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A B S T R A C T

We address the challenge of spectral sharing between a statistical multiple-input multiple-output
(MIMO) radar and an in-band full-duplex (IBFD) multi-user MIMO (MU-MIMO) communica-
tions system operating simultaneously in the same frequency band. Existing research on joint
MIMO-radar-MIMO-communications (MRMC) systems has limitations, such as focusing on
colocated MIMO radars, half-duplex MIMO communications, single-user scenarios, neglecting
practical constraints, or employing separate transmit/receive units for MRMC coexistence.
This paper, along with companion papers (Part I and III), proposes a comprehensive MRMC
framework that addresses all these challenges. In the previous companion paper (Part I), we
presented signal processing techniques for a distributed IBFD MRMC system. In this paper,
we introduce joint design of statistical MIMO radar codes, uplink/downlink precoders, and
corresponding receive filters using a novel metric called compounded-and-weighted sum mutual
information. To solve the resulting highly non-convex problem, we employ a combination of
block coordinate descent (BCD) and alternating projection methods. Numerical experiments
show convergence of our algorithm, mitigation of uplink interference, and stable data rates
under varying noise levels, channel estimate imperfections, and self-interference. The subsequent
companion paper (Part III) extends the discussion to multiple targets and evaluates the tracking
performance of our MRMC system.

1. Introduction
The increasing congestion of the electromagnetic spectrum in recent years has presented significant challenges

in the design of radar and communications systems operating within the same frequency bands [1]. While radar
systems necessitate substantial transmit signal bandwidths for high-resolution target detection [2], wireless cellular
networks require access to a broad spectrum to support high data rates [3, 4]. In response to the exponential growth
of mobile data traffic, network operators globally have turned to higher frequency spectra to accommodate the
surge in data usage [1]. Additionally, advancements in wireless communications and the continuous increase in
carrier frequencies have prompted spectrum regulators such the Federal Communications Commission (FCC) and
International Telecommunications Union (ITU) to grant civilian communications systems access to frequency bands
traditionally reserved for radar and sensing applications. This policy shift has initiated a trend of coexistence and
convergence between radar and communications functions [1].

The literature [1] suggests two possible approaches toward joint radar-communications. In the coexistence
approach, the radar and communications systems operate as separate entities within the same spectrum using different
waveforms [5, 6]. In the co-design paradigm, the two systems are integrated into a single hardware platform, and a
common waveform is employed at either the transmitter (Tx), receiver (Rx), or both [7, 8]. The effectiveness of these
spectrum-sharing solutions depends on the level of cooperation between the radar and communications systems. A
hybrid approach of spectral cooperation has also been suggested, wherein some information exchange may take place
between radar and communications systems [9, 10]. In this paper, we focus on spectral co-design aspects.

The aforementioned approaches do not readily extend to multiple-input multiple-output (MIMO) configurations,
which employ multiple antennas at the transmitter and receiver to achieve high spectrum efficiency [3, 11]. MIMO
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configurations enhance communications capacity, provide spatial diversity, and exploit multipath propagation [3].
Similarly, MIMO radars offer advantages over equivalent phased array radars, such as higher angular resolution with
fewer antennas, spatial diversity, and improved parameter identification by leveraging waveform diversity [12]. In a
colocated MIMO radar [13], the radar cross-section remains the same for closely-spaced antennas. In contrast, in a
widely distributed or statistical MIMO radar, the antennas are sufficiently separated from each other, causing the same
target to exhibit different radar cross-sections to each Tx-Rx pair. This spatial diversity is advantageous for detecting
targets with small backscatters and low speed [14].

The increased degrees-of-freedom (DoFs), aperture sharing, and higher-dimensional optimization further compli-
cate spectrum sharing in a joint MIMO-radar-MIMO-communications (MRMC) system [15, 16]. MRMC processing
techniques include employing orthogonal transmit waveforms [17] and receiver interference cancellation [18]; see, e.g.,
[19] for a survey on MRMC solutions. Prior MRMC literature primarily focused on single-user MIMO communications
and colocated MIMO radars. Co-design with statistical MIMO radar remains relatively unexamined in these prior
works. In the previous companion paper (Part I) [19], we proposed spectral co-design of statistical MIMO radar
with in-band full-duplex (IBFD) multi-user (MU) MIMO communications. The IBFD technology has been recently
explored for joint radar-communications systems to facilitate communications transmission while also receiving the
target echoes [20].

The performance metrics to design radar and communications systems are not identical because of different system
goals [1]. As a result, recent works [15, 16] have suggested mutual information (MI) as a common metric for joint radar
and communications systems. Our previous companion paper (Part I) [19] proposed MI-inspired novel compounded-
and-weighted sum MI (CWSM) for the MIMO radar and IBFD MU-MIMO communications co-design problem. In
that paper, we described the receive signal processing for a co-designed distributed MRMC system but did not develop
an algorithm to solve the design problem. In this paper, unlike many prior works that focus solely on one specific
system goal and often in isolation with other processing modules, we propose using CWSM to jointly design the
UL/DL precoders, MIMO radar waveform matrix, and linear receive filters (LRFs) for both systems. Our co-design
also accounts for several practical constraints, including the maximum UL/DL transmit powers, the QoS of the UL/DL
quantified by their respective minimum achievable rates, and the peak-to-average-power-ratio (PAR) of the MIMO
radar waveform. It is common among communications literature to identify a UL/DL UE’s QoS with its minimum
achievable rate [21, 22]. Adopting low PAR waveforms is crucial for achieving energy- and cost-efficient RF front-
ends [23]. We address the non-convex CWSM maximization problem’s challenges subject to non-convex constraints,
namely the QoS and the PAR constraints, by developing an alternating algorithm that incorporates both the block
coordinate descent (BCD) and the alternating projection (AP) methods. The BCD-AP process breaks the original
problem into less complex subproblems that we iteratively solve. Numerical experiments show a quick, monotonic
convergence of our proposed algorithm. Preliminary results of this work appeared in our conference publication [24],
where only communications design was considered, PAR constraint was excluded, and detailed theoretical guarantees
were excluded.

The rest of the paper is organized as follows. In the next section, we summarize the system model following
the details included in the previous companion paper (Part I) [19]. Then, we formulate the CWSM maximization
problem in Section 3. We develop the BCD-AP MRMC procedure to solve the non-convex optimization optimization
problem iteratively in Section 4. We validate the proposed technique through numerical experiments in Section 5 before
concluding in Section 6.

Throughout this paper, lowercase regular, lowercase boldface and uppercase boldface letters denote scalars, vectors
and matrices, respectively. We use 𝐼(𝐗;𝐘) and 𝐻(𝐗|𝐘) to denote, MI and conditional entropy between two random
variables 𝐗 and 𝐘, respectively. The notations 𝐘[𝑘], 𝐲[𝑘], and 𝑦[𝑘] denote the value of time-variant matrix 𝐘, vector
𝐲 and scalar 𝑦 at discrete-time index 𝑘, respectively; 𝟏𝑁 is a vector of size 𝑁 with all ones; ℂ and ℝ represent sets of
complex and real numbers, respectively; a circularly symmetric complex Gaussian (CSCG) vector 𝐪 with 𝑁 elements
and power spectral density 0 is 𝐪 ∼  (0,0𝐈𝑁 ); (⋅)⋆ is the solution of the optimization problem; 𝔼[⋅] is the
statistical expectation; Tr{𝐑}, 𝐑⊤, 𝐑†, 𝐑∗, |𝐑|, 𝐑 ⪰ 𝟎, and 𝐑(𝑚, 𝑛) are the trace, transpose, Hermitian transpose,
element-wise complex conjugate, determinant, positive semi-definiteness and (𝑚, 𝑛)-th entry of matrix 𝐑, respectively;
set ℤ+(𝐿) denotes {1,… , 𝐿}; 𝐱 ⪰ 𝐲 denotes component-wise inequality between vectors 𝐱 and 𝐲; 𝑥+ represents
max(𝑥, 0); 𝑥(𝑡)(⋅) is the 𝑡-th iterate of an iterative function 𝑥(⋅); inf(⋅) is the infimum of its argument; ⊙ denotes the
Hadamard product; and ⊕ is the direct sum.
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2. Spectral Co-Design System Model
The system model for the statistical MIMO The signal model used in this paper closely follows that detailed in the

previous companion paper (Part I) [19] and, hence, we only summarize the key aspects below.
Consider a two-dimensional (2-D) (𝑥-𝑦) Cartesian plane on which the 𝑀r Txs and 𝑁r Rxs of a statistical MIMO

radar, the BS, 𝐼 UL UEs, and 𝐽 DL UEs of the IBFD MU-MIMO communications system are located at the coordinates
(

𝑥𝑚r
, 𝑦𝑚r

)

,
(

𝑥𝑛r , 𝑦𝑛r
)

,
(

𝑥B, 𝑦B
)

,
(

𝑥UL,𝑖, 𝑦UL,𝑖
)

, and
(

𝑥DL,𝑗 , 𝑦DL,𝑗
)

, respectively, for all 𝑚r ∈ 𝑍+(𝑀r), 𝑛r ∈ ℤ+
(

𝑁r
)

,
𝑖 ∈ ℤ+(𝐼), and 𝑗 ∈ ℤ+(𝐽 ). The statistical MIMO radar operates within the same transmit spectrum as an IBFD
MU-MIMO communications system. Here, the radar aims to detect a target moving within the cellular coverage of
the BS. The communications system serves the UL/DL UEs with desired achievable rates in the presence of the radar
echoes.

2.1. Transmit Signal
Each radar Tx emits a train of 𝐾 pulses at a uniform pulse repetition interval (PRI) 𝑇r or fast-time; the total duration

𝐾𝑇r is the coherent processing interval (CPI) or slow-time and 𝐾 is chosen to avoid range migration during the CPI
[2]. At the same time, the BS and each UL UE continuously transmit DL and UL symbols, respectively. The radar pulse
width is 𝑇p = 𝑇r∕𝑁 , where 𝑁 is the number of sampled range bins or cells in a PRI. The UL/DL frame duration 𝑇f and
the UL/DL symbol duration 𝑇s equal radar PRI and radar pulse width 𝑇p, respectively; i.e., 𝑇f = 𝑇r and 𝑇s = 𝑇p. This
implies that the number of UL/DL frames transmitted in the scheduling window is also 𝐾 and the number of UL/DL
symbols per frame is 𝑇f∕𝑇s = 𝑁 . The 𝑘-th communications frame is transmitted at a duration of 𝐺𝑇p, 𝐺 ∈ ℤ(𝑁 − 1),
before the 𝑘-th radar PRI.

2.1.1. Statistical MIMO Radar
Denote the narrowband transmit pulse of the 𝑚r-th radar Tx by 𝜙𝑚r

(𝑡). The waveforms from all Txs form the
waveform vector

𝝓(𝑡) =
[

𝜙1(𝑡),… , 𝜙𝑀r
(𝑡)
]⊤

∈ ℂ𝑀r , (1)

and satisfy the orthonormality ∫𝑇p 𝝓(𝑡)𝝓
†(𝑡)𝑑𝑡 = 𝐈𝑀r

. The radar code to modulate the pulse emitted by the 𝑚r Tx in
the 𝑘-th PRI is 𝑎𝑚r ,𝑘. During the observation window 𝑡 ∈

[

0, 𝐾𝑇r + 𝐺𝑇p
]

, the 𝑚r-th Tx emits the pulse train

𝑠𝑚r
(𝑡) =

𝐾−1
∑

𝑘=0
𝑎𝑚r ,𝑘𝜙𝑚r

(

𝑡 − 𝑘𝑇r − 𝐺𝑇p
)

, (2)

where the support of 𝜙𝑚r
(𝑡) is

[

0, 𝑇r
)

and, without loss of generality, 𝜙𝑚r
(𝑡) =

√

1∕𝑇p𝑒
𝑗2𝜋 𝑚r

𝑇p
𝑡

for 𝑚r ∈ ℤ+
(

𝑀r
)

for

𝑡 ∈
[

0, 𝑇r
)

. Define the radar code vector transmitted during the 𝑘-th PRI as 𝐚[𝑘] =
[

𝑎1,𝑘,⋯ , 𝑎𝑀r ,𝑘

]⊤
∈ ℂ𝑀r so that

the MIMO radar code matrix is

𝐀 =
[

𝐚⊤[1];⋯ ; 𝐚⊤[𝐾]
]

=
[

𝐚1,⋯ .𝐚𝑀r

]

∈ ℂ𝐾×𝑀r . (3)

where 𝐚𝑚r
∈ ℂ𝐾 is the code of the 𝑚r-th TX over all PRIs. The combined transmit signal vector is

𝐬(𝑡) =
[

𝑠1(𝑡),⋯ , 𝑠𝑀r
(𝑡)
]⊤

∈ ℂ𝑀r . (4)

2.1.2. IBFD MU-MIMO Communications
The BS and UEs operate in the FD and HD modes, respectively. During the observation window, the BS receives

data frames from the 𝐼 UL UEs; concurrently, the 𝐽 DL UEs operating in the same band download data frames from
the BS. The BS is equipped with 𝑀c transmit and 𝑁c receive antennas. The 𝑖-th UL UE and 𝑗-th DL UE employ 𝑁u

𝑖
and 𝑁d

𝑗 transceive antennas, respectively. To achieve the maximum capacities of the UL and DL channels, number
of BS Tx and Rx antennas are 𝑀c ≥

∑𝐽
𝑗=1𝑁

d
𝑗 and 𝑁c ≥

∑𝐼
𝑖=1𝑁

u
𝑖 , respectively [3]. A total of 𝐷u

𝑖 ≤ 𝑁u
𝑖 and
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𝐷d
𝑗 ≤ 𝑁d

𝑗 unit-energy data streams are used by 𝑖-th UL UE and 𝑗-th DL UE, respectively. The symbol vectors sent
by the 𝑖-th UL UE toward the BS and by the BS toward the 𝑗-th DL UE in the 𝑙-th symbol period of the 𝑘-th frame
are 𝐝u,𝑖[𝑘, 𝑙] ∈ ℂ𝐷u

𝑖 and 𝐝d,𝑗[𝑘, 𝑙] ∈ ℂ𝐷d
𝑗 , respectively; these are independent and identically distributed (i.i.d.) with

𝔼
[

𝐝d,𝑗𝐝
†
d,𝑗[𝑘, 𝑙]

]

= 𝔼
[

𝐝u,𝑖𝐝
†
u,𝑖[𝑘, 𝑙]

]

= 𝐈 for 𝑖 ∈ ℤ+{𝐼}, 𝑘 ∈ ℤ+{𝐾}, and 𝑙 ∈ ℤ+{𝑁}.

Denote the precoders for the 𝑖-th UL UE and the 𝑗-th DL UE at the 𝑘-th frame as 𝐏u,𝑖[𝑘] ∈ ℂ𝑁u
𝑖 ×𝐷

u
𝑖 and

𝐏d,𝑗[𝑘] ∈ ℂ𝑀c×𝐷d
𝑗 , respectively. The precoded transmit signal vectors for the 𝑖-th UL UE and 𝑗-th DL UE become

𝐬u,𝑖[𝑘, 𝑙] = 𝐏u,𝑖[𝑘]𝐝u,𝑖[𝑘, 𝑙], (5)

and

𝐬d,𝑗[𝑘, 𝑙] = 𝐏d,𝑗[𝑘]𝐝d,𝑗[𝑘, 𝑙], (6)

respectively. The total DL symbol vector broadcast by the BS in the same symbol period is

𝐬B[𝑘, 𝑙] =
𝐽
∑

𝑗=1
𝐬d,𝑗[𝑘, 𝑙]. (7)

The transmit pulse shaping function used by the IBFD communications is 𝑝T(𝑡). The transmit signals of 𝑖-th UL UE
and BS are

𝐱u,𝑖(𝑡) =
𝐾−1
∑

𝑘=0

𝑁−1
∑

𝑙=0
𝐬u,𝑖[𝑘, 𝑙]𝑝T

(

𝑡 − (𝑘𝑁 + 𝑙)𝑇p
)

, (8)

and

𝐱B(𝑡) =
𝐾−1
∑

𝑘=0

𝑁−1
∑

𝑙=0
𝐬B[𝑘, 𝑙]𝑝T

(

𝑡 − (𝑘𝑁 + 𝑙)𝑇p
)

. (9)

2.2. Statistical MIMO radar receiver
The radar and DL signals are reflected off a single target and the combined echo is received at the 𝑛r-th radar Rx

as 𝐲t,𝑛r . It is overlaid with clutter echoes 𝐲c,𝑛r , directly received IBFD MU-MIMO DL signal 𝐲Bm,𝑛r , and interference

from the UL 𝐲u,𝑛r . With the CSCG noise vector at the 𝑛r-th radar Rx by 𝐳r,𝑛r ∈ 
(

𝟎, 𝜎2r,𝑛r 𝐈𝐾
)

, the composite receive
signal model at the range cell under test (CUT) of the 𝑛r-th radar Rx is

𝐲r,𝑛r = 𝐲t,𝑛r + 𝐲c,𝑛r + 𝐲Bm,𝑛r + 𝐲u,𝑛r + 𝐳r,𝑛r
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐲inr,𝑛r

, (10)

where 𝐲inr,𝑛r denotes the interference-plus-noise component of 𝐲r,𝑛r . The covariance matrix (CM) of 𝐲r,𝑛r is [19]

𝐑r,𝑛r = 𝐑t,𝑛r + 𝐑in
r,𝑛r

, (11)

with the CM of 𝐲inr,𝑛r given by

𝐑in
r,𝑛r

≜ 𝐑c,𝑛r + 𝐑Bm,𝑛r + 𝐑Ur,𝑛r + 𝜎2r,𝑛r 𝐈𝐾 . (12)

Combining the received signals from 𝑁r radar Rxs yields

𝐲r = 𝐲tr + 𝐲in
r =

[

𝐲⊤r,1;⋯ ; 𝐲⊤r,𝑁r

]⊤
∈ ℂ𝐾𝑁r , (13)
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where

𝐲tr =
[

𝐲⊤t,1;⋯ ; 𝐲⊤t,𝑁r

]⊤
, (14)

and

𝐲in
r ≜ 𝐲cr + 𝐲Bmr + 𝐲Ur + 𝐳r =

[

(

𝐲in
r,1

)⊤
;⋯ ;

(

𝐲in
r,𝑁r

)⊤
]⊤

, (15)

whose CM is

𝐑in
r = ⊕𝑁r

𝑛r=1
𝐑in

r,𝑛r
. (16)

2.3. IBFD MU-MIMO Communications Receiver
Within the observation window, 𝐽 DL UEs and the BS receive both IBFD communications signals and radar

probing signals. For 𝑙-th symbol period and 𝑘-th frame, denote the CSCG noise vectors measured respectively at the
BS Rx and the 𝑗-th DL UE as 𝐳B[𝑘, 𝑙] ∼ 

(

0, 𝜎2B𝐈𝑀c

)

and 𝐳d,𝑗[𝑘, 𝑙] ∼ 
(

0, 𝜎2d,𝑗𝐈𝑁d
𝑗

)

, i.i.d in 𝑘 and 𝑙. Then, the
signal received at the BS Rx to decode 𝐬u,𝑖[𝑘, 𝑙] and the composite signal received by the 𝑗-th DL UE are, respectively,

𝐲u,𝑖[𝑘, 𝑙] = 𝐲𝑖,B[𝑘, 𝑙] + 𝐲um,𝑖[𝑘, 𝑙] + 𝐲BB[𝑘, 𝑙] + 𝐲rB[𝑘, 𝑙] + 𝐳B[𝑘, 𝑙], (17)
and 𝐲d,𝑗[𝑘, 𝑙] = 𝐲B,𝑗[𝑘, 𝑙] + 𝐲dm,𝑗[𝑘, 𝑙] + 𝐲u,𝑗[𝑘, 𝑙] + 𝐲r,𝑗[𝑘, 𝑙] + 𝐳d,𝑗[𝑘, 𝑙], (18)

where 𝐲𝑖,B[𝑘, 𝑙] is the signal from 𝑖-th UL UE to the BS; 𝐲um,𝑖[𝑘, 𝑙] is the multi-user interference (MUI) from other UL
UEs; 𝐲BB[𝑘, 𝑙] is the self-interference due to FD transmission; 𝐲rB[𝑘, 𝑙] (𝐲r,𝑗[𝑘, 𝑙]) is the radar signal received at the
BS (𝑗-th DL UE); 𝐲B,𝑗[𝑘, 𝑙] is the signal from the BS aimed for the 𝑗-th DL UE; 𝐲dm,𝑗[𝑘, 𝑙] is the MUI from other DL
UEs; and 𝐲u,𝑗[𝑘, 𝑙] is the UL interference at the 𝑗-th DL UE. The CMs of 𝐲u,𝑖[𝑘, 𝑙] and 𝐲d,𝑗[𝑘, 𝑙] are, respectively,

𝐑u,𝑖[𝑘, 𝑙] = 𝐑𝑖,B[𝑘, 𝑙] + 𝐑in
u,𝑖[𝑘, 𝑙], (19)

and

𝐑d,𝑗[𝑘, 𝑙] = 𝐑B,j[𝑘, 𝑙] + 𝐑in
d,𝑗[𝑘, 𝑙], (20)

where

𝐑in
u,𝑖[𝑘, 𝑙] = 𝐑um,𝑖[𝑘, 𝑙] + 𝐑BB[𝑘, 𝑙] + 𝐑rB[𝑘, 𝑙] + 𝜎2B𝐈𝑀c

, (21)

and

𝐑in
d,𝑗[𝑘, 𝑙] = 𝐑dm,𝑗[𝑘, 𝑙] + 𝐑u,𝑗[𝑘, 𝑙] + 𝐑r,𝑗[𝑘, 𝑙] + 𝜎2𝑗 𝐈𝑁d

𝑗
, (22)

denote the interference-plus-noise CMs associated with (18) and (17), respectively. The precoders of IBFD communi-
cations are based on the 𝑛rB-th symbol period of 𝐾 UL frames and the 𝑛rd-th symbol period of 𝐾 DL frames, where
𝑛rB and 𝑛rd are the symbol indices of UL and DL, respectively. Figure 1 illustrates the composite receive signals of BS
Rx, 𝑗-th DL UE, and 𝑛r-th radar Rx.

3. CWSM Maximization
We now define the LRFs for the MIMO radar and the IBFD MU-MIMO communications system Rxs before intro-

ducing the MI-based co-design metric CWSM. Denote the LRF at the 𝑛r-th radar as𝐔r,𝑛r =
[

𝐮r,𝑛r [0],⋯ ,𝐮r,𝑛r [𝐾 − 1]
]

∈
ℂ𝐾𝑀×𝐾 . This LRF’s output is

𝐲̃r,𝑛r = 𝐲̃t,𝑛r + 𝐲̃inr,𝑛r = 𝐔r,𝑛r𝐒t,𝑛r𝐡t,𝑛r + 𝐔r,𝑛r𝐲
in
r,𝑛r

(23)
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Figure 1: The overlaid receive signal timing diagram during 𝑘-th radar PRI and 𝑘-th communications frame in the
observation window; noise trails have been excluded. The purple bin with more opacity indicates the DL signal reflected

from the target and observed in the radar CUT, i.e., 𝐲(𝑛t)Bt,𝑛r
[𝑘].

where 𝐡t,𝑛r ∼ 
(

𝟎,𝚺t,𝑛r

)

contains the target information and 𝐲̃r,𝑛r ∼ 
(

𝟎,𝐔r,𝑛r

(

𝐑t,𝑛r + 𝐑in
r,𝑛r

)

𝐔†
r,𝑛r

)

.
Using the chain rule, the MI between 𝐲̃r,𝑛r and 𝐡t,𝑛r is [25, 26]

𝐼r,𝑛r ≜ 𝐼
(

𝐲̃r,𝑛r ;𝐡t,𝑛r
)

= 𝐻
(

𝐲̃r,𝑛r
)

−𝐻
(

𝐲̃r,𝑛r |𝐡t,𝑛r
)

= 𝐻
(

𝐲̃r,𝑛r
)

−𝐻
(

𝐲̃t,𝑛r |𝐡t,𝑛r
)

−𝐻
(

𝐲̃inr,𝑛r |𝐡t,𝑛r
)

= 𝐻
(

𝐲̃r,𝑛r
)

−𝐻
(

𝐲̃inr,𝑛r
)

, (24)

where 𝐻
(

𝐲̃t,𝑛r |𝐡t,𝑛r
)

vanishes because 𝐲̃t,𝑛r depends on 𝐡t,𝑛r ; and 𝐻
(

𝐲̃inr,𝑛r |𝐡t,𝑛r
)

reduces to 𝐻
(

𝐲̃inr,𝑛r
)

because 𝐲̃in
r,𝑛r

and 𝐡t,𝑛r are mutually independent. The conditional differential entropy with the Gaussian noise [25] leads to

𝐻
(

𝐲̃r,𝑛r |𝐀
)

= 𝜚 + log||
|

𝐔r,𝑛r𝐑r,𝑛r𝐔
†
r,𝑛r

|

|

|

(25)
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and

𝐻
(

𝐲̃inr,𝑛r |𝐀
)

= 𝜚 + log||
|

𝐔r,𝑛r𝐑
in
r,𝑛r

𝐔†
r,𝑛r

|

|

|

, (26)

where the constant 𝜚 = 𝐾 log(𝜋) +𝐾 . This gives

𝐼r,𝑛r = log

|

|

|

|

𝐔r,𝑛r

(

𝐑t,𝑛r + 𝐑in
r,𝑛r

)

𝐔†
r,𝑛r

|

|

|

|

|

|

|

𝐔r,𝑛r𝐑
in
r,𝑛r

𝐔†
r,𝑛r

|

|

|

= log
|

|

|

|

𝐈 + 𝐔r,𝑛r𝐑t,𝑛r𝐔
†
r,𝑛r

(

𝐔r,𝑛r𝐑
in
r,𝑛r

𝐔†
r,𝑛r

)−1
|

|

|

|

. (27)

The LRFs deployed at the BS to decode the 𝑖-th UL UE and 𝑗-th DL UE during 𝑘-th frame of the observation
window are 𝐔u,𝑖[𝑘] ∈ ℂ𝐷u

𝑖 ×𝑁c and 𝐔d,𝑗[𝑘] ∈ ℂ𝐷d
𝑗×𝑁

d
𝑗 , respectively. The outputs of 𝐔u,𝑖[𝑘] and 𝐔d,𝑗[𝑘] are 𝐲̃u,𝑖[𝑘, 𝑙] =

𝐔u,𝑖[𝑘]𝐲u,𝑖[𝑘, 𝑙] and 𝐲̃d,𝑗[𝑘, 𝑙] = 𝐔d,𝑗[𝑘]𝐲d,𝑗[𝑘, 𝑙]; these signals follow the distributions 
(

𝟎,𝐔u,𝑖[𝑘]𝐑u,𝑖[𝑘, 𝑙]𝐔
†
u,𝑖[𝑘]

)

and 
(

𝟎,𝐔d,𝑗[𝑘]𝐑d,𝑗[𝑘, 𝑙]𝐔
†
d,𝑗[𝑘]

)

, respectively.

Using the common assumption of Gaussianity on symbol vectors, i.e. 𝐬u,𝑖[𝑘, 𝑙] ∼ 
(

𝟎,𝐏u,𝑖[𝑘]𝐏
†
u,𝑖[𝑘]

)

and

𝐬d,𝑗[𝑘, 𝑙] ∼ 
(

𝟎,𝐏d,𝑗[𝑘]𝐏
†
d,𝑗[𝑘]

)

, the MIs between 𝐲̃u,𝑖[𝑘, 𝑙] and 𝐬u,𝑖[𝑘, 𝑙] as well as 𝐲̃d,𝑗[𝑘, 𝑙] and 𝐬d,𝑗[𝑘, 𝑙] are

𝐼u
𝑖 [𝑘, 𝑙] ≜ 𝐼

(

𝐬u,𝑖[𝑘, 𝑙]; 𝐲̃u,𝑖[𝑘, 𝑙]
)

= log
|

|

|

|

𝐈 + 𝐔u,𝑖[𝑘]𝐑𝑖,B[𝑘, 𝑙]𝐔
†
u,𝑖[𝑘]

(

𝐔u,𝑖[𝑘]𝐑in
u,𝑖[𝑘, 𝑙]𝐔

†
u,𝑖[𝑘]

)−1
|

|

|

|

, (28)

and

𝐼d
𝑗 [𝑘, 𝑙] ≜ 𝐼

(

𝐬B,𝑗[𝑘, 𝑙]; 𝐲̃d,𝑗[𝑘, 𝑙]
)

== log
|

|

|

|

𝐈 + 𝐔d,𝑗[𝑘]𝐑B,𝑗[𝑘, 𝑙]𝐔
†
d,𝑗[𝑘]

(

𝐔d,𝑗[𝑘]𝐑in
d,𝑗[𝑘, 𝑙]𝐔

†
d,𝑗[𝑘]

)−1
|

|

|

|

, (29)

respectively. We evaluate FD communications based on the symbols-of-interest, i.e., 𝑙 = 𝑛rB for each UL frame and
𝑙 = 𝑛rd for each DL frame in the observation window. The metric CWSM is a weighted sum of communications’ MIs
related to the symbol periods of interest1 and 𝐼r,𝑛r , i.e.,

𝐼CWSM =
𝑁r
∑

𝑛r=1
𝛼r
𝑛r
𝐼 r
𝑛r
+

𝐾−1
∑

𝑘=0

[ 𝐼
∑

𝑖=1
𝛼u
𝑖 𝐼

u
𝑖 [𝑘] +

𝐽
∑

𝑗=1
𝛼d
𝑗 𝐼

d
𝑗 [𝑘]

]

, (30)

where 𝛼r
𝑛r

, 𝛼u
𝑖 , and 𝛼d

𝑗 are pre-defined weights assigned to the MIMO 𝑛r-th radar Rx , 𝑖-th UL UE and 𝑗-th DL UE,
respectively, for all 𝑛r , 𝑖, and 𝑗; the weights are determined by the system priority and specific applications. For example,
for FD communications, the weights are based on available buffer capacities of BS and UEs[27, 28]. For the joint
radar-communications, one can assign larger (smaller) weights to 𝛼r𝑛r with the presence (absence) of targets [29].

Denote the sets of the precoders and the LRFs as {𝐏} ≜
{

𝐏u,𝑖[𝑘],𝐏d,𝑗[𝑘]|𝑖 ∈ ℤ+{𝐼}, 𝑗 ∈ ℤ+{𝐽}, 𝑘 ∈ ℤ+{𝐾}
}

and {𝐔} ≜
{

𝐔u,𝑖[𝑘],𝐔d,𝑗[𝑘],𝐔r,𝑛r |𝑖 ∈ ℤ+{𝐼}, 𝑗 ∈ ℤ+{𝐽}, 𝑘 ∈ ℤ+{𝐾}, 𝑛r ∈ ℤ+
{

𝑁r
}}

. The transmission powers
that occurred to the BS and the 𝑖-th UL UE at the 𝑘-th frame are

𝑃d[𝑘] =
𝐽
∑

𝑗=1
𝑃d,𝑗[𝑘] =

𝐽
∑

𝑗=1
Tr

{

𝐏d,𝑗[𝑘]𝐏
†
d,𝑗[𝑘]

}

, (31)

and

𝑃u,𝑖[𝑘] = Tr
{

𝐏u,𝑖[𝑘]𝐏
†
u,𝑖[𝑘]

}

, (32)

1Hereafter, for simplicity, we drop symbol index 𝑙 = 𝑛rB (𝑙 = 𝑛rd) for UL (DL) related terms.
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which are upper bounded by the maximum DL and UL powers 𝑃B and 𝑃U, respectively. The achievable rates for the 𝑖-th
UL UE and the 𝑗-th DL UE in the 𝑘-th frame, 𝑅u,𝑖[𝑘] and 𝑅d,𝑗[𝑘] are lower bounded by the least acceptable achievable
rates to quantify the QoS of the UL and DL, 𝑅UL and 𝑅DL, respectively. The CWSM optimization to jointly design
precoders {𝐏}, radar code 𝐀, and LRFs {𝐔} is

maximize
{𝐏},{𝐔},𝐀

𝐼CWSM({𝐔}, {𝐏},𝐀) (33a)

subject to 𝑃d[𝑘] ≤ 𝑃B, (33b)
𝑃u,𝑖[𝑘] ≤ 𝑃U, (33c)
𝑅u,𝑖[𝑘] ≥ 𝑅UL, (33d)
𝑅d,𝑗[𝑘] ≥ 𝑅DL, (33e)

‖𝐚𝑚r
‖

2 = 𝑃r,𝑚r
, (33f)

𝐾 max𝑘=1,⋯,𝐾 |𝐚𝑚r
[𝑘]|2

𝑃r,𝑚r

≤ 𝛾𝑚r
, ∀ 𝑖, 𝑗, 𝑘, 𝑚r , (33g)

where constraints (33f) and (33g) are determined by the transmit power and PAR of the 𝑚r-th MIMO radar Tx,
respectively. Note that PAR constraint is applied column-wise to the code matrix 𝐀 because the Txs of a statistical
MIMO radar are widely distributed. When 𝛾𝑚r

= 1, PAR constraint is reduced to constant modulus constraint.

4. Joint Code-Precoder-Filter Design
Even without the non-convex constraints (33e)-(33g), (33) is non-convex because the objective function 𝐼CWSM is

not jointly concave over {𝐏}, {𝐔}, and 𝐀, and therefore its global optima are generally intractable [30]. In general,
such a problem is solved by alternately optimizing over one unknown variable at a time. When the number of variables
is large, methods such as the BCD partition all optimization variables into, say, 𝑉 small groups or blocks and optimize
over each block, one at a time, while keeping other block variables fixed [31]. The net effect is that the problem is
equivalently solved by iteratively solving less complex 𝑉 subproblems. If there are only two blocks of variables, the
BCD reduces to the classical alternating minimization method[31, 32].

It has been shown [33, 34] that the BCD converges globally to a stationary point for both convex and non-
convex problems while methods such as Alternating Direction Method of Multipliers (ADMM) and Douglas-Rachford
Splitting (DRS) achieve only linear convergence for strictly convex and some non-convex (e.g. multi-convex) problems.
The stochastic gradient descent used to address saddle point problems has a slower convergence rate than BCD and
offers only weak convergence for non-convex problems [34].

One can partition the block coordinate variables from (33) into three groups, i.e., {𝐏},𝐀, and {𝐔}. At each iteration,
we apply a direct update [31], i.e., maximize 𝐼CWSM for all the block variables. Further, we update the block variables
in a cyclic sequence because its global and local convergence has been well-established [31, 35] compared to other
sequential update rules2. In particular, we adopt the Gauss-Seidel BCD [31], which minimizes the objective function
cyclically over each block while keeping the other blocks fixed.

A summary of our strategy is as follows. Note that {𝐏} is subject to only communications-centric constraints (33b)-
(33e) and 𝐀 to both radar-centric PAR constraints (33f)-(33g) and communications-centric constraints (33b)-(33e). We
denote the sets of feasible 𝐀 determined by (33b)-(33e) and (33f)-(33g) as 𝔸c and 𝔸r, respectively and the optimal
solution for𝐀, i.e.,𝐀⋆ is thus in the intersection of𝔸c and𝔸r, i.e.,𝐀⋆ ∈ 𝔸c∩𝔸r. The AP method [36, 37] is appropriate
to perform the search for 𝐀⋆. In the sequel of this section, we first transform the 𝐼CWSM maximization problem, which
is a weighted sum rate (WSR) problem, in (33) to a weighted minimum mean-squared-error (WMMSE) minimization
problem without the PAR constraints in Section 4.1. It has been shown in [38, 28] that maximizing information-
theoretic quantities via WMMSE for MIMO precoder design yields better results than geometric programming.
Mapping a WSR problem to its corresponding WMMSE problem is also more computationally efficient than gradient-
based (GB) approaches [28] because of its low per-iteration complexity, which is guaranteed to converge to at least a
local optimum [38]. In Section 4.2, we then employ the BCD in our proposed WMMSE-MRMC algorithm to solve

2A possible alternative is the randomized BCD, where the series of iterates generated by BCD are divergent. However, cyclic BCD may still
outperform the randomized BCD [33].
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for the optimal 𝐀 in 𝔸c, which we denote as 𝐀′, and the optimal
{

𝐏⋆}. Then, we project each column of 𝐀′ onto 𝔸r
in Section 4.3 using AP. The WMMSE-MRMC and AP procedures comprise the overall BCD-AP MRMC algorithm
(Algorithm 4) and are repeated until convergence.

4.1. Relationship between WMMSE and MI
Consider (33) without PAR constraints,

maximize
{𝐏},{𝐔},𝐀

𝐼CWSM({𝐔}, {𝐏},𝐀) subject to (33b) − (33e). (34)

To derive the WMMSE expressions regarding (34), we first define the mean squared error for the 𝑛r-th radar Rx, 𝑖-th
UL UE, and 𝑗-th DL UE as

𝐄r,𝑛r = 𝔼
[

(

𝐡t,𝑛r − 𝐔r,𝑛r𝐲r,𝑛r
)(

𝐡t,𝑛r − 𝐔r,𝑛r𝐲r,𝑛r
)†

]

= 𝚺t,𝑛r − 𝐔r,𝑛r𝐒t,𝑛r𝚺t,𝑛r − 𝚺†
t,𝑛r

𝐒†t,𝑛r𝐔
†
r,𝑛r

+ 𝐔r,𝑛r𝐑r,𝑛r𝐔
†
r,𝑛r

, (35)

𝐄u,𝑖[𝑘] = 𝔼
[

(

𝐝u,𝑖[𝑘] − 𝐔u,𝑖[𝑘]𝐲u,𝑖[𝑘]
)(

𝐝u,𝑖[𝑘] − 𝐔u,𝑖[𝑘]𝐲u,𝑖[𝑘]
)†
]

= 𝐈 − 𝐔u,𝑖[𝑘]𝐇𝑖,B𝐏u,𝑖[𝑘] − 𝐏†
u,𝑖[𝑘]𝐇

†
𝑖,B𝐔

†
u,𝑖[𝑘]

+ 𝐔u,𝑖[𝑘]𝐑u,𝑖[𝑘]𝐔
†
u,𝑖[𝑘], (36)

𝐄d,𝑗[𝑘] = 𝔼
[

(

𝐝d,𝑗[𝑘] − 𝐔d,𝑗[𝑘]𝐲d,𝑗[𝑘]
)(

𝐝d,𝑗[𝑘] − 𝐔d,𝑗[𝑘]𝐲d,𝑗[𝑘]
)†
]

= 𝐈 − 𝐔d,𝑗[𝑘]𝐇B,𝑗𝐏d,𝑗[𝑘] − 𝐏†
d,𝑗[𝑘]𝐇

†
B,𝑗𝐔

†
d,𝑗[𝑘]

+ 𝐔d,𝑗[𝑘]𝐑d,𝑗[𝑘]𝐔
†
d,𝑗[𝑘], (37)

where the expectations are taken w.r.t. 𝐡t,𝑛r , 𝐝u,𝑖[𝑘], and 𝐝d,𝑗[𝑘], respectively. Denote symmetric weight matrices

associated with 𝐄r,𝑛r
, 𝐄u,𝑖[𝑘], and 𝐄d,𝑗[𝑘] as 𝐖r,𝑛r ∈ ℂ𝐾𝑀×𝐾𝑀 ⪰ 𝟎, 𝐖u,𝑖[𝑘] ∈ ℂ𝐷u

𝑖 ×𝐷
u
𝑖 ⪰ 𝟎, and 𝐖d,𝑗[𝑘] ∈ ℂ𝐷d

𝑗×𝐷
d
𝑗 ⪰

𝟎, respectively. The weighted-sum MSE is

Ξwmse ≜
𝐾
∑

𝑘=1

𝐼
∑

𝑖=1
𝛼u
𝑖 Tr

{

𝐖u,𝑖[𝑘]𝐄u,𝑖[𝑘]
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=ΞUL

+
𝑁r
∑

𝑛r=1
𝛼r
𝑛r
Tr

{

𝐖r,𝑛r𝐄r,𝑛r

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=Ξr

+
𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
𝛼d
𝑗 Tr

{

𝐖d,𝑗[𝑘]𝐄d,𝑗[𝑘]
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=ΞDL

, (38)

where 𝐖u,𝑖[𝑘]𝐄u,𝑖[𝑘], 𝐖d,𝑗[𝑘]𝐄d,𝑗[𝑘] and 𝐖r,𝑛r𝐄r,𝑛r
are:

𝐖u,𝑖[𝑘]𝐄u,𝑖[𝑘]

= 𝐖u,𝑖[𝑘]𝐈 −𝐖u,𝑖[𝑘]𝐔u,𝑖[𝑘]𝐇𝑖,B𝐏u,𝑖[𝑘] −𝐖u,𝑖[𝑘]𝐏
†
u,𝑖[𝑘]𝐇

†
𝑖,B𝐔

†
u,𝑖[𝑘] +𝐖u,𝑖[𝑘]𝐔u,𝑖[𝑘]𝐇𝑖,B𝐏u,𝑖[𝑘]𝐏

†
u,𝑖[𝑘]𝐇

†
𝑖,B𝐔

†
u,𝑖[𝑘]

+𝐖u,𝑖[𝑘]𝐔u,𝑖[𝑘]

(

∑

𝑞≠𝑖
𝐇𝑞,B𝐏u,𝑞[𝑘]𝐏†

u,𝑞[𝑘]𝐇
†
𝑞,B +

𝐽
∑

𝑗=1
𝐇BB𝐏d,𝑗[𝑘]𝐏

†
d,𝑗[𝑘]𝐇

†
BB +𝐇rB𝐚[𝑘]𝐚†[𝑘]𝐇

†
rB

)

𝐔†
u,𝑖[𝑘],

(39)
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𝐖d,𝑗[𝑘]𝐄d,𝑗[𝑘]

= 𝐖d,𝑗[𝑘]𝐈 −𝐖d,𝑗[𝑘]𝐔d,𝑗[𝑘]𝐇B,𝑗𝐏d,𝑗[𝑘] −𝐖d,𝑗[𝑘]𝐏
†
d,𝑗[𝑘]𝐇

†
B,𝑗𝐔

†
d,𝑗[𝑘]

+𝐖d,𝑗[𝑘]𝐔d,𝑗[𝑘]𝐇B,𝑗𝐏d,𝑗[𝑘]𝐏
†
d,𝑗[𝑘]𝐇

†
B,𝑗𝐔

†
d,𝑗[𝑘]

+𝐖d,𝑗[𝑘]𝐔d,𝑗[𝑘]

(

∑

𝑔≠𝑗
𝐇B,𝑗𝐏u,𝑞[𝑘]𝐏†

u,𝑞[𝑘]𝐇
†
B,𝑗 +

𝐼
∑

𝑖=1
𝐇𝑖,𝑗𝐏u,𝑖[𝑘]𝐏

†
u,𝑖[𝑘]𝐇

†
𝑖,𝑗 +𝐇r,𝑗𝐚[𝑘]𝐚†[𝑘]𝐇

†
r,𝑗

)

𝐔†
d,𝑗[𝑘], (40)

and

𝐖r,𝑛r𝐄r,𝑛r

= 𝐖r,𝑛r𝔼
⎡

⎢

⎢

⎣

(

𝐡t,𝑛r −
𝐾
∑

𝑘=1
𝐮r,𝑛r [𝑘]

{

𝐲t,𝑛r [𝑘] + 𝐲inr,𝑛r [𝑘]
}

)(

𝐡t,𝑛r −
𝐾
∑

𝑘=1
𝐮r,𝑛r [𝑘]

{

𝐲t,𝑛r [𝑘] + 𝐲inr,𝑛r [𝑘]
}

)†
⎤

⎥

⎥

⎦

= 𝐖r,𝑛r𝚺t,𝑛r −𝐖r,𝑛r𝔼

[ 𝐾
∑

𝑚=1
𝐉h[𝑚]

(

𝐉r𝐡rt,𝑛r [𝑚] + 𝐉B𝐡Bt,𝑛r [𝑚]
)

𝐾
∑

𝓁=1

(

𝐚†[𝓁]𝐡∗rt,𝑛r [𝓁] + 𝐬†Bt,𝑛r [𝓁]𝐡
∗
Bt,𝑛r

[𝓁]
)

𝐮†r,𝑛r [𝓁]
]

−𝐖r,𝑛r𝔼

[ 𝐾
∑

𝑚=1
𝐮r,𝑛r [𝑚]

(

𝐡rt,𝑛r [𝑚]𝐚[𝑚] + 𝐡Bt,𝑛r [𝑚]𝐬Bt,𝑛r [𝑚]
)

𝐾
∑

𝓁=1

(

𝐡†rt,𝑛r [𝓁]𝐉
†
r + 𝐡†Bt,𝑛r

[𝓁]𝐉†B
)

𝐉†h[𝓁]
]

+𝐖r,𝑛r

𝐾
∑

𝑚=1

𝐾
∑

𝓁=1
𝐮r,𝑛r [𝑚]

(

𝐑rt,𝑛r (𝑚,𝓁) + 𝐑Bt,𝑛r (𝑚,𝓁) + 𝐑Bm,𝑛r (𝑚,𝓁) + 𝐑U,𝑛r (𝑚,𝓁) + 𝐑c,𝑛r (𝑚,𝓁) + 𝜎𝑛r
)

𝐮†r,𝑛r [𝓁].

(41)

Minimizing (38) is the key to solving the problematic non-convex problem in (34), as stated in the following theorem.

Theorem 1. Solving the problem

minimize
{𝐏},{𝐔},𝐀,{𝐖}

Ξwmse({𝐔}, {𝐏},𝐀, {𝐖}), (42)

subject to (33b) − (33e)

yields the exact solution of the problem (34).

Proof. The optimization of (42) w.r.t. {𝐔} yields [28]

𝐔⋆
r,𝑛r

= arg min
𝐔r,𝑛r ,∀𝑛r

Tr
{

𝐖r,𝑛r𝐄r,𝑛r

}

= 𝚺t,𝑛r𝐒
†
t,𝑛r

(

𝐒t,𝑛r𝚺t,𝑛r𝐒
†
t,𝑛r

+ 𝐑in
r,𝑛r

)−1
, (43)

𝐔⋆
u,𝑖[𝑘] = arg min

𝐔u,𝑖[𝑘],∀𝑖,𝑘,𝑙
Tr

{

𝐖u,𝑖[𝑘]𝐄u,𝑖[𝑘]
}

= 𝐏†
u,𝑖[𝑘]𝐇

†
𝑖,B
(

𝐑u,𝑖[𝑘]
)−1, (44)

and 𝐔⋆
d,𝑗[𝑘] = arg min

𝐔d,𝑗 [𝑘],∀𝑗,𝑘,𝑙
Tr

{

𝐖d,𝑗[𝑘]𝐄d,𝑗[𝑘]
}

= 𝐏†
d,𝑗[𝑘]𝐇

†
B,𝑗

(

𝐑d,𝑗[𝑘]
)−1. (45)

Substituting 𝐔⋆
r,𝑛r

, 𝐔⋆
u,𝑖[𝑘], and 𝐔⋆

d,𝑗[𝑘] into MIs in (27)-(29) and MSEs in (35)-(37) yields, respectively, the achievable
rates of 𝑛r-th radar Rx, 𝑖-th UL UE, and 𝑗-th DL UE as

𝑅r,𝑛r = log||
|

𝐈 + 𝐒t,𝑛r𝚺t,𝑛r𝐒
†
t,𝑛r

𝐑−1
in,nr

|

|

|

, (46)

𝑅u,𝑖[𝑘] = log
|

|

|

|

𝐈 + 𝐑𝑖,B[𝑘]
(

𝐑in
u,𝑖[𝑘]

)−1
|

|

|

|

, (47)
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and

𝑅d,𝑗[𝑘] = log
|

|

|

|

𝐈 + 𝐑B,𝑗[𝑘]
(

𝐑in
d,𝑗[𝑘]

)−1
|

|

|

|

. (48)

The corresponding minimum mean-squared-error (MMSE) of 𝑛r-th radar Rx, 𝑖-th UL UE, and 𝑗-th DL UE are,
respectively,

𝐄⋆
r,𝑛r

= 𝚺t,𝑛r

[

𝐈 − 𝐒†t,𝑛r
(

𝐑r,𝑛r

)−1
𝐒t,𝑛r𝚺t,𝑛r

]

, (49)

𝐄⋆
u,𝑖[𝑘] = 𝐈 − 𝐏†

u,𝑖[𝑘]𝐇
†
𝑖,B
(

𝐑u,𝑖[𝑘]
)−1𝐇𝑖,B𝐏u,𝑖[𝑘], (50)

and

𝐄⋆
d,𝑗[𝑘] = 𝐈 − 𝐏†

d,𝑗[𝑘]𝐇
†
B,𝑗

(

𝐑d,𝑗[𝑘]
)−1𝐇B,𝑗𝐏d,𝑗[𝑘]. (51)

The data processing inequality [4, p.34] implies that 𝑅r,𝑛r , 𝑅u,𝑖[𝑘, 𝑙], and 𝑅d,𝑗[𝑘, 𝑙] are the upper bounds of 𝐼r,𝑛r ,
𝐼u
𝑖 [𝑘, 𝑙], and 𝐼d

𝑗 [𝑘, 𝑙], for all 𝑛r , 𝑖, and 𝑗. It follows that

{

𝐔⋆} ≜
{

𝐔⋆
r,𝑛r

,𝐔⋆
u,𝑖[𝑘],𝐔

⋆
d,𝑗[𝑘],∀

{

𝑛r , 𝑖, 𝑗
}

}

, (52)

is also the optimal solution of (34) and, in turn, the original problem (33), whose additional constraints do not affect
the solution for {𝐔}. Using Woodbury matrix identity [27], the achievable rates are

𝑅r,𝑛r = log
|

|

|

|

𝚺t,𝑛r

(

𝐄⋆
r,𝑛r

)−1
|

|

|

|

, 𝑅u,𝑖[𝑘] = log
|

|

|

|

(

𝐄⋆
u,𝑖[𝑘]

)−1
|

|

|

|

,

and 𝑅d,𝑗[𝑘] = log
|

|

|

|

(

𝐄⋆
d,𝑗[𝑘]

)−1
|

|

|

|

. (53)

Applying the first order optimal condition [38, 27] w.r.t. {𝐖} produces the optimal weight matrices
{

𝐖⋆} as

𝐖⋆
u,𝑖[𝑘] =

(

𝐄⋆
u,𝑖[𝑘]

)−1
,

𝐖⋆
d,𝑗[𝑘] =

(

𝐄⋆
d,𝑗[𝑘]

)−1
, (54)

and

𝐖⋆
r,𝑛r

=
(

𝐄⋆
r,𝑛r

)−1
, (55)

for all
{

𝑛r , 𝑖, 𝑗
}

. Define

Ξ′
wmse = Ξwmse −

𝑁r
∑

𝑛r=1
𝛼r
𝑛r

(

𝚺t,𝑛r log
|

|

|

𝐖r,𝑛r
|

|

|

+𝐾𝑀
)

−

𝐾−1
∑

𝑘=0

{ 𝐼
∑

𝑖=1
𝛼u
𝑖
(

log|
|

𝐖u,𝑖[𝑘]|| +𝐷u
𝑖
)

+
𝐽
∑

𝑗=1
𝛼d
𝑗

(

log||
|

𝐖d,𝑗[𝑘]
|

|

|

+𝐷d
𝑗

)

}

.

Substituting
{

𝐖⋆} and
{

𝐔⋆} in Ξ′
wmse results in

Ξ′
wmse =

𝐾−1
∑

𝑘=0

{

−
𝐽
∑

𝑗=1
𝛼d
𝑗 log

|

|

|

|

(

𝐄⋆
d,𝑗[𝑘]

)−1
|

|

|

|
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−
𝐼
∑

𝑖=1
𝛼u
𝑖 log

|

|

|

|

(

𝐄⋆
u,𝑖[𝑘]

)−1
|

|

|

|

}

− 𝛼r
𝑁r
∑

𝑛r=1
log

|

|

|

|

(

𝐄⋆
r,𝑛r

)−1
|

|

|

|

=
𝐾
∑

𝑘=1

{ 𝐽
∑

𝑗=1
𝛼d
𝑗𝑅d,𝑗[𝑘] +

𝐼
∑

𝑖=1
𝛼u
𝑖 𝑅u,𝑖[𝑘]

}

+
𝑁r
∑

𝑛r=1
𝛼r
𝑛r
𝑅r,𝑛r

= −𝐼CWSM
({

𝐔⋆}, {𝐏},𝐀
)

, (56)

which indicates that maximizing 𝐼CWSM is equivalent to minimizing Ξ′
wmse given

{

𝐔⋆}. As minimizing Ξ′
wmse w.r.t.

{𝐏} and 𝐀 is also equivalent to minimizing Ξwmse given
{

𝐔⋆} and
{

𝐖⋆}. This completes the proof.

Substituting
{

𝐔⋆} and
{

𝐖⋆} in (42) yields the WMMSE

Ξwmmse({𝐏},𝐀) ≜ Ξwmse
({

𝐔⋆},
{

𝐖⋆}{𝐏}
)

. (57)

Therefore, 𝐀 and {𝐏} are obtained by solving

minimize
{𝐏},𝐀

Ξwmmse({𝐏},𝐀) subject to (33b) − (33e). (58)

4.2. WMMSE-MRMC
In order to solve (58), we sequentially iterate over each element in {𝐏} and each row of 𝐀, i.e., 𝐚⊤[𝑘], using

the Lagrange dual method to find a closed-form solution to each variable, which constitutes our WMMSE-MRMC
algorithm.

4.2.1. Lagrange dual solution
Denote the Lagrange multiplier vectors w.r.t. constraints (33b)-(33e), respectively, as

𝝀DL ≜
[

𝜆d[0],⋯ , 𝜆d[𝐾 − 1]
]⊤ ∈ ℝ𝐾 , (59)

𝝀UL ≜
[

𝜆u,1[0],⋯ , 𝜆u,𝐼 [𝐾 − 1]
]⊤ ∈ ℝ𝐾𝐼 , (60)

𝝁DL ≜
[

𝜇d,1[0],⋯ , 𝜇d,𝐽 [𝐾 − 1]
]⊤ ∈ ℝ𝐾𝐽 , (61)

and

𝝁UL ≜
[

𝜇u,1[0],⋯ , 𝜇u,𝐼 [𝐾 − 1]
]⊤ ∈ ℝ𝐾𝐼 , (62)

as well as the UL power vector, the DL power vector, the UL rate vector, and the DL rate vector as, respectively,

𝐩UL ≜
[

𝑃u,1[0],⋯ , 𝑃u,𝐼 [𝐾 − 1]
]⊤ ∈ ℝ𝐾𝐼 , (63)

𝐩DL ≜
[

𝑃d[0],⋯ , 𝑃d[𝐾 − 1]
]⊤ ∈ ℝ𝐾 , (64)

𝐫UL ≜
[

𝑅u,1[0],⋯ , 𝑅u,𝐼 [𝐾 − 1]
]⊤ ∈ ℝ𝐾𝐼 , (65)

and

𝐫DL ≜
[

𝑅d,1[0],⋯ , 𝑅d,𝐽 [𝐾 − 1]
]⊤ ∈ ℝ𝐾𝐽 , (66)

which lead to the Lagrangian associated with (58) as

({𝐏},𝐀,𝝀,𝝁) = Ξwmmse + 𝝀⊤DL
(

𝐩DL − 𝑃B𝟏
)

+ 𝝀⊤UL
(

𝐩UL − 𝑃U𝟏
)

− 𝝁⊤
DL

(

𝐫DL − 𝑅DL𝟏
)

− 𝝁⊤
UL

(

𝐫UL − 𝑅UL𝟏
)

, (67)

where 𝝀 =
[

𝝀⊤DL,𝝀
⊤
UL

]⊤ and 𝝁 =
[

𝝁⊤
DL,𝝁

⊤
UL

]⊤. The Lagrange dual function of 𝐿(⋅) is defined as 𝐷(𝝀,𝝁) =
inf
{𝐏},𝐀

({𝐏},𝐀,𝝀,𝝁). With these definitions, we state the following theorem to solve (58).
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Proposition 1. Linearize, using Taylor series approximation, 𝑅u,𝑖[𝑘] and 𝑅d,𝑗[𝑘], ∀{𝑖, 𝑗, 𝑘} in the QoS constraints of
problem (58). Then, the solution of the resulting problem is equivalent to that of its Lagrange dual problem

maximize 𝐷(𝝀,𝝁) subject to 𝝀 ⪰ 𝟎,𝝁 ⪰ 𝟎. (68)

Proof. Solving (68) yields the lower bounds of (58). The difference between the lower bound and the actual optimal
value is the optimal duality gap. To equivalently obtain

{

𝐏⋆} and 𝐀′ with (68), strong duality ought to hold for the
primal problem (42), i.e., the optimal duality gap should be zero. However, the QoS constraints (33e) are non-concave
leading to a non-zero duality gap. To bypass this problem, we apply the Taylor series to obtain linear approximations
of 𝑅u,𝑖[𝑘] and 𝑅d,𝑗[𝑘]. The first-order Taylor series expansion of a real-valued function with complex-valued matrix
arguments 𝑓 (𝐗,𝐗∗) ∶ ℂ𝑁×Q × ℂ𝑁×Q → ℝ around 𝐗0 yields [27]

𝑓
(

𝐗,𝐗∗) = 𝑓
(

𝐗0,𝐗∗
0
)

+ vec⊤
(

𝜕
𝜕𝐗0

𝑓
(

𝐗0,𝐗∗
0
)

)

vec
(

𝐗 − 𝐗0
)

+ vec⊤
(

𝜕
𝜕𝐗∗

0
𝑓
(

𝐗0,𝐗∗
0
)

)

vec
(

𝐗∗ − 𝐗∗
0
)

. (69)

based on their associated Taylor series expansions in the initial approximations 𝐏̃u,𝑖[𝑘], 𝐏̃d,𝑗[𝑘], and 𝐚̃[𝑘]. Denoting
𝐏̃u,𝑖[𝑘] as an initial approximation of 𝐏u,𝑖[𝑘], the Taylor series expansions of 𝑅u,𝑞[𝑘] at 𝐏̃u,𝑖[𝑘] are

𝑅u,𝑞[𝑘]
(

𝐏u,𝑖[𝑘]
)

≈ 𝑅u,𝑞[𝑘]
(

𝐏̃u,𝑖[𝑘]
)

+ vec

⎧

⎪

⎨

⎪

⎩

𝜕
(

𝑅u,𝑞[𝑘]
(

𝐏̃u,𝑖[𝑘], 𝐏̃∗
u,𝑖[𝑘]

))

𝜕𝐏̃u,𝑖[𝑘]

⎫

⎪

⎬

⎪

⎭

⊤

vec
{

𝐏u,𝑖[𝑘] − 𝐏̃u,𝑖[𝑘]
}

+ vec

⎧

⎪

⎨

⎪

⎩

𝜕
(

𝑅u,𝑞[𝑘]
(

𝐏̃u,𝑖[𝑘], 𝐏̃∗
u,𝑖[𝑘]

))

𝜕𝐏̃∗
u,𝑖[𝑘]

⎫

⎪

⎬

⎪

⎭

⊤

vec
{

𝐏∗
u,𝑖[𝑘] − 𝐏̃∗

u,𝑖[𝑘]
}

.

Likewise, by defining 𝐏̃d,𝑗[𝑘] and 𝐚̃[𝑘] as initial approximations of 𝐏d,𝑗[𝑘], and 𝐚[𝑘], we find the linear approximations
of 𝑅u,𝑞[𝑘]

(

𝐏d,𝑗[𝑘]
)

, 𝑅u,𝑞[𝑘](𝐚[𝑘]), 𝑅d,𝑗[𝑘]
(

𝐏u,𝑖[𝑘]
)

, 𝑅d,𝑚[𝑘]
(

𝐏d,𝑗[𝑘]
)

, and 𝑅d,𝑗[𝑘](𝐚[𝑘]). As Ξwmmse is multi-convex,
namely that Ξwmmse is not jointly convex in 𝐏u,𝑖[𝑘], 𝐏d,𝑗[𝑘], and 𝐚[𝑘] but convex in each individual variable provided
the rest of the variables are fixed [28, 31], we thus have a fully convex approximation of (58) in (68) and reduce the
optimal duality gap to zero [30]. This concludes the proof.

Following Appendix A, the gradients of Lagrangian (⋅) w.r.t. 𝐏u,𝑖[𝑘], 𝐏d,𝑗[𝑘], and 𝐚[𝑘] are, respectively,

∇𝐏u,𝑖[𝑘] = ∇𝐏u,𝑖[𝑘]ΞUL + ∇𝐏u,𝑖[𝑘]ΞDL + ∇𝐏u,𝑖[𝑘]Ξr

+ 𝜆u,𝑖[𝑘]𝐏u,𝑖[𝑘] −
𝐽
∑

𝑔=1
𝜇d,𝑔[𝑘]∇𝐏u,𝑖[𝑘]𝑅d,𝑔[𝑘] −

𝐼
∑

𝑞=1
𝜇u,𝑞[𝑘]∇𝐏u,𝑖[𝑘]𝑅u,𝑞[𝑘],

∇𝐏d,𝑗 [𝑘] = ∇𝐏d,𝑗 [𝑘]ΞUL + ∇𝐏d,𝑗 [𝑘]ΞDL + ∇𝐏d,𝑗 [𝑘]Ξr

+ 𝜆d[𝑘]𝐏d,𝑗[𝑘] −
𝐽
∑

𝑔=1
𝜇d,𝑔[𝑘]∇𝐏d,𝑗 [𝑘]𝑅d,𝑔[𝑘] −

𝐼
∑

𝑞=1
𝜇u,𝑞[𝑘]∇𝐏d,𝑗 [𝑘]𝑅u,𝑞[𝑘],

and ∇𝐚[𝑘] = ∇𝐚[𝑘]ΞUL + ∇𝐚[𝑘]ΞDL + ∇𝐚[𝑘]Ξr −
𝐽
∑

𝑗=1
𝜇d,𝑗[𝑘]∇𝐚[𝑘]𝑅d,𝑗[𝑘] −

𝐼
∑

𝑖=1
𝜇u,𝑖[𝑘]∇𝐚[𝑘]𝑅u,𝑖[𝑘].
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We obtain the analytical solutions to 𝐏u,𝑖[𝑘], 𝐏d,𝑗[𝑘], and 𝐚[𝑘] by solving equations ▿𝐏u,𝑖[𝑘]𝐿 = 0, ▿𝐏d,𝑗 [𝑘]𝐿 = 0,
and ▿𝐚[𝑘]𝐿 = 0, respectively. Using the gradient expressions in Appendix A, some algebra yields three generalized
Sylvester equations

𝐀u,𝑖[𝑘]𝐏u,𝑖[𝑘] + 𝐅u,𝑖[𝑘]𝐏u,𝑖[𝑘]𝐁u,𝑖[𝑘] = 𝐂u,𝑖[𝑘], (70)
𝐀d,𝑗[𝑘]𝐏d,𝑗[𝑘] + 𝐅Bt[𝑘]𝐏d,𝑗[𝑘]𝐁Bt,𝑗[𝑘] + 𝐅Bm[𝑘]𝐏d,𝑗[𝑘]𝐁Bm,𝑗[𝑘] = 𝐂d,𝑗[𝑘], (71)

and 𝐀r[𝑘]𝐚[𝑘] + 𝐅r[𝑘]𝐚[𝑘] = 𝐜r[𝑘], (72)

where

𝐁u,𝑖[𝑘] = 𝐝u,𝑖
[

𝑘, 𝑛t − 𝑛u
]

𝐝†u,𝑖
[

𝑘, 𝑛t − 𝑛u
]

,

𝐅u,𝑖[𝑘] = 2
𝑁r
∑

𝑛r=1
Re

(

𝜉r,𝑛r (𝑘, 𝑘)𝚺
(𝑘,𝑘)
𝑖,𝑛r

)

,

𝐁Bt,𝑗[𝑘] = 𝐝d,𝑗[𝑘, 0]𝐝
†
d,𝑗[𝑘, 0],

𝐁Bm,𝑗[𝑘] = 𝐝d,𝑗
[

𝑘, 𝑛t − 𝑛Bm
]

𝐝†d,𝑗
[

𝑘, 𝑛t − 𝑛Bm
]

,

𝐅Bt[𝑘] = 2
𝑁r
∑

𝑛r=1
Re

(

𝜉r,𝑛r (𝑘, 𝑘)𝚺
(𝑘,𝑘)
Bt,𝑛r

)

,

𝐅Bm,𝑗[𝑘] = 2
𝑁r
∑

𝑛r=1
Re

(

𝜉r,𝑛r (𝑘, 𝑘)𝚺
(𝑘,𝑘)
Bm,𝑛r

)

,

𝐅r[𝑘] = 2
𝑁r
∑

𝑛r=1

[

Re
(

𝜉r,𝑛r (𝑘, 𝑘)𝚺
(𝑘,𝑘)
rt,𝑛r

)

+ Re
(

𝜉r,𝑛r (𝑘, 𝑘)𝚺c,𝑛r

)]

,

𝐅r[𝑘] = 2
𝑁r
∑

𝑛r=1

[

Re
(

𝜉r,𝑛r (𝑘, 𝑘)𝚺
(𝑘,𝑘)
rt,𝑛r

)

+ Re
(

𝜉r,𝑛r (𝑘, 𝑘)𝚺c,𝑛r

)]

,

𝐀u,𝑖[𝑘] = 2𝐇†
𝑖,B𝝃UL[𝑘]𝐇𝑖,B + 2

𝐽
∑

𝑔=1
𝐇†

𝑖,𝑔𝝃d,𝑔[𝑘]𝐇𝑖,𝑔 + 𝜆u,𝑖[𝑘]𝐈,

𝐂u,𝑖[𝑘] =
𝐼
∑

𝑞=1
𝜇u,𝑞[𝑘]∇𝐏u,𝑖[𝑘]𝑅u,𝑞[𝑘] +

𝐽
∑

𝑔=1
𝜇d,𝑔[𝑘]∇𝐏u,𝑖[𝑘]𝑅d,𝑔[𝑘]

−
𝑁r
∑

𝑛r=1

𝐾
∑

𝑚≠𝑘
2Re

(

𝜉r,𝑛r (𝑘, 𝑚)𝚺
(𝑚,𝑘)
𝑖,𝑛r

)

𝐏u,𝑖[𝑚]𝐝u,𝑖
[

𝑚, 𝑛t − 𝑛u
]

𝐝†u,𝑖
[

𝑘, 𝑛t − 𝑛u
]

+ 2𝛼u
𝑖 𝐇

†
𝑖,B𝐔

†
u,𝑖[𝑘]𝐖u,𝑖[𝑘],

𝐀d,𝑗[𝑘] = 2𝐇†
BB𝝃UL[𝑘]𝐇BB + 2

𝐽
∑

𝑔=1
𝐇†

B,𝑔𝝃d,𝑔[𝑘]𝐇B,𝑔 + 𝜆d[𝑘]𝐈,

𝐂d,𝑗[𝑘] =
𝐼
∑

𝑞=1
𝜇u,𝑞[𝑘]∇𝐏d,𝑗 [𝑘]𝑅u,𝑞[𝑘] +

𝐽
∑

𝑔=1
𝜇d,𝑔[𝑘]∇𝐏d,𝑗 [𝑘]𝑅d,𝑔[𝑘]−

𝑁r
∑

𝑛r=1

{

∑

𝑚≠𝑘
2Re

(

𝜉r,𝑛r (𝑚, 𝑘)𝚺
(𝑘,𝑚)
Bt,𝑛r

)

𝐽
∑

𝑔=1
𝐏d,𝑔[𝑚]𝐝d,𝑔[𝑚, 0]𝐝

†
d,𝑗[𝑘, 0]

+
∑

𝑚≠𝑘
2Re

(

𝜉r,𝑛r (𝑚, 𝑘)𝚺
(𝑘,𝑚)
Bm,𝑛r

)

𝐽
∑

𝑔=1
𝐏d,𝑔[𝑚]𝐝d,𝑔

[

𝑚, 𝑛t − 𝑛Bm
]

𝐝†d,𝑗
[

𝑘, 𝑛t − 𝑛Bm
]
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+
∑

𝑔≠𝑗
2Re

(

𝜉r,𝑛r (𝑘, 𝑘)𝚺
(𝑘,𝑘)
Bt,𝑛r

)

𝐏d,𝑔[𝑘]𝐝d,𝑔[𝑘, 0]𝐝
†
d,𝑗[𝑘, 0]

+
∑

𝑔≠𝑗
2Re

(

𝜉r,𝑛r (𝑘, 𝑘)𝚺
(𝑘,𝑘)
Bm,𝑛r

)

𝐏d,𝑔[𝑘]𝐝d,𝑔
[

𝑘, 𝑛t − 𝑛Bm
]

𝐝†d,𝑗
[

𝑘, 𝑛t − 𝑛Bm
]

−2𝛼r
𝑛r

𝐾
∑

𝑚=1
𝚺(𝑚,𝑘)
Bt,𝑛r

𝐉⊤B𝐉
⊤
h [𝑚]𝐖r,𝑛r𝐮r,𝑛r [𝑘]𝐝

†
d,𝑗[𝑘, 0]

}

+ 2𝛼d
𝑗𝐇

†
B,𝑗𝐔

†
d,𝑗[𝑘]𝐖d,𝑗[𝑘],

𝐀r[𝑘] = 2𝐇†
rB𝝃UL[𝑘]𝐇rB + 2

𝐽
∑

𝑗=1
𝐇†

r,𝑗𝝃d,𝑗[𝑘]𝐇r,𝑗 ,

and 𝐜r[𝑘] =
𝐼
∑

𝑖=1
𝜇u,𝑖[𝑘]∇𝐚[𝑘]𝑅u,𝑖[𝑘] +

𝐽
∑

𝑗=1
𝜇d,𝑗[𝑘]∇𝐚[𝑘]𝑅d,𝑗[𝑘] + 2

𝑁r
∑

𝑛r=1
𝛼r,𝑛r

𝐾
∑

𝑚=1
Re

(

𝚺(𝑚,𝑘)
rt,𝑛r

)

𝐉⊤r 𝐉
⊤
h [𝑚]𝐖r,𝑛r𝐮r,𝑛r [𝑘]

− 2
𝑁r
∑

𝑛r=1

∑

𝑚≠𝑘

[

Re
(

𝜉r,𝑛r (𝑘, 𝑚)𝚺
(𝑚,𝑘)
rt,𝑛r

)

+ Re
(

𝜉r,𝑛r (𝑘, 𝑚)𝚺c,𝑛r

)]

𝐚[𝑚].

Solving these Sylvester equations yields [27]

vec
(

𝐏⋆
u,𝑖[𝑘]

)

=
[

𝐈𝐷u
𝑖
⊗ 𝐀u,𝑖[𝑘] + 𝐁⊤

u,𝑖[𝑘]⊗ 𝐅u,𝑖[𝑘]
]−1

vec
(

𝐂u,𝑖[𝑘]
)

, (73a)

vec
(

𝐏⋆
d,𝑗[𝑘]

)

=
(

𝐈⊗ 𝐀d,𝑗[𝑘] + 𝐁⊤
Bt,𝑗[𝑘]⊗ 𝐅Bt,𝑗[𝑘] + 𝐁⊤

Bm,𝑗[𝑘]⊗ 𝐅Bm,𝑗[𝑘]
)−1

vec
(

𝐂d,𝑗[𝑘]
)

, (73b)

and 𝐚′[𝑘] =
[

1⊗ 𝐀r[𝑘] + 1⊗ 𝐅r[𝑘]
]−1𝐜r[𝑘], (73c)

for all 𝑖, 𝑗, 𝑘. In order to determine 𝐏⋆
u,𝑖[𝑘], 𝐏

⋆
d,𝑗[𝑘], and 𝐚′[𝑘], we need to find the optimal 𝝀 and 𝝁 denoted by 𝝀⋆ and

𝝁⋆.

4.2.2. Sub-gradient method for precoders
As 𝐷(𝜆, 𝜇) is not always differentiable [30] and a simple method to update 𝝀 and 𝝁 is needed, we resort to the

subgradient to determine search directions for 𝝀 and 𝝁, and employ the projected subgradient method to solve (68)
sequentially. In the 𝑡-th iteration we have,

𝜆(𝑡+1)u,𝑖 [𝑘] =
[

𝜆(𝑡)u,𝑖[𝑘] + 𝛽(𝑡)u,𝑖[𝑘]
(

𝑃 (𝑡)
u,𝑖 [𝑘] − 𝑃U

)]+
, (74a)

𝜆(𝑡+1)d [𝑘] =
[

𝜆(𝑡)d [𝑘] + 𝛽(𝑡)d [𝑘]
(

𝑃 (𝑡)
B [𝑘] − 𝑃B

)]+
, (74b)

𝜇(𝑡+1)
u,𝑖 [𝑘] =

[

𝜇(𝑡)
u,𝑖[𝑘] + 𝜀(𝑡)u,𝑖[𝑘]

(

𝑅UL − 𝑅(𝑡)
u,𝑖[𝑘]

)]+
, (74c)

and 𝜇(𝑡+1)
d,𝑗 [𝑘] =

[

𝜇(𝑡)
d,𝑗[𝑘] + 𝜀(𝑡)d,𝑗[𝑘]

(

𝑅DL − 𝑅(𝑡)
d,𝑗[𝑘]

)]+
, (74d)

where 𝛽(𝑡)u,𝑖[𝑘], 𝛽
(𝑡)
d [𝑘], 𝜀(𝑡)u,𝑖[𝑘], and 𝜀(𝑡)d,𝑗[𝑘] denote the step sizes of the 𝑡-th iteration for 𝜆(𝑡)u,𝑖[𝑘], 𝜆

(𝑡)
d [𝑘], 𝜇(𝑡)

u,𝑖[𝑘], and 𝜇(𝑡)
d,𝑗[𝑘],

respectively, 𝑃 (𝑡)
u,𝑖 [𝑘], 𝑃

(𝑡)
B [𝑘], 𝐏(𝑡)

u,𝑖[𝑘], 𝐏
(𝑡)
d,𝑗[𝑘], 𝑅

(𝑡)
u,𝑖[𝑘], 𝑅

(𝑡)
d,𝑗[𝑘], and Ξ(𝑡)

wmmse the 𝑡-th iterates of 𝑃u,𝑖[𝑘], 𝑃B[𝑘], 𝐏u,𝑖[𝑘],
𝐏d,𝑗[𝑘], 𝑅u,𝑖[𝑘], 𝑅d,𝑗[𝑘], and Ξwmmse, respectively [30]. Note that 𝐏(𝑡)

u,𝑖[𝑘] and 𝐏(𝑡)
d,𝑗[𝑘] are obtained by replacing 𝜆u,𝑖[𝑘]

and 𝜇u,𝑖[𝑘] with 𝜆(𝑡)u,𝑖[𝑘] and 𝜇(𝑡)
u,𝑖[𝑘] in (73a), and 𝜆d[𝑘] and 𝜇d,𝑗[𝑘] with 𝜆(𝑡)d [𝑘] and 𝜇(𝑡)

d,𝑗[𝑘] in (73b), respectively.
There are various options to choose 𝛽(𝑡)u,𝑖[𝑘], 𝛽

(𝑡)
d [𝑘], 𝜀(𝑡)u,𝑖[𝑘], and 𝜀(𝑡)d,𝑗[𝑘] to ensure that the subgradient updates in

(74a)-(74d) converge to optimal values 𝝀⋆ and 𝝁⋆ of 𝝀 and 𝝁, respectively. Broadly, two rules are used. The first
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determines the step size before executing the algorithm. This includes fixed and progressively diminishing step sizes;
the latter should be square summable (but not necessarily summable). The second rule computes the steps using, for
example, the Polyak’s procedure [39]. As discussed in [39] and [30], the convergence rate of subgradient is dependent
on step sizes and initialization points. It was mentioned in [39] that the Polyak’s rule achieves faster convergence rate
than other rules because it utilizes the optimal function value of the current iteration while computing the step size.
Applying the Polyak’s rule to 𝛽(𝑡)u,𝑖[𝑘], 𝛽

(𝑡)
d [𝑘], 𝜀(𝑡)u,𝑖[𝑘], and 𝜀(𝑡)d,𝑗[𝑘] produces

𝛽(𝑡)u,𝑖[𝑘] =
(

Ξ(𝑡)
wmmse − Ξmin

wmmse + 0.1𝑡
)

∕||
|

𝑃 (𝑡)
u,𝑖 [𝑘] − 𝑃U

|

|

|

2
, (75a)

𝛽(𝑡)d [𝑘] =
(

Ξ(𝑡)
wmmse − Ξmin

wmmse + 0.1𝑡
)

∕||
|

𝑃 (𝑡)
B [𝑘] − 𝑃B

|

|

|

2
, (75b)

𝜀(𝑡)u,𝑖[𝑘] =
(

Ξ(𝑡)
wmmse − Ξmin

wmmse + 0.1𝑡
)

∕||
|

𝑅UL − 𝑅(𝑡)
u,𝑖[𝑘]

|

|

|

2
, (75c)

and 𝜀(𝑡)d,𝑗[𝑘] =
(

Ξ(𝑡)
wmmse − Ξmin

wmmse + 0.1𝑡
)

∕||
|

𝑅DL − 𝑅(𝑡)
u,𝑖[𝑘]

|

|

|

2
. (75d)

Denote 𝓁max, 𝜄max, 𝑡u,max(𝑡d,max) denote the maximum iterations for the BCD-AP MRMC, WMMSE-MRMC, and the
subgradient algorithms, respectively; (⋅)(𝓁,𝜄,𝑡) as the iterate of a variable at the 𝓁-th, 𝜄-th, and 𝑡-th iterations of BCD-AP
MRMC, WWMSE-MRMC, and subgradient algorithms; and

{

𝐏(𝓁,𝜄,0)} ≜
{

𝐏(𝓁,𝜄,0)
u,𝑖 [𝑘],𝐏(𝓁,𝜄,0)

d,𝑗 [𝑘],∀{𝑖, 𝑗, 𝑘}
}

. The sub-

gradient method is not descent-based and Ξ(𝑡)
wmmse may increase at certain iterations[30]. Therefore, 𝜆⋆u,𝑖[𝑘], 𝜇

⋆
u,𝑖[𝑘],

𝜆⋆d [𝑘], and 𝜇⋆
d,𝑗[𝑘] are employed to keep track of those values of 𝜆(𝑡)u,𝑖[𝑘], 𝜇

(𝑡)
u,𝑖[𝑘], 𝜆

(𝑡)
d [𝑘], and 𝜇(𝑡)

d,𝑗[𝑘] that yield the
minimum Ξ(𝑡)

wmmse in the current iteration, i.e. Ξmin
wmmse. Algorithm 1 summarizes the steps of the sub-gradient-based

procedures to find 𝜆u,𝑖[𝑘], 𝜇u,𝑖[𝑘] and corresponding 𝐏(𝓁,𝜄)
u,𝑖 [𝑘]. We set 𝐏̃u,𝑖[𝑘] as the optimal estimates of the previous

iteration (step 5). We use the same procedure for DL UE to find 𝜆d[𝑘], 𝜇d,𝑗[𝑘] and 𝐏(𝓁,𝜄)
d,𝑗 [𝑘].

Algorithm 1 Subgradient approach to solve (68) for UL UE
Input:

{

𝐏(𝓁,𝜄)}, 𝐀(𝓁,𝜄),
{

𝐔(𝓁)}, 𝑡u,max
Output: 𝐏(𝓁,𝜄)

u,𝑖 [𝑘], 𝜇⋆
u,𝑖[𝑘]

1: Initialize 𝜆(0)u,𝑖 [𝑘] = 1, 𝜇(0)
u,𝑖 [𝑘] = 1,

{

𝐏(𝓁,𝜄,0)} =
{

𝐏(𝓁,𝜄)}

2: 𝑡 ← 1, Ξ(min)
wmmse

{

𝐏(𝓁,𝜄)
}

,𝐀(𝓁,𝜄),
{

𝐔(𝓁)}

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← (38)
3: repeat
4: update 𝑃 (𝑡)

u,𝑖 [𝑘], 𝑅
(t)
u,𝑖[𝑘], 𝛽

(𝑡)
u,𝑖[𝑘] 𝜀

(𝑡)
u,𝑖[𝑘], 𝜆

(𝑡)
u,𝑖[𝑘] , 𝜇(𝑡)

u,𝑖[𝑘]

5: 𝐏(𝓁,𝜄,t)
u,𝑖 [𝑘]

𝐏̃u,𝑖[𝑘]=𝐏
(𝓁,𝜄)
u,𝑖 [𝑘]

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← (73a)

6: Ξ(𝑡)
wmmse

{

𝐏(𝓁,𝜄,𝑡)
}

,𝐀(𝓁,𝜄),
{

𝐔(𝓁)}

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← (38)
7: if Ξmin

wmmse > Ξ(𝑡)
wmmse then 𝐏(𝓁,𝜄)

u,𝑖 [𝑘] = 𝐏(𝓁,𝜄,t)
u,𝑖 [𝑘], 𝜆⋆u,𝑖[𝑘] = 𝜆(𝑡)u,𝑖[𝑘], 𝜇

⋆
u,𝑖[𝑘] = 𝜇(𝑡)

u,𝑖[𝑘], and Ξmin
wmmse = Ξ(𝑡)

wmmse

8: 𝑡 ← 𝑡 + 1
9: until 𝑡 > 𝑡u,max

10: return 𝐏(𝓁,𝜄)
u,𝑖 [𝑘], 𝜇⋆

u,𝑖[𝑘]

Upon executing the subgradient algorithms for all 𝑖, 𝑗, and 𝑘, 𝐀(𝓁,𝜄) is solved by replacing 𝝁⋆ and
{

𝐏(𝓁,𝜄)} with 𝝁
and {𝐏} in (73c) during the 𝜄-th iteration of the WMMSE-MRMC algorithm (Algorithm 2), whose maximum number
of iterations is 𝜄max. The outputs of the Algorithm 2 constitute the 𝓁-th iterate of

{

𝐏(𝓁)} and 𝐀′ for the Algorithm 4.
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So far, Algorithm 2 utilized perfect chanel state information (CSI). In practice, the CSI is estimated. The resulting
estimation error may be modeled either as norm-bounded or stochastically [28]. The former is employed when
quantization error is the primary source of the CSI error. However, quantization analysis is beyond the scope of this
paper. Therefore, we adopt the latter by modeling the channel matrix as 𝐇̂ = 𝐇 + Δ, where and Δ ∼ 

(

𝟎, 𝜂2CSI𝐈
)

is
the error with the variance 𝜂2CSI𝐈.

Algorithm 2 WMMSE-MRMC algorithm to solve (58)
Input:

{

𝐏(𝓁)}, 𝐀(𝓁),
{

𝐔(𝓁)}, 𝜄max, 𝑡u,max, and 𝑡d,max
Output:

{

𝐏(𝓁)}, 𝐀′

1: Set
{

𝐏(𝓁,0)} ≜
{

𝐏(𝓁,0)
u,𝑖 [𝑘],𝐏(𝓁,0)

d,𝑗 [𝑘],∀{𝑖, 𝑗, 𝑘}
}

=
{

𝐏(𝓁)} and 𝐀(𝓁,0) ≜
[

(

𝐚(𝓁,0)[0]
)⊤;⋯ ;

(

𝐚(𝓁,0)[𝐾]
)⊤

]

= 𝐀(𝓁)

2: Set the iteration index 𝜄 = 0
3: repeat
4: for 𝑘 = 1,⋯ , 𝐾 do
5: for 𝑖 = 1,⋯ , 𝐼 , 𝑗 = 1,⋯ , 𝐽 do
6: 𝐏(𝓁,𝜄+1)

u,𝑖 [𝑘], 𝜇⋆
u,𝑖[𝑘]

Subgradient
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
𝑡u,max,{𝐔(𝓁)}

{

𝐏(𝓁,𝜄)},𝐀(𝓁,𝜄)

7: 𝐏(𝓁,𝜄+1)
d,𝑗 [𝑘], 𝜇⋆

d,𝑗[𝑘]
Subgradient

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
𝑡d,max,{𝐔(𝓁)}

{

𝐏(𝓁,𝜄)},𝐀(𝓁,𝜄)

8: 𝐚(𝓁,𝜄+1)[𝑘]
(73c)
←←←←←←←←←←←←←←←←←←←←

{

𝐏(𝓁,𝜄)},𝐀(𝓁,𝜄),
{

𝐔(𝓁)}, 𝝁⋆

9: 𝐀(𝓁,𝜄+1) =
[

(

𝐚(𝓁,𝜄+1)[0]
)⊤;⋯ ;

(

𝐚(𝓁,𝜄+1)[𝐾]
)⊤

]

10: 𝜄 ← 𝜄 + 1
11: until 𝜄 > 𝜄max
12:

{

𝐏(𝓁)} ←
{

𝐏(𝓁,𝜄)}, 𝐀′ ← 𝐀(𝓁,𝜄)

13: return
{

𝐏(𝓁)}, 𝐀′

4.3. Nearest vector method to find 𝐀⋆

Upon obtaining 𝐀′ =
[

𝐚′1,⋯ , 𝐚′𝑀r

]

, which is the optimal solution for 𝐀 ∈ 𝔸c, the next step in the BCD-AP
algorithm is to apply AP for projecting 𝐚′𝑚r

onto 𝔸r. The nearest element of 𝐚′𝑚r
in 𝔸r for all 𝑚r in the following

problem

minimize
𝐚𝑚r ,∀𝑚r

‖𝐚𝑚r
− 𝐚′𝑚r

‖

2
2 subject to (33f) and (33g), (76)

yields 𝐚⋆𝑚r
, the 𝑚r-th column of 𝐀⋆. This is effectively a matrix nearness problem with specified column norms and

PARs. It arises in structured tight frame design problems and is solved via AP [37, 36]. Using “nearest vector with low
PAR" algorithm [37], we find 𝐚(𝓁)𝑚r

for all 𝑚r recursively at the 𝓁-th iteration of the BCD-AP MRMC algorithm (see
Algorithm 3).
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Algorithm 3 Nearest vector method to find 𝐀(𝓁)

Input: 𝐀′ =
[

𝐚′1,⋯ , 𝐚′𝑀r

]

, 𝑃r,𝑚r
, 𝛾𝑚r

, ∀𝑚r

Output: 𝐀(𝓁) =
[

𝐚(𝓁)1 ,⋯ , 𝐚(𝓁)𝑀r

]

1: for 𝑚r = 1,⋯ ,𝑀r do
2: Normalize 𝐚′𝑚r

to unit norm; define 𝜎𝑚r
=
√

𝑃r,𝑚r
𝛾𝑚r

∕𝐾

3: 𝑃 ← number of elements in 𝐚(𝓁)𝑚r
with the least magnitude

4: 𝜛 ← indices of the elements in 𝐚(𝓁)𝑚r
with the least magnitude

5: if min
(

|𝐚(𝓁)𝑚r
[𝑘]|

)

= 0,∀𝑘 ∈ 𝜛 then

𝐚(𝓁)𝑚r
[𝑘] =

⎧

⎪

⎨

⎪

⎩

√

𝑃r,𝑚r (𝐾−𝑃 )𝜎2𝑚r
𝑃 if 𝑘 ∈ 𝜛,

𝜎𝑚r
𝑒𝑗∠𝐚

(𝓁)
𝑚r [𝑘] if 𝑘 ∉ 𝜛

6: else 𝜌 =
√

𝑃r,𝑚r (𝐾−𝑃 )𝜎2𝑚r
∑

𝑘∈𝜛 |𝐚𝑚r [𝑘]|
2 and

𝐚(𝓁)𝑚r
[𝑘] =

{

𝜌𝐚(𝓁)𝑚r
[𝑘] if 𝑘 ∈ 𝜛,

𝜎𝑚r
𝑒𝑗∠𝐚

(𝓁)
𝑚r [𝑘] if 𝑘 ∉ 𝜛

7: return 𝐀(𝓁) =
[

𝐚(𝓁)1 ,⋯ , 𝐚(𝓁)𝑀r

]

Once
{

𝐏(𝓁)} and 𝐀(𝓁) are known, we update
{

𝐔(𝓁)} with WMMSE solutions from Section 4.1. Algorithm 4
summarizes the BCD-AP MRMC with 𝓁max the maximum number of iterations.

Algorithm 4 BCD-AP MRMC algorithm
Input: 𝐀, 𝓁max, 𝜄max, 𝑡u,max 𝑡d,max
Output: Optimal UL/DL precoders

{

𝐏⋆}, MIMO radar code matrix 𝐀⋆, and LRFs
{

𝐔⋆}

1: Initialize
{

𝐏(0)} ≜
{

𝐏(0)
u,𝑖 [𝑘],𝐏

(0)
d,𝑗[𝑘],∀{𝑖, 𝑗, 𝑘}

}

and 𝐀(0) =
[

𝐚(0)[0];⋯ ; 𝐚(0)[𝐾]
]

2:
{

𝐔(0)} (43),(44),(45)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

{

𝐏(0)} and 𝐀(0)

3: Set the alternating projection iteration index 𝓁 = 0
4: repeat
5:

{

𝐏(𝓁+1)}, 𝐀′ Algorithm 2
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
𝜄max,𝑡u,max,𝑡d,max

{

𝐏(𝓁)}, 𝐀(𝓁),
{

𝐔(𝓁)}

6: 𝐀(𝓁+1) Algorithm 3
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← 𝐀′

7:
{

𝐔(𝓁+1)} (43),(44),(45)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

{

𝐏(𝓁+1)} and 𝐀(𝓁+1)

8: 𝓁 ← 𝓁 + 1
9: until 𝓁 > 𝓁max

10:
{

𝐏⋆} ←
{

𝐏(𝓁)}, 𝐀⋆ ← 𝐀𝓁 , and
{

𝐔⋆} ←
{

𝐔(𝓁)}

11: return
{

𝐏⋆},𝐀⋆,
{

𝐔⋆}

4.4. Complexity and Convergence
The subgradient algorithms are guaranteed to converge to 𝝀⋆ and 𝝁⋆ as long as 𝛽(𝑡)u,𝑖[𝑘], 𝛽

(𝑡)
d [𝑘], 𝜀(𝑡)u,𝑖[𝑘], and 𝜀(𝑡)d,𝑗[𝑘]

are sufficiently small; their computational complexities are (𝐼) and (𝐽 ), respectively [30]. The WMMSE-MRMC
algorithm converges locally because its alternating procedure produces a monotonically non-increasing sequence of
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iterates,
{

Ξ(𝓁,𝜄)
wmmse

}

; see Appendix C of [38] for proof. However, Ξwmmse is not jointly convex on
{

𝐏(𝓁)} and 𝐀(𝓁).
Hence, the global convergence is not guaranteed [38, 28]. The computational complexities of WMMSE-MRMC to

update 𝐏u,𝑖[𝑘], 𝐏d,𝑗[𝑘], and 𝐚[𝑘] at each iteration are, respectively, 
(

(

𝑁u
𝑖 𝐷

u
𝑖
)3
)

, 
(

(

𝑀c𝐷d
𝑗

)3
)

, and 
(

𝑀3
r
)

,

primarily because of complexity in solving Sylvester equations. The total per-frame complexity of each iteration for

Algorithm 2 to solve (58) is 
(

𝐼2
(

𝑁u
𝑖 𝐷

u
𝑖
)3
)

+
(

𝐽 2
(

𝑀c𝐷d
𝑗

)3
)

+
(

𝑁2
r 𝑀

3
r
)

. GB search on the other hand, is more

computationally complex with 
(

𝐼3
(

𝑁u
𝑖 𝐷

u
𝑖
)3
)

per iteration multiplications for DL [27]. The objective function in

(76) satisfies the Kurdyka-Łojasiewicz property. Therefore, the sequence
{

𝐚(𝓁)𝑚r

}

generated by Algorithm 3 at the
𝓁-th step is convergent for all 𝑚r [36]. The BCD-AP MRMC algorithm also converges to the local optimum with a
convergence rate of 

(

1∕𝓁max
)

[31]. In general, initialization methods affect the convergence rate and local optimal
values of BCD-AP MRMC. As suggested in [28, 38], to reasonably approach the global optimum, one can perform
random precoder initializations and average over a large number of channel realizations while keeping track of the best
result.

5. Numerical Experiments
We validated our spectral co-design approach through extensive numerical experiments. Throughout this section,

we assume the noise variances 𝜎2r = 𝜎2B = 𝜎2d = 0.001. We assume unit small scale fading channel gains, namely, the
elements of 𝐇B,𝑗 , 𝐇𝑖,B, 𝐇𝑖,𝑗 , 𝜶Bm,𝑛r , and 𝜶𝑖,𝑛r are drawn from  (0, 1). We model the self-interfering channel 𝐇BB as



(
√

𝜎2SI𝐾B
1+𝐾B

𝐇̂BB,
𝜎2SI

1+𝐾B
𝐈𝑁c

⊗ 𝐈𝑀c

)

, where 𝜎2SI is the SI attenuation coefficient that characterizes the effectiveness

of SI cancellation [27], the Rician factor 𝐾B = 1, and 𝐇̂BB ∈ ℂ𝑁c×𝑀c is an all-one matrix [28]. Define the signal-
to-noise ratios (SNRs) associated with the MIMO radar, DL, and UL as SNRr = 𝑃r,𝑚r

∕𝜎2r , SNRDL = 𝑃B∕𝜎2d ,
and SNRUL = 𝑃u,𝑖∕𝜎2B [38]. The clutter power 𝜎2c = 𝜎2𝑚rc𝑛r

for all 𝑚r and 𝑛r and clutter-to-noise ratio (CNR) is
CNR = 𝜎2c∕𝜎

2
0 . Then, together with the direct path components, they are received at the IBFD communications

Rxs. We model 𝐡𝑚r ,B and 𝐡𝑚r ,𝑗 as 
(

√

1
𝜅+1𝝁𝑚r ,B,

𝜂2mr ,B
𝜅+1 𝐈𝑁c

)

, and 
(

√

1
𝜅+1𝝁𝑚r ,𝑗 ,

𝜂2mr ,𝑗
𝜅+1 𝐈𝑁d

𝑗

)

, where 𝜅 = 1,

𝝁𝑚r ,B = 0.1𝟏𝑁c
, 𝝁𝑚r ,𝑗 = 0.05𝟏𝑁d

𝑗
, 𝜂2𝑚r ,B

= 0.3, 𝜂2𝑚r ,𝑗
= 0.5.

Unless otherwise stated, we use the following parameter values: number of radar Txs and Rxs: 𝑀r = 𝑁r = 4;
number of communications Tx and Rx antennas: 𝑀c = 𝑁c = 4; 𝐼 = 𝐽 = 2; 𝑁u

𝑖 = du
𝑖 = 𝑁d

𝑗 = dd
𝑗 = 2, for all {𝑖, 𝑗};

SNRDL = SNRUL = 10 dB; 𝜎2SI = 0 dB; CNR = 20 dB; radar PAR 𝛾𝑚r
= 3 dB; number of communications frames

or radar PRIs 𝐾 = 8; number of symbols in each frame or range cells in each radar PRI 𝑁 = 32; radar CUT index
𝑛t = 4; UL (DL) indices of interest 𝑛rB = 2 (𝑛r,d = 3); QoS of UL (DL): 𝑅u = log2(1 +

SNRUL
𝑀r∗SNRr+SNRDL+(𝐼−1)∗SNRUL

)

bits/s/Hz (𝑅d = log2(1 + SNRDL∕𝐽
𝑀r∗SNRr+SNRDL∗(𝐽−1)∕𝐽+𝐼∗SNRUL

) bits/s/Hz); The normalized Doppler shifts 𝑓𝑚r t𝑛r𝑇r and
𝑓Bt𝑛r𝑇r are uniformly distributed in [0.05, 0.325] for each channel realization [23]. The numbers of iterations for
the subgradient, weighted minimum mean-squared-error (WMMSE)-MRMC, and BCD-AP MRMC algorithms are
𝑡u,max = 𝑡d,max = 200, 𝜄max = 1, 𝓁max = 2000. We use uniform weights 𝛼u

𝑖 = 𝛼d
𝑗 = 𝛼r

𝑛r
= 1

(𝐼+𝐽+𝑁r)
for all

{

𝑛r , 𝑖, 𝑗
}

.

5.1. Convergence Analysis
We demonstrate the convergence of the BCD-AP MRMC algorithm with different initialization settings for the FD

communications precoders
{

𝐏(0)} with SNRr equal to −5 dB, 0 dB, 5 dB, and 10 dB. The first setting, dubbed as the
deterministic initialization, initializes 𝐏(0)

d,𝑗[𝑘] as the first 𝐷d
𝑗 columns of the right singular matrix of 𝐇B,𝑗 and 𝐏(0)

u,𝑖 [𝑘] as
the first 𝐷d

𝑗 columns of the right singular matrix of 𝐇𝑖,B. Then, scale the non-zero singular values of 𝐏(0)
d,𝑗[𝑘] and 𝐏(0)

u,𝑖 [𝑘]
to be 𝑃B∕𝐽𝐷d

𝑗 and 𝑃U∕𝐷u
𝑖 , respectively, for all {𝑖, 𝑗, 𝑘} [38]. The second method, or the random initialization, generates

the singular vectors of 𝐏(0)
u,𝑖 [𝑘] and 𝐏(0)

d,𝑗[𝑘] as two random matrices drawn from  (0, 1) and normalizes singular values
in the same way as the deterministic initialization. The first initialization method offers lower computational complexity
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Figure 2: Convergence behaviors of the BCD-AP MRMC algorithm with two initialization methods and multiple SNRrs.

than the latter. Figure 2 shows both initialization approaches achieve convergence as the number of iterations increases
for all the simulated radar SNR values. However, the proposed algorithm with random initialization consistently
outperforms its counterpart with the deterministic initialization at the cost of computational complexity. The inset
plot in Figure 2 numerically demonstrates the efficiency of the proposed WMMSE-based algorithm; it converges
within 80 iterations for both deterministic and random initializations.

5.2. Joint Radar-Communications Performance
We evaluated the co-design performance by observing the mutual impact of the statistical MIMO radar and IBFD

MU-MIMO communications on each other. Figure 3 compares the comprehensive performance of the proposed BCD-
AP MRMC algorithm with the existing communications precoding schemes and radar codes when the radar SNR
changes3 with perfect and imperfect CSI. We set 𝜂2CSI to 0.1. The proposed co-design algorithm demonstrates a
significant advantage over other precoding and radar code matrices for radar SNRs between -20 dB and 20 dB, with
and without CIR errors. It is noteworthy that our approach with imperfect CSI yields a higher 𝐼CWSM than even the
perfect CSI scenarios of conventional techniques. This is explained by the fact that local CSI for each Tx, i.e., the
channel coefficients that are directly connected to this Tx, is needed at each iteration of Algorithm 2 [27].

We further investigated the impacts of the presence of clutter on the IBFD MU-MIMO communications in Figure 4a
and different numbers of communications UEs on the MIMO radar target detection in Figure 4b. We plot the total MI
of the IBFD MU-MIMO system 𝐼FD =

∑𝐾−1
𝑘=0

[

∑𝐼
𝑖=1 𝛼

u
𝑖 𝐼

u
𝑖 [𝑘] +

∑𝐽
𝑗=1 𝛼

d
𝑗 𝐼

d
𝑗 [𝑘]

]

versus CNRs in Figure 4a, where 𝐼FD
remains relatively invariant when CNR increases from 10 to 40 dB and the proposed algorithm outperforms other
precoding strategies for simulated CNRs. We performed 104 Monte Carlo simulations with 𝐷u

𝑖 = 2 (1), 𝐷d
𝑗 = 1 (2) for

UL (DL) ROC curves in Fig. 4b. The number of DL UEs is 2 for the dashed curves, and the number of UL UEs is 2
3Note that the proposed UL precoding algorithm is applied to BD and NSP; the proposed DL precoding algorithm is applied to the uniform UL

precoding case, and the proposed UL and DL precoding algorithms are applied to the cases of random and uncoded radar codes.
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Figure 3: Proposed co-design compared with the conventional communications precoding and radar coding techniques
under varying radar SNRs with and without CSI errors.

for the solid curves. which shows that the number of UL UEs is negatively correlated with the MIMO radar detection
performance while the cooperation between the DL and the MIMO radar sustains the radar detection performance.
Figure 5 depicts the impact of FD SI attenuation level ranging from −30 to 0 dB4 on the joint radar-communications
co-design measured via 𝐼CWSM. As expected, the stronger the SI cancellation, the better the MRMC system outputs.
Our proposed algorithm outperforms other precoders even at very low SI cancellation or high values of 𝜎2SI.

6. Summary
We jointly designed UL/DL precoders, MIMO radar code matrix, and LRFs for both statistical MIMO radar and

IBFD MU-MIMO communications operating in the same frequency bands. We proposed BCD-AP MRMC algorithm
that ensures convergence and, as shown in the previous companion paper (Part I) [19], delivers performance benefits
for both the radar and communications systems. This paper, through extensive experimentation, demonstrated the rapid
convergence of the BCD-AP MRMC algorithm using two different initialization schemes. Our co-designed DL and
radar systems exhibited robustness against substantial UL interference. Moreover, our optimized precoders and radar
codes maintained stable DL and UL data rates as the CNR increased. Furthermore, we validated the robustness of our
methods against imperfect CIR estimates and a wide range of SI attenuation levels. In summary, our proposed spectral
co-design framework and the BCD-AP MRMC algorithm offer significant performance improvements for both the
MIMO radar and IBFD MU-MIMO communications system. The following companion paper (Part III) [40] considers
distributed beamforming and tracking aspects of the same system.

4Note that the NSP performance at 𝜎2SI = 0 dB is different than Figure 6 in the companion paper Part I, which employs random initialization.
The experiment in this paper used the deterministic initialization.
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Figure 4: Joint radar and communications analyses: (a) IBFD MU-MIMO performance versus CNRs. (b) ROC curves with
varying numbers of UL/DL UEs.

A. Derivation of Gradients
Denote the complex gradient operator for a scalar real-valued function with a complex-valued matrix argument

𝑓 (𝐙,𝐙∗) as ∇𝐙𝑓 = 𝜕𝑓
𝜕𝐙∗ . From the derivative formula 𝜕

𝜕𝐗∗ Tr
(

𝐁⊤𝐗†𝐂𝐗𝐁
)

= 𝐂⊤𝐗𝐁𝐁⊤ + 𝐂𝐗𝐁𝐁⊤ [27], the gradients
of ΞUL and ΞDL w.r.t. 𝐏u,𝑖[𝑘], 𝐏d,𝑗[𝑘] and 𝐚[𝑘] are

∇𝐏u,𝑖[𝑘]ΞUL = 2𝐇†
𝑖,B𝝃UL𝐇𝑖,B𝐏u,𝑖[𝑘] − 2𝛼u

𝑖 𝐇
†
𝑖,B𝐔

†
u,𝑖[𝑘]𝐖u,𝑖[𝑘],

∇𝐏d,𝑗 [𝑘]ΞDL = 2
𝐽
∑

𝑔=1
𝐇†

B,𝑔𝝃d,𝑔𝐇B,𝑔𝐏d,𝑗[𝑘] − 2𝛼d
𝑗𝐇

†
B,𝑗𝐔

†
d,𝑗[𝑘]𝐖d,𝑗[𝑘],

∇𝐏d,𝑗 [𝑘]ΞUL = 2𝐇†
BB𝝃UL[𝑘]𝐇BB𝐏d,𝑗[𝑘],

∇𝐏u,𝑖[𝑘]ΞDL = 2
𝐽
∑

𝑔=1
𝐇†

𝑖,𝑔𝝃d,𝑔[𝑘]𝐇𝑖,𝑔𝐏u,𝑖[𝑘],

∇𝐚[𝑘]ΞUL = 2𝐇†
rB𝝃UL[𝑘]𝐇rB𝐚[𝑘], (77)

and

∇𝐚[𝑘]ΞDL = 2
𝐽
∑

𝑔=1
𝐇†

r,𝑔𝝃d,𝑔[𝑘]𝐇r,𝑔𝐚[𝑘], (78)

respectively, where 𝝃UL[𝑘] =
∑𝐼

𝑞=1 𝛼
u
𝑞𝐔

†
u,𝑞[𝑘]𝐖u,𝑞[𝑘]𝐔u,𝑞[𝑘] and 𝝃d,𝑔[𝑘] = 𝛼d

𝑔𝐔
†
d,𝑔[𝑘] 𝐖d,𝑔[𝑘]𝐔d,𝑔[𝑘]. The gradients

of Ξr w.r.t. 𝐏u,𝑖[𝑘], 𝐏d,𝑗[𝑘], and 𝐚[𝑘] are respectively shown as

∇𝐏u,𝑖[𝑘]Ξr = 2
𝑁r
∑

𝑛r=1

𝐾
∑

𝑚=1
Re

(

𝜉r,𝑛r (𝑘, 𝑚)𝚺
(𝑚,𝑘)
𝑖,𝑛r

)

𝐏u,𝑖[𝑚]𝐝u,𝑖
[

𝑚, 𝑛t − 𝑛u
]

𝐝†u,𝑖
[

𝑘, 𝑛t − 𝑛u
]
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Figure 5: Impact of the FD SI on the proposed radar-communications co-design.

∇𝐏d,𝑗 [𝑘]Ξr = 2
𝑁r
∑

𝑛r=1

𝐾
∑

𝑚=1
Re

(

𝜉r,𝑛r (𝑘, 𝑚)𝚺
(𝑚,𝑘)
Bt,𝑛r

)

𝐽
∑

𝑔=1

{

𝐏d,𝑔[𝑚]𝐝d,𝑔[𝑚, 0]𝐝
†
d,𝑗[𝑘, 0]

}

+ 2
𝑁r
∑

𝑛r=1

𝐾
∑

𝑚=1
Re

(

𝜉r,𝑛r (𝑘, 𝑚)𝚺
(𝑚,𝑘)
Bm,𝑛r

)

𝐽
∑

𝑔=1
𝐏d,𝑔[𝑚]𝐝d,𝑔

[

𝑚, 𝑛t − 𝑛Bm
]

𝐝†d,𝑗
[

𝑘, 𝑛t − 𝑛Bm
]

− 2
𝑁r
∑

𝑛r=1

𝐾
∑

𝑚=1
Re

(

𝚺(𝑚,𝑘)
Bt,𝑛r

)

𝐉⊤B𝐉
⊤
h [𝑚]𝐖r,𝑛r𝐮r,𝑛r [𝑘]𝐝

†
d.𝑗[𝑘, 0],

∇𝐚[𝑘]Ξr = −2
𝑁r
∑

𝑛r=1

𝐾
∑

𝑚=1
Re

(

𝚺(𝑚,𝑘)
rt,𝑛r

)

𝐉⊤r 𝐉
⊤
h [𝑚]𝐖r,𝑛r𝐮r,𝑛r [𝑘]

+ 2
𝑁r
∑

𝑛r=1

𝐾
∑

𝑚=1

[

Re
(

𝜉r,𝑛r (𝑘, 𝑚)𝚺
(𝑚,𝑘)
rt,𝑛r

)

+ Re
(

𝜉r,𝑛r (𝑘, 𝑚)𝚺c,𝑛r

)]

𝐚[𝑚],

where 𝜉r,𝑛r (𝑘, 𝑚) = 𝛼r
𝑛r
Tr

{

𝐮†r,𝑛r [𝑘]𝐖r,𝑛r𝐮r,𝑛r [𝑚]
}

. The derivatives of 𝑓 (𝐗,𝐗∗) in (69) w.r.t. 𝐗∗ are thus approximated

as 𝜕𝑓
𝜕𝐗∗ = 𝜕

𝜕𝐗∗
0
𝑓
(

𝐗0,𝐗∗
0
)

The chain rule for a scalar function 𝑔(𝐔(𝐗,𝐗∗),𝐔∗(𝐗,𝐗∗)) where 𝑔 is dependent on 𝐗∗

through the matrix 𝐔 is [27]

𝜕𝑔
𝜕𝐗∗ =

Tr
{

(

𝜕𝑔
𝜕𝐔

)⊤
𝜕𝐔

}

𝜕𝐗∗ +
Tr

{

(

𝜕𝑔
𝜕𝐔∗

)⊤
𝜕𝐔∗

}

𝜕𝐗∗ . (79)
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With (79) and 𝜕 log|𝐗| = Tr
{

𝐗−1𝜕𝐗
}

[27], the derivatives of 𝑅u,𝑖[𝑘] and 𝑅d,𝑗[𝑘] w.r.t. 𝐏u,𝑖[𝑘], 𝐏d,𝑗[𝑘] based on their
associated first order Taylor series expansions are

∇𝐏u,𝑖[𝑘]𝑅u,𝑖[𝑘] = 𝐇†
𝑖,B

(

𝐑in
u,𝑖[𝑘]

)−1
𝐇𝑖,B𝐏̃u,𝑖[𝑘]𝐄̃⋆

u,𝑖[𝑘],

∇𝐏d,𝑗 [𝑘]𝑅d,𝑗[𝑘] = 𝐇†
B,𝑗

(

𝐑in
d,𝑗[𝑘]

)−1
𝐇B,𝑗 𝐏̃d,𝑗[𝑘]𝐄̃⋆

d,𝑗[𝑘],

∇𝐏u,𝑖[𝑘]𝑅u,𝑞[𝑘] = −𝐇†
𝑖,B

(

𝐑in
u,𝑞[𝑘]

)−1
𝐇𝑞,B𝐏u,𝑞[𝑘]𝐄⋆

u,𝑞[𝑘] × 𝐏†
u,𝑞[𝑘]𝐇

†
𝑞,B

(

𝐑in
u,𝑞[𝑘]

)−1
𝐇𝑖,B𝐏̃u,𝑖[𝑘], 𝑞 ≠ 𝑖,

∇𝐏d,𝑗 [𝑘]𝑅u,𝑖[𝑘] = −𝐇BB

(

𝐑in
u,𝑖[𝑘]

)−1
𝐇†

𝑖,B𝐏u,𝑖[𝑘]𝐄⋆
u,𝑖[𝑘]𝐇

†
𝑖,B𝐏

†
u,𝑖[𝑘]

(

𝐑in
u,𝑖[𝑘]

)−1
𝐇BB𝐏̃d,𝑗 ,

∇𝐏u,𝑖[𝑘]𝑅d,𝑗[𝑘] = −𝐇†
𝑖,𝑗

(

𝐑in
d,𝑗[𝑘]

)−1
𝐇B,𝑗𝐏d,𝑗[𝑘]𝐄⋆

d,𝑗[𝑘]𝐏
†
d,𝑗[𝑘]𝐇

†
B,𝑗

(

𝐑in
d,𝑗[𝑘]

)−1
𝐇𝑖,𝑗 𝐏̃u,𝑖[𝑘],

∇𝐏d,𝑗 [𝑘]𝑅d,𝑔[𝑘] = −𝐇†
B,𝑔

(

𝐑in
d,𝑔[𝑘]

)−1
𝐇B,𝑔𝐏d,𝑔[𝑘]𝐄⋆

d,𝑔[𝑘]𝐏
†
d,𝑔[𝑘]𝐇

†
B,𝑔

(

𝐑in
d,𝑔[𝑘]

)−1
𝐇B,𝑔𝐏̃d,𝑗[𝑘], 𝑔 ≠ 𝑗,

where 𝐄̃⋆
u,𝑖[𝑘] ≜ 𝐄⋆

u,𝑖[𝑘]
(

𝐏̃u,𝑖[𝑘]
)

, 𝐄̃⋆
d,𝑗[𝑘] = 𝐄⋆

d,𝑗[𝑘]
(

𝐏̃d,𝑗[𝑘]
)

. The derivatives of 𝑅u,𝑖[𝑘] and 𝑅d,𝑗[𝑘] w.r.t.

𝐚[𝑘] are ∇𝐚[𝑘]𝑅d,𝑗[𝑘] = −𝐇†
r,𝑗

(

𝐑in
d,𝑗[𝑘]

)−1
𝐏d,𝑗[𝑘]𝐇B,𝑗𝐄⋆

d,𝑗[𝑘]𝐏
†
d,𝑗[𝑘]𝐇

†
B,𝑗

(

𝐑in
d,𝑗[𝑘]

)−1
𝐇r,𝑗𝐚[𝑘] and ∇𝐚[𝑘]𝑅u,𝑖[𝑘] =

−𝐇†
rB

(

𝐑in
u,𝑖[𝑘]

)−1
𝐏u,𝑖[𝑘]𝐇𝑖,B𝐄⋆

u,𝑞[𝑘]𝐏
†
u,𝑖[𝑘]𝐇

†
𝑖,B

(

𝐑in
u,𝑖[𝑘]

)−1
𝐇rB𝐚[𝑘].

References
[1] K. V. Mishra, M. R. Bhavani Shankar, V. Koivunen, B. Ottersten, S. A. Vorobyov, Toward millimeter wave joint radar communications: A

signal processing perspective, IEEE Signal Processing Magazine 36 (5) (2019) 100–114.
[2] M. I. Skolnik, Radar handbook, 3rd Edition, McGraw-Hill, 2008.
[3] B. Clerckx, C. Oestges, MIMO wireless networks: Channels, techniques and standards for multi-antenna, multi-user and multi-cell systems,

Academic Press, 2013.
[4] T. M. Cover, J. A. Thomas, Elements of information theory, 2nd Edition, John Wiley & Sons, 2006.
[5] Y. Cui, V. Koivunen, X. Jing, Interference alignment based spectrum sharing for MIMO radar and communication systems, in: IEEE

International Workshop on Signal Processing Advances in Wireless Communications, 2018, pp. 1–5.
[6] A. Ayyar, K. V. Mishra, Robust communications-centric coexistence for turbo-coded OFDM with non-traditional radar interference models,

in: IEEE Radar Conference, 2019, pp. 1–6.
[7] S. H. Dokhanchi, B. S. Mysore, K. V. Mishra, B. Ottersten, A mmWave automotive joint radar-communications system, IEEE Transactions

on Aerospace and Electronic Systems 55 (3) (2019) 1241–1260.
[8] G. Duggal, S. Vishwakarma, K. V. Mishra, S. S. Ram, Doppler-resilient 802.11ad-based ultra-short range automotive joint radar-

communications system, IEEE Transactions on Aerospace and Electronic Systems 56 (5) (2020) 4035–4048.
[9] B. Li, A. Petropulu, Joint transmit designs for co-existence of MIMO wireless communications and sparse sensing radars in clutter, IEEE

Transactions on Aerospace and Electronic Systems 53 (6) (2017) 2846–2864.
[10] Q. He, Z. Wang, J. Hu, R. S. Blum, Performance gains from cooperative MIMO radar and MIMO communication systems, IEEE Signal

Processing Letters 26 (1) (2019) 194–198.
[11] A. M. Haimovich, R. S. Blum, L. J. Cimini, MIMO radar with widely separated antennas, IEEE Signal Processing Magazine 25 (1) (2008)

116–129.
[12] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, R. A. Valenzuela, Spatial diversity in radars—models and detection

performance, IEEE Transactions on Signal Processing 54 (3) (2006) 823–838.
[13] J. Li, P. Stoica, MIMO radar with colocated antennas, IEEE Signal Processing Magazine 24 (5) (2007) 106–114.
[14] S. Sun, Y. Hu, K. V. Mishra, A. P. Petropulu, Widely separated MIMO radar using matrix completion, IEEE Transactions on Radar Systems

2 (2024) 180–196.
[15] M. Alaee-Kerahroodi, M. R. Bhavani Shankar, K. V. Mishra, B. Ottersten, Information theoretic approach for waveform design in coexisting

MIMO radar and MIMO communications, in: IEEE International Conference on Acoustics, Speech and Signal Processing, 2020, pp. 1–5.
[16] S. H. Dokhanchi, M. R. Bhavani Shankar, K. V. Mishra, B. Ottersten, Multi-constraint spectral co-design for colocated MIMO radar and

MIMO communications, in: IEEE International Conference on Acoustics, Speech and Signal Processing, 2020, pp. 4567–4571.
[17] D. Bao, G. Qin, J. Cai, G. Liu, A precoding OFDM MIMO radar coexisting with a communication system, IEEE Transactions on Aerospace

and Electronic Systems 55 (4) (2019) 1864–1877.
[18] A. Khawar, A. Abdelhadi, C. Clancy, Target detection performance of spectrum sharing MIMO radars, IEEE Sensors Journal 15 (9) (2015)

4928–4940.
[19] J. Liu, K. V. Mishra, M. Saquib, Co-designing statistical MIMO radar and in-band full-duplex multi-user MIMO communications – Part I:

Signal processing, Signal ProcessingUnder review (2024).

First Author et al.: Preprint submitted to Elsevier Page 24 of 25



Distributed MRMC - II

[20] C. B. Barneto, S. D. Liyanaarachchi, M. Heino, T. Riihonen, M. Valkama, Full duplex radio/radar technology: The enabler for advanced joint
communication and sensing, IEEE Wireless Communications 28 (1) (2021) 82–88.

[21] A. Deligiannis, A. Daniyan, S. Lambotharan, J. A. Chambers, Secrecy rate optimizations for MIMO communication radar, IEEE Transactions
on Aerospace and Electronic Systems 54 (5) (2018) 2481–2492.

[22] S. Biswas, K. Singh, O. Taghizadeh, T. Ratnarajah, Coexistence of MIMO radar and FD MIMO cellular systems with QoS considerations,
IEEE Transactions on Wireless Communications 17 (11) (2018) 7281–7294.

[23] M. M. Naghsh, M. Modarres-Hashemi, M. A. Kerahroodi, E. H. M. Alian, An information theoretic approach to robust constrained code
design for MIMO radars, IEEE Transactions on Signal Processing 65 (14) (2017) 3647–3661.

[24] J. Liu, K. V. Mishra, M. Saquib, Transceiver co-design for full-duplex integrated sensing and communications, in: IEEE Global Communica-
tions Conference, 2022, pp. 3821–3826.

[25] B. Tang, J. Tang, Y. Peng, MIMO radar waveform design in colored noise based on information theory, IEEE Transactions on Signal Processing
58 (9) (2010) 4684–4697.

[26] X. Song, P. Willett, S. Zhou, P. B. Luh, The MIMO radar and jammer games, IEEE Transactions on Signal Processing 60 (2) (2012) 687–699.
[27] A. C. Cirik, R. Wang, Y. Hua, M. Latva-aho, Weighted sum-rate maximization for full-duplex MIMO interference channels, IEEE Transactions

on Communications 63 (3) (2015) 801–815.
[28] P. Aquilina, A. C. Cirik, T. Ratnarajah, Weighted sum rate maximization in full-duplex multi-user multi-cell MIMO networks, IEEE

Transactions on Communications 65 (4) (2017) 1590–1608.
[29] J. Liu, M. Saquib, Transmission design for a joint MIMO radar and MU-MIMO downlink communication system, in: IEEE Global Conference

on Signal and Information Processing, 2018, pp. 196–200.
[30] Wei Yu, R. Lui, Dual methods for nonconvex spectrum optimization of multicarrier systems, IEEE Transactions on Communications 54 (7)

(2006) 1310–1322.
[31] A. Beck, L. Tetruashvili, On the convergence of block coordinate descent type methods, SIAM J. Optim. 23 (2013) 2037–2060.
[32] J. Liu, M. Saquib, Joint transmit-receive beamspace design for colocated MIMO radar in the presence of deliberate jammers, in: Asilomar

Conf. Signals Syst. Comput., 2017, pp. 1152–1156.
[33] C. Chen, M. Li, X. Liu, Y. Ye, Extended ADMM and BCD for nonseparable convex minimization models with quadratic coupling terms:

convergence analysis and insights, Math. Program. 173 (2019) 37–77.
[34] Z. Zhang, M. Brand, Convergent block coordinate descent for training Tikhonov regularized deep neural networks, in: Advances Neural Inf.

Process. Syst., 2017, pp. 1721–1730.
[35] E. Grossi, M. Lops, L. Venturino, Joint design of surveillance radar and MIMO communication in cluttered environments, IEEE Transactions

on Signal Processing 68 (2020) 1544–1557.
[36] Z. Zhu, X. Li, Convergence analysis of alternating projection method for nonconvex sets, arXiv preprint arXiv:1802.03889v2 (2019).
[37] J. A. Tropp, I. S. Dhillon, R. W. Heath, T. Strohmer, Designing structured tight frames via an alternating projection method, IEEE Trans. Inf.

Theory 51 (1) (2005) 88–209.
[38] Q. Shi, M. Razaviyayn, Z. Luo, C. He, An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering

broadcast channel, IEEE Transactions on Signal Processing 59 (9) (2011) 4331–4340.
[39] S. Boyd, J. Park, Subgradient methods (May 2014).

URL https://web.stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf
[40] S. Nayemuzzaman, J. Liu, K. V. Mishra, M. Saquib, Co-designing statistical MIMO radar and in-band full-duplex multi-user MIMO

communications – Part III: Multi-target tracking, Signal ProcessingUnder review (2024).

First Author et al.: Preprint submitted to Elsevier Page 25 of 25

https://web.stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf
https://web.stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf

	Introduction
	Spectral Co-Design System Model
	Transmit Signal
	Statistical MIMO Radar
	IBFD MU-MIMO Communications

	Statistical MIMO radar receiver
	IBFD MU-MIMO Communications Receiver

	CWSM Maximization
	Joint Code-Precoder-Filter Design
	Relationship between WMMSE and MI
	WMMSE-MRMC
	Lagrange dual solution
	Sub-gradient method for precoders

	Nearest vector method to find string
	Complexity and Convergence

	Numerical Experiments
	Convergence Analysis
	Joint Radar-Communications Performance

	Summary
	Derivation of Gradients

