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A B S T R A C T

As a next-generation wireless technology, the in-band full-duplex (IBFD) transmission enables
simultaneous transmission and reception of signals over the same frequency, thereby doubling
spectral efficiency. Further, a continuous up-scaling of wireless network carrier frequencies
arising from ever-increasing data traffic is driving research on integrated sensing and com-
munications (ISAC) systems. In this context, we study the co-design of common waveforms,
precoders, and filters for an IBFD multi-user (MU) multiple-input multiple-output (MIMO)
communications with a distributed MIMO radar. This paper, along with companion papers
(Part I and II), proposes a comprehensive MRMC framework that addresses all these chal-
lenges. In the companion papers, we developed signal processing and joint design algorithms
for this distributed system. In this paper, we tackle multi-target detection, localization, and
tracking. This co-design problem that includes practical MU-MIMO constraints on power and
quality-of-service is highly non-convex. We propose a low-complexity procedure based on
Barzilai–Borwein gradient algorithm to obtain the design parameters and mixed-integer linear
program for distributed target localization. Numerical experiments demonstrate the feasibility
and accuracy of multi-target sensing of the distributed FD ISAC system. Finally, we localize and
track multiple targets by adapting the joint probabilistic data association and extended Kalman
filter for this system.

1. Introduction
Conventional communications systems are based on either half-duplex (HD) or out-of-band full-duplex (FD)

transmission for low-complexity transceiver designs. In such systems, uplink (UL) and downlink (DL) communications
are separated in either time or frequency through, for example, time- or frequency-division duplexing, respectively,
leading to reduced spectral efficiency [1, 2]. Recently, in response to a tremendous rise in wireless data traffic, in-band
full-duplex (IBFD) operation has been suggested as a promising technology to increase spectral efficiency. The IBFD
enables concurrent transmission and reception in a single time/frequency channel to potentially double the attainable
spectral efficiency and throughput and reduce latency [3]. Recent breakthroughs in SI cancellation (SIC) techniques at
both radio-frequency and baseband stages enable an SI suppression of more than 100 dB and are critical to the more
rapid deployment of IBFD-enabled transceivers [1]. The MIMO evolution of 3GPP Release 18 [4] aggregates two HD
sub-bands into a sub-band FD in its schedule.

One of the promising IBFD applications is the emerging area of integrated sensing and communications (ISAC),
wherein radar and communications functions concurrently operate in the same spectral range to address the severe
spectral crowding problem [5, 6, 7]. For example, with FD, the base station (BS) is able to receive DL echo signals
and estimate radar target parameters. Furthermore, FD allows for the use of joint optimization methods to make a good
trade-off. The joint FD ISAC design has the potential for greater spectral efficiency, hardware sharing, and system
integration [8, 9, 10, 1, 11, 12].

More recently, the ISAC systems with MIMO radars and MIMO communications (MRMC) have received much
attention because, individually, both systems are designed for efficient spectrum usage due to increased degrees-of-
freedom in the spatial domain [13, 14, 15]. The MIMO radars are usually classified as colocated [16, 17] and widely
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distributed/statistical [18] depending on the geometry of antenna placement. In a colocated MIMO radar [19], the radar
cross-section (RCS) is identical to closely-spaced antennas. But, in a distributed MIMO radar, antennas are sufficiently
separated and isotropic so that the same target appears with a different RCS to each transmit-receive antenna pair
[20]. The MRMC literature has largely focused on co-located MIMO radar [18, 21]. In the first companion paper
(Part I) [22], we proposed spectral co-design of statistical MIMO radar with IBFD MU-MIMO communications. In
the second companion paper (Part II) [23], we developed an algorithm that jointly designed the radar waveform code,
communications precoders, and linear receive filters for this distributed system. In this paper, we consider distributed
beamforming (DB) and multi-target tracking for the same framework.

In wireless sensor networks, DB is employed to achieve the desired signal-to-noise (SNR) and reduce power
assumption by providing a coherent beamforming gain [24, 25, 26, 27, 28, 29]. It is cooperative communications in
which distributed transmitters adjust the phases of their signals in a way that the signals are constructively combined at
a client [27]. Some studies also use this term for beamforming algorithm that is solved in a distributed manner where
each user only relies on local information to perform beamforming [30, 31]. The coherent combination of various
waveforms is accomplished through appropriate synchronization between transmitters [32]. As a mechanism for
cooperative communications, distributed transmit beamforming enables a group of individual source user equipment
(UE) to transmit a common message signal as a virtual antenna array such that the bandpass transmissions aggregate
constructively after propagation at an intended destination [29].

Compared to conventional beamforming [33, 34, 35], the DB relies on each sensor to derive its carrier signal
from a separate local oscillator. The independent local oscillator at each UE has random initial phase and phase noise,
which forbid phase alignment of signals from different transmitters (Txs) at the receivers (Rxs) of destination UEs
[26, 24]. Distributed co-phasing (DCP) is one of the promising techniques to achieve distributed transmit beamforming
by combining the coherent gain with the spatial diversity gain. This technique offers benefits such as fixed power
transmission from the UEs, robustness to channel estimation errors, and feasibility for practical implementations
[36, 29]. In essence, DCP employs the multiple transmitting nodes as a distributed antenna array to achieve coherent
combining gain as well as diversity gain for wireless sensors network [37].

The DB technique has also been explored for multiple-input multiple-output (MIMO) radars in the form of
distributed coherent systems, wherein accurate phase synchronization is required to obtain coherent processing gain
[38, 39]. Based on the antenna placement relative to the target cross-section (RCS), MIMO radars may be colocated
(target RCS appears identical to all Tx-Rx pairs) [19, 40, 41, 42] or distributed (where the Tx and Rx antennas are
widely separated and RCS is different for each Tx-Rx pair) [43, 44, 18]. Distributed MIMO radars may be non-
coherent or coherent, depending on whether the phase information is ignored or included [45]. The former extracts
diversity gains across different Tx-Rx pairs to overcome target RCS fading, while the latter requires accurate Tx-Rx
phase synchronization to exploit processing gains [38, 39]. Herein, we study the distributed coherent MIMO radar
(MIMO radar) because these systems have improved direction finding accuracy over their non-coherent counterparts
by ensuring phase coherence of carrier signals from different distributed radar elements [38].

In practice, the accuracy of the phase in the transmit time slot determines the achievable beamforming gain [24].
Therefore, within the realm of DB, considerable efforts have been dedicated to either the carrier frequency/phase
synchronization protocol establishment [25, 38, 46] or error analysis when mismatched phases occur [26, 39, 29].
Master-slave [46], round trip [25] and broadcast consensus algorithms [38] are efficient approaches to achieving phase
synchronization in a distributed system. The probability of outage with imperfect channel state information (CSI) has
also been studied for a distributed wireless sensor network such as cloud radio access network (C-RAN) [29]. More
recently, distributed co-phasing, which combines the coherent combining gain with the spatial diversity gain, has
been proposed for C-RANs [47, 48]. This technique offers benefits such as fixed power transmission from the UEs,
robustness to channel estimation errors, and feasibility for practical implementations [36].

Preliminary results of this work appeared in our conference publication [53], where only a few antenna geometries
were considered, DCP was excluded, and optimization algorithm was not described. In this paper, we focus on ISAC
design with distributed MIMO radar and IBFD C-RAN, employ co-phasing, use a unified design metric, propose a
low-complexity design algorithm, and include multiple targets. Table 1 summarizes our contributions with respect to
the state-of-the-art. Our main contributions are:
1) IBFD C-RAN: We consider a full duplex C-RAN (FD-C-RAN) where the RRHs are equipped with the IBFD
technique and are able to communicate with DMUs and UMUs simultaneously. A typical C-RAN consists of a pool
of baseband units (BBUs), a large number of remote radio heads (RRHs), and a Fronthaul network connecting RRHs
to BBUs. The BBU pool is deployed at a centralized site, where software-defined BBUs process the baseband signals
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Table 1
Comparison with the state-of-the-art

q.v. Radar Communications Design objectiveModel Targets; Clutter Tracking Model Duplexing Users Beamformers
[13] C-MIMOa Static, single; Yes No P2P MIMOb HD SU Max-SINR Waveforms
[49] D-MIMOc Static, single; Yes No D-MIMO HD SU None Radar Rx filters
[50] Monostatic Static, multiple; Yes No M-MIMOd HD (UL) SU Zero Force Rx filters, BFs
[51] C-MIMO Static, single; No No MIMO HD (DL) MU C. I.e Transmit BFs
[14] C-MIMO Moving, single; No No MIMO FD MU NSP BFs, radar waveform
[31] C-MIMO Moving, single; No No MIMO FD MU Max-SNR BF
[52] Monostatic Moving, single; No No P2P SISO IBFD SU None Waveform
[22, 23] D-MIMO Moving, single; Yes No MIMO IBFD MU Max-MI Waveform, precoders, filter
This paper D-MIMO Moving, multiple; Yes Yes C-RAN MIMO IBFD MU Co-phased Max-MI Waveform, precoders, filter, power

a C-MIMO: Colocated MIMO b P2P: Point-to-point c D-MIMO: Distributed MIMO d M-MIMO: Massive MIMO
e Constructive interference

and coordinate the wireless resource allocation. The RRHs are in charge of RF amplification, up/down-conversion,
filtering, analog-to-digital/digital-to-analog conversion, and interface adaption.
2) Low-complexity design algorithm: To this end, we employ an alternating minimization procedure, which includes
low-complexity Barzilai-Borwein (BB) algorithm [54] for precoder design subproblem. The BB method is an efficient
tool for solving large-scale unconstrained optimization problems. When compared to the steepest descent method,
it has the same search direction but a different step rule. Our BB-based design achieves similar results as the more
complex conventional approaches such as the block coordinate descent (BCD) [55].
3) Multiple targets: The presence of multiple targets in a distributed ISAC scenario poses additional challenges. Since
the relative distance of each target is different with respect to each Rx, the echoes from multiple targets are delayed
by a different amount at each Rx. The result is that, after the detection procedure, each Rx ends up with a different
ordering of targets in time. This makes it difficult to associate the detected echoes from all Rx uniquely to each target
[56, 57, 58, 59]. To this end, the distributed radar literature suggests various data association algorithms such as
multiple hypothesis tracking [60], random finite sets [61], and joint probabilistic data association (JPDA) [62]. we
propose JPDA to assign detections from both radar and DL signals to specific targets.

The remainder of the paper is organized as follows. The next section describes our FD-ISAC system and
the stand-alone radar and communications receivers. In 3, we introduce FD D-ISAC receiver processing for self-
interference, radar-to-communications interference, and vice versa. Section 4 presents our proposed multi-target
CWSM optimization using the low-complexity BBB procedure. The multi-target detection via data association in
D-ISAC is discussed in Section 5 followed by extensive numerical experiments in Section 6. We conclude in Section
7.

Throughout this paper, lowercase regular, lowercase boldface, and uppercase boldface letters denote scalars,
vectors, and matrices, respectively. We use 𝐼(𝐗;𝐘) and 𝐻(𝐗|𝐘) to denote MI and conditional entropy between two
random variables 𝐗 and 𝐘, respectively. The notations 𝐘[𝑘], 𝐲[𝑘], and 𝑦[𝑘] denote the value of time-variant matrix 𝐘,
vector 𝐲 and scalar 𝑦 at discrete-time index 𝑘, respectively; 𝟏𝑁 is a vector of size 𝑁 with all ones; ℂ and ℝ represent
sets of complex and real numbers, respectively; a circularly symmetric complex Gaussian (CSCG) vector 𝐪 with 𝑁
elements and power spectral density 0 is 𝐪 ∼  (0,0𝐈𝑁 ); (⋅)⋆ is the solution of the optimization problem; 𝔼[⋅] is
the statistical expectation; tr{𝐑}, 𝐑⊤, 𝐑†, 𝐑∗, |𝐑|, 𝐑 ⪰ 𝟎, and 𝐑(𝑚, 𝑛) are the trace, transpose, Hermitian transpose,
element-wise complex conjugate, determinant, positive semi-definiteness and (𝑚, 𝑛)th entry of matrix 𝐑, respectively;
set ℤ+(𝐿) denotes {1,… , 𝐿}; 𝐱 ⪰ 𝐲 denotes component-wise inequality between vectors 𝐱 and 𝐲; 𝑥+ represents
max(𝑥, 0); 𝑥(𝑡)(⋅) is the 𝑡th iterate of an iterative function 𝑥(⋅); inf(⋅) is the infimum of its argument; ⊙ denotes the
Hadamard product; and ⊕ is the direct sum. All distances are measured in kilometers.
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2. System Model
We consider an FD-ISAC system consisting of a MIMO radar with 𝑀r (𝑁r) widely distributed single antenna Txs

(Rxs) and an FD C-RAN, which encompasses 𝑁B FD RRHs jointly serving 𝐽 (𝐼) single antenna HD DL (UL) UEs
concurrently. Each FD RRH is equipped with 𝑀c transceiving antennas and connected to the BBU via a fiber-fronthaul
link. The MIMO radar detects and localizes 𝑁t moving targets within the coverage of the FD-C-RAN during an ISAC
operation window when the 𝑀 FD RRHs coherently broadcast data streams to each DL UE while the 𝐼 UL UEs
multi-access channel to all RRUs. Simultaneously, each radar Tx emits a train of 𝐾 pulses to detect a moving target
in the coverage area of the BS at a uniform pulse repetition interval (PRI) 𝑇r ; the total duration 𝐾𝑇r is the coherent
processing interval (CPI). The integration of FD communications and radar sensing allows the radar pulse width, PRI,
and CPI to equal the communications symbol duration, frame length, and scheduling window, respectively. As a result,
the number of symbol periods in each frame, 𝐿, equals the number of range bins. Figure 1 illustrates the system model
on a two-dimensional (2-D) (𝑥-𝑦) Cartesian plane (𝑥, 𝑦).

2.1. Transmit signal
For the FD-C-RAN, we adopt an all-RRH association policy, namely that all corresponding FD RRHs cooperatively

transmit DL signals to each DL UE while each UL UE sends a common single-stream data symbol 𝑀 FD RRHs [63].
During the the 𝑙th symbol period of the 𝑘th frame or the [𝑘, 𝑙]th symbol period, of the ISAC operation window, FD RRH
𝑚 ∈ {1,⋯ ,𝑀} and UL UE 𝑖 ∈ {1,⋯ , 𝐼} simultaneously transmit DL and UL signals 𝑥d,𝑚[𝑘, 𝑙] =

∑𝐽
𝑗=1 𝐯d,𝑚𝑗𝑠d,𝑗[𝑘, 𝑙]

and 𝑥u,𝑖[𝑘, 𝑙] =
√

𝑃u,𝑖𝑠u,𝑖[𝑘, 𝑙], respectively, where 𝐯d𝑚𝑗 ∈ ℂ𝑀c and 𝑃u,𝑖 are the DL beamforming vector and the transmit
power employed by the 𝑚th RRH towards the 𝑗th DL UE and the 𝑖th UL UE, respectively; 𝑠d,𝑗[𝑘, 𝑙] (𝑠u,𝑖[𝑘, 𝑙]) designates
the single the data stream for the 𝑗th DL (𝑖th UL) UE with 𝔼

[

|𝑠d,𝑗[𝑘, 𝑙]|2
]

= 1 (𝔼
[

|𝑠u,𝑖[𝑘, 𝑙]|2
]

= 1).
Denote the radar pulse duration as 𝑇p = 𝑇r∕𝑁p (a.k.a fast time), where 𝑁p is the number of range cells per PRI.

We define the radar code vector transmitted during the 𝑘th PRI as 𝐚[𝑘] =
[

𝑎𝑘,1,⋯ , 𝑎𝑘,𝑀r

]⊤
∈ ℂ𝑀r and the MIMO

radar code matrix as 𝐀 = [𝐚[1],⋯ , 𝐚[𝐾]] ∈ ℂ𝑀r×𝐾 . The pulse train transmitted by the 𝑚r
th radar Tx is written as

𝑠𝑚r
(𝑡) =

∑𝐾−1
𝑘=0 𝑎𝑘,𝑚r

𝜙𝑚r

(

𝑡 − 𝑘𝑇r
)

𝐾 , where 𝜙𝑚r
(𝑡) denotes the orthonormal waveform associated with the 𝑚r

th radar

Tx with support [0, 𝑇p). Grouping the transmit signals from 𝑀r Txs yields 𝐬(𝑡) =
[

𝑠1(𝑡),⋯ , 𝑠𝑀r
(𝑡)
]⊤

.

2.2. Channel
During a given CPI, the 𝑛t th moving target is located at

(

𝑥t,𝑛t , 𝑦t,𝑛t
)

with the horizontal and vertical velocity as
(

𝑥̇t,𝑛t , 𝑦̇t,𝑛t
)

. Then we define the state vector of the 𝑛t th target as 𝐱t,𝑛t =
[

𝑥t,𝑛t , 𝑦t,𝑛t , 𝑥̇t,𝑛t , 𝑦̇t,𝑛t
]⊤

The propagation delay

and Doppler shift associated with the
(

𝑚r𝑛t𝑛r
)th Tx-target-Rx path are observed as

𝑏𝜏,𝑚r𝑛r

(

𝐱t,𝑛t
)

≜ 𝜏𝑚r𝑛t𝑛r =
𝑟r,𝑚r𝑛t𝑛r

𝑐
=

𝑟𝑚r𝑛t𝑚 + 𝑟𝑛t𝑛r
𝑐

(1)

𝑏𝑓,𝑚r𝑛r

(

𝐱t,𝑛t
)

≜ 𝑓𝑚r𝑛t𝑛r

=
𝑥̇t,𝑛t

(

𝑥t,𝑛t − 𝑥tx,𝑚r

)

+ 𝑦̇t,𝑛t
(

𝑦t,𝑛t − 𝑦rt,𝑚r

)

𝜆𝑟𝑚r𝑛t𝑚
+

𝑥̇t,𝑛t
(

𝑥t,𝑛t − 𝑥rr𝑛r

)

+ 𝑦̇t,𝑛t
(

𝑦t,𝑛t − 𝑦rr𝑛r

)

𝜆𝑟𝑛t𝑛r
(2)

where 𝑏𝜏,𝑚r𝑛r (⋅) and 𝑏𝑓,𝑚r𝑛r (⋅) are the delay and Doppler observation functions, 𝜆 and 𝑐 denote the carrier wavelength
and the speed of light, respectively; 𝑟r,𝑚r𝑛t𝑛r represents the bistatic range between the 𝑚r

th radar Tx, 𝑛th
t target, and 𝑛r th

radar Rx with

𝑟𝑚r𝑛t𝑚 =

√

(

𝑥t,𝑛t − 𝑥tx,𝑚r

)2
+
(

𝑦t,𝑛t − 𝑦rt,𝑚r

)2
(3)

𝑟𝑛t𝑛r =

√

(

𝑥t,𝑛t − 𝑥rr𝑛r

)2
+
(

𝑦t,𝑛t − 𝑦rr𝑛r

)2
. (4)
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Figure 1: Illustration of the considered D-ISAC system, where the 𝑚r
th (𝑛r th) radar Tx (Rx), 𝑚th FD RRH, 𝑗th (𝑖th) DL

(UL) UE are located at
(

𝑥rt
𝑚r
, 𝑦rt𝑚r

)

(
(

𝑥rr
𝑛r
, 𝑦rr𝑛r

)

),
(

𝑥RRH
𝑚 , 𝑦RRH𝑚

)

,
(

𝑥d
𝑗 , 𝑦d,𝑗

)

(
(

𝑥u,𝑖, 𝑦u𝑖
)

), respectively; the 𝑛t th target is located

at
(

𝑥t,𝑛t , 𝑦t,𝑛t
)

.

We then write the composite channel coefficient between Tx 𝑚r , target 𝑛t , and Rx 𝑛r as

ℎr𝑚r𝑛t𝑛r
≜ 𝑟−2r,𝑚r𝑛t𝑛r

𝑔𝑚r𝑛t𝑛r exp
(

−j2𝜋𝑓c𝜏𝑚r𝑛t𝑛r

)

, (5)

where 𝑔𝑚r𝑛t𝑛r is the target reflectivity associated with the
(

𝑚r , 𝑛t , 𝑛r
)th path, and 𝑓c the carrier frequency.

We also assume that the Swerling I target model holds for each target such that 𝐱t𝑛t and ℎr𝑚r𝑛t𝑛r
remain constant over

a CPI [64]. The inherent nature of a widely distributed MIMO radar determines that its resolution on a range-Doppler
plane depends on the target’s location and speed and the Txs and Rxs. Therefore, it demands a statistical view of the
received radar signal to derive the ambiguity function for a widely distributed MIMO radar. For our multi-target model,
we assume that targets are separated by the minimum range-Doppler resolution specified by the statistical ambiguity
function of the widely separated MIMO radar [65].

Since the RRHs and UEs are also widely distributed, we consider both small-scale fading and distance-dependent
path-loss in channel modeling [66]. Denote the UL channel between the 𝑖th UL UE and the 𝑚th RRH, and the DL
channel between the 𝑚th RRH and the 𝑗th DL UE as 𝐡u,𝑖𝑚 = 𝑟−2u,𝑖𝑚𝐠u,𝑖𝑚 and 𝐡d,𝑚𝑗 = 𝑟−2d,𝑚𝑗𝐠d,𝑚𝑗 , where 𝑟u,𝑖𝑚 (𝑟d,𝑚𝑗)
and 𝐠u,𝑖𝑚 ∈ ℂ𝑀c (𝐠d,𝑚𝑗 ∈ ℂ𝑀c ) are the distance and small-scale channel vector between the 𝑖th UL UE and the 𝑚th

RRH (the 𝑚th RRH and the 𝑗th DL UE); the path-loss exponent is assumed to be 2 [67]. The IBFD transmission and
reception at the𝑚th RRH introduces self-interfering channel𝐇SI

𝑚𝑚 ∈ ℂMc×Mc and inter-RRH channels𝐇IR
𝑚′𝑚 ∈ ℂMc×Mc ,

for 𝑚′ ≠ 𝑚. On the other hand, the DL UEs also suffer from co-channel interference due to the UL UEs’ transmissions.
We model the channel between the 𝑖th UL UE and 𝑗th DL UE as ℎud,𝑖𝑗 = 𝑟−2ud,𝑖𝑗𝑔ud,𝑖𝑗 .

The D-ISAC system’s concurrent transmissions of radar and communications signals imply that the communica-
tions and radar signals are overlaid at all Rxs. We model the channels between the 𝑚th RRH/the 𝑖th UL UE and the
𝑛r th radar Rx as 𝐡dr𝑚𝑛r (ℎur𝑖𝑛r ), and the channel between the 𝑚r

th radar Tx and the 𝑚th RRH (the 𝑗th DL UE) as ℎr,u𝑚r ,𝑚
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(ℎrd𝑚r𝑛t𝑗
). During the D-ISAC operation window, the RRHs and DL UEs intercept radar signals through direct and

target-deflected paths.

2.3. Radar signal at the radar Rxs
With the coherent processing and imperfect phase synchronization across the Txs and Rxs, the baseband received

signal model at the 𝑛r th radar Rx due to reflections off the 𝑛t th is written as [45, 39]

𝑦tr𝑛t𝑛r (𝑡) ≈
𝑀r
∑

𝑚r=1

𝐾−1
∑

𝑘=0
𝑒j2𝜋

[

𝑘𝑓 ′
𝑚r𝑛t𝑛r

+𝜗𝑚r𝑛r
]

ℎr𝑚r𝑛t𝑛r
𝑎𝑘,𝑚r

𝜙𝑚r

(

𝑡 − 𝑘𝑇r − 𝜏𝑚r𝑛t𝑛r

)

, (6)

where 𝑓 ′
𝑚r𝑛t𝑛r

≜ 𝑓𝑚r𝑛t𝑛r𝑇r is the normalized Doppler frequency and the approximation in (6) follows the assumption
that 𝑓𝑚r𝑛t𝑛r ≪ 1∕𝑇r [68, 69]; 𝜗𝑚r𝑛r the phase offset between the 𝑛r th Rx and 𝑚r

th Tx. In practice, synchronization errors
can be modeled here as zero-mean Gaussian random variables with common variance. With sampling rate 𝐹p = 1∕𝑇p,
the discrete-time version of 𝑦r,𝑛r (𝑡) is

𝑦tr𝑛t𝑛r [𝑘, 𝑛] ≜ 𝑦tr𝑛t𝑛r
(

𝑘𝑇r + 𝑛𝑇p
)

=
𝑀r
∑

𝑚r=1
𝑒j2𝜋𝑘𝑓

′
𝑚r𝑛t𝑛r ℎr𝑚r𝑛t𝑛r

𝑎𝑘,𝑚r
𝜙𝑚r

[

𝑛 − 𝑛𝑚r𝑛t𝑛r

]

where 𝜙𝑚r
[𝑛] = 𝜙𝑚r

(

𝑛𝑇p
)

; 𝑛𝑚r𝑛t𝑛r = ⌊𝜉𝑚r𝑛t𝑛r∕𝑇𝑝⌋ is the discrete delay for the
(

𝑚r , 𝑛t , 𝑛r
)th path, which is retrieved

through the peak at the output of the 𝑚r
th matched filter 𝜙𝑚r

[𝑛] at the 𝑛r th radar Rx, i.e.,

𝑦tr𝑚r𝑛t𝑛r
[𝑘] ≜𝑦tr𝑛t𝑛r [𝑘, 𝑛] ∗ 𝜙∗

𝑚r
[𝑛]|𝑛=𝑛𝑚r𝑛t𝑛r

=𝑒j2𝜋𝑘𝑓
′
𝑚r𝑛t𝑛r ℎr𝑚r𝑛t𝑛r

𝑎𝑘,𝑚r
,∀𝑘 = 1,⋯ , 𝐾. (7)

Combining the 𝐾 samples yields

𝐲tr𝑚r𝑛t𝑛r
=
[

𝑦tr𝑚r𝑛t𝑛r
[1],⋯ , 𝑦tr𝑚r𝑛t𝑛r

[𝐾]
]

= ℎr𝑚r𝑛t𝑛r
𝐬𝑚r𝑛t𝑛r , (8)

where 𝐬𝑚r𝑛t𝑛r = 𝐪𝑚r𝑛t𝑛r ⊙𝐚𝑚r
and 𝐪𝑚r𝑛t𝑛r =

[

1,⋯ , 𝑒j2𝜋𝐾𝑓 ′
𝑚r𝑛t𝑛r

]⊤
∈ ℂ𝐾 is the temporal steering vector associated with

the
(

𝑚r , 𝑛t , 𝑛r
)th radar Tx-target-Rx path. Applying an 𝑃 -point (𝑃 ≥ 𝐾) discrete Fourier transform (DFT) to (8) gives

the Doppler spectrum of the 𝑛𝑚r𝑛t ,𝑛r
th range bin

𝑌 tr
𝑚r𝑛t𝑛r

[

𝑛𝑚r𝑛t ,𝑛r , 𝑝
]

=
𝐾−1
∑

𝑘=0
𝑦tr𝑚r𝑛t𝑛r

[𝑘]𝑒−j2𝜋
𝑘𝑝
𝑃 , (9)

where 𝑝∕𝑃 is the 𝑝th normalized Doppler bin for 𝑝 = 0,⋯ , 𝑃 − 1. (9) peaks at the
(

𝑛𝑚r𝑛t ,𝑛r , 𝑝𝑚r𝑛t𝑛r

)th
range-Doppler

bin with 𝑝𝑚r𝑛t𝑛r = ⌊𝑓 ′
𝑚r𝑛t𝑛r

𝑀⌋. Next we write the measurement vector of the 𝑛t th target retrieved by the
(

𝑚r , 𝑛r
)th

radar channel as 𝐳𝑚r𝑛t𝑛r =
[

𝑛𝑚r𝑛t𝑛r ; 𝑝𝑚r𝑛t𝑛r

]

. Due to the presence of 𝑁t targets and 𝑀r distributed radar Txs, there is
uncertainty for the 𝑛r th radar Rx to assign a measurement to its corresponding target. In section 5, we employ the JPDA
algorithm to ascertain measurements of each target using echoes from all Tx-Rx pairs.

In practice, apart from the target, the MIMO radar Rxs also receive echoes from undesired targets or clutter, such
as buildings and forests. We model the clutter trail at the range cell containing the 𝑛t th target at the

(

𝑚r , 𝑛r
)th radar

Tx-Rx pair as 𝐲c𝑚r𝑛t𝑛r
= 𝐀𝝆𝑚r𝑛t𝑛r ∈ ℂ𝐾 , where 𝝆𝑚r𝑛t𝑛r ∈ ℂ𝑀r ∼ 

(

0, 𝜎2c,𝑛r 𝐈𝑀r

)

denotes the the clutter component
reflection coefficient vector associated with the 𝑛r th radar Rx whose covariance matrix (CM) is 𝐑c,𝑛t𝑛r = 𝐀𝚺c,𝑛t𝑛r𝐀

†,

where 𝚺c,𝑛t𝑛r = 𝔼
[

𝝆𝑚r𝑛t𝑛r𝝆
†
𝑛t𝑛r

]

.

First Author et al.: Preprint submitted to Elsevier Page 6 of 29



Distributed MRMC - III

2.4. Communications signal at the FD-C-RAN Rxs
We present the UL and DL signals received by the 𝑚th RRH and 𝑗th DL UE at the [𝑘, 𝑙]th symbol period as

𝐲uu𝑚 [𝑘, 𝑙] =
𝐼
∑

𝑖=1
𝑦u𝑖𝑚[𝑘, 𝑙] =

𝐼
∑

𝑖=1
𝐡u,𝑖𝑚𝑥u𝑖 [𝑘, 𝑙], (10)

and

𝑦dd𝑗 [𝑘, 𝑙] =𝐡⊤d,𝑗𝐱d[𝑘, 𝑙] =
𝑀
∑

𝑚=1
𝐡⊤d,𝑚𝑗𝐯d,𝑚𝑗𝑠d,𝑗[𝑘, 𝑙] + 𝑦dm𝑗 (11)

where 𝐡d,𝑗 =
[

𝐡⊤d,1𝑗 ,⋯ ,𝐡⊤d,𝑀𝑗

]⊤
∈ ℂ𝑀𝑀c and 𝐱d[𝑘, 𝑙] =

[

𝐱d⊤1 [𝑘, 𝑙],⋯ , 𝐱d⊤𝑀 [𝑘, 𝑙]
]⊤

denote the total DL channel

vectors and signals by the 𝑀 RRHs; 𝑦dm𝑗 =
∑𝑀

𝑚=1 𝐡
d⊤
𝑚𝑗

∑

𝑗′≠𝑗 𝐯d𝑚𝑗′𝑠
d
𝑗′ [𝑘, 𝑙] denotes the DL multi-user interference

(MUI) observed by the 𝑗th DL UE.

3. FD D-ISAC Processing
This section presents aspects of processing unique to the FD D-ISAC system. We first introduce the SI and CI

models owing to the IBFD transmission. Then we describe the radar signal model observed by communications Rxs and
vice versa. Last, we discuss strategies to handle the synchronization of the distributed system in The synchronization

3.1. IBFD induced interference
Since all the RRHs operate in STAR mode, each RRH observes self-interference (SI) and inter-RRH interference

(IRI). The SI-plus-IRI arriving at the 𝑚th RRH is

𝐲SR𝑚 [𝑘, 𝑙] =𝐲SI𝑚 [𝑘, 𝑙] + 𝐲IR𝑚 [𝑘, 𝑙]

=𝐇SI
𝑚𝑚𝐱

d
𝑚[𝑘, 𝑙] +

∑

𝑚′≠𝑚
𝐇IR

𝑚′𝑚𝐱
d
𝑚′ [𝑘, 𝑙]. (12)

The C-RAN architecture delegates the BBU to process baseband data captured by all the RRHs, which are intercon-
nected via fiber-wired front-haul links. As a result, the BBU has full knowledge of all the DL signals

{

𝑥d𝑚[𝑘, 𝑙],∀𝑚, 𝑘, 𝑙
}

and it subtracts (12) upon receiving the data from all RRHs. However, the cancellation is not perfect due to imperfect
estimations of

{

𝐇SI
𝑚,𝑚′

}

. Without specifying an SI cancellation technique, we model the residual SI and IRI at the
BBU as random Gaussian variables 𝐲SRu [𝑘, 𝑙] ∼ 

(

𝟎,𝐑SR
u
)

[8], where

𝐑SR
u = 𝛾 diag

{ 𝐽
∑

𝑗=1
𝐇SR

u 𝐯d,𝑗𝐯d
†

𝑗 𝐇SR†

u

}

, (13)

𝛾 is a constant arising from the output noise of the SR cancellation at the BBU, 𝐇SR
u ∈ ℂ𝑀𝑀c×𝑀𝑀c contains

{

𝐇SI
𝑚𝑚,𝐇

IR
𝑚′𝑚,∀𝑚

}

, and 𝐯d,𝑗 =
[

𝐯d⊤1𝑗 ,⋯ , 𝐯d⊤𝑀𝑗

]⊤
∈ ℂ𝑀𝑀c . We then show the co-channel interference experienced

by the 𝑗th DL UE as

𝑦ud𝑗 [𝑘, 𝑙] =
𝐼
∑

𝑖=1
ℎud𝑖𝑗 𝐱

u
𝑖 [𝑘, 𝑙], (14)

and its covariance matrix 𝐑ud
𝑗 =

∑𝐼
𝑖=1 ℎ

ud
𝑖𝑗 𝐯

u†
𝑖 𝑃u,𝑖 with 𝑃u,𝑖 =

[

𝑣u𝑖1,⋯ , 𝑣u𝑖𝑀
]⊤ ∈ ℂ𝑀𝑀c .
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3.2. Communications signals received by radar Rxs
The continuous transmission of the communications signal indicates that all the range bins for each radar Tx-Rx

channel contain communications signal components. However, our D-ISAC system design focuses only on the target-
occupied range bins. Following the modeling in the first companion paper (Part I) [22], we write the DL and UL signals
appearing in the range bin of the 𝑛t th target at the 𝑛r th radar Rx as

𝑦dr𝑚r𝑛t𝑛r
[𝑘] =

𝑀
∑

𝑚=1
𝐡dr𝑚𝑛r𝑥

d
𝑚

[

𝑘, 𝑛dr,𝑚𝑚r𝑛t𝑛r

]

(15)

𝑦ur𝑚r𝑛t𝑛r
[𝑘] =

𝐼
∑

𝑖=1
ℎur𝑖𝑛r𝑥

u
𝑖

[

𝑘, 𝑛ur,𝑖𝑚r𝑛t𝑛r

]

(16)

where 𝑛dr,𝑚𝑚r𝑛t𝑛r (𝑛ur,𝑖𝑚r𝑛t𝑛r ) indexes the DL (UL) symbol infringing the range bin where the 𝑛t th target is located for the
(

𝑚r , 𝑛r
)th radar channel. Upon obtaining (15) and (16), we next show the composite received signal at the

(

𝑚r , 𝑛r
)th

radar channel regarding the 𝑛t th target as

𝐲r𝑚r𝑛t𝑛r
= 𝐲tr𝑚r𝑛t𝑛r

+ 𝐲dr𝑚r𝑛t𝑛r
+ 𝐲ur𝑚r𝑛t𝑛r

+ 𝐲c𝑚r𝑛t𝑛r
+ 𝜶r

𝑛r
(17)

where (15) and (16) are the 𝑘th elements of 𝐲dr𝑚r𝑛t𝑛r
and 𝐲ur𝑚r𝑛t𝑛r

; 𝛼r𝑛r ∼ 
(

0, 𝜎2r,𝑛r 𝐈
)

is the CSCG noise element at the
𝑛r th radar Rx with variance 𝜎2r . We also define 𝐲inr,𝑛t𝑛r ≜ 𝐲dr𝑛t𝑛r + 𝐲ur𝑛t𝑛r + 𝐲c𝑛t𝑛r + 𝜶r

𝑛r
as the interference-plus-noise (IN)

component of (17).

3.3. Radar signals received by communications users
The intermittent transmission of the radar Txs results in limited symbol periods being interfered with radar signals.

We express the radar signal emitted by the 𝑚r
th radar Tx arriving at the 𝑚th RRH and 𝑗th DL UE as

𝐲ru𝑚r𝑚
[𝑘, 𝑙] =

{

𝐡ru𝑚r𝑛t𝑚
𝑎𝑘,𝑚r

, 𝑙 = 𝑙u𝑚r𝑛t𝑚
,∀𝑚r , 𝑛t , 𝑚,

𝟎, elsewise,
(18)

and

𝑦rd𝑚r𝑗
[𝑘, 𝑙] =

{

ℎrd𝑚r𝑛t𝑚
𝑎𝑘,𝑚r

, 𝑙 = 𝑙d𝑚r𝑛t𝑗
,∀𝑚r , 𝑛t , 𝑗,

0, elsewise,
(19)

where 𝑙u𝑚r𝑛t𝑚
and 𝑙d𝑚r𝑛t𝑗

index the UL/DL symbols interfered by the 𝑚r
th radar Tx’s signal, which are referred to as

the symbols of interest for the rest of the paper; 𝑛t = 0 and 𝑛t = 1,⋯ , 𝑁t represent the direct path and the 𝑁t
target-reflection paths, respectively.

Next we present the comprehensive receive signals at the 𝑚th RRH and the 𝑗th DL UE during the (𝑘, 𝑙)th symbol
period as

𝐲u,𝑚[𝑘, 𝑙] = 𝐲uu𝑚 [𝑘, 𝑙] + 𝐲SR𝑚 [𝑘, 𝑙] +
𝑀r
∑

𝑚r=1
𝐲ru𝑚r𝑚

[𝑘, 𝑙] + 𝜶u,𝑚 (20)

and

𝑦d,𝑗[𝑘, 𝑙] = 𝑦dd𝑗 [𝑘, 𝑙] + 𝑦ud𝑗 [𝑘, 𝑙] +
𝑀r
∑

𝑚r=1
𝑦rd𝑚r𝑗

[𝑘, 𝑙] + 𝛼d,𝑗 , (21)

where 𝜶u,𝑚 ∼ 
(

0, 𝜎2u𝐈
)

(𝛼d,𝑗 ∼ 
(

0, 𝜎2d
)

) denotes the UL (DL) CSCG noise element at the 𝑚th RRH (𝑗th DL
UE). The 𝑚th RRH forwards (20) to the BBU. The composite UL signal collected by the BBU is written as

𝐲u[𝑘, 𝑙] =
[

𝐲⊤u,1[𝑘, 𝑙];⋯ ; 𝐲⊤u,𝑀 [𝑘, 𝑙]
]
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=
𝐼
∑

𝑖=1
𝐡u,𝑖𝑥u,𝑖[𝑘, 𝑙] + 𝐲SRu [𝑘, 𝑙] +

𝑀r
∑

𝑚r=1
𝐲ru𝑚r

[𝑘, 𝑙] + 𝜶𝑢, (22)

where 𝐡u,𝑖 =
[

𝐡⊤u,𝑖1,⋯ ,𝐡⊤u,𝑖𝑀
]⊤

∈ ℂ𝑀𝑀c ,𝜶𝑢 =
[

𝜶⊤
u,1,⋯ ,𝜶⊤

u,𝑀

]

∈ ℂ𝑀𝑀c and 𝐲ru𝑚r
[𝑘, 𝑙] =

[

𝐲ru𝑚r1
[𝑘, 𝑙],⋯ , 𝐲ru𝑚r𝑀

[𝑘, 𝑙]
]

∈
ℂ𝑀𝑀c . To decode 𝑠u,𝑖[𝑘, 𝑙], the BBU applies the receive beamforming vector 𝐮u,𝑖 ∈ ℂ𝑀𝑀c to (22). The output of
𝐮u,𝑖[𝑘, 𝑙] is given as

𝑠̂u,𝑖[𝑘, 𝑙] = 𝐮†u,𝑖[𝑘, 𝑙]𝐲u[𝑘, 𝑙],∀𝑖, 𝑘, and 𝑙. (23)

3.4. Synchronization of FD D-ISAC
Maintaining a desired level of synchronization is an inherently challenging task for distributed systems as due

to the presence of multiple channels, timing, and carrier frequency offsets. The multiple communication nodes can
cooperatively sense the environment, such as in a C-RAN existing approaches to .....

In [70] Estimate carrier frequency offset master-slave paradigm. The carrier and symbol synchronizations are
maintained by the FD MU-MIMO communications system by periodically estimating the carrier frequency and phase
[71]. Our proposed FD D-ISAC model requires extensive cooperation between the communications and sensing nodes.
The radar Rxs relay the targets’ information to the communications Rxs such that 𝐡ru𝑚r𝑛t𝑚

(𝐡rd𝑚r𝑛t𝑚
) and 𝑙u𝑚r𝑛t𝑚

(𝑙d𝑚r𝑛t ,𝑗
)

can be estimated by the BBU (the 𝑗th DL UE). Conversely, the BBU feeds the channel information of the DL and UL
UEs to the radar Rxs to estimate 𝑛dr,𝑚𝑚r𝑛t𝑛r and 𝑛ur,𝑖𝑚r𝑛t𝑛r . The Rxs of radar and communications employ the same sampling
rates; therefore, communications symbols and radar range cells are aligned in time [72, 13]. The clocks at the BS
and the MIMO radar are synchronized offline and periodically updated such that the clock offsets between the BS
and MIMO radar Rxs are negligible [73]. Using the feedback of the BS via pilot symbols, radar Rxs can obtain the
clock information of UL UEs. Note that this setup exploits the established clock synchronization standards that have
been widely adopted in wireless communications and distributed sensing systems, e.g., the IEEE 1588 precision time
protocol.

4. FD D-ISAC Design
In this section, we discuss the FD D-ISAC system design scheme. We first assign the phases of

{

𝐯d,𝑚𝑗
}

by applying
DCP. Subsequently, we derive the DL/UL achievable rates and the MI obtained at each radar Rx for each target to
formulate a weighted sum-rate optimization problem w.r.t. the DL/UL beamformers and radar code matrix. Next, we
propose an alternating optimization algorithm enabled by the BB low-complexity algorithm.

4.1. Co-phasing-enabled precoder design
The fundamental of co-phasing is to adjust the phase compensation of each antenna of a transmitter to match the

channel phase such that the signals received from all Txs are constructively superimposed at the Rx. The DCP is an
extension of the conventional co-phasing to distributed systems, which enables multiple distributed Txs to coherently
transmit a common message signal to a particular client. The architecture of the FD C-RAN designates the BBU to
coordinate RRHs and achieve cooperative communications, e.g., Coordinated Multiple Points (CoMP). Therefore, to
apply DCP to the DL transmission of the proposed D-ISAC system, we recall that the small fading channel vector

between the 𝑚th RRH and 𝑗th DL UE 𝐠d,𝑚𝑗 =
[

𝑔1d,𝑚𝑗 ,⋯ , 𝑔𝑀c
d,𝑚𝑗

]⊤
, where 𝑔𝑚c

d,𝑚𝑗 = |𝑔𝑚c
d,𝑚𝑗|𝑒

j𝜗𝑚cd,𝑚𝑗 and 𝜗𝑚c
d,𝑚𝑗 are the channel

coefficient and phase associated with the 𝑚c
th antenna at the 𝑚th RRH, respectively. As a prerequisite for DCP, we

suppose that
{

𝜗𝑚c
d,𝑚c𝑗

}𝑀c,𝐽

𝑚c,𝑗=1
are estimated using known pilot symbols via methods such as maximum likelihood [36],

and are available at the 𝑚th RRH, we express DCP-enabled 𝐯d,𝑚𝑗 as [66, 37]

𝐯d,𝑚𝑗 =
√

𝑃d,𝑚𝑗

𝐠†d,𝑚𝑗
‖𝐠d,𝑚𝑗‖

, (24)
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where 𝑃d,𝑚𝑗 denotes the power allocated to the 𝑗th DL UE by the 𝑚th RRH, which will be optimized in the next section.
The total DL transmit power by the 𝑚th RRH is 𝑃d =

∑𝐽
𝑗=1 𝑃d,𝑚𝑗 for all 𝑚 = 1,⋯ ,𝑀 . We also define the super DL

beamformer for the 𝑗th DL UE as 𝐯d,𝑗 =
[

𝐯⊤d,𝑚𝑗 ,⋯ , 𝐯⊤d,𝑀𝑗

]⊤
∈ ℂ𝑀𝑀c

4.2. Weighted sum-rate maximization
The performance metrics for designing radar and communications systems are not identical because of different

system goals. For example, a communications system generally strives to achieve high data rates, while a radar performs
detection, estimation, and tracking. Some recent works [74, 75] suggest MI as a common performance metric. The MI
is a well-studied metric in MU-MIMO communications for transmitting precoder design [76]. The seminal work on
radar waveform design metric by [77] originally proposed MI as a measure of radar performance. Later, MI-based
waveform design was also extended to MIMO radars [78, 79]. It has been shown [78] that maximizing the MI between
the radar received signal and the target response leads to a better detection performance in the presence of the Gaussian
noise.

In this section, we extend the information-theoretic performance metric proposed in the first companion paper (Part
I) [22] to the D-ISAC system design with the presence of multiple targets. The major difference is that the performance
metric in the first companion paper (Part I) [22] is based on a single range cell, a.k.a., cell-under-test, and herein we
expand it to the entire range profile in light of the presence of multiple targets.

To derive the information-theoretic performance metric for the D-ISAC system, we express the achievable rates
of the 𝑖th UL UE and 𝑗th DL UE during the symbols of interest as 𝑅u

𝑖

[

𝑘, 𝑙u𝑚r𝑛t𝑚

]

= log2
(

1 + 𝜍u𝑖
[

𝑘, 𝑙u𝑚r𝑛t𝑛r

])

and

𝑅d
𝑗

[

𝑘, 𝑙d𝑚r𝑛t𝑗

]

= log2
(

1 + 𝜍d𝑗
[

𝑘, 𝑙d𝑚r𝑛t𝑗

])

, where

𝜍u𝑖
[

𝑘, 𝑙u𝑚r𝑛t𝑛r

]

=
|𝐮†u,𝑖𝐡u,𝑖|

2

∑

𝑞≠𝑖|𝐠
†
u,𝑞𝐡u,𝑞|2 + tr

{

𝐑SR
u
}

+
∑𝑀

𝑚=1|ℎru𝑚r𝑛t𝑚
𝑎𝑘,𝑚r

|

2 + 𝜎2u
(25)

and

𝜍d𝑗
[

𝑘, 𝑙d𝑚r𝑛t𝑗

]

=
|𝐡†d,𝑗𝐯d,𝑗|

2

∑

𝑗′≠𝑗|𝐡
†
d,𝑗𝐯d,𝑗′ |

2 + tr
{

𝐑ud
𝑗

}

+ |ℎrd𝑚r𝑛t𝑗
𝑎𝑘,𝑚r

|

2 + 𝜎2d
(26)

are the signal-to-interference-plus-noise-ratios (SINRs) at the 𝑚th RRH and the 𝑗th DL UE, respectively. The
information-theoretic metric for the MIMO radar is expressed as the MI between 𝐲r𝑚r𝑛t𝑛r

and ℎ𝑚r𝑛t𝑛r [15], i.e.,

𝑅r
𝑚r𝑛t𝑛r

≜ 𝐼
(

𝐲r𝑚r𝑛t𝑛r
;ℎ𝑚r𝑛t𝑛r |𝐚𝑚r

)

= log det
(

𝐈𝐾 + 𝜎2𝑚r𝑛t𝑛r
𝐬𝑚r𝑛t𝑛r 𝐬

†
𝑚r𝑛t𝑛r

𝐑in−1
𝑚r𝑛t𝑛r

)

, (27)

where 𝐑in
𝑚r𝑛t𝑛r

= 𝔼
[

𝐲in𝑚r𝑛t𝑛r

(

𝐲in𝑚r𝑛t𝑛r

)†
]

and 𝜎𝑚r𝑛t𝑛r is the variance of ℎ𝑚r𝑛t𝑛r . Thus the compounded weighted sum-rate

(CWSR) for the D-ISAC is

𝑅CWSR =
𝑀r
∑

𝑚r=1

𝑁r
∑

𝑛r=1

𝑁t
∑

𝑛t=1
𝛼r𝑚r𝑛t𝑛r

𝑅r
𝑚r𝑛t𝑛r

+
𝐾
∑

𝑘=1

𝑀r
∑

𝑚r=1

𝑁t
∑

𝑛t=1

[ 𝐼
∑

𝑖=1
𝛼u
𝑖 𝑅

u
𝑖

[

𝑘, 𝑙u𝑚r𝑛t𝑚

]

+
𝐽
∑

𝑗=1
𝛼d
𝑗𝑅

d
𝑗

[

𝑘, 𝑙d𝑚r𝑛t𝑗

]

]

, (28)

where 𝛼r𝑚r𝑛t𝑛r
, 𝛼u𝑖 , and 𝛼d

𝑗 are pre-defined weights assigned to the
(

𝑚r
)

, 𝑛r
th radar Tx-Rx path, 𝑖th UL and 𝑗th DL UEs,

respectively.
As we have designed the phase terms of 𝐯d,𝑚𝑗 in Section 4.1, our goal is shifted to jointly optimize the radar code

matrix 𝐀, UL beamformers
{

𝐮u,𝑖
}𝐼
𝑖=1, the DL powers

{

𝑃d,𝑚𝑗
}𝑀,𝐽
𝑚,𝑗=1 and the UL powers

{

𝑃u,𝑖
}𝐼
𝑖=1 by maximizing (28)

given the DL/UL power budget and MIMO radar waveform constraints,

maximize
{

𝑃d,𝑚𝑗 ,𝑃u,𝑖,𝐮u,𝑖,∀𝑖,𝑗,𝑚
}

,𝐀
𝑅CWSR (29a)
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subject to 𝑃u,𝑖 ≤ 𝑃u,max,∀𝑖, (29b)
𝐽
∑

𝑗=1
𝑃d,𝑚𝑗 ≤ 𝑃d,max,∀𝑚, (29c)

‖𝐚𝑚r
‖

2 = 𝑃r,𝑚r
, (29d)

𝐾 max𝑘=1,⋯,𝐾 |𝐚𝑚r
[𝑘]|2

𝑃r,𝑚r

≤ 𝛾𝑚r
, ∀ 𝑚r , (29e)

where 𝑃d,max and 𝑃u,max are the DL and UL power budgets, (29d) and (29e) enforce the PAR constraint for the
distributed MIMO radar waveform. (29) is known to be an NP-hard non-convex problem as (29a) is not concave
over variables to be optimized jointly, and (29d) is a non-convex constraint, which makes the global optimum of (29)
unobtainable in polynomial time [20]. We partition (29) into two subproblems as follows

maximize
{

𝑃d,𝑚𝑗 ,𝑃u,𝑖,𝐮u,𝑖,∀𝑖,𝑗,𝑚
}

,𝐀′
𝑅CWSR (30a)

subject to (29b), (29c)
‖𝐚𝑚r

‖

2 ≤ 𝑃r,𝑚r
, ∀𝑘, (30b)

and

minimize
𝐚𝑚r ,∀𝑚r

‖𝐚𝑚r
− 𝐚′𝑚r

‖

2
2

subject to (29d) and (29e) (31)

where 𝑃r,max = 𝐾𝑃r,𝑚r
and 𝐀′ =

[

𝐚′1,⋯ , 𝐚′𝑀r

]

is the intermediate solution to the radar code matrix from (30).

4.3. Low-complexity solution to Problem (30)
To combat the non-convexity of (30), we utilize the equivalence between maximizing the achievable rate and

minimizing the weighted minimum-mean-square-error (WMMSE) and map (30) to a WMMSE minimization problem
as explained in the second companion paper (Part II) [23]. Denote the MSEs associated with the

(

𝑚r𝑛t𝑛r
)th radar path,

(𝑘, 𝑙)th UL and DL symbol periods as

𝐸r,𝑚r𝑛t𝑛r =𝜎
2
𝑚r𝑛t𝑛r

− 2𝜎2𝑚r𝑛t𝑛r
𝐬†𝑚r𝑛t𝑛r

𝐮r,𝑚r𝑛t𝑛r

+ 𝐮†r,𝑚r𝑛t𝑛r
𝐑𝑚r𝑛t𝑛r𝐮r,𝑚r𝑛t𝑛r , (32)

𝐸u,𝑖[𝑘, 𝑙] = 1 − 2
√

𝑃u,𝑖𝐡†u𝐮u,𝑖[𝑘, 𝑙] + 𝐮†u,𝑖[𝑘, 𝑙]𝐑u[𝑘, 𝑙]𝐮u,𝑖[𝑘, 𝑙], (33)

and

𝐸d,𝑗[𝑘, 𝑙] =1 − 2
𝑀
∑

𝑚=1
𝑢∗d,𝑗[𝑘, 𝑙]𝐡

⊤
d,𝑚𝑗𝐯d,𝑚𝑗 +

𝑢∗d,𝑗[𝑘, 𝑙]𝑢d,𝑗[𝑘, 𝑙]

𝜎2d,𝑗[𝑘, 𝑙]
, (34)

where 𝐮r,𝑚r𝑛t𝑛r ∈ ℂ𝐾 and 𝑢d,𝑗[𝑘, 𝑙] are the receive filters at the
(

𝑚r𝑛t𝑛r
)th radar path and the 𝑗th DL UE. To formulate

the WMMSE minimization problem, we introduce auxiliary weight variables associated with 𝐸r,𝑚r𝑛t𝑛r , 𝐸u,𝑖[𝑘, 𝑙], and
𝐸d,𝑗[𝑘, 𝑙] as 𝑊r,𝑚r𝑛t𝑛r , 𝑊u,𝑖[𝑘, 𝑙], and 𝑊d,𝑗[𝑘, 𝑙]. Define

Γ ≜
𝑁r
∑

𝑛r=1

𝑀r
∑

𝑚r=1

𝑁t
∑

𝑛t=1
𝛼r𝑚r𝑛t𝑛r

𝑊r,𝑚r𝑛t𝑛r𝐸r,𝑚r𝑛t𝑛r +
𝐾
∑

𝑘=1

𝑀r
∑

𝑚r=1

𝑁t
∑

𝑛t=1

𝐼
∑

𝑖=1
𝛼u𝑖 𝑊u,𝑖

[

𝑘, 𝑙u𝑚r𝑛t𝑚

]

𝐸u,𝑖

[

𝑘, 𝑙u𝑚r𝑛t𝑚

]
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+
𝐾
∑

𝑘=1

𝑀r
∑

𝑚r=1

𝑁t
∑

𝑛t=1

𝐽
∑

𝑗=1
𝛼d
𝑗𝑊d,𝑗

[

𝑘, 𝑙d𝑚r𝑛t𝑗

]

𝐸d,𝑗

[

𝑘, 𝑙d𝑚r𝑛t𝑗

]

. (35)

Then, the optimization problem becomes

minimize
𝕎,𝕌,ℙ,𝐀′

Γ (36)

subject to (29b), (29c) and (30b),

where𝕎 ≜
{

𝑊r,𝑚r𝑛t𝑛r ,𝑊u,𝑖,𝑊d,𝑗 ,∀𝑚r , 𝑛t , 𝑛r , 𝑖, 𝑗
}

,𝕌 ≜
{

𝐮r,𝑚r𝑛t𝑛r ,𝐮u,𝑖, 𝑢d,𝑗 ,∀𝑚r , 𝑛t , 𝑛r , 𝑖, 𝑗
}

, andℙ ≜
{

𝑃u,𝑖, 𝑃d,𝑚𝑗 ,∀𝑚, 𝑗
}

.
The second companion paper (Part II) [23] shows that (36) yields the same solution as (30). Next, we solve (36)
sequentially with the BCD algorithm and update each variable in a Gauss-Seidel manner. We also proved in the second
companion paper (Part II) [23] that WMMSE solution is proved to be optimal for 𝕌. We write

{

𝐮⋆u,𝑖
}

as

𝐮⋆u,𝑖[𝑘, 𝑙] = arg min
𝐮u,𝑖[𝑘,𝑙],∀𝑖,𝑘,𝑙

𝑊u,𝑖[𝑘, 𝑙]𝐸u,𝑖[𝑘, 𝑙]

=
√

𝑃u,𝑖𝐑−1
u [𝑘, 𝑙]𝐡u,𝑖, (37)

where𝐑u[𝑘, 𝑙] = 𝔼
[

𝐲u[𝑘, 𝑙]𝐲
†
u[𝑘, 𝑙]

]

. Similarly, we find𝐮⋆𝑚r𝑛t𝑛r
= 𝜎2𝑚r𝑛t𝑛r

𝐑−1
𝑚r𝑛t𝑛r

𝐬𝑚r𝑛t𝑛r and 𝑢⋆d,𝑗[𝑘, 𝑙] =
∑𝑀

𝑚=1 𝐡
⊤
d,𝑚𝑗𝐯d,𝑚𝑗∕𝜎

2
d,𝑗[𝑘, 𝑙],

which are substituted in (32)-(34) to yield the optimal MSEs 𝐸⋆
r,𝑚r𝑛t𝑛r

, 𝐸⋆
u,𝑖[𝑘, 𝑙], and 𝐸⋆

d,𝑗[𝑘, 𝑙]. The optimal weights

are given as 𝑊 ⋆
r,𝑚r𝑛t𝑛r

=
(

𝐸r,𝑚r𝑛t𝑛r

)−1
, 𝑊 ⋆

u,𝑖[𝑘, 𝑙] =
(

𝐸u,𝑖[𝑘, 𝑙]
)−1, and 𝑊 ⋆

d,𝑗[𝑘, 𝑙] =
(

𝐸d,𝑗[𝑘, 𝑙]
)−1. Given 𝕎⋆ and 𝕌⋆,

we obtain

minimize
ℙ,𝐀′

Γ
(

𝕎⋆,𝕌⋆) subject to (29b), (29c) and (30b), (38)

which is multi-convex and holds the strong duality condition for one variable when the rest is fixed. This enables us to
solve (38) through a Lagrange dual method, as shown in the second companion paper (Part II) [23].

Denote the Lagrange multiplier vectors for (29b), (29c), and (30b) by 𝝀u =
[

𝜆u,1,⋯ , 𝜆u,𝐼
]⊤ ∈ ℝ𝐼 , 𝝀d =

[

𝜆d,1,⋯ , 𝜆d,𝑀
]⊤ ∈ ℝ𝑀 , and 𝝀r ≜

[

𝜆r,1,⋯ , 𝜆r,𝑚r

]⊤
∈ ℝ𝐾 , respectively, and formulate 𝐩u ∈ ℝ𝐼 , 𝐩d ∈ ℝ𝑀 , and

𝐩r ∈ ℝ𝑀r , where the 𝑖th element of 𝐩u is 𝑃u,𝑖, the 𝑚th element of 𝐩d is
∑𝐽

𝑗=1 𝑃
d
𝑚𝑗 , and the 𝑚r

th elements of 𝐩r is ‖𝐚𝑚r
‖

2,
respectively. We also define {𝝀} ≜

{

𝝀u,𝝀d,𝝀r
}

, leading to the Lagrangian associated with (38) as with the


({

𝑃d,𝑚𝑗
}

,
{

𝑃u,𝑖
}

,𝐀, {𝝀}
)

= Γ + 𝝀⊤u
(

𝐩u − 𝑃u,max𝟏𝐼
)

+ 𝝀⊤d
(

𝐩d − 𝑃d,max𝟏𝑀
)

+ 𝝀⊤r
(

𝐩r − 𝑃r𝟏𝐾
)

. (39)

Invoking the Karush-Kuhn-Tucker (KKT) conditions yields

∇𝑃u,𝑖 = ∇𝑃u,𝑖Γ + 𝜆u,𝑖𝑃u,𝑖 = 0, (40)

∇𝑃d,𝑚𝑗 = ∇𝑃d,𝑚𝑗Γ + 𝜆d,𝑚𝑃d,𝑚𝑗 = 0, (41)

∇𝐚′𝑚r
 = ∇𝐚′𝑚r

Γ + 𝜆r,𝑚r
𝑃r,𝑚r

= 0. (42)

In order to obtain the closed-form solutions to 𝑃u,𝑖, 𝑃d,𝑗 , and 𝐚′𝑚r
through (40)-(42), we need to solve the Lagrange dual

problem

maximize 𝐷({𝝀}) = inf
{

𝑃d,𝑚𝑗
}

,{𝑃u,𝑖},𝐀

({

𝑃d,𝑚𝑗
}

,
{

𝑃u,𝑖
}

,𝐀, {𝝀}
)
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subject to 𝝀u,𝝀d,𝝀r ⪰ 0. (43)

We proceed to solve (43) utilizing the subgradient method to determine 𝝀⋆u , 𝝀⋆d , and 𝝀⋆r . Using a gradient-descent
type optimization method to update 𝜆u,𝑖, 𝜆d,𝑗 and 𝜆r,𝑚r

in the 𝑡th iteration yields [80]

𝜆(𝑡+1)u,𝑖 =
[

𝜆(𝑡)u,𝑖 + 𝛽(𝑡)u,𝑖∇𝐷
(

𝜆(𝑡)u,𝑖
)]+

(44)

𝜆(𝑡+1)d,𝑚 =
[

𝜆(𝑡)d,𝑚 + 𝛽(𝑡)d,𝑚∇𝐷
(

𝜆(𝑡)d,𝑗
)]+

, (45)

𝜆(𝑡+1)r,𝑚r
=
[

𝜆(𝑡)r,𝑚r
+ 𝛽(𝑡)r,𝑚r

∇𝐷
(

𝜆(𝑡)r,𝑚r

)]+
(46)

where 𝑃 (𝑡)
d =

∑𝐽
𝑗=1 𝑃

(𝑡)
d,𝑚𝑗 ; 𝛽

(𝑡)
u,𝑖, 𝛽

(𝑡)
d,𝑘, and 𝛽(𝑡)r,𝑚r

are the BB step-sizes in the 𝑡th iterations; 𝜆(𝑡)u,𝑖, 𝜆
(𝑡)
d,𝑚, 𝜆(𝑡)r,𝑚r

are the 𝑡th iterates

of 𝜆u,𝑖, 𝜆d,𝑚, and 𝜆r,𝑚r
with ∇𝐷

(

𝜆(𝑡)u,𝑖
)

= 𝑃 (𝑡)
u,𝑖 − 𝑃u,max, ∇𝐷

(

𝜆(𝑡)d,𝑗
)

= 𝑃 (𝑡)
d − 𝑃d,max, and ∇𝐷

(

𝜆(𝑡)r,𝑚r

)

= ‖𝐚(𝑡)𝑚r
‖

2 − 𝑃r,max
their corresponding sub-gradients.

There are various methods to determine the step-size. The most basic solution is known as line search or
backtracking. This strategy reduces the step length in each iteration until Armijo’s condition is satisfied, which involves
the evaluation of the cost function and its derivative at each iteration. This increases the per-iterate complexity. Polyak’s
step-size rule, on the other hand, achieves faster descent by using the current gradient to estimate the line search
geometry but, as mentioned in the second companion paper (Part II) [23], it requires estimating the optimal value of
the cost function. However, these methods only employ the gradient and disregard the Hessian of the cost function.
We propose to find the step-size with the BB approach, which embeds the second-order information in the step
length calculation without computing the Hessian directly. Therefore, the BB approach not only delivers increased
performance but also preserves the simplicity of the gradient-type algorithms. We present 𝛽(𝑡)u,𝑖 according to the BB
method as follows [80]:

𝛽(𝑡)u,𝑖 =
‖𝑠(𝑡)u,𝑖‖

2

𝑠(𝑡)u,𝑖𝛾
(𝑡)
u,𝑖

, 𝛽(𝑡)d,𝑚 =
‖𝑠(𝑡)d,𝑚‖

2

𝑠(𝑡)d,𝑚𝛾
(𝑡)
d,𝑚

, 𝛽(𝑡)r,𝑚r
=

‖𝑠(𝑡)r,𝑚r
‖

2

𝑠(𝑡)r,𝑚r
𝛾 (𝑡)r,𝑚r

, (47)

where 𝑠(𝑡)u,𝑖 = 𝜆(𝑡)u,𝑖 − 𝜆(𝑡−1)u,𝑖 , 𝑠(𝑡)d,𝑚 = 𝜆(𝑡)d,𝑚 − 𝜆(𝑡−1)d,𝑚 , 𝑠(𝑡)r,𝑚r
= 𝜆(𝑡)r,𝑚r

− 𝜆(𝑡−1)r,𝑚r
, 𝛾 (𝑡)u,𝑖 = 𝐷

(

𝜆(𝑡)u,𝑖
)

− 𝐷
(

𝜆(𝑡−1)u,𝑖

)

, 𝛾 (𝑡)d,𝑚 =

𝐷
(

𝜆(𝑡)d,𝑚
)

− 𝐷
(

𝜆(𝑡−1)d,𝑚

)

, and 𝛾 (𝑡)r,𝑚r
= 𝐷

(

𝜆(𝑡)r,𝑚r

)

− 𝐷
(

𝜆(𝑡−1)r,𝑚r

)

. We summarize using the BB algorithm to find 𝑃u,𝑖 in
Algorithm 1, where 𝑡max is the maximum number of iterations for the BB method and Γmin tracks the minimum of
the cost function. 𝑃⋆

d,𝑚𝑗 and 𝐚′𝑚r
are found following the same procedure. We then iterate across all variables through

an iterative BCD descent approach. To impose the PAR constraint on 𝐚′𝑚r
via (31), we resort to a tight-frame based

nearest vector method described in Algorithm 3 of the second companion paper (Part II) [23]. Finally, we summarize
the alternating algorithm to solve (30) and (31) sequentially in Algorithm 2 where 𝓁max is the number of iterations.

4.4. Complexity and Convergence
The computational cost for updating 𝝀(𝑡)u,𝑖 with the BB method is (𝐼) as opposed to 

(

𝐼2
)

with Newton’s method
[81]. The low complexity of the BB method stems from the fact that each iteration incorporates the second-order
derivative information without computing the Hessian approximates its inverse magnitude in contrast with Newton’s
method [82]. In addition, the search direction of the BB method is the steepest descent, mirroring the Cauchy method
but with a non-uniform step length, which renders the efficiency of the BB method [83]. The cost to compute all of the
elements in ℙ with Algorithm 2 is given as 𝕆

(

𝐼2
(

𝑀𝑀c
)3
)

; see the second companion paper (Part II) [23].
Literature has proved that the global convergence of the BB algorithm can be established for strictly convex

quadratic functions, but there is only a guarantee of the local convergence for non-quadratics [83, 80]. As for Algorithm
2, the alternating sequence of iterates is not monotonically increasing hence it only reaches a local convergence, and
different initialization points affect its local optimal values.
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Algorithm 1 BB Algorithm to Solve 𝑃u,𝑖

Input: 𝑡max, 𝑃u,max
Output: 𝑃u,𝑖

1: Set the iteration index t = 0; initialize 𝜆(0)u,𝑖 , 𝐷
(

𝜆(0)u,𝑖

)

, 𝛽(0)u,𝑖 , Γ(0)

2: Set Γmin = Γ(0)
3: repeat
4: Update 𝜆(𝑡+1)u,𝑖 with (44)
5: Update 𝛽(𝑡+1)u,𝑖 with (47)
6: Substitute 𝛽(𝑡+1) in (40) to find 𝑃 (𝑡+1)

u,𝑖
7: Update Γ(𝑡+1) with 𝑃 (𝑡+1)

u,𝑖
8: if Γ(𝑡+1) < Γmin then Γmin = Γ(𝑡+1), 𝑃⋆

u,𝑖 = 𝑃 (𝑡+1)
u,𝑖

9: t ← t + 1
10: until 𝜄 > 𝜄max
11: return 𝑃⋆

u,𝑖

Algorithm 2 BCD Alternating Algorithm to Solve (29)
Input: 𝓁max, 𝑃u,max 𝑃d,max, 𝑃r,𝑚r

, 𝛾𝑚r
, ∀ 𝑚r

Output: 𝕌⋆ ℙ⋆, 𝐀⋆

1: Set 𝓁 = 0; initialize ℙ(0) and 𝐀(0)

2: Calculate 𝕌(0) with ℙ(0) and 𝐀(0); find 𝕎0 with 𝕌(0)

3: repeat
4: for 𝑖 = 1,⋯ , 𝐼 do;
5: Calculate 𝐏(𝓁+1)

u,𝑖 using the BB algorithm
6: for 𝑚 = 1,⋯ ,𝑀 do
7: for 𝑗 = 1,⋯ , 𝐽 do
8: Calculate 𝐏(𝓁+1)

d,𝑚𝑗 using the BB algorithm

9: for 𝑚r = 1,⋯ ,𝑀r do
10: Calculate 𝐚′𝑚r

using the BB algorithm
11: Obtain 𝐚(𝓁+1)𝑚r

with Algorithm 3 in the second companion paper (Part II) [23]
12: Update 𝕌(𝓁+1) with ℙ(𝓁+1) and 𝐀(𝓁+1); 𝕎(𝓁+1) with 𝕌(𝓁+1)

13: until 𝓁 > 𝓁max
14: return 𝕌⋆, ℙ⋆, 𝐀⋆

5. D-ISAC Multi-Target Detection
This section presents how the D-ISAC system accomplishes multi-target detection and data association tasks.

Despite the fact that target detection is a fundamental task for any radar system, there are limited works tackling multi-
target localization with a distributed MIMO radar. We first apply a Neyman-Pearson (NP) hypothesis-based detector to
retrieve each target’s delay-Doppler information for each Tx-Rx channel in Section 5.1. One of the unique challenges
faced by the distributed MIMO radar with 𝑁t targets in the scene is the association ambiguity of the measurements
obtained by each MIMO radar virtual antenna element. In Section 5.2, we resort to the JPDA algorithm to associate
measurements with their originating targets.

5.1. Multi-Target Detection
We assume that all the targets are well-separated at the

(

𝑚r , 𝑛r
)th radar channel, namely 𝑛𝑚r𝑛t𝑛r ≠ 𝑛𝑚r𝑛′t𝑛r

for
𝑛t ≠ 𝑛′t . The NP detector and the generalized likelihood ratio test (GLRT) detector are two of the most common
detection strategies, where the former models the signal parameters as random variables with known probability density
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functions (PDFs), whereas the latter assumes the PDFs are unknown [84]. The NP detector obtains the optimal test
statistic by maximizing the probability of detection (𝑃d) with a certain probability of false alarm (𝑃fa). In spite of the
impracticability of the NP detector, we will use the performance of the NP detector as an upper bound to compare the
performance of beamforming and radar coding strategies in Section To determine whether a range bin of the

(

𝑚r , 𝑛r
)th

radar channel contains the 𝑛t th target, we formulate a binary hypothesis test w.r.t. the cell under test (CUT), i.e.,
{

0 ∶ 𝐲r𝑚r𝑛r
= 𝐲r,in𝑚r𝑛r

1 ∶ 𝐲r𝑚r𝑛r
= 𝐲tr𝑛t𝑛r + 𝐲r,in𝑛t𝑛r .

(48)

where 0 corresponds to the absence of any targets and 1 means the 𝑛t th target is present. Define 𝐲r𝑛t𝑛r ≜
(

𝐑r,in
𝑛t𝑛r

)−1∕2
𝐲r𝑛t𝑛r and its CM 𝐆r

𝑛t𝑛r
≜
(

𝐑r,in
𝑛t𝑛r

)−1∕2
𝐑r
𝑛t𝑛r

(

𝐑r,in
𝑛t𝑛r

)−1∕2
. We then rewrite (48) as

{

0 ∶ 𝐲r𝑛t𝑛r ∼  (𝟎, 𝐈)
1 ∶ 𝐲r𝑛t𝑛r ∼ 

(

𝟎, 𝐈 +𝐆r
𝑛t𝑛r

)

,
(49)

The eigendecomposition of 𝐆r
𝑛t𝑛r

is 𝐕r
𝑛t𝑛r

𝚲r
𝑛t𝑛r

𝐕r†
𝑛t𝑛r

, where the columns of 𝐕r
𝑛t𝑛r

∈ ℂ𝐾×𝐾 and the diagonal entries of

𝚲r
𝑛t𝑛r

≜ diag
[

𝛿r,1𝑛t𝑛r ,⋯ , 𝛿r,𝑚r
𝑛t𝑛r

]

are, respectively, the eigenvectors and eigenvalues of 𝐆r
𝑛t𝑛r

with 𝛿r,𝑚r
𝑛t𝑛r the 𝑘th eigenvalue.

Manipulating 𝐲r𝑛t𝑛r with the Woodbury matrix identity attains the test statistic for (49) as

𝑇
(

𝐲r𝑛t𝑛r
)

=
𝑁r
∑

𝑛r=1
𝑇
(

𝐲r𝑛t𝑛r
)

=
𝑁r
∑

𝑛r=1
𝐲r

†

𝑛t𝑛r

(

𝐈 −
(

𝐆r
𝑛t𝑛r

+ 𝐈
)−1

)

𝐲r𝑛t𝑛r

=
𝑁r
∑

𝑛r=1
𝐲r

†

𝑛t𝑛r
𝐕r
𝑛t𝑛r

(

𝚲r−1
𝑛t𝑛r

+ 𝐈
)−1

𝐕r†
𝑛t𝑛r

𝐲r𝑛t𝑛r (50)

Denote 𝐲̂r𝑛t𝑛r = 𝐕r†
𝑛t𝑛r

𝐲r𝑛t𝑛r =
[

𝑦r𝑛t𝑛r [1],⋯ , 𝑦r𝑛t𝑛r [𝐾]
]

. Then, the NP detector is [85]

𝑇
(

𝐲r𝑛t
)

=
𝑁r
∑

𝑛r=1

𝐾
∑

𝑘=1

𝛿r,𝑚r
𝑛t𝑛r |𝑦

r
𝑛t𝑛r

[𝑘]|2

1 + 𝛿r,𝑚r
𝑛t𝑛r

H1
≷
H0

𝜈, (51)

where 𝜈 is the threshold selected to guarantee a certain 𝑃fa. We apply (51) to all range bins to retrieve the range
information regarding the 𝑁t targets. The Doppler information is then extracted using (9) for each detected range bin.

5.2. Data Association
JPDA incorporates all observations within a gated region about the predicted target state into the update of that

target’s state. The contribution of each observation is determined by a probability-based weight. A given observation
can also be used to update multiple targets’ states. In essence, JPDA averages over the data association hypotheses that
have roughly comparable likelihoods and thus suffer from degradation in performance in a dense target environment.

Upon iterating through each range-Doppler bin with the detection mechanism from Section 2.3, the 𝑛r th radar Rx
obtains 𝑁t pairs of range-Doppler measurements. Each measurement is associated with at most one target, and all
measurements are mutually independent. associated with at most one target except for the clutter. All measurements
are mutually independent, meaning that the number of measurements equals the number of targets. As mentioned
in Section 2.3, we investigate measurement-to-target assignment using the PDA algorithm. We consider that the
measurement is a simplified scenario where all the valid measurements collected at the 𝑛r th Rx originate from the
𝑁t targets after reflecting signals transmitted by 𝑀r Txs. After the matched filtering at each radar Rx, target-reflected
signals originating from different radar and BS Txs are separated, and the Rx then associates each measurement with
its corresponding Tx. The only ambiguity left is to assign each measurement with the correct target label across all
radar Rxs. Therefore, the 𝑞th delay-Doppler measurement extracted from the delay-Doppler plain corresponding to
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the
(

𝑚r , 𝑛r
)th Tx-Rx pair is 𝐳𝑞𝑚r𝑛r , where 𝑞 ∈

{

1,⋯ , 𝑁t
}

. The unordered set of measurements collected by the

𝑚r , 𝑛r th radar channel is ℤ̃𝑚r𝑛r =
{

𝐳̃1𝑚r ,𝑛r
,⋯ , 𝐳̃𝑁t

𝑚r ,𝑛r

}

while the ordered set of the 𝑁t state vectors is 𝕏𝑚r𝑛t𝑛r =
{

𝐱𝑚r𝑛t𝑛r ,⋯ , 𝐱𝑚r𝑁t𝑛r

}

. We assume that the measurements associated with target 𝑛t are centered around its true delay
and Doppler coordinates on the delay-Doppler plain and model the conditional distribution of 𝐳̃𝑚r𝑞𝑛r =

[

𝑛𝑞𝑚r ,𝑛r ; 𝜁
𝑞
𝑚r ,𝑛r

]

given 𝐱𝑚r𝑛t𝑛r as

𝑓
(

𝐳̃𝑚r𝑞𝑛r |𝐱𝑚r𝑛t𝑛r

)

=
Δ𝑡Δ𝑓

2𝜋𝜎t𝑛t𝜎
p
𝑛t

× 𝑒
− 1

2

⎡

⎢

⎢

⎣

(

𝑛𝑞𝑚r𝑛r −𝑛𝑚r𝑛t𝑛r
𝜎t𝑛t

)2

+

(

𝑝𝑚r 𝑞𝑛r −𝑓𝑚r𝑛t𝑛r
𝜎p𝑛t

)2
⎤

⎥

⎥

⎦ (52)

where Δ𝑡 and Δ𝑓 are the delay and Doppler shift resolutions.
The composite model for measurement distribution is a mixture of each target component as follows

𝑓
(

𝐳̃𝑚r𝑞𝑛r |𝕏𝑚r t𝑛r

)

=
𝑁t
∑

𝑛t=1
𝜙𝑚r𝑛t𝑛r𝑓

(

𝐳̃𝑚r𝑞𝑛r |𝐱𝑚r𝑛t𝑛r

)

, (53)

where 𝜙𝑚r𝑛t𝑛r represents the weights of the 𝑛t th target for all measurements observed by the 𝑚r , 𝑛r th Tx-Rx pair, which
is proportional to RCS ℎr𝑚r𝑛t𝑛r

and
∑1

𝑛t=1
𝜙𝑚r𝑛t𝑛r = 1 for ∀

{

𝑚r , 𝑛r
}

. Then the probability that 𝐳̃𝑚r𝑞𝑛r is generated by
𝐱𝑚r𝑛t𝑛r is given as of each individual target component as follows [86].

Pr
(

𝐱𝑚r𝑛t𝑛r |̃𝐳𝑚r𝑞𝑛r

)

=
𝜙𝑚r𝑛t𝑛r𝑓

(

𝐳̃𝑚r𝑞𝑛r |𝐱𝑚r𝑛t𝑛r

)

𝑓
(

𝐳̃𝑚r𝑞𝑛r |𝕏
)

=

𝜙𝑚r𝑛t𝑛r
𝑒

− 1
2

⎡

⎢

⎢

⎢

⎣

(

𝑛𝑞𝑚r𝑛r −𝑛𝑚r𝑛t𝑛r
𝜎t𝑛t

)2
+
⎛

⎜

⎜

⎝

𝑝𝑚r 𝑞𝑛r −𝑝𝑚r𝑛t𝑛r
𝜎p𝑛t

⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

∑

𝑛′t
𝑒

− 1
2

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

𝑛𝑞𝑚r𝑛r −𝑛𝑚r𝑛′t𝑛r
𝜎t
𝑛′t

⎞

⎟

⎟

⎟

⎠

2

+

⎛

⎜

⎜

⎜

⎝

𝑝𝑚r 𝑞𝑛r −𝑝𝑚r𝑛′t𝑛r
𝜎p
𝑛′t

⎞

⎟

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎥

⎦

𝜎t𝑛t𝜎
p
𝑛t
∑

𝑛′t

𝜙𝑚r𝑛′t𝑛r

𝜎t
𝑛′t
𝜎p
𝑛′t

, (54)

which is the assignment likelihood between measurement 𝐳̃𝑚r𝑞𝑛r and target 𝑛t . Then we construct the assignment

likelihood matrix 𝐋𝑚r ,𝑛r for 𝑁t targets and 𝑁 measurements, where the
(

𝑛t , 𝑛
)th element of 𝐋𝑚r ,𝑛r is Pr

(

𝐱𝑚r𝑛t𝑛r |̃𝐳𝑚r𝑞𝑛r

)

[87]. Then we take advantage of the definition of matrix-permanent and calculate the association probability that the
𝑛t th is assigned to the 𝑞th measurement is

𝛽𝑚r ,𝑛r
𝑛,𝑛t = 𝑓

(

𝐱𝑚r𝑛t𝑛r |̃𝐳𝑚r𝑞𝑛r

) perm
{

𝐋𝑛,𝑛t
𝑚r ,𝑛r

}

perm
{

𝐋𝑚r ,𝑛r

} , (55)

where 𝐋𝑛,𝑛t
𝑚r ,𝑛r is the matrix 𝐋𝑚r ,𝑛r removing row 𝑛 and column 𝑛t . We obtain the measurement vector 𝐳𝑚r𝑛t𝑛r = 𝐳̃𝑛max

𝑚r𝑛r ,
where 𝑛max = argmax

𝑛
𝛽𝑚r ,𝑛r
𝑛,𝑛t , for all Tx-Rx pairs.

To complete the localization and tracking with range and doppler measurements, we define the state space model

of 𝑛t th target in the 𝑚th CPI (state 𝑚) as 𝐱𝑚t,𝑛t =
[

𝑥𝑚t,𝑛t , 𝑦
𝑚
t,𝑛t

, 𝑥̇𝑚t,𝑛t , 𝑦̇
𝑚
t,𝑛t

]⊤
. Assuming a nearly constant velocity discrete
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time kinematic target model1 yields 𝐱𝑚t,𝑛t = 𝐅𝐱(𝑚−1)t,𝑛t
+ 𝐯(𝑚−1)t,𝑛t

, where the state transition matrix is

𝐅 =
[

𝐈2×2 𝐾𝑇r𝐈2
𝟎2×2 𝐈2×2

]

, (56)

and the process noise vector 𝐯(𝑚−1)t,𝑛t
∼ 

(

𝟎,𝐐t,𝑛t

)

. The process noise covariance matrix is

𝐐t,𝑛t =
⎡

⎢

⎢

⎣

(𝐾𝑇r)4
4 𝝂t,𝑛t

(𝐾𝑇r)3
2 𝝂t,𝑛t

(𝐾𝑇r)3
2 𝝂t,𝑛t

(

𝐾𝑇r
)2𝝂t,𝑛t

⎤

⎥

⎥

⎦

, (57)

where 𝝂t,𝑛t = diag
([

𝜈2𝑥,𝑛t , 𝜈
2
𝑦,𝑛t

])

with 𝜈2𝑥,𝑛t (𝜈2𝑦,𝑛t ) the process noise intensity on the x-axis (y-axis). The measurements
are taken at each receiver and overall, measurement vector at a time instant 𝑚 of radar Rx 𝑛r from target 𝑛t are given
by

𝐳𝑚𝑚r𝑛t𝑛r
= 𝐛𝑚r𝑛r

(

𝐱𝑚t,𝑛t
)

+ 𝐞𝑚r𝑛r (58)

where 𝐞𝑚r𝑛r ∼ 
(

𝟎,𝛀𝑚r𝑛r

)

is the time-invariant measurement error vector which is independent across dif-

ferent receivers of the
(

𝑚r𝑛r
)th radar path and 𝛀𝑚r𝑛r is the measurement noise covariance matrix; 𝐛𝑚r𝑛r (⋅) =

[

𝑏𝜏,𝑚r𝑛r (⋅), 𝑏𝑓,𝑚r𝑛r (⋅)
]⊤

Since radar measurement errors are independent across different receivers, the covariance matrix of 𝐞𝑚r𝑛r is given
by

𝑅𝑚 = 𝔼[𝐞𝑚r𝑛r 𝐞
⊤
𝑚r𝑛r

] = diag(𝑅𝑚
𝑚r𝑛r

,… , 𝑅𝑚
𝑚r𝑛r

) (59)

where the covariance matrix 𝑅𝑚r𝑛r is computed from the corresponding CRLB matrix 𝐶𝑚
𝑚𝑟𝑛𝑟

as

𝑅𝑚
𝑚𝑟𝑛𝑟

= Γ𝐶𝑚
𝑚𝑟𝑛𝑟

Γ⊤ (60)

where Γ is the diagonal element of transformation from delay, doppler to range and range-rate, respectively.
From the measurement noise equation, 𝐛𝑚r𝑛r is the nonlinear observation vectorial function. Due to the non-

linearity of 𝐛𝑚r𝑛r , a nonlinear tracking algorithm must be used. Therefore, we perform the target state update using the
extended Kalman filter (EKF). The error covariance matrix depends on the 𝑅𝑚

𝑚𝑟𝑛𝑟
depending on the SNR 𝜼𝑚𝑟𝑛𝑟 . The

probability of target detection at 𝑛t th receiver at time instant 𝑚 is

𝑃𝑚
𝑑𝑚𝑟𝑛𝑟

= 𝑃
(1∕1+𝜼𝑚𝑟𝑛𝑟 )
𝑓𝑚𝑟𝑛𝑟

(61)

The SNR 𝜼𝑚𝑟𝑛𝑟 varies with target motion and is directly related to the bistatic geometry of the transmitter-receiver
location. Measurements that are accurate and reflect the actual target (when it is identified) are not the only data
collected by each sensor. Unwanted noise is also detected due to background disturbances. These false readings are
considered to have a uniform spatial distribution within the measurement domain and are temporally independent. The
frequency of these false positives is represented by a Poisson distribution. The function describing the likelihood of
observing a certain number of false positives within a given volume 𝑉 is outlined below:

𝑃𝑜(𝑔) = 𝑒−𝜆𝑉
(𝜆𝑉 )𝑔

𝑔!
(62)

The prediction steps of the EKF w.r.t. the 𝑛t th target given by,

𝐱𝑚|𝑚−1t,𝑛t
=𝐅𝐱𝑚−1t,𝑛t

(63)

1This model is a second-order model in that the discrete-time process noise is defined as a piecewise constant white sequence [88].
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𝐏𝑚|𝑚−1
t,𝑛t

=𝐅𝐏𝑚−1
t,𝑛t

𝐅⊤ +𝐐t,𝑛t . (64)

The EKF innovation given the measurement yields the current localization of the 𝑛t th target

𝐱𝑚t,𝑛t = 𝐱𝑚|𝑚−1t,𝑛t
+𝐊𝑚

t,𝑛t
𝐳𝑚𝑚r𝑛t𝑛r

(65)

where 𝐳𝑚𝑚r𝑛t𝑛r
= 𝐳𝑚𝑚r𝑛t𝑛r

− 𝐛𝑚r𝑛r

(

𝐱𝑚|𝑚−1t,𝑛t

)

is the filter residual of 𝑚th state, The Kalman gain is given by,

𝐊𝑚
t,𝑛t

= 𝐏𝑚|𝑚−1
t,𝑛t

(

𝐁𝑚
𝑚r𝑛t𝑛r

)⊤(
𝐒𝑚t,𝑛t

)−1
(66)

Here, 𝐁𝑚
𝑚r𝑛t𝑛r

is the Jacobian of 𝐛𝑚r𝑛r evaluated at 𝐱𝑚|𝑚−1t,𝑛t
, and the residual covariance matrix is

𝐒𝑚t,𝑛t = 𝐁𝑚
𝑚r𝑛t𝑛r

𝐏𝑚|𝑚−1
t,𝑛t

𝐛𝑚⊤

𝑚r𝑛t𝑛r
+𝛀𝑚r𝑛r (67)

In the multi-target scenario, the measurements from 𝑛t th target during each iteration are not independent. So
joint associations between the transmitters and targets need to be addressed for correct receiver measurement. JPDA
enumerates the measurement to target association probabilistically, and the target states are estimated by their marginal
association probability. Moreover, the JPDA filter will resolve the ambiguity among measurements, targets, and
transmitters for a specific receiver. Therefore, this association is a three-dimensional association that has a higher
computation cost. Therefore, we followed another modified approach where we consider the super-target formation
mentioned in [89] [90] [91], which turns the 3D association into a 2D association problem. We consider supertarget
𝜏 = {𝑛𝑡, 𝑚𝑟}, which is a hypothetical target consisting of a pair of target 𝑛𝑡 and transmitter 𝑚𝑟 for any specific receiver.
As the number of transmitters and targets grows, the association between the measurement and the target increases
accordingly. Gate grouping is required for multiple targets [92]. The valid measurement is denoted by the set of gated
measurements at time 𝑚 concerning supertarget 𝜏𝑚𝑟𝑛𝑟 , that is, the 𝑚𝑟𝑛𝑡𝑛𝑟th measurement of 𝐳𝑚𝜏𝑛𝑟 :

𝐳𝑚𝜏,𝑛𝑟 = 𝐳𝑚𝑚r𝑛t𝑛r
∈ 𝐙𝑚 ∶ (𝐳𝑚𝑚r𝑛t𝑛r

− 𝐛𝑚r𝑛r

(

𝐱𝑚|𝑚−1t,𝑛t
,𝐓𝐱𝑚𝑟

)

)⊤ (68)

(𝐒𝑚t,𝑛t𝑚𝑟
)−1(𝐳𝑚𝑚r𝑛t𝑛r

− 𝐛𝑚r𝑛r

(

𝐱𝑚|𝑚−1t,𝑛t
,𝐓𝐱𝑚𝑟

)

) < 𝕋𝕙} (69)

with the predicted measurement 𝐛𝑚r𝑛r

(

𝐱𝑚|𝑚−1t,𝑛t
,𝐓𝐱𝑚𝑟

)

) and its associated covariance 𝐒𝑚t,𝑛t𝑚𝑟
with respect to supertarget

𝜏 = {𝑛𝑡, 𝑚𝑟}, and 𝕋𝕙 is the gating threshold. Next, we consider a track to be lost if, over several consecutive scans, no
measurements are found within the designated target gates or if the gate size becomes excessively large [90].

𝑝(𝜒𝑚
𝑛𝑡
, 𝐱𝑚𝑛𝑡 |𝐙

𝑚−1) = 𝑃 (𝜒𝑚
𝑛𝑡
|𝐙𝑚−1)𝑝(𝐱𝑚𝑛𝑡 |𝜒

𝑚
𝑛𝑡
,𝐙𝑚−1) (70)

𝑝(𝐱𝑚𝑛𝑡 |𝜒
𝑚
𝑛𝑡
,𝐙𝑚−1) =  (𝐱𝑚𝑛𝑡 ; 𝐱̂

𝑚|𝑚−1
𝑛𝑡

,𝐏𝑚|𝑚−1
𝑛𝑡

). (71)

Let the term 𝜉𝑗 represent the 𝑗𝑡ℎ fusion junction event (FJE), with 𝑇0(𝜉𝑗) indicating the collection of supertargets that
are not linked to any measurement, and 𝑇1(𝜉𝑗) representing the collection of supertargets that are linked to exactly one
measurement in the context of the FJE 𝜉𝑗 . The posterior probability for the FJE 𝜉𝑗 is calculated as follows:

𝑃 (𝜉𝑗|𝑍𝑚) = 𝑐𝑚
∏

𝜏∈𝑇0(𝜉𝑗 )
(1 − 𝑃𝐷𝑃𝐺𝑃 (𝜒𝑚

𝜏 |𝑍
𝑚−1)) ×

∏

𝜏∈𝑇1(𝜉𝑗 )
(𝑃𝐷𝑃𝐺𝑃 (𝜒𝑚

𝜏 |𝐙
𝑚−1)

𝑝𝑚𝜏,𝑛𝑡𝑚𝑟

𝜌𝑚𝑛𝑡𝑚𝑟

), (72)
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with 𝑃𝐺 as the gating probability and 𝑐𝑚 as the normalization constant. The measurement likelihood allocated to a
supertarget in a fusion junction event is given by

𝑝̂𝑚𝑛𝑡,𝑗 =
𝑁(𝐙𝑚

𝑛𝑡,𝑗
;𝐛𝑚𝑚r𝑛r

(𝐱̂𝑚|𝑚−1𝑛𝑡 , (𝐒𝑚t,𝑛t𝑚𝑟
))

𝑃𝐺
. (73)

The set of fusion junction events allocating a measurement to a supertarget is denoted by 𝜃(𝜏, 𝑛𝑡𝑚𝑟), identifying if
a measurement 𝑖 detects a supertarget 𝜏 at time 𝑚. The probability that no measurement detects the supertarget is

𝑃 (𝜒𝜏
𝑚,0

|𝐙𝑚) =
∑

𝜉𝑗∈𝜃(𝜏,0)
𝑃 (𝜉𝑗|𝐙𝑚), (74)

and the probability that a measurement detects the supertarget and confirms its existence is

𝑃 (𝜒𝜏
𝑚, 𝜒𝜏𝑛𝑡𝑚𝑟

𝑚, |𝐙𝑚) =
∑

𝜃𝑗∈𝜃(𝜏,𝑛𝑡𝑚𝑟)
𝑃 (𝜃𝑗|𝐙𝑚), (75)

resulting in the supertarget existence probability as

𝑃 (𝜒𝜏
𝑚
|𝐙𝑚) =

∑

𝑛𝑡𝑚𝑟≥0
𝑃 (𝜒𝜏

𝑚, 𝜒𝜏𝑛𝑡𝑚𝑟
𝑚
|𝐙𝑚). (76)

The data association probability for a supertarget is

𝛽𝜏,𝑛𝑡𝑚𝑟
= 𝑃 (𝜒𝜏𝑛𝑡𝑚𝑟

𝑚
|𝜒𝜏

𝑚,𝐙𝑚) =
𝑃 (𝜒𝜏𝑛𝑡𝑚𝑟

𝑚, 𝜒𝜏
𝑚
|𝐙𝑚)

𝑃 (𝜒𝜏
𝑚
|𝐙𝑚)

, 𝑛𝑡𝑚𝑟 ≥ 0. (77)

For track state updates, combining each track and transmitter forms a supertarget. The track state for each 𝑛𝑡 at time
𝑚 integrates all originating supertargets, with the probability density function modeled as a Gaussian distribution,
encapsulating the mean and covariance updated by measurements related to the supertarget. The extended Kalman
filter update is applied for state refinement based on predicted measurements.

The probability density function of the track 𝑛𝑡 trajectory state is assumed to be a single Gaussian distribution.

𝑝(𝜒𝑚
𝑛𝑡
, 𝐱𝑚𝑛𝑡 |𝐙

𝑚) = 𝑃 (𝜒𝑚
𝑛𝑡
|𝐙𝑚)𝐩(𝐱𝑚𝑛𝑡 |𝐙

𝑚). (78)

𝑃 (𝐱𝑚𝑛𝑡 |𝐙
𝑚) =  (𝐱𝑚𝑛𝑡 ; 𝐱̂

𝑚|𝑚
𝑛𝑡

,𝐩𝑛𝑡
𝑚|𝑚), (79)

where

𝐱̂𝑚|𝑚𝑛𝑡
=

∑

𝜏∈E(𝑛𝑡)

𝑁𝑚
𝑛𝑡

∑

𝑗=0
𝑐𝑚𝛽𝜏,𝑗 𝐱̂

𝑚|𝑚
𝜏,𝑗 (80)

𝐩𝑚|𝑚𝑛𝑡
=

∑

𝜏∈𝐸(𝜏)

𝑁𝑚
𝜏

∑

𝑗=0
𝑐𝑚𝛽𝜏,𝑗

(

𝐩𝑚|𝑚𝜏,𝑗 + 𝐱̂𝑚|𝑚𝜏,𝑗 (𝐱̂𝑚|𝑚𝜏,𝑗 )⊤
)

− 𝐱̂𝑚|𝑚𝑛𝑡
(𝐱̂𝑚|𝑚𝑛𝑡

)⊤. (81)

where ̃𝑚 is the renormalized factor which satisfies

∑

𝑟∈𝐸(𝑛𝑡)

𝑁𝑚
𝑛𝑡

∑

𝑗=0
̃𝑚𝛽𝜏,𝑗 = 1. (82)

First Author et al.: Preprint submitted to Elsevier Page 19 of 29



Distributed MRMC - III

The mean and covariance updated by measurement 𝐳𝑚𝜏,𝑛𝑟 with respect to supertarget 𝜏 are calculated by

[

𝐱̂𝑚|𝑚𝜏,𝑛𝑡𝑚𝑟
,𝐩𝑚|𝑚𝜏,𝑛𝑟𝑚𝑟

]

=

⎧

⎪

⎨

⎪

⎩

[

(𝐱̂𝑚|𝑚−1𝑛𝑡 )⊤𝐩𝑚|𝑚−1𝜏

]

, 𝑗 = 0

EKFu
(

𝐱̂𝑚|𝑚−1𝑛𝑡 , 𝑅𝑚,𝐙𝑚|𝑚−1
𝜏 ,𝐛𝑚𝑚r𝑛r

)

, 𝑗 > 0,
(83)

where EKFu is the extended Kalman filter update procedure, and the predicted measurement function is 𝐛𝑚𝑚r𝑛r
=

𝐛𝑚𝑚r𝑛r
(𝐱̂𝑚|𝑚−1𝜏 ,𝐓𝐱𝑚𝑟

). The calculated posterior probability of a target’s presence, related to track 𝑛𝑡 at the instance 𝑚 is
determined by

𝑃 (𝜒̂𝑚
𝜏 |𝐙

𝑚) =
∑

𝜏∈𝐸(𝑛𝑡)
𝑃 (𝜒̂𝑚

𝜏 |𝐙
𝑚)∕𝑁𝑛𝑡 . (84)

6. Numerical Experiments
We evaluate the proposed algorithm’s performance, target detection, and localization performance with the

considered D-ISAC system. Throughout this section, we assume the following parameters, unless otherwise stated:
𝑀r = 𝑁r = 𝑀 = 4, 𝐼 = 𝐽 = 2, 𝐾 = 16, and 𝐿 = 32; the CSCG noise variances are 𝜎2r = 𝜎2u = 𝜎2d = 0.01;
𝑃U = 1 and DL 𝑃d = 2; radar Tx power 𝑃r,𝑚r

= 1 and PAR levels 𝛾𝑚r
= 2 for all

{

𝑚r
}

; define the signal-to-noise
ratios (SNRs) associated with the MIMO radar, 𝑗th DL UE, and 𝑖th UL UE as SNRr = 𝑃r,𝑚r

∕𝜎2r , SNRDL = 𝑃d∕𝜎2d ,
and SNRUL = 𝑃u,𝑖∕𝜎2u [76]. the elements of 𝑔𝑚r𝑛t𝑛r 𝐡u,𝑖, 𝐠,𝑖 𝐇𝑖,B, 𝐇𝑖,𝑗 , 𝜶Bm,𝑛r , and 𝜶𝑖,𝑛r are drawn from  (0, 1) We

model the self-interfering channel 𝐇SR
u as 

(
√

𝜎2FD𝐾B
1+𝐾B

𝐇̂SR
u ,

𝜎2FD
1+𝐾B

𝐈𝑀𝑀c
⊗ 𝐈𝑀𝑀c

)

, where 𝜎2FD is the SI attenuation

coefficient that characterizes the effectiveness of SI cancellation [8], the Rician factor 𝐾B = 1, and 𝐇̂SR
u ∈ ℂ𝑀𝑀c×𝑀𝑀c

is an all-one matrix [10]. The numbers of iterations for the BB and BCD-Alternating optimization algorithms are
𝑡max = 100 and 𝓁max = 100. We use uniform weights 𝛼u

𝑖 = 𝛼d
𝑗 = 𝛼r

𝑚r𝑛t𝑛r
for all

{

𝑚r , 𝑛t , 𝑛r , 𝑖, 𝑗
}

. Throughout this
section, we initialize Algorithm 2 with the efficient initialization approach for 𝐯d,𝑗 detailed in the second companion
paper (Part II) [23].

6.1. Convergence analysis
Figure 2 presents the convergence behavior of Algorithm 2 with two step-size rules: the BB algorithm and the

Polyak’s rule, which shows that Algorithm 2 achieves a rapid convergence using both step-size rules because the
co-phasing technique adopted for 𝐯d,𝑗 uses the channel phase information, which aligns with initialization approach. It
is also noted that the BB algorithm yields improved performance over that of Polyak’s rule.

6.2. D-ISAC overall system evaluation
Figure3 demonstrates the overall D-ISAC system performance measured by (28) and the robustness of Algorithm 2

with channel estimation errors. We model the estimated channel vectors as 𝐡̂ = 𝐡+Δ, whereΔ ∼ 
(

𝟎, 𝜂2CSI𝐈
)

and 𝐡 is
referred to any of the small fading channel vectors introduced in Section 2.2 and 𝜂2CSI = 0.1 for this example. We also
compare the proposed BCD-Alternating algorithm with conventional strategies, where we apply the block-diagonal
(BD) beamforming technique to the DL beamformer 𝐯d,𝑗 and the random radar coding scheme to the radar code matrix
𝐀 (see the first companion paper [Part I] [22]), where the BD approach only applies to the DL beamforming; the
proposed DL and UL beamforming is used with the random radar coding. The proposed D-ISAC design approach
displays its overall robustness given the channel uncertainty and system-level advantage over other compared design
approaches.

6.3. FD communications
We then evaluate the impact of the FD communications on the FD C-RAN system, where Figure 4 depicts 𝑅FD

against the SI attenuation level 𝜎2FD ranging from −30 to −10 dB, where 𝑅FD represents the weighted achievable rate
of the FD-CRAN system given by the second term on the right-hand-side of (28). Similar to the previous example, we
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Figure 2: Convergence curves of Algorithm 2 given the step-size rule determined by the BB algorithm and Polyak’s rule.

consider the BD beamforming and radar random coding as benchmarks for our algorithm. As expected, the stronger
the SI cancellation, the higher the FD C-RAN system achievable rate becomes. The FD C-RAN systems using the UL
and DL beamformers based on our proposed algorithm outperform the one using the BD method for DL beamforming.
Since the communications beamforming is applied to the radar random coding, we observe that the black and red
curves share a similar trend in

6.4. Radar target data association
To evaluate the data association approach described in Section 5.2, we consider three sets of MIMO radar antenna

array configurations. Further, we simulate the association probability for numerous targets in a 2D Cartesian plain.
We generate measurements following (52) for all Tx-Rx channels, where 𝑃d = 0.9 and 𝑃f = 0.001.
To quantify the performance of the proposed data association scheme, the probability of correct data association

is defined as 𝑃c = 𝑑c∕𝐷, where 𝑑c is the number of measurements associated to the correct targets, and 𝐷 is the
number of total valid measurements. We compute 𝑃c by varying the number of targets for three different popular array
configurations (Circular, L-shape and Random) in Figure 5, where each curve is averaged over 2000 MC realizations,
in each realization

(

𝑥t,𝑛t , 𝑦t,𝑛t
)

is sampled randomly within a circle of radius 300 𝐾𝑚 and
√

𝑥̇2t,𝑛t + 𝑦̇2t,𝑛t is uniformly
generated within [0, 50] for all 𝑛t . In Figure 5, it can be noticed that among the three configurations, the circular
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Figure 3: Proposed D-ISAC design approach compared with the conventional communications precoding and radar coding
techniques given CSI errors.

configuration is the best in terms of the probability of correct association due to its 360◦ coverage, and as expected, its
performance degrades with the increase in the number of targets.

The performance efficacy of our distributed radar system for multi-target tracking was rigorously assessed via a
series of numerical simulations. The experimental setup encompassed the tracking of three distinct targets, utilizing an
array of four transmitters and four receivers. These components were strategically positioned in a variety of geometric
configurations within a two-dimensional Cartesian coordinate system. Figures 6, 7 and 8 depict the simulated tracking
scenario where Txs and Rxs are distributed in an L-shape, circular, and random configuration, respectively. The radar
transmission frequency was set to 12 GHz for all the Txs with a 200 ms PRI. The 𝑃fa was set to 0.001. The term 𝑇
denotes the interval of sampling, which we set to 200 ms. The probability of detection is assumed to be equal across
every Tx-Rx pair.

For the L-shape, the Txs and Rxs are located as follows:

Tx𝑚 = [0 (𝑚 − 1)5]⊤; 𝑚 = 1, 2, 3, 4 and Rx𝑛 = [5𝑛 − 5]⊤; 𝑛 = 1, 2, 3, 4 .

For the circular configuration, the transmitters and receivers are located as follows:

Tx1 = [−10 10]⊤; Tx2 = [0 17.32]⊤; and Tx3 = [20 17.32]⊤; Tx4 = [30 10]⊤.

Rx1 = [−10 − 10]⊤; Rx2 = [0 − 17.32]⊤; and Rx3 = [20 − 17.32]⊤; Rx4 = [30 − 10]⊤.

For the random configuration, the transmitters and receivers are located as follows:

Tx1 = [0 0]⊤; Tx2 = [−10 − 5]⊤; and Tx3 = [−15 − 5]⊤; Tx4 = [−20 − 20]⊤.
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Figure 4: Proposed D-ISAC design approach compared with the conventional communications precoding and radar coding
techniques given CSI errors.

Rx1 = [−5 0]⊤; Rx2 = [−10 − 10]⊤; and Rx3 = [−15 − 5]⊤; Rx4 = [−20 − 10]⊤.

The targets follow a nearly constant velocity motion model, with initial states for target 1, target 2, and target 3 as,
respectively,

[25 6 − 0.4 − 0.2]⊤; [15 16 0.4 − 0.2]⊤; [10 10 − 0.1 0.2]⊤ .

We consider the initial conditions for three targets and additional simulation parameters to be the same for all
transmitter-receiver configurations.

6.5. Target tracking
Localization and tracking in MIMO radar depend on the target’s initial states and the geometry of the system [93].

Target tracking scenarios using the L-shape array configuration are shown in Figure 6, using Circular and Random array
configurations can be found in Figure 7 and Figure 8, respectively. All these three figures suggest that in a distributed
MIMO radar system, the circular array configuration is the most efficient in tracking the targets among the three array
configurations. This observation agrees well with the results in Figure 5, where the probability of correct association
has been investigated. This is because both performance metrics complement each other. Table 2 demonstrates the echo
sequence for each target from the corresponding transmitter receiver for the circular transmitter-receiver configuration.
Each receiver receives multiple echoes, which are unordered in nature. From the estimated target location using the
JPDA algorithm, we estimate the order of echo at any receiver. Here, we notice that the joint association probability
helps successfully associate each measurement with the corresponding targets.
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Figure 5: Probability of correct association for different antenna geometries and number of targets.

Table 2
Echo Sequence from three targets, before and after association.

Tx1 Tx2 Tx3 Tx4 After Association
Rx1 target 3,2,1 target 3,2,1 target 2,3,1 target 1,3,2 3,2,1
Rx2 target 3,2,1 target 3,2,1 target 2,3,1 target 1,3,2 3,2,1
Rx3 target 3,2,1 target 3,2,1 target 2,1,3 target 1,2,3 1,3,2
Rx4 target 3,1,2 target 3,2,1 target 1,2,3 target 1,2,3 1,3,2

7. Conclusion
This is a concluding paper of a three-part series. The first two companion papers Part I [22] and Part II

[23] investigated, respectively, the signal processing and the synergistic design algorithm for a IBFD MU-MIMO
communications system that shares spectrum with a distributed MIMO radar with a single target in its coverage area.
In this paper, we handled the co-design challenge for a multiple target scenario. A method of low computational
complexity, leveraging the Barzilai-Borwein gradient algorithm, was introduced to derive the design parameters
efficiently. Furthermore, we employed a mixed-integer linear programming approach to facilitate distributed target
localization. The feasibility and precision of multi-target sensing capabilities within the distributed IBFD ISAC

First Author et al.: Preprint submitted to Elsevier Page 24 of 29



Distributed MRMC - III

Figure 6: Ground truth and estimated location of three targets for L-shape Tx-Rx configuration.

framework were validated through comprehensive numerical experiments. Additionally, our study showcased the
practical application of the IBFD MU-MIMO communication system and distributed radar ISAC system for localizing
and tracking multiple targets, employing advanced techniques such as the JPDA and extended Kalman filter. Three
different transmitter-receiver array (L-shape, circular, and random) configurations were considered. Among those, the
circular configuration exhibited the best association and tracking performance because of its 360◦ coverage of the
surveillance area.
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