
Code Comparison Tuning for Code Large Language Models

Yufan Jiang1, Qiaozhi He1, Xiaomin Zhuang1, Zhihua Wu1

1National Supercomputing Center in Wuxi
jiangyufan2018@outlook.com

Abstract

We present Code Comparison Tuning (CCT),
a simple and effective tuning method for code
large language models (Code LLMs) to better
handle subtle code errors. Specifically, we inte-
grate the concept of comparison into instruction
tuning, both at the token and sequence levels,
enabling the model to discern even the slight-
est deviations in code. To compare the original
code with an erroneous version containing man-
ually added code errors, we use token-level
preference loss for detailed token-level com-
parisons. Additionally, we combine code seg-
ments to create a new instruction tuning sam-
ple for sequence-level comparisons, enhancing
the model’s bug-fixing capability. Experimen-
tal results on the HumanEvalFix benchmark
show that CCT surpasses instruction tuning in
pass@1 scores by up to 4 points across diverse
code LLMs, and extensive analysis demon-
strates the effectiveness of our method.

1 Introduction

Fixing bugs with neural models has become pop-
ular among programmers for its powerful capabil-
ities. The earliest of these approaches typically
consist of multiple individual stages, such as the
detection stage and generation stage (Lutellier et al.,
2020; Allamanis et al., 2021; Yasunaga and Liang,
2021; Mashhadi and Hemmati, 2021; Bui et al.,
2022), whereas Code LLMs successfully address
the problem with a simple instruction “Fix the bugs
in the code” and achieve competitive performance.

Closed-source LLMs like GPT-4 (OpenAI, 2023)
have already shown promising results in these code-
related tasks. However, due to high API fees and
security problems, exploring how to achieve sim-
ilar performance using open-source Code LLMs
has become a highly meaningful research direction
that we focus on in this work. To ensure responsive-
ness to human requests, open-source Code LLMs
usually undergo a two-step process. First, they are

Question
Create a nested loop to print every combination of numbers
between 0-9, excluding any combination that contains the
number 5. Additionally, exclude any combination that
contains a repeating digit.

Response

Code with bugs
for i in range(10): # First digit
 for j in range(10): # Second digit
 for k in range(10): # Third digit
 # Checking for the conditions
 if i == 5 and j != 5 and k != 5 and i != j and i != k and j != k:
 print(i, j, k)
Instruction：Fix bugs in the code

for i in range(10): # First digit
 for j in range(10): # Second digit
 for k in range(10): # Third digit
 # Checking for the conditions
 if i == 5 and j != 5 and k != 5 and i != j and i != k and j != k:
 print(i, j, k)
 elif i != j and i != k and j != k:
 print(i, j, k)

Correct code: i != 5

Figure 1: An erroneous bug fix example. Given the code-
related issues, users or code language models generate
code with bugs. The fine-tuned models tend to introduce
additional errors when attempting to fix bugs (red).

pre-trained on extensive raw code data, enabling
them to acquire a foundational understanding of
code patterns and structures (Nijkamp et al., 2022;
Fried et al., 2022; Li et al., 2023; Roziere et al.,
2023; Di et al., 2023). Following pre-training, in-
struction tuning (Wei et al., 2021; Ouyang et al.,
2022) is employed to align Code LLMs with spe-
cific code task instructions provided by humans,
such as code completion, bug fixing, or code inter-
pretation (Luo et al., 2023; Shen et al., 2023; Wang
et al., 2023b).

To further enhance the bug-fixing capabilities
of open-source Code LLMs, some approaches
construct specific code-fixing datasets, aiming to
bridge the gap between instruction tuning and ac-
tual bug fixing (Zhang et al., 2023; Muennighoff
et al., 2023). Other approaches attempt to inte-
grate code interpreters into the Code LLMs in the
form of APIs, enabling real-time code inspection
(Wang et al., 2023a; Bai et al., 2023; Gou et al.,

ar
X

iv
:2

40
3.

19
12

1v
1

 [
cs

.C
L

]
 2

8
M

ar
 2

02
4

Write a function to find the maximum difference
between two numbers in a given array.

Instruction

def max_difference(arr):
 max_diff = 0
 for i in range(len(arr)-1):
 diff = arr[i+1] - arr[i]
 if diff > max_diff:
 max_diff = diff
 return max_diff

Output

def max_difference(arr):
 max_diff = 0
 for i in range(arr-1):
 diff = arr[i+1] - arr[i]
 if diff > max_diff:
 max_diff = diff
 return max_diff

Bug output

Template set

1. Given the instruction: <Instruction>
 Here is a piece of code with bugs: <Bug output>
 Fix the bugs in the code.

2. <Bug output> is the output of <Instruction>,
 However, there are some bugs in the code
 Please fix bugs in the code.

3. Find the bugs in the <Bug output>
add bugs

���

����

������

Framework

Figure 2: The overall framework of our proposed CCT.

2023; Chen et al., 2023). While these solutions
have demonstrated effectiveness in practice, teach-
ing Code LLMs to fix bugs remains a challenge.
Constructing datasets necessitates careful design
and collection, making it impractical to cover all er-
ror types. Furthermore, the fine-tuned code models
have been proven ineffective in dealing with small
changes in the codes (Muennighoff et al., 2023).
When instructed to fix bugs in codes, the models
often regenerate the erroneous code or introduce
new bugs. Take the code in Figure 1 as an exam-
ple. Additionally, while code interpreters can assist
in identifying syntactic errors, they are unable to
detect logical errors within the code.

Here, we present a simple and effective tuning
method, namely Code Comparison Tuning (CCT).
This method is specifically designed to heighten the
sensitivity of Code LLMs to nuanced variations in
code structures. Central to CCT is the integration
of a comparison mechanism into instruction tun-
ing, realized by creating erroneous versions of each
instructive code example. These versions undergo
token-level comparative analysis, significantly im-
proving the model’s ability to discern and differ-
entiate erroneous code. Additionally, the training
dataset is augmented by pairing these generated er-
roneous codes with their correct forms, as demon-
strated in constructs like “Fixing the error in A
results in B”, which further enhances the model’s
capability of fixing bugs. Experiments and analysis
conducted on the HumanEvalFix benchmark well
validate the effectiveness of CCT. Specifically, we
observe a substantial improvement over 4 points
in pass@1 scores compared to standard instruction
tuning on different backbones.

2 Method

To make code generative models more sensitive to
the errors in the code, we incorporate two levels of
code comparison (token-level and sequence-level)
into the instruction tuning of code pre-trained mod-
els. We first give a brief introduction to instruction

tuning. Then, we introduce two kinds of code com-
parisons in detail. While we conducted research on
Python in this paper, our approach can be applied
to any programming language.

2.1 Background: Instruction Tuning
The goal of instruction tuning is to improve the
capability of language models in effectively pro-
cessing instructions expressed in natural languages.
In general, each instance of instruction-following
data begins with "instructions" denoted as c, which
describes a task, accompanied by a corresponding
output y that represents the answer to the given
instruction. The “input” x, is the optional context
or input for the task. Given the instruction data, the
language models are optimized by minimizing the
negative log-likelihood of the output y:

Llm = − 1

|y|

|y|∑
i

logp(yi|c, x), (1)

2.2 Code Comparison Tuning
We propose two kinds of code comparisons from
different perspectives to improve the model’s abil-
ity to handle error codes. Specifically, for the code
block t in the output y, we obtain its counterpart t′

by introducing code errors manually. Then, we per-
form comparisons between t and t′ at both token
level and sequence level.

To construct code containing bugs, we initially
extract code blocks from the output y. Subse-
quently, we introduce bugs by either randomly re-
placing or deleting elements such as variables, func-
tions, and operators within these code segments.
Bug examples are in Appendix A. With examples
of the correct code and error code, the model is
optimized to locate the bugs and fix them.

Token-level Comparison Previous studies usu-
ally provide supervision signals to code language
models by training samples in the format of bug
fixes, in order to guide models on how to re-
pair bugs. However, this type of sequence-based

training sample causes the model to ignore more
granular-level differences between code snippets,
which results in the degeneration of the model’s
ability to repair errors. To tackle this problem, we
adopt a token-level comparison loss (Zeng et al.,
2023) to teach models to be aware of the changes
in each token.

Formally, given code t and its counterpart t′, the
token-level comparison loss is defined as:

Ltoken = − 1

M − I

N∑
i=I

max(0,−rθ(h
t
i)+

rθ(h
t′
i) + 1.0), (2)

where I represents the index starting from the first
differing segment between sequences t and t′, and
M is the maximum length of two sequences. The
hidden state of each token i is denoted as hi and
we add a linear head rθ that converts the hidden
state to a scalar.

Sequence-level Comparison Beyond mastering
token-level distinctions, our approach integrates
both t and t′ within a single sentence, facilitating
the model’s acquisition of sequence-level repair
skills. Specifically, we first create a set of templates
designed to transform comparative code pairs into
coherent instructional data. Then we convert the
code pairs to instruction-tuning style by randomly
sampling a template from T . All the templates are
illustrated in Appendix B. Finally, the sequence-
level comparison example is used to optimize the
language model via Eq.(1) with the associated loss
denoted as Lseq.

2.3 Overall Training Objective

The overall training objective is defined as:

L = Llm + α ∗ Ltoken + β ∗ Lseq, (3)

where α and β are non-negative hyper-parameters
to balance the effect of each loss term. In this paper,
we set α and β to 2.0 and 0.5, respectively

3 Experiments

3.1 Datasets

We conducted experiments on Evol-Instruct-Code-
80k dataset 1 licensed by Apache-2.0. The dataset
is created following the process described in the
WizardCoder Paper (Luo et al., 2023). We ex-
tracted data from code written in Python to use as

Model Params Pass@1

Closed-source LLMs
ChatGPT - 39.6
GPT-4 >=175B 47.0

Open-source LLMs
InstructCodeT5+* 16B 2.7
BLOOMZ* 176B 16.6
StarCoder* 15.5B 8.7
CodeLlama* 13B 15.2
CodeGeeX2* 6B 15.9
OctoCoder* 15.5B 30.4
WizardCoder 15.5B 31.8
WizardCoder-Python-13B 13B 47.7

StarCoder backbone
Instruct tuning 15.5B 33.7
CCT-StarCoder (Ours) 15.5B 38.3

CodeLlama-Python-13B backbone
Instruct tuning 13B 43.5
CCT-CodeLlama (Ours) 13B 47.7

Table 1: Pass@1 (%) performance on HumanEval-
Fix. Models with * denote that we directly report the
scores from the corresponding paper

our instruction data. To verify the effectiveness of
our proposed approach, we evaluated CCT on the
HumanEvalFix (Muennighoff et al., 2023) which
is proposed to task models to fix the bugs in func-
tion. It contains 164 HumanEval solutions across
all 6 languages (984 total bugs) and the errors are
manually inserted into the code.

3.2 Baselines & Settings

We mainly experimented on CodeLlama-13b-
Python (Roziere et al., 2023) and StarCoder
(Li et al., 2023) in this work. Addition-
ally, we report the results of InstructCodeT5+,
BLOOMZ, CodeGeeX2, StarCoder, OctoCoder
and WizardCoder-Python-13B (Muennighoff et al.,
2022; Wang et al., 2023b; Li et al., 2023; Zheng
et al., 2023; Luo et al., 2023). We also report the
results of closed-source models such as ChatGPT
and GPT-4 which can be accessed via API.

To facilitate a fair and consistent evaluation, we
fine-tuned all models for 1 epoch with a batch size
of 64. The learning rate was set to 2e-5 and the
weight decay parameter was set to 0.0. For eval-
uation, we used the pass@1 metric (Chen et al.,
2021). Similar to Muennighoff et al. (2023), we
used a sampling temperature of 0.2 and topp = 0.95
to estimate pass@1. We generated n = 20 samples,
which is enough to get reliable pass@1 estimates
(Li et al., 2023).

1https://github.com/nickrosh/evol-teacher

Model Pass@1

Instruct tuning 43.53±0.49
w Sequence-level data 45.76±0.23

CCT-CodeLlama 47.71±0.39
w/o Lseq 44.56±0.61
w/o Ltoken 45.83±0.32

Table 2: Ablation study. We run each experiment 3
times with different random seeds and report mean and
standard deviation .

3.3 Results

Table 1 shows the results of several models on Hu-
manEvalFix. We can see that most open-source
code LLMs struggle with handling subtle code
changes and instructing tuning can substantially
enhance their performance. Our Code comparison
tuning significantly outperforms instruct tuning on
both StarCoder and CodeLlama-Python-13B back-
bone, leading to an average of 4 Pass@1 scores
improvement

At the same time, CCT achieves comparable
results to its open-source competitors of the same
size. These results demonstrate the effectiveness of
the proposed code comparison method. Although
CCT has surpassed GPT4 on HumanEvalFix, we
still need to conduct further testing for evaluation.
We leave this issue for future study.

3.4 Ablation Study

To analyze the impact of different components of
CCT, we investigate the following variants: 1) CCT
w/o Lseq, removing the sequence-level compari-
son; 2) CCT w/o Ltoken, removing the token-level
comparison; Additionally, we utilize the data gen-
erated from the sequence-level comparison phase
to create instruction fine-tuning data and mix it
together with original data to fine-tune the model
which denotes as w Sequence-level data. We take
CodeLlama-Python-13B as the backbone.

The results are listed in Table 2. The degrada-
tion of CCT w/o Lseq and CCT w/o Ltoken indi-
cate that code LLMs can improve their ability to
learn how to fix errors in code by leveraging the
code comparison in both token and sequence lev-
els. While w Sequence-level data performs better
than the standard instruct tuning, there is still room
for improvement as our CCT achieved even better
results. This suggests that our proposed method
goes beyond just data augmentation, as it incorpo-
rates comparison during fine-tuning to enhance the
effectiveness and efficiency of code LLMs.

Model Pass@1

Closed-source LLMs
GPT-4 88.4

Open-source LLMs
WizardCoder-Python-13B 60.37
Instruct tuning 63.26
CCT-CodeLlama 66.1

Table 3: Pass@1 (%) performance on HumanEval-
FixDocs.

20 40 60 80 100
30
35
40
45
50

Data size

Pa
ss

@
1

CCT Instruct tuning

Figure 3: Effect of Instruction dataset size. We report
pass@1 under different sizes of instructing datasets.

3.5 Results on HumanEvalFixDocs
HumanEvalFixDocs (Muennighoff et al., 2023)
provides docstrings as the source of ground truth
for the model to fix the buggy function which is
generally easier for models than HumanEvalFix.
From Table 3, we see that our CCT performs sig-
nificantly better than instruction fine-tuning and
other open-source models. However, it also reveals
a notable performance gap compared with GPT4,
an aspect we aim to explore in our future research.

3.6 Effect of Corpus Size
In this experiment, we study the impact of data
sizes on CCT by sampling different percentages of
the instructing dataset. Figure 3 shows the compar-
ison between our CCT and instruct tuning under
different data sizes. We see that, when the amount
of data used gradually decreases, our CCT still
maintains a strong performance. Surprisingly, with
only 20% of the data, CCT can achieve a pass@1
score of 43, demonstrating the data efficiency of
our proposed method.

4 Conclusions

In this work, we enhance the ability of code LLMs
to fix bugs by integrating code comparison during
instruct tuning. We consider both token-level and
sequence-level comparisons to make code models
more sensitive to the small changes in the code.
Experiments and analyses validate the effectiveness
of our model. We plan to extend our method to
more programming languages and conduct tests on
a wider range of test sets in our future study.

Limitations

There are still a few drawbacks of our approach
that need further investigation. The construction
method we use for generating error code snippets is
relatively simple. Introducing more complex con-
struction methods is necessary to provide the model
with additional comparative information. Second,
more bug-fixing tests are needed, including a wider
range of programming languages and a greater vari-
ety of error types. We leave these investigations for
future work. While we have achieved remarkable
results in the evaluation metrics of the code repair
task, there is still an ongoing need for continuous
research and dedicated efforts to enhance how code-
pretrained models can better assist programmers in
handling code-related tasks.

References
Miltiadis Allamanis, Henry Jackson-Flux, and Marc

Brockschmidt. 2021. Self-supervised bug detection
and repair. Advances in Neural Information Process-
ing Systems, 34:27865–27876.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Nghi DQ Bui, Yue Wang, and Steven Hoi. 2022.
Detect-localize-repair: A unified framework for
learning to debug with codet5. arXiv preprint
arXiv:2211.14875.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large language
models trained on code.(2021). arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei
Chen, Liang Chen, et al. 2023. Codefuse-13b: A
pretrained multi-lingual code large language model.
arXiv preprint arXiv:2310.06266.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct

with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang,
Yitong Li, Moshi Wei, and Lin Tan. 2020. Coconut:
combining context-aware neural translation models
using ensemble for program repair. In Proceedings
of the 29th ACM SIGSOFT international symposium
on software testing and analysis, pages 101–114.

Ehsan Mashhadi and Hadi Hemmati. 2021. Applying
codebert for automated program repair of java simple
bugs. In 2021 IEEE/ACM 18th International Confer-
ence on Mining Software Repositories (MSR), pages
505–509. IEEE.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. Octopack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey
Schoelkopf, et al. 2022. Crosslingual generaliza-
tion through multitask finetuning. arXiv preprint
arXiv:2211.01786.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan

http://arxiv.org/abs/2303.08774

Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-
ing large language models for code with ranking feed-
back. arXiv preprint arXiv:2307.14936.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and
Heng Ji. 2023a. Leti: Learning to generate from tex-
tual interactions. arXiv preprint arXiv:2305.10314.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023b.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Michihiro Yasunaga and Percy Liang. 2021. Break-
it-fix-it: Unsupervised learning for program repair.
In International Conference on Machine Learning,
pages 11941–11952. PMLR.

Jiali Zeng, Fandong Meng, Yongjing Yin, and Jie
Zhou. 2023. Tim: Teaching large language mod-
els to translate with comparison. arXiv preprint
arXiv:2307.04408.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023.
Self-edit: Fault-aware code editor for code genera-
tion. arXiv preprint arXiv:2305.04087.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

A Construction of erroneous codes

In this work, we focus on incorporating token-level
bugs into codes. We add the following types of
bugs: 1) Misuse variables in the code, as shown in
4. 2) Misuse operators in the code, as shown in 5.
3) Miss functions in the code, as shown in 6. More
methods can be tried to create erroneous examples,
such as using GPT-4 for generation. We will leave
this part of the work for the future.

B Templates for Sequence-level
Comparison

The templates we used to construct sequence-level
comparison examples are illustrated in 4

Templates

Given the instruction: <Instruction>

Here is a piece of code with bugs: <Bug output>

Fix the bugs in the code.

<Bug output> is the code implementation of <Instruction>,

However, there are some bugs in the code

Please fix bugs in the code.

Find the bugs in the <Bug output>

Table 4: Templates for constructing sequence-level
comparison examples.

def binary_tree_to_doubly_linked_list(root):
 head = None
 tail = None

 def add_to_list(value):
 nonlocal head, tail
 new_node =
DoublyLinkedListNode(value)
 if head is None:
 head = tail = new_node
 else:
 tail.next = new_node
 new_node.prev = tail
 tail = new_node

 inorder_traversal(root, add_to_list)

 return head

def binary_tree_to_doubly_linked_list(root):
 head = None
 tail = None

 def add_to_list(value):
 nonlocal head, tail
 new_node =
DoublyLinkedListNode(value)
 if head is None:
 head = tail = new_node
 else:
 tail.next = new_node
 new_node.prev = new_node
 tail = new_node

 inorder_traversal(root, add_to_list)

 return head

Figure 4: Variable misuse bug example. The buggy
code (right) incorrectly uses ’newcode’.

def below_zero(operations: List[int]):
 balance = 0

 for op in operations:
 balance += op
 if balance < 0:
 return True
 return False

def below_zero(operations: List[int]):
 balance = 0

 for op in operations:
 balance += op
 if balance > 0:
 return True
 return False

Figure 5: Operator misuse bug example. The buggy
code (right) incorrectly uses ’greater than’.

def max_difference(arr):
 max_diff = 0
 for i in range(len(arr)-1):
 diff = arr[i+1] - arr[i]
 if diff > max_diff:
 max_diff = diff
 return max_diff

def max_difference(arr):
 max_diff = 0
 for i in range(arr-1):
 diff = arr[i+1] - arr[i]
 if diff > max_diff:
 max_diff = diff
 return max_diff

Figure 6: Function missing bug example. The buggy
code (right) removes ’len()’ function.

	Introduction
	Method
	Background: Instruction Tuning
	Code Comparison Tuning
	Overall Training Objective

	Experiments
	Datasets
	Baselines & Settings
	Results
	Ablation Study
	Results on HumanEvalFixDocs
	Effect of Corpus Size

	Conclusions
	Construction of erroneous codes
	Templates for Sequence-level Comparison

