
A Faster Algorithm for Pigeonhole Equal Sums
Ce Jin #

MIT

Hongxun Wu #

UC Berkeley

Abstract
An important area of research in exact algorithms is to solve Subset-Sum-type problems faster than
meet-in-middle. In this paper we study Pigeonhole Equal Sums, a total search problem proposed
by Papadimitriou (1994): given n positive integers w1, . . . , wn of total sum

∑n

i=1 wi < 2n − 1, the
task is to find two distinct subsets A, B ⊆ [n] such that

∑
i∈A

wi =
∑

i∈B
wi.

Similar to the status of the Subset Sum problem, the best known algorithm for Pigeonhole
Equal Sums runs in O∗(2n/2) time, via either meet-in-middle or dynamic programming (Allcock,
Hamoudi, Joux, Klingelhöfer, and Santha, 2022).

Our main result is an improved algorithm for Pigeonhole Equal Sums in O∗(20.4n) time. We
also give a polynomial-space algorithm in O∗(20.75n) time. Unlike many previous works in this
area, our approach does not use the representation method, but rather exploits a simple structural
characterization of input instances with few solutions.
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1 Introduction

The Subset Sum problem is an important NP-hard problem in computer science: given
positive integers w1, w2, . . . , wn and a target integer t, find a subset A ⊆ [n] such that∑

i∈A wi = t. Subset Sum can be solved in O(2n/2) time by a simple meet-in-middle
algorithm [14], and an important open problem is to improve it to O(2(1/2−ε)n). A long line
of research attempts to solve Subset Sum faster using the representation method [15] and
connections to uniquely decodable code pairs [3, 4, 22], but these techniques have so far only
succeeded on average-case inputs [15, 8, 9] or restricted classes of inputs [2, 3]. Nevertheless,
significant progress has been made for other variants of Subset Sum, including Equal Sums
[17], 2-Subset Sum and Shifted Sums [1] and more general subset balancing problems [12],
as well as Subset Sum in other computational settings such as Merlin–Arthur protocols [18],
low-space algorithms [6, 19], quantum algorithms [1], and algorithms with lower-order run
time improvements [13]. The general hope is that the tools developed for solving these
variant problems might one day help solve the original Subset Sum problem.

In this paper we study an interesting variant of Subset Sum called Pigeonhole Equal
Sums:

Pigeonhole Equal Sums [20]
Input: positive integers w1, w2, . . . , wn, with promise

∑n
i=1 wi < 2n − 1.

Output: two different subsets A, B ⊆ [n] such that
∑

i∈A wi =
∑

i∈B wi.

Since there are 2n subsets S ⊆ [n] with only 2n − 1 possible subset sums
∑

i∈S wi ∈
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{0, 1, . . . , 2n − 2} due to the promise, the pigeonhole principle guarantees that there exists
a pair of subsets with the same subset sum.

Pigeonhole Equal Sums was introduced by Papadimitriou [20] as a natural example
problem in the total search complexity class PPP. This problem has received attention in
the TFNP literature [5, 21], and is conjectured to be PPP-complete [20].

From the algorithmic point of view, the current status of Pigeonhole Equal Sums is quite
similar to that of the Subset Sum problem: a simple binary search with meet-in-middle
solves Pigeonhole Equal Sums in O∗(2n/2) time (see Section 2).1 Allcock, Hamoudi, Joux,
Klingelhöfer, and Santha [1, Theorem 6.2] gave another O∗(2n/2)-time algorithm based on
dynamic programming (which is analogous to the alternative O∗(2n/2)-time Subset Sum
algorithm from [3]2). It remains open whether O(2(1/2−ε)n) time is possible for Pigeonhole
Equal Sums. Improvement of such type was achieved for the Equal Sums problem (without
the pigeonhole promise) by Mucha, Nederlof, Pawlewicz, and Węgrzycki [17] via the rep-
resentation method with O(3(1/2−ε)n) run time for some ε > 0.01, but this result has no
direct implications for Pigeonhole Equal Sums (for which the known O∗(2n/2) time bound
is already much better than O(3n/2)).

1.1 Our results
We give an algorithm that solves Pigeonhole Equal Sums faster than the previous O∗(2n/2)
running time [1].

▶ Theorem 1 (Main). Pigeonhole Equal Sums can be solved by a randomized algorithm in
O∗(20.4n) time.

Surprisingly, unlike previous works on other variants of Subset Sum, our algorithm does not
use the representation method [15] or tools from coding theory [3, 4, 22]. Instead, our main
insight is a simple structural characterization of Pigeonhole Equal Sums instances with few
solutions.

Our techniques also yield a fast polynomial-space algorithm for Pigeonhole Equal Sums,
in an analogous way to the previous O(3(1−ε)n)-time polynomial-space algorithm for Equal
Sums [17].

▶ Theorem 2. Pigeonhole Equal Sums can be solved by a randomized algorithm in O∗(20.75n)
time and poly(n) space.

For comparison, a straightforward algorithm based on binary search solves Pigeonhole Equal
Sums in poly(n) space and O∗(2n) time (see the beginning of Section 4).

Theorem 1 and Theorem 2 will be proved in Section 3 and Section 4 respectively.

2 Preliminaries

Denote [n] = {1, . . . , n}. Let O∗(·), Ω∗(·) hide poly(n) factors, where n is the number of
input integers in the Pigeonhole Equal Sums problem.

Denote w(A) =
∑

i∈A wi for A ⊆ [n]. The pigeonhole promise states w([n]) < 2n − 1.
For a predicate p we define 1[p] = 1 if p is true and 1[p] = 0 if p is false.
We need the following well-known lemma.

1 We use O∗(·) to hide poly(n) factors.
2 See also https://youtu.be/cHimhXXIwcg?t=454.
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▶ Lemma 3 (Counting subset sums via meet-in-middle [14]). Given integers w1, . . . , wn and
t, we can compute #{S ⊆ [n] : w(S) ≤ t} in O∗(2n/2) time. Moreover, we can list S ⊆ [n]
such that w(S) ≤ t in O∗(1) additional time per S.

Proof. Divide [n] into S1 = {1, . . . , ⌊n/2⌋} and S2 = [n] \ S1, and every subset S ⊆ [n]
can be represented as X ⊎ Y, X ⊆ S1, Y ⊆ S2. Compute and sort the two lists A =
{w(X)}X⊆S1 and B = {w(Y )}Y ⊆S2 of length O(2n/2) each. Then for each w(X) ∈ A we
accumulate |B ∩ (−∞, t − w(X)]| to the answer. It is easy to augment this algorithm to
support listing. ◀

Pigeonhole Equal Sums via binary search

The following simple binary-search algorithm (described in [1, Remark 6.9 of arXiv version]
and attributed to an anonymous referee) solves Pigeonhole Equal Sums in O∗(2n/2) time:
Maintain an interval {ℓ, ℓ + 1, . . . , r} (initialized to ℓ = 0, r = 2n − 2) that satisfies the
pigeonhole invariant r − ℓ + 1 < #{S ⊆ [n] : ℓ ≤ w(S) ≤ r}. Initially this invariant
is satisfied due to w([n]) ≤ 2n − 2. While r > ℓ, pick the middle point m = ⌊ ℓ+r

2 ⌋,
and use meet-in-middle (Lemma 3) to compute c1 = #{S ⊆ [n] : ℓ ≤ w(S) ≤ m} and
c2 = #{S ⊆ [n] : m + 1 ≤ w(S) ≤ r} in O∗(2n/2) time. Then we shrink the interval to
{ℓ, . . . , m} if m − ℓ + 1 < c1, or to {m + 1, . . . , r} if r − m < c2 (the invariant guarantees
that at least one holds). After ⌈log2(2n −1)⌉ = n iterations we shrink to a singleton interval
ℓ = r. By the invariant, there exist two different S1, S2 ⊆ [n] such that w(S1) = w(S2) = ℓ,
and we can report such S1, S2 using meet-in-middle (Lemma 3).

This binary-search strategy will be used in our improved algorithms as well.

3 The improved algorithm

Let the n input integers be sorted as 0 < w1 < w2 < · · · < wn (assuming no trivial solution
wi = wj exists).

An assumption on prefix sums

If any proper prefix {w1, . . . , wi} (i ≤ n−1) already satisfies the pigeonhole promise w([i]) <

2i − 1, then we can instead solve the smaller Pigeonhole Equal Sums instance {w1, . . . , wi}
and obtain A, B ⊆ [i], A ̸= B with w(A) = w(B). Hence, without loss of generality we
assume such prefix does not exist, i.e.,

w([i]) ≥ 2i − 1 for all i ∈ [n − 1]. (1)

Frequencies ft and parameter d

The frequency (also called bin size) of t ∈ N is the number of input subsets achieving sum t,
denoted as ft = #{S ⊆ [n] : w(S) = t}. Since w([n]) < 2n − 1, we know ft = 0 for all
t ≥ 2n − 1, and∑

0≤t<2n

ft = 2n. (2)

Two different subsets achieving equal subset sum t imply ft > 1. This motivates the
following parameter,

d =
∑

0≤t<2n

max{0, ft − 1}, (3)
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which counts the (non-trivial) equality relations among all the 2n subset sums. Using Equa-
tion (2), we can rewrite Equation (3) as d =

∑
0≤t<2n(ft −1[ft ≥ 1]) = 2n −

∑
0≤t<2n 1[ft ≥

1], and thus obtain

d = #{0 ≤ t < 2n : ft = 0}, (4)

which counts the non-subset-sums in {0, 1, . . . , 2n − 1}. In particular, d < 2n.
The equivalence between Equation (3) and Equation (4) is powerful. In the following we

will give two different algorithms for Pigeonhole Equal Sums. The first one works for small
d by analyzing the structure of input instances with few non-subset-sums (by Equation (4)).
The second one works when d is large and hence there are many solutions (by Equation (3))
which allow a subsampling approach. These two algorithms are summarized as follows:

▶ Lemma 4. Given parameter ∆ ≤ 2n/(3n2), Pigeonhole Equal Sums with d ≤ ∆ can be
solved deterministically in O∗(

√
∆) time.

▶ Lemma 5. Given parameter 2n/2 ≤ ∆ < 2n, Pigeonhole Equal Sums with d ≥ ∆ can be
solved in O∗((22n/∆)1/3) time by a randomized algorithm.

Combining these two lemmas implies our main result:

Proof of Theorem 1. Set ∆ = 20.8n so that the two time bounds in Lemma 4 and Lemma 5
are balanced to O∗(20.4n). Given an instance of Pigeonhole Equal Sums (with unknown d),
we run both algorithms in parallel, and return the answer of whichever terminates first. ◀

3.1 Small d case via structural characterization

In this section we prove Lemma 4. Assume d ≤ ∆ ≤ 2n/(3n2) and ∆ is known.
Since ft = 0 for all w([n]) < t < 2n, from Equation (4) we know d ≥ 2n − 1 − w([n]),

and hence w([n]) ≥ 2n − 1 − d ≥ 2n − 1 − ∆. Combined with Equation (1) for i ∈ [n − 1],
we get the following lower bound

w([i]) ≥ 2i − 1 − ∆ for all i ∈ [n]. (5)

The key step is to complement Equation (5) with a nearly matching upper bound:

▶ Lemma 6. For all i ∈ [n],

wi ≤ 2i−1 + ∆. (6)

Summing Equation (6) over i gives

w([i]) ≤ 2i − 1 + i∆ (7)

for all i ∈ [n].

Proof. Fix i ∈ [n]. Let M be the number of subsets S ⊆ [n] with w(S) < wi. Since
wi < wi+1 < · · · < wn, any such S must be contained in [i − 1], and thus M ≤ 2i−1. On
the other hand, M =

∑wi−1
t=0 ft ≥ wi − #{0 ≤ t < wi : ft = 0} ≥ wi − d by Equation (4).

Hence, wi ≤ M + d ≤ 2i−1 + ∆. ◀
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Comparing Equation (5) with Equation (7) gives the lower bound

wi = w([i]) − w([i − 1]) ≥ (2i − 1 − ∆) − (2i−1 − 1 + (i − 1)∆) = 2i−1 − i∆,

which is very close to the upper bound from Equation (6). Together we get

wi − 2i−1 ∈ [−i∆, ∆] (8)

for all i ∈ [n].
Equation (8) gives a very rigid structure of the large input numbers. In the next lemma

we exploit this structure to improve the naive meet-in-middle subset sum counting algorithm
from Lemma 3.

▶ Lemma 7. For any given T < 2n, we can compute
∑T

t=0 ft in O∗(
√

∆) time.

Proof. Let i∗ be the minimum i∗ ∈ [n] such that 2i∗ ≥ 3n2∆, which exists by our assumption
∆ ≤ 2n/(3n2). Let A = {1, 2, . . . , i∗} and B = {i∗ + 1, . . . , n}.

By Equation (7), w(A) < 2i∗ + n∆.
For every B′ ⊆ B, by Equation (8) we have∣∣w(B′) −

∑
j∈B′

2j−1∣∣ ≤
∑
j∈B′

|wj − 2j−1| ≤
∑
j∈B′

j∆ ≤ n2∆.

In other words, the subset sums of {wj}j∈B are n2∆-additively approximated by the subset
sums of {2j−1}j∈B . The subset sums of the latter set form an arithmetic progression {k ·2i∗ :
0 ≤ k < 2n−i∗}, namely all n-bit binary numbers whose lowest i∗ bits are zeros. Notably,
this arithmetic progression is very sparse: its difference 2i∗ is large enough compared to
w(A) < 2i∗ + n∆.

Given query T , we want to count the number of pairs (A′, B′) (A′ ⊆ A, B′ ⊆ B) such
that w(A′) + w(B′) ≤ T . To do this, we enumerate B′ ⊆ B, and consider three cases (the
non-trivial case is Case 3, where w(B′) and

∑
j∈B′ 2j−1 are close to T ):

Case 1:
∑

j∈B′ 2j−1 ≤ T − 2i∗ − (n + n2)∆.
Then, for all A′ ⊆ A, we have w(A′) + w(B′) ≤ w(A) + w(B′) ≤ (2i∗ + n∆) + (n2∆ +∑

j∈B′ 2j−1) ≤ T . Hence B′ contributes 2|A| many pairs (A′, B′).
Case 2:

∑
j∈B′ 2j−1 > T + n2∆.

Then, for all A′ ⊆ A, we have w(A′) + w(B′) ≥ w(B′) ≥
∑

j∈B′ 2j−1 − n2∆ > T . Hence
B′ does not contribute any pairs (A′, B′).
Case 3: otherwise,

∑
j∈B′ 2j−1 ∈ (T − 2i∗ − (n + n2)∆, T + n2∆].

This interval has length 2i∗ + (n + n2)∆ + n2∆ ≤ 2 · 2i∗ by our choice of i∗. Since∑
j∈B′ 2j−1 is a multiple of 2i∗ in this interval, it has at most two possibilities, namely

2i∗ · ⌊ T −(n+n2)∆
2i∗ ⌋ and 2i∗ ·

(
⌊ T −(n+n2)∆

2i∗ ⌋ + 1
)

, and then B′ is uniquely determined by
the binary decomposition of

∑
j∈B′ 2j−1. For each possible B′, we count the number

of A′ ⊆ A such that w(A′) ≤ T − w(B′) using meet-in-middle (Lemma 3) with time
complexity O∗(2|A|/2) = O∗(2i∗/2) = O∗(

√
∆) by the definition of i∗.

Note that in O∗(1) time we can easily find the (at most two) subsets B′ satisfying
Case 3, and also count the total contribution of Case 1. Hence the overall time complexity
is O∗(

√
∆). ◀

Using Lemma 7 we can solve Pigeonhole Equal Sums using binary search, in the same way
as described in the last paragraph of Section 2. The running time is O∗(

√
∆). This finishes

the proof of Lemma 4.
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3.2 Large d case via subsampling

In this section we prove Lemma 5. Assume 2n/2 ≤ ∆ ≤ d < 2n, and ∆ is known. We first
use d =

∑
0≤t<2n max{0, ft − 1} (Equation (3)) to show that many subset sums t have large

ft, which then allows us to use subsampling to speed up the modular dynamic programming
approach of [1, 3].

▶ Lemma 8. There exists a j ∈ {0, 1, . . . , n − 1} such that #{t : ft > 2j} > ∆
2j+1n .

Proof. By definition of d in Equation (3),

∆ ≤ d =
∑

t:ft>1
(ft − 1) ≤

∑
0≤j<n

#{t : 2j < ft ≤ 2j+1} · (2j+1 − 1). (9)

If the claimed inequality fails for all j, then

[RHS of Equation (9)] ≤
∑

0≤j<n

∆
2j+1n

· (2j+1 − 1) < ∆,

a contradiction. ◀

Our algorithm enumerates all j ∈ {0, 1, . . . , n − 1} (increasing the time complexity by
a factor of n = O∗(1)), and from now on we assume j satisfies the inequality in Lemma 8.
Define

h := 2j + 1 ≥ 2, m :=
⌈

∆
2j+1n

⌉
>

∆
2hn

, and X := {t ∈ [2n] : ft ≥ h}. (10)

Here we defined the set X of frequent subset sums only for the sake of analysis. By Lemma 8,

|X| ≥ m. (11)

Readers are encouraged to focus on the case of h = 2 and m ≥ Ω∗(∆) (which is the hardest
case for our algorithm) at first read.

We first describe the behavior of our algorithm: Let p ∈ [P, 2P ] be a uniformly random
prime (for some parameter 2 ≤ P ≤ 2m to be determined later in the “Time complexity”
paragraph). For each r ∈ Zp, define bin Br := {S ⊆ [n] : w(S) ≡ r (mod p)}. The algorithm
picks a random bin index r∗ ∈ Zp, and subsamples C ⊆ Br∗ by keeping each S ∈ Br∗ with
probability α independently (for some 0 < α ≤ 1

2h to be determined later in the “Success
probability” paragraph). Finally, a pair of distinct S, S′ ∈ C with w(S) = w(S′) is reported
(if exists).

Now we explain how to implement the algorithm above via dynamic programming (DP)
similarly to [1, 3]. Build the DP table Di,r = #{S ⊆ [i] : w(S) ≡ r (mod p)} (where 0 ≤
i ≤ n and r ∈ Zp) in O∗(p) overall time via the transition Di,r = Di−1,r + Di−1,(r−wi) mod p

with initial values D0,r = 1[r = 0]. This DP computes the size of every bin |Br| = Dn,r.
Furthermore, for any bin Br and integer k ∈ [|Br|], we can report the rank-k set S in Br

(in lexicographical order, where larger indices are compared first) by backtracing in the DP
table in O∗(1) time. Then, in order to subsample a collection of sets C ⊆ Br∗ at rate α,
we can first subsample their ranks in [|Br∗ |] (in near-linear time in the output size, see e.g.,
[10]), and then recover the actual sets by backtracing.
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Success probability

We study how the frequent subset sums, X = {t : ft ≥ h}, are distributed to the bins
modulo a random prime p, using an argument similar to [3]. Setting

k :=
⌈ m

4P

⌉
, (12)

the following lemma shows that the bin Br∗ receives at least k frequent subset sums, with
Ω∗(1) probability.

▶ Lemma 9. With at least Ω(1/n) probability over the choice of prime p ∈ [P, 2P ] and
r∗ ∈ Zp, there are at least k integers t ∈ N such that #{S ∈ Br∗ : w(S) = t} ≥ h.

Proof. Since |X| ≥ m by Equation (11), we arbitrarily pick X ′ ⊆ X with |X ′| = m for the
sake of analysis. Let cr,p := {t ∈ X ′ : t ≡ r (mod p)}. Then,

E
p∈[P,2P ]

[ ∑
r∈Zp

c2
r,p

]
=

∑
x∈X′,y∈X′

Pr
p∈[P,2P ]

[p | x − y]

≤ m + m2 · logP 2n

Ω(P/ ln P ) (by |x − y| ≤ 2n and the density of primes)

≤ O(n · m2/P ). (by the assumption that P ≤ 2m)

Then by Markov’s inequality, with 0.9 success probability over the choice of p, we have∑
r∈Zp

c2
r,p ≤ O(n · m2/P ). Conditioned on this happening, by Cauchy–Schwarz inequality

we have

∑
r∈Zp

1[cr,p ≥ m
2p ] ≥

(∑
r∈Zp

1[cr,p ≥ m
2p ] · cr,p

)2

∑
r∈Zp

c2
r,p

≥
(
(
∑

r∈Zp
cr,p) − p · m

2p

)2

O(n · m2/P ) = (|X ′| − m/2)2

O(n · m2/P ) = (m/2)2

O(n · m2/P ) = Ω(P/n),

and hence, by our choice of k =
⌈

m
4P

⌉
≤

⌈
m
2p

⌉
,

Pr
r∗∈Zp

[cr∗,p ≥ k] ≥ Pr
r∗∈Zp

[cr∗,p ≥ m
2p ] ≥ Ω(P/n)

p
= Ω(1/n).

Conditioned on cr∗,p ≥ k happening, we have at least k integers t ∈ X ′ ⊆ X such that
t ≡ r∗ (mod p). By definitions of Br∗ and X, this implies that there are at least k integers
t ∈ N such that #{S ∈ Br∗ : w(S) = t} ≥ h, with overall success probability at least
0.9 · Ω(1/n) = Ω(1/n) over the choice of p and r∗. ◀

Recall our algorithm subsamples C ⊆ Br∗ at rate α ∈ (0, 1
2h ], and fails iff w(S) are

distinct for all S ∈ C. The failure probability of this step can be derived from the following
lemma:

▶ Lemma 10. Let B′ be a collection of kh colored balls (h ≥ 2, k ≥ 1), with exactly h balls
of color i for each color i ∈ [k]. Let C ′ ⊆ B′ be an i.i.d. subsample at rate α ∈ [0, 1

2h ]. Then
C ′ contains distinct colors with at most exp(−kh(h − 1)α2/4) probability.

Proof. For each color i ∈ [k], by Bernoulli’s inequality, the probability that C ′ includes
exactly two balls of color i is

(
h
2
)
α2(1 − α)h−2 ≥

(
h
2
)
α2(

1 − (h − 2)α
)

≥
(

h
2
)
α2/2. Hence, the

probability that C ′ includes at most one ball of every color i ∈ [k] is at most
(
1−

(
h
2
)
α2/2

)k ≤
exp

(
− k

(
h
2
)
α2/2

)
= exp(−kh(h − 1)α2/4). ◀
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We think of each set S ∈ Br∗ as a ball of color w(S), and apply Lemma 10 to the k integers
(colors) t ∈ N ensured by Lemma 9, each having at least h sets (balls) S ∈ Br∗ with w(S) = t.
We set the sample rate to be

α := 1
2h

√
k

≤ 1
2h

. (13)

Then the failure probability of the subsampling step is at most

exp(−kh(h − 1)α2/4) = exp(− h−1
16h ) ≤ exp(−1/32),

Overall, the probability that the algorithm successfully finds a solution is at least Ω(1/n)·
(1 − exp(−1/32)) ≥ Ω(n−1).

Time complexity

The mod-p DP runs in O∗(p) ≤ O∗(P ) time. Since the bins have total size
∑

r∈Zp
|Br| =

2n, the chosen bin Br∗ has expected size Er∗∈Zp [|Br∗ |] = 2n/p ≤ 2n/P , and hence the
subsample C ⊆ Br∗ has expected size E[|C|] ≤ α2n/P . To detect a solution S, S′ ∈ C with
w(S) = w(S′), we simply sort C in near-linear time. Hence the total expected running time
is O∗(P +α2n/P ). By Markov’s inequality, with probability at least 1−n−10, the algorithm
terminates in O∗(P + α2n/P ) time. By a union bound, the algorithm successfully finds a
solution in time O∗(P + α2n/P ) with probability at least Ω(n−1) − n−10 ≥ Ω(n−1). This
success probability can be boosted to 0.99 by repeating the algorithm O(n) times.

Recall from Equations (12) and (13) that α = 1
2h

√
k

= 1
2h

√
⌈m/4P ⌉

≤
√

P
h

√
m

, so the run
time is (ignoring poly(n) factors)

P + α2n/P ≤ P + 2n

h
√

mP
.

Recall h = 2j +1 (where 0 ≤ j ≤ n−1) and m = ⌈ ∆
2j+1n ⌉, and hence hm < h(1+ ∆

2j+1n ) ≤
h + ∆

n < (2n−1 + 1) + 2n

n ≤ 2n (assuming n ≥ 3). Now we set

P := 2m · min
{

1,
( 2n

hm2

)2/3
}

,

and we first need to verify the requirement 2 ≤ P ≤ 2m introduced earlier: The upper bound
is obvious. To see the lower bound, note that 2m ≥ 2 and 2m ·

( 2n

hm2

)2/3 = 2
(

22n

h2m

)1/3
≥

2
(

22n

(hm)2

)1/3
≥ 2 (using the inequality hm ≤ 2n we just showed).

Hence, the overall running time is at most (ignoring poly(n) factors)

P + 2n

h
√

mP
≤ 2m

(
2n

hm2

)2/3
+ 2n

h
√

m · 2m
· max

{
1,

(
hm2

2n

)1/3}

= 2 · 22n/3

h2/3m1/3 + 1√
2

max
{

2n

hm
,

22n/3

h2/3m1/3

}
≤ O

(
22n/3

h2/3m1/3 + 2n

hm

)
≤ O∗

(
22n/3

h1/3∆1/3 + 2n

∆

)
(by hm > ∆

2n from Equation (10))

≤ O∗
(

22n/3

∆1/3

)
. (by h > 1 and the assumption that ∆ ≥ 2n/2)

This finishes the proof of Lemma 5.
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4 A polynomial-space algorithm

We now consider poly(n)-space algorithms for Pigeonhole Equal Sums. The straightforward
binary search approach (described at the end of Section 2) can be adapted to run in O∗(2n)
time and poly(n) space: instead of using meet-in-middle (Lemma 3, which requires large
space), we count the number of valid subsets S ⊆ [n] by brute force in O∗(2n) time and only
poly(n) space.

We improve this O∗(2n) running time using the ideas from earlier sections. Again,
consider two cases depending on whether parameter d from Equation (3) is small or large.

▶ Lemma 11. Given parameter ∆ ≤ 2n/(3n2), Pigeonhole Equal Sums with d ≤ ∆ can be
solved deterministically in poly(n) space and O∗(∆) time.

Proof Sketch. The proof is almost the same as Lemma 4 (see Section 3.1), with the only
difference in Case 3 from the proof of Lemma 7: instead of using meet-in-middle, here we
count the valid subsets A′ ⊆ A by brute force in O∗(2|A|) = O∗(2i∗) = O∗(∆) time and only
poly(n) space. ◀

To solve the large d case, we need the low-space element distinctness algorithm by Beame,
Clifford, and Machmouchi [7] (generalized in [6], and with a non-standard assumption re-
moved by [11, 16]). This algorithm was also previously used for Subset Sum [6] and Equal
Sums [17]. The following statement can be inferred from [11, Section 4.2 (proof of Theorem
1.1)].

▶ Theorem 12 (Low-space Element Distinctness, [7, 6, 11]). Given random access to an
integer list a1, . . . , aN (where ai ∈ [poly(N)]) that contains at least one pair (i, j) ∈ [N ]×[N ]
with ai = aj , i ̸= j, there is a randomized algorithm that reports such a pair using poly log N

working memory and

O

(
N

√
F2

F2 − N
· poly log N

)
time, where F2 =

∑N
i=1

∑N
j=1 1[ai = aj ] ∈ [N + 2, N2].3

▶ Lemma 13. Given parameter 1 ≤ ∆ ≤ 2n, Pigeonhole Equal Sums with d ≥ ∆ can be
solved in O∗(21.5n/∆) time and poly(n) space by a randomized algorithm.

Proof. Apply Theorem 12 to the list {w(A)}A⊆[n] of length N = 2n and we obtain a pair of
distinct A, A′ ⊆ [n] with w(A) = w(A′) as desired. The space complexity is poly log(2n) =
poly(n). To analyze the time complexity, note that

F2−2n =
∑

A⊆[n]

∑
B⊆[n]
B ̸=A

1[w(A) = w(B)] =
∑

0≤t<2n

ft(ft−1) ≥
∑

0≤t<2n

max{0, ft−1} Eq. (3)= d ≥ ∆,

so the time bound is (ignoring poly(n) factors)

2n
√

F2

F2 − 2n
<

20.5nF2

F2 − 2n
= 20.5n

(
1 + 2n

F2 − 2n

)
≤ 20.5n

(
1 + 2n

∆

)
≤ 2 · 21.5n

∆

as claimed. ◀

3 We have F2 ≥ N + 2 due to the following (N + 2) pairs: (1, 1), (2, 2), . . . , (N, N) and (i, j), (j, i), where
ai = aj (i ̸= j).
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Combining the two lemmas gives the desired result.

Proof of Theorem 2. Set ∆ = 20.75n so that the two time bounds in Lemma 11 and
Lemma 13 are balanced to O∗(20.75n). Given an instance of Pigeonhole Equal Sums (with
unknown d), we run both algorithms in parallel, and return the answer of whichever termin-
ates first. ◀

5 Open problems

Allcock et al. [1] proposed a modular variant of the Pigeonhole Equal Sums problem: given
integers w1, . . . , wn and a modulus m ≤ 2n −1, find two distinct subsets A, B ⊆ [n] such that∑

i∈A wi ≡
∑

i∈B wi (mod m). They obtained a O∗(2n/2)-time algorithm for this problem.
Can this result be improved as well?

Can we obtain faster algorithms for other problems in PPP (e.g., [5, 21])?
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