 4096

origin 0.8579 2.3583 0.8065 0.9820 2.6698 0.7551 nan nan nan nan nan nan
NTK 1.1107 3.0365 0.7472 1.0469 2.8488 0.7414 0.9858 2.6800 0.7729 1.0181 2.7678 0.7630
ReRoPE 0.8593 2.3615 0.8054 0.7278 2.0705 0.8121 0.6633 1.9411 0.8411 0.7187 2.0518 0.8243
Self-Extend 0.8588 2.3604 0.8055 0.7209 2.0562 0.8147 0.6519 1.9192 0.8441 0.6983 2.0103 0.8290
HiRoPE 0.8586 2.3598 0.8060 0.7185 2.0514 0.8153 0.6482 1.9121 0.8452 0.6821 1.9780 0.8332

ShearedLLaMA 1.3B 4096

origin 1.2874 3.6235 0.7341 1.3103 3.7074 0.7019 3.8381 46.4375 0.4866 5.6958 297.6160 0.3211
NTK 1.6242 5.0744 0.6607 1.5047 4.5029 0.6619 1.3708 3.9383 0.7015 1.3657 3.9183 0.6964
ReRoPE 1.2897 3.6316 0.7332 1.0497 2.8567 0.7560 0.9699 2.6376 0.7846 1.0044 2.7303 0.7716
Self-Extend 1.2892 3.6300 0.7337 1.0428 2.8371 0.7586 0.9568 2.6034 0.7874 0.9804 2.6656 0.7768
HiRoPE 1.2888 3.6285 0.7338 1.0382 2.8242 0.7600 0.9514 2.5894 0.7885 0.9660 2.6273 0.7811

TinyLlama 1.1B 2048

origin 1.0788 2.9410 0.7594 4.1732 64.9235 0.4506 6.6603 780.8009 0.2630 7.9938 2962.5881 0.1682
NTK 1.1837 3.2664 0.7405 1.0952 2.9899 0.7256 0.9719 2.6430 0.7733 1.0021 2.7240 0.7626
ReRoPE 0.9703 2.6388 0.7877 0.8251 2.2821 0.7905 0.7685 2.1565 0.8210 0.8275 2.2877 0.8040
Self-Extend 0.9698 2.6375 0.7856 0.8123 2.2530 0.7931 0.7577 2.1333 0.8235 0.8119 2.2521 0.8073
HiRoPE 0.9743 2.6493 0.7881 0.8268 2.2861 0.7981 0.7683 2.1562 0.8208 0.8040 2.2345 0.8094

Vicuna 7B 2048

origin 1.1787 3.2502 0.7551 4.6046 99.9449 0.4473 7.7207 2254.4730 0.2597 9.9449 20846.3927 0.1601
NTK 1.3417 3.8255 0.7150 1.2587 3.5208 0.7068 1.1809 3.2573 0.7344 1.1912 3.2911 0.7285
ReRoPE 1.0716 2.9201 0.7800 0.8760 2.4012 0.7912 0.8138 2.2566 0.8182 0.8580 2.3585 0.8023
Self-Extend 1.0710 2.9183 0.7802 0.8735 2.3953 0.7891 0.7988 2.2228 0.8220 0.8351 2.3049 0.8066
HiRoPE 1.0707 2.9174 0.7799 0.8724 2.3926 0.7903 0.8002 2.2261 0.8213 0.8314 2.2965 0.8080

Table 3: Language Modeling Ability on CodeParrot-valid dataset. "nan" indicates that the model performs
significantly poor on the given setting.

last loss ↓ last ppl ↓ last acc ↑ all loss ↓ all ppl ↓ all acc ↑

TinyLlama

origin 9.3083 >1000 0.0194 7.3486 >1000 0.1466
NTK 2.1338 8.4468 0.5553 2.2745 9.7234 0.53
ReRoPE 1.8448 6.327 0.6008 1.903 6.7062 0.5867
Self-Extend 1.7904 5.9916 0.6089 1.8749 6.5201 0.5908
HiRoPE 1.7829 5.9474 0.6102 1.8717 6.4991 0.5913

ShearedLLaMA

origin 8.5027 >1000 0.0412 5.5237 250.5 0.274
NTK 2.3596 10.5863 0.5159 2.4056 11.0853 0.5059
ReRoPE 1.7952 6.0205 0.605 1.8514 6.3687 0.5932
Self-Extend 1.7662 5.8486 0.6105 1.8348 6.264 0.5966
HiRoPE 1.7622 5.8252 0.6113 1.8332 6.2536 0.5963

Table 4: Language Modeling Ability on ReRoPE-eval
dataset. In addition to calculating metrics on all tokens
(refer to "all_..."), we also record metrics on the last
2048 tokens of each data (refer to "last_..." ).

long natural language texts. We set every 128 to-
kens as a high-level segment. We use the ReRoPE-
eval dataset, and results are shown in Table 4. In
addition to calculating metrics on all tokens (refer
to "all_..." in the table), we also record metrics on
the last 2048 tokens of each data (refer to "last_...").

We find that our HiRoPE can also achieve sig-
nificant improvement. HiRoPE achieves the best
results on almost all metrics. Another interesting
observation is that, given sufficient context, the
model can utilize this contextual information to
perform better when generating later tokens. That
is to say, the metrics of "last_..." should be better
than those of "all_...". However, we observe that
for the original model, the situation is contrary to
this. We attribute this to the fact that the original
model’s ability to model long sequence languages
is so poor that it can’t utilize that distant contextual
information at all. Our HiRoPE can significantly
improve the model’s ability to handle long codes
and textual data, without requiring any training,

Code Symbol
Understanding

(Recall ↑)

Long Code
Completion
(Edit Sim ↑)

LCC RepoBench

0-4k 4k-8k >8k 0-4k 4k-8k >8k

LLaMA-2
origin 0.0012 54.5 4.36 4.08 8.29 6.79 6.59

ReRoPE 0.0837 65.83 67.43 63.22 52.82 47.85 45.38
HiRoPE 0.0911 66.61 69.93 65.38 52.20 53.30 51.24

ShearedLLaMA
origin 0.0067 27.17 3.33 2.52 4.39 2.94 2.35

ReRoPE 0.0743 35.56 36.1 36.91 34.03 37.37 33.44
HiRoPE 0.0809 46.13 51.67 46.33 40.17 39.98 39.52

TinyLLaMA
origin 0.0067 17.29 5.45 6.28 7.91 7.53 7.07

ReRoPE 0.1214 49.22 57.20 53.11 37.72 40.50 39.38
HiRoPE 0.1415 35.17 42.83 49.92 42.48 43.53 39.82

Vicuna
origin 0.0067 18.47 2.56 2.76 3.67 2.49 2.32

ReRoPE 0.0636 57.95 59.73 58.52 42.78 43.65 45.23
HiRoPE 0.0721 63.42 62.01 64.42 37.10 42.30 45.93

Table 5: Performance on Code Symbol Understanding
and Long Code Completion.

reflecting its practical value.

5.3 Code Symbol Understanding

To evaluate the effect of the method in real long-
code scenarios, we have designed an evaluation
task for real code projects: Code Symbol Under-
standing. Given a long code context, the model is
required to output all the function names and class
names defined in it. These pre-defined functions
and classes are reused frequently in actual code de-
velopment. For code models, understanding which
functions and classes are defined in the code project
is a basic capability requirement. This task is in-
spired by the popular "Needle in a Haystack" syn-
thetic evaluation (gkamradt, 2023), but our code
symbol understanding task is more realistic and
code-related. Task examples are shown in Figure 5.
We use recall as the evaluation metric.

Our experiments in Table 5 have proven that



Figure 3: Ablation Studies including the settings of the
dimension split, the window mechanism, and the high-
level segment split strategy.

this seemingly simple task is extremely difficult for
LLMs. We also evaluate this task using GPT-3.5-
16k (GPT-3.5, 2023) and find that its result is only
0.72. All these LLMs are not ideal in this more
realistic code symbol understanding task. Our Hi-
RoPE has been improved from the perspective of
positional encoding, enabling the model to per-
ceive structural hierarchy changes in the code, thus
achieving relatively good results. Compared to the
original models, our HiRoPE can achieve almost a
hundredfold improvement on average across four
models. We release our dataset in hopes of pro-
moting further development in this code-related
field.

5.4 Long Code Completion

We further perform the evaluation using two real-
world long code completion benchmarks: LCC
and RepoBench. Given a long code context, the
model is required to generate the complete next
line of code. We follow the experiment settings
in Longbench-E (Bai et al., 2023) and use edit
similarity as metrics. Results are shown in Table 5.

Our HiRoPE also achieves stable improvements
on this long code-related task. The input code con-
text is filled with various predefined functions and
classes. Our method can effectively sense these
contents, handle these complex dependencies, and
successfully use those functions that are defined
far away during generation. Under two dataset sce-
narios, our method consistently outperforms other
baseline settings. The results reflect the practicality
and generalization ability of our method.

5.5 Ablation Study

In our experiments, ❶ we set the split dimension
half of the total ds = 0.5 ∗ dtotal and ❶ choose a
window length ❷ Lwindow = 512. ❸ Our hierar-

chical position includes both the token and func-
tion/class levels of the source code. We further
carry out extensive ablation studies including these
settings and results are shown in Figure 3.

We choose different dimension splitting ratios to
observe the performance of LLaMA-2 and TinyL-
LaMA in terms of ppl on CodeParrot [4k-8k].
When the split ratio is 1, the HiRoPE degenerates
into the original model. Specifically, both models
show significant fluctuations in ppl between ratios
of [0.6, 0.7]. We will explore the reason in Section
6.1.

We change the window length to observe the
performance of LLaMA-2 on CodeParrot [0-2k]
and [4k-8k]. For shorter code data, we observe
a decreasing trend in ppl as the window size in-
creases. This validates that the window mechanism
can allow the model to retain its original computa-
tional mechanisms and better handle short-distance
dependencies. For longer code data, ppl behaves
anomalously when the window size is very small.
This also indicates that window mechanisms play a
key role in modeling long-distance dependencies.

We change the high-level segment split strategy.
In addition to dividing the hierarchy at the func-
level, we also try to split at the code statement
level as well as implementing a strategy of split-
ting continuous n-tokens as a high-level segment
(n = 128, 512, 1024). Experiments show that divid-
ing at the function level achieves the best results.
The semantics within a function are relatively simi-
lar, while the semantics between functions usually
vary greatly. It is necessary to divide long code
sequences into levels according to functions and
classes.

6 Discussion

6.1 Mitigating Out-of-Domain Issues in Long
Contexts

Existing work (Liu et al., 2023b) shows that LLMs
fail on input out of the pretraining context win-
dow because of the Out-Of-Distribution (O.O.D)
issues. We take the inspiration to explain it from
a cyclical perspective. In RoPE, each dimension
is composed of trigonometric functions, and its pe-
riod can be denoted as Tj = 2π

θj
= 2π ∗ 10000

2j
d .

Only those dimensions that have been completely
trained within the pre-training length can be con-
sidered as a reliable part for extrapolation, others
would encounter O.O.D issues when dealing with
problems of extrapolation. We can then get those



Figure 4: Performance of Short-ShearedLLaMA on
CodeParrot dataset. The training length is set to 128.
The results suggest our method has the potential to ex-
trapolate code models at an exponential length.

reliable dimensions by calculating Tj < Lpretrain.
The calculated dim split is 0.70 and 0.63 for the
four models in our experiments (Table 7). We are
surprised to find that it is similar to the ratio we
obtained in the ablation study in Figure 3. Our
HiRoPE uses those high dimensions to represent
higher-level position index information, and prop-
erly applies them to smaller input numbers, thus
mitigating O.O.D issues in long code contexts.

The traditional RoPE uses a number m as the po-
sition index to represent position information. Due
to the O.O.D problem in high dimensions, its reli-
able range is {m ∈ [0, Lpretrain]}. In our HiRoPE,
we use a two-layer hierarchy as (m1,m2) and
the reliable range is {m1 ∈ [0, Lpretrain],m2 ∈
[0, Lpretrain]}. It proves that under ideal circum-
stances, HiRoPE can effectively extrapolate to the
length of Lh in an exponential ratio, where h is the
hierarchy layer. We attempt to explore the upper
limit of our HiRoPE’s extrapolation performance
in the experiment in the next Section 6.2.

6.2 Upper Limit of HiRoPE’s Performance

Due to computational resource constraints, we
made the following modifications based on Sec-
tion 5.1: ❶ Firstly, in order to obtain a base
model of suitable length, we designed a training
strategy to obtain a shorter context length LLM,
named ShortLLM: We use the position interpola-
tion (Chen et al., 2023b) method reversely to re-
duce the input length of some mainstream models
to Lshort = 128 at a smaller training cost. Specifi-
cally, given a position index m in the original RoPE,
we use the new index αshort ∗ m to replace it as
shown in Table 8. We fine-tune short models for
1000 steps. ❷ We resample the CodeParrot-valid
dataset, further refining it into smaller distance
ranges, each range containing up to 50 test samples.
The results are shown in Figure 4 and 6.

Our trained ShortLLM successfully demon-

strates the expected performance: the performance
drastically decreases after surpassing the training
length Lshort = 128. We then apply our Hi-
RoPE as well as the baseline ReRoPE. Our HiRoPE
demonstrates a more stable trend on long code se-
quences, even at the position close to L2

short. It
suggests our method has the potential to extrapo-
late code models at an exponential length.

7 Related Work

Existing large language models are originally
trained with fixed context sizes. When dealing with
longer sequences (such as long code), the model’s
performance may decrease quite drastically. Recent
studies have explored ways to expand the context
length. For example, Position Interpolation (Chen
et al., 2023b) linearly down-scales the input posi-
tion indices to match the original context window
size of LLMs with several training steps. Similar
studies (Chen et al., 2023a; Peng et al., 2023; Chen
et al., 2023c; Guo et al., 2023) also require fine-
tuning. However, these methods all need additional
tuning in longer contexts or face a disastrous col-
lapse after the extrapolation bound. There are also
some approaches without training. Some work use
window attention to clip the long sequences such
as (Xiao et al., 2023; Han et al., 2023; Ding et al.,
2023)). However, these methods rely on local infor-
mation and may not effectively expand the context
window, struggling with long dependencies in code.
Recently, some methods have explored modifying
the relative distance to extend the extrapolation
length (bloc97, 2023; Su, 2023; Jin et al., 2024)
and focus on the natural language text. We pursue
the research line of training-free methods and pro-
pose considering the structural information of the
code when modeling the position. We expand the
traditional RoPE method into a hierarchical format
and prove the effectiveness of our HiRoPE through
theoretical derivations and practical experiments.

8 Conclusion

We propose HiRoPE, a training-free solution to the
context length limitation in LLMs for long code
modeling. We integrate the hierarchical structure
of source code into position encoding of LLMs.
Experiments demonstrate that HiRoPE achieves
stable improvements on diverse code-related tasks.
Our work not only addresses a critical limitation in
LLM applications but also opens new avenues for
long structured data modeling research.



Limitation

There are several limitations to our work that we
aim to address:

Firstly, constrained by computational resources,
we choose models below 7B for experiments. The
four models evaluated have differences in model pa-
rameters, pre-training data, and pre-training length,
yet our method has shown very good results on all
these models. We will attempt to conduct experi-
ments on models with larger parameters and more
complex structures to promote the development of
the LLM community.

Next, our discussion on the upper limit of the
HiRoPE’s performance tends to lean towards theo-
retical derivation. We have designed a set of Short-
LLM experiments to prove our conclusions. It sug-
gests our method has the potential to extrapolate
code models at an exponential length, so for the
LLaMA-2 model with Lpretrain = 4096, we can
theoretically extrapolate its length to L2

pretrain ≈
16, 000, 000. We are not clear whether some set-
tings will implicitly affect the performance of the
model. We will continue to explore the robust-
ness of this experimental idea and try to explore
the maximum performance of our method on real
LLMs.
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A Details of Code Symbol Understanding
task

We extract long code files from popular open-
sourced code repositories, especially those newly
updated code projects to avoid data leakage. We
construct a static analysis tool to get the abstract
syntax tree of each code file, and then get all de-
fined function and class names in it as the ground-
truth output symbols. Details of these code projects
are shown in Table 6. We show the number of files
we extracted from each project as well as the av-
erage length of these code files. We also show
the average number of symbols and their location
statistics in the table.

In Figure 5 we show an illustration of our pro-
posed new task. We replace the input_code part
with each code file, and use the task prompt to
guide models to extract and output all defined func-
tion and class names in input code. We also show
an example output in the figure.

def add_func(a,b):
return a + b

…

# Task: Extract all defined function 
names and class names from the 
above code snippet.
extracted_entities = 

An example output: 
[add_func, …,]

Input_code

Task 
prompt

Figure 5: Illustration of Code Symbol Understanding
task. We use the task prompt to guide models to extract
and output all defined function and class names in input
code.

B Details of ShortLLM experiments

B.1 Theoretical calculation for O.O.D issues
According to the analysis in Section 6.1, we can
calculate the reliable dimensions for each model
as:

Split% = log10000
Lpretrain

2π
(5)

The theoretical calculation results are shown in
Table 7.

B.2 ShortLLM Training
In order to obtain the ShortLLM of suitable length,
we use the position interpolation (Chen et al.,

2023b) method reversely. Given a position index
m in the original RoPE, we use the new index
αshort ∗m to replace it as shown in Table 8. We
sample the CodeParrot-train dataset and filter the
data length less than Lshort. We set the global
batch size to 64 and fine-tune the models for 1000
steps.

B.3 ShortLLM Performances
After training, we apply our HiRoPE to these Short-
LLM models. Figure 6 shows the experiment re-
sults of the ShortLLM. We can observe that for all
models, Our HiRoPE can maintain good stability
as the length of the input code increases. Even if
the baseline ReRoPE method gradually becomes
unstable under some experimental settings (such
as on Short-TinyLLaMA), our method can resist
these performance declines.



Github Repo File Nums File Length Avg. Symbols Min. Symbol Loc Max. Symbol Loc

ddbourgin/numpy-ml 2 14055 15 927 10845
gradio-app/gradio 1 12938 11 272 12265
huggingface/accelerate 4 12814.5 11.5 379 12500
huggingface/diffusers 4 13324.75 16.2 276 8347
huggingface/optimum 1 13491 11 580 12868
huggingface/peft 1 15457 11 514 8525
huggingface/transformers 18 12919.4 12.7 239 14514
langchain-ai/langchain/ 2 14195 11.5 285 10790
numpy/numpy 6 11158.8 14 100 12026
tensorflow/tensorflow 17 13191.7 13.4 285 14920

Total 56 12976.89 13.17 100 14920

Table 6: Statistics of Code Symbol Understanding task. We show the number of files we extracted from each project
as well as the average length of these code files. We also show the average number of symbols and their location
statistics in the table.

Figure 6: Performance of ShortLLMs on CodeParrot dataset. The training length is set to 128.

Lpretrain RoPE Dim Split % Split Dim

LLaMA-2 4096 128 0.70 90.05
ShearedLLaMA 4096 128 0.70 90.05
TinyLLaMA 2048 64 0.63 40.21
Vicuna 2048 128 0.63 80.42

Table 7: Theoretical calculation of the reliable extrapo-
lation dimension.

Para. Lpretrain Lshort αshort

LLaMA-2 7B 4096 128 32
ShearedLLaMA 1.3B 4096 128 32
TinyLLaMA 1.1B 2048 128 16
Vicuna 7B 2048 128 16

Table 8: Model Statistics for ShortLLM experiments.
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