
Safety-Critical Planning and Control for Dynamic Obstacle Avoidance
Using Control Barrier Functions

Shuo Liu∗1 and Yihui Mao∗1

Abstract— Dynamic obstacle avoidance is a challenging topic
for optimal control and optimization-based trajectory planning
problems, especially when in a tight environment. Many existing
works use control barrier functions (CBFs) to enforce safety
constraints within control systems. Inside these works, CBFs
are usually formulated under model predictive control (MPC)
framework to anticipate future states and make informed
decisions, or integrated with path planning algorithms as a
safety enhancement tool. However, these approaches usually
require knowledge of the obstacle boundary equations or have
very slow computational efficiency. In this paper, we propose a
novel framework to the iterative MPC with discrete-time CBFs
(DCBFs) to generate a collision-free trajectory. The DCBFs are
obtained from convex polyhedra generated in sequential grid
maps, without the need to know the boundary equations of
obstacles. Additionally, a path planning algorithm is incorpo-
rated into this framework to ensure the global optimality of
the generated trajectory. We demonstrate through numerical
examples that our framework enables a unicycle robot to safely
and efficiently navigate through tight and dynamically changing
environments, tackling both convex and nonconvex obstacles
with remarkable computing efficiency and reliability in control
and trajectory generation.

I. INTRODUCTION

A. Motivation
In the robotics community, there has been considerable fo-

cus on obstacle avoidance within the realms of optimization-
based control and trajectory planning. For example, formu-
lating the task of reaching a goal while dodging obstacles
and minimizing energy as a constrained optimal control
problem can be achieved through the use of control barrier
functions (CBFs) [1], [2]. By segmenting the timeline into
brief intervals, the issue becomes a series of (potentially
numerous) quadratic programs, solvable at speeds suitable
for real-time operations. Nonetheless, this method might be
overly aggressive because it does not incorporate forward
prediction.

Model predictive control (MPC) integrated with CBFs [3]
addresses safety concerns within the discrete-time domain,
offering a refined control strategy by factoring in future
state data over a receding horizon. However, the approach
demands significant computational effort, which escalates
sharply with an extended horizon, primarily due to the in-
herent non-linear and non-convex nature of the optimization.

∗ Authors contributed equally.
This work was supported in part by the NSF under grant IIS-2024606 at

Boston University.
1S. Liu and Y. Mao are with the Department of Mechanical

Engineering, Boston University, Brookline, MA, USA. {liushuo,
maoyihui}@bu.edu

The animation video can be found at https://youtu.be/
ylmfh1MtGD8

Another challenge with this nonlinear model predictive for-
mulation relates to the optimization’s feasibility. Relaxation
techniques introduced in reference [4] help address this, yet
they apply solely to CBFs of relative-degree one, excluding
those of higher order.

To overcome the challenges mentioned, in [3], we present
a convex MPC framework that utilizes linearized, discrete-
time CBFs (DCBFs) within an iterative approach,which is
denoted as iterative MPC-DHOCBF (iMPC-DHOCBF). This
method markedly decreases computational time for CBFs
of high relative-degree while maintaining optimal controller
performance. The feasibllity rate of iMPC-DHOCBF also
outperforms the baseline method in [4] for large horizon
lengths. However, linearizing DCBFs often requires knowl-
edge of the boundary equations of obstacles, which can be
challenging to ascertain in scenarios where obstacle shapes
and motion patterns are complex. [5] proposed a method
based on a grid map that obtains convex safety regions
through a finite number of subdivisions, but it only targets for
avoidance of stationary obstacles. Motivated by this, in this
paper, we propose an iterative convex optimization procedure
using DCBFs for dynamic obstacle avoidance in grip maps
without knowing boundary equations of obstacles, which
demonstrates rapid computation speed and excellent obstacle
avoidance success rate.

B. Related work

1) Discrete-Time CBFs: Discrete-time CBFs (DCBFs)
were introduced in [6] to facilitate safety-critical control
in discrete-time systems, notably within a nonlinear MPC
(NMPC) framework to form NMPC-DCBF [7], incorporating
DCBF constraints over a predictive horizon. This approach
extended to multi-layer control schemes in [8], considering
longer horizon DCBFs for mid-level safety assurance. Vari-
ants like Generalized DCBFs (GCBFs) [9] and Discrete-Time
High-Order CBFs (DHOCBFs) [10] focus on single-step
constraints, enhancing feasibility but potentially compromis-
ing safety. Applications span autonomous driving [11] and
legged robotics [12], with strategies ranging from first step-
focused constraints [6], [9], [10] to full horizon approaches,
integrating multi-layer control [8], [11] or planning [12] for
platform-specific optimization. The related work mentioned
above obtains DCBFs through analytical geometry, thus
requiring knowledge of the obstacle boundary equations.
In this paper, we generate convex polyhedra in the grid
map, without the need to know the boundary equations of
obstacles. We use the interiors of these polyhedra to represent
safe areas, while their boundaries are transformed into linear

ar
X

iv
:2

40
3.

19
12

2v
1

 [
cs

.R
O

]
 2

8
M

ar
 2

02
4

https://youtu.be/ylmfh1MtGD8
https://youtu.be/ylmfh1MtGD8

DHOCBFs as safety constraints.
2) Model Predictive Control (MPC): MPC is a key tech-

nique in control systems for designing robot controllers
in robotic manipulation and locomotion [13], [14], offer-
ing optimization-based control strategies. Stability in these
systems is achieved by integrating discrete-time control
Lyapunov functions (DCLFs) within MPC frameworks for
efficient real-time control, even with limited computational
power. Recent research like [15] increasingly focuses on
safety in robotics, a crucial aspect for practical applica-
tions. Some studies introduce repelling functions [1], [16]
to address safety, while others [17]–[19] specifically tackle
obstacle avoidance as a safety measure. Typically, these
safety considerations are incorporated as constraints within
optimization problems. This paper can be seen in the context
of MPC with safety constraints.

3) Path Planning Algorithms: In motion planning, a vari-
ety of methods can be employed to secure effective collision-
free paths. Sampling-based algorithms, such as Rapidly-
Exploring Random Trees (RRT) and Probabilistic Roadmaps
(PRM), achieve impressive results in high-dimensional com-
plex spaces by randomly expanding searches within the fea-
sible space to find a feasible path, although their probabilistic
completeness does not guarantee the prompt identification of
the optimal feasible solution.

Conversely, grid search-based algorithms (like Dijkstra,
A*, and their variants) offer resolution completeness ensur-
ing the determination of the shortest path between nodes
in grid-based searches. A*, an extension of the Dijkstra
algorithm, utilizes a heuristic approach to estimate the overall
path cost, thereby outperforming the Dijkstra algorithm.
Jump Point Search (JPS) [20], the optimized algorithm of A*,
was proposed for uniform grids to accelerate search speeds
by eliminating certain nodes in the grid based on the setup
of jump points. It represents a method of graph pruning that
reduces symmetry in searches with minimal computational
cost, making it suitable for large-scale searches in large,
uniform open spaces. In this paper, we use the optimal
path produced by JPS as reference trajectory that makes the
control problem fast.

C. Contributions

We propose a novel framework to the iterative MPC with
DHOCBFs that can generate a collision-free trajectory and
computes fast. In particular, the contributions are as follows:

• We present a model predictive control strategy for
safety-critical tasks, where the safety-critical constraints
can be enforced by DHOCBFs. The DHOCBF con-
straints are obtained from convex polyhedra generated
in sequential grid maps, without the need to know the
boundary equations of obstacles.

• We propose a novel optimal control framework for
guaranteeing safety in a dynamic environment, where
the dynamic environment consists of grid maps that
change over time. A rapid path planning algorithm is
incorporated into the control framework to generate
optimal trajectory in each grid map. DHOCBFs and

system dynamics serve as linear constraints to make
control problem a convex optimization. Our framework
synthesize the convex optimization and sequential grid
maps with rapid computational speed.

• We show through numerical examples that the proposed
framework enables a unicycle robot to navigate with
safe maneuvers through tight and dynamic environments
with convex or nonconvex shape obstacles using rapid
control and trajectory generation.

II. PRELIMINARIES

In this section, we introduce some definitions and results
on DHOCBF and JPS.

A. subsec: Discrete-Time High-Order Control Barrier Func-
tion (DHOCBF)

In this paper, we consider a discrete-time control system
in the form

xt+1 = f(xt,ut), (1)

where xt ∈ X ⊂ Rn represents its state at discrete time
t ∈ N,ut ∈ U ⊂ Rq is the control input, and f : Rn → Rq

is a locally Lipschitz function capturing the dynamics of the
system. We interpret safety forward invariance of a set C. A
system is considered safe if, once it starts within set C, it
remains in C for all future times. We consider the set C as
the super-level set of a function h : Rn → R:

C := {x ∈ Rn : h(x) ≥ 0}. (2)

Definition 1 (Relative degree [21]). The output y = h(x)
of system (1) is said to have relative degree m with respect
to dynamics (1) if ∀t ∈ N,

yt+i = h(f̄i−1(f(xt,ut))), i ∈ {1, 2, . . . ,m},

s.t.
∂yt+m

∂ut
̸= 0q,

∂yt+i

∂ut
= 0q, i ∈ {1, 2, . . . ,m− 1}.

(3)

Informally, the relative degree m is the number of steps
(delay) in the output yt in order for the control input ut

to appear. In the above definition, we use f̄(x) to denote
the uncontrolled state dynamics f(x, 0). The subscript i of
function f̄(·) denotes the i-times recursive compositions of
f̄(·), i.e., f̄i(x) = f̄(f̄(. . . , f̄︸ ︷︷ ︸(f̄0(x))))

i-times

with f̄0(x) = x.

We assume that h(xt) has relative degree m with respect
to system (1) based on Def. 1. Starting with ψ0(xt) := h(xt),
we define a sequence of discrete-time functions ψi : Rn →
R, i = 1, . . . ,m as:

ψi(xt) := △ψi−1(xt,ut) + αi(ψi−1(xt)), (4)

where △ψi−1(xt,ut) := ψi−1(xt+1) − ψi−1(xt), and
αi(·) denotes the ith class κ function which satisfies
αi(ψi−1(xt)) ≤ ψi−1(xt) for i = 1, . . . ,m. A sequence
of sets Ci is defined based on (4) as

Ci := {x ∈ Rn : ψi(x) ≥ 0}, i = {0, . . . ,m− 1}. (5)

Definition 2 (DHOCBF [10]). Let ψi(x), i ∈ {1, . . . ,m}
be defined by (4) and Ci, i ∈ {0, . . . ,m− 1} be defined by

(5). A function h : Rn → R is a Discrete-Time High-Order
Control Barrier Function (DHOCBF) with relative degree m
for system (1) if there exist ψm(x) and Ci such that

ψm(x) ≥ 0, ∀xt ∈ C0 ∩ · · · ∩ Cm−1,∀t ∈ N. (6)

Theorem 1 (Safety Guarantee [10]). Given a DHOCBF h(x)
from Def. 2 with corresponding sets C0, . . . , Cm−1 defined by
(5), if x0 ∈ C0 ∩ · · · ∩ Cm−1, then any Lipschitz controller u
that satisfies the constraint in (6), ∀t ≥ 0 renders C0 ∩ · · · ∩
Cm−1 forward invariant for system (1), i.e.,xt ∈ C0 ∩ · · · ∩
Cm−1,∀t ≥ 0.

The function ψi(x) in (4) is called a ith order discrete-
time control barrier function (DCBF). Since satisfying the ith

order DCBF constraint (ψi(x) ≥ 0) is a sufficient condition
for rendering C0 ∩ · · · ∩ Ci−1 forward invariant for system
(1) as shown above, it is not necessary to formulate DCBF
constraints up to mth order as (6) if the control input ut

could be involved in some optimal control problem. In other
words, the highest order for DCBF could be mcbf with
mcbf ≤ m. In this paper, one simple method to define a
ith order DCBF ψi(x) in (4) is

ψi(xt) := △ψi−1(xt,ut) + γiψi−1(xt), (7)

where 0 < γi ≤ 1, i ∈ {1, . . . ,mcbf}.
The expression in (7) follows the format of the first

order DCBF proposed in [6] and could be used to define
a DHOCBF with arbitrary relative degree.

B. Jump Point Search

A graph search (path planning) algorithm can then be used
to identify a valid path that avoids collisions within the grids
occupied by obstacles. As we discussed in Sec. I-B.3, JPS is
suitable for rapid path planning. we define a path, denoted as
π = ⟨ni, . . . , nj⟩, as a sequence of nodes or states extending
from node i to node j. The length (or cost) of this path is
represented by len(π). We introduce the notation x to refer
to a specific node, p(x) to denote the parent node of x,
and neighbors(x) to describe the set of nodes adjacent to x.
Additionally, the node n is defined as an element within the
set of neighbors(x). The expression π\x signifies that node
x is omitted from the path.

In a 2-D map, each node may have up to 8 neighbors.
The cost incurred when moving straightly (horizontally or
vertically) to a traversable neighbor (not occupied by obsta-
cles) is 1, while moving diagonally has a cost of

√
2. For

straight moves, if node n can be reached from x’s parent p(x)
with the less or equal cost without passing through x, i.e.,
len(⟨p(x), . . . , n⟩ \x) ≤ len(⟨p(x), x, n⟩), JPS will prune
this neighbor n from exploration. In diagonal moves, the path
excluding x must be strictly shorter, len(⟨p(x), . . . , n⟩ \x) <
len(⟨p(x), x, n⟩), leading to the pruning of node n. The
natural neighbors of x are those that remain after pruning,
assuming neighbors(x) does not include obstacles. Force
neighbors refer to specific neighboring nodes that may not
lie directly on the current path but must be examined to
ensure the identification of the shortest path, which must

satisfy two conditions. 1) n is not a natural neighbour 2)
len(⟨p(x), x, n⟩) < len(⟨p(x), . . . , n⟩ \x). A node qualifies
as a jump point if it meets one of the following criteria: it is
either the initial or terminal node, it has a forced neighbor,
or, in the case of diagonal movement, it leads directly to
another jump point, as detailed in [20] and [5].

Starting from initial node, the algorithm recursively
searches for new jump points in every direction until the
terminal node is found or a dead end is reached in that
direction. Upon reaching the terminal node, it backtracks
through the jump points to construct the shortest path,
π = ⟨n0, n1, . . . , nE⟩, from start to finish. Path searching
with jump point pruning has been proven to be cost-optimal
in [20].

III. METHODOLOGY

The comprehensive structure of our algorithm is depicted
in Alg. 1, which integrates iterative MPC with pathfinding
algorithms and DHOCBF under linear safety constraints.
The iterative MPC cannot perfectly help robot adhere to the
optimal path we have identified, and the optimal path may
not necessarily be dynamically feasible, so even though the
optimal path is safe, there is still a possibility of colliding
with obstacles during the path-following process. Therefore,
we utilize DHOCBF to ensure safety throughout the path-
following phase. Since the iterative MPC looks ahead into
the future over a specified prediction horizon, we assume the
future information about dynamic obstacles in grid maps up
to the horizon is known to us.

The algorithm described in Alg. 1 contains an iterative
optimization at each time step t, which is denoted as
iMPC-DHOCBF [3]. In each iteration j of our optimization
problem, we address three distinct components: (1) solve a
convex finite-time optimal control (CFTOC) problem with
linearized dynamics and linear DHOCBFs hscp(x̄

j
t,k), k ∈

{1, . . . , N}, (2) check convergence criteria, (3) update state
and input vectors for next iteration. Notice that the open-loop
trajectory with updated states X̄j

t = [x̄j
t,0, . . . , x̄

j
t,N−1] and

inputs Ūj
t = [ūj

t,0, . . . , ū
j
t,N−1] is passed between iterations,

which allows iterative linearization for system dynamics
locally. The DHOCBFs hscp(x̄

j
t,k) can be extended to higher

order DCBFs, which work as safety constraints in CFTOC
problem. As discussed in Sec. II-A and (7), “higher order”
implies that the relative degree of DCBFs is mcbf with
1 ≤ mcbf ≤ m.

The iteration concludes once the convergence error func-
tion e(X∗,j

t ,U∗,j
t , X̄j

t , Ū
j
t) falls within a predefined normal-

ized convergence criterion, with X∗,j
t = [x∗,j

t,0 , . . . ,x
∗,j
t,N],

U∗,j
t = [u∗,j

t,0 , . . . ,u
∗,j
t,N−1] denoting the optimized states and

inputs, respectively at iteration j. To cap the iteration count,
we enforce j ≤ jmax, where jmax represents the maximum
allowable number of iterations. Thus, the iterative optimiza-
tion process halts upon reaching a local optimal minimum for
the cost function, meeting the convergence criterion, or when
the iteration count equals jmax. The optimized states X∗

t and
inputs U∗

t are passed to the iMPC-DHOCBF formulation
for the next time instant. At each step, we log the updated

Algorithm 1 iMPC-DHOCBF [3] for Sequential Grid Maps

Input: System dynamics (1), initial state x(0), ending location nE ,
sequential grid maps of obstacles [G0, G1, . . . , Gtsim+N].

Output: Safety-critical optimal control for path following and
dynamic obstacle avoidance.

1: Set initial guess Ū0
0 = 0 at t = 0.

2: Propagate with system dynamics to get initial guess of states
X̄0

0 from initial state x(0).
3: for t ≤ tsim − 1 do
4: Initialize j = 0.
5: Get sequential grid maps from Gt to Gt+N .
6: Extract current location nt from x(t), use path planning

algorithm to find the optimal path πt = ⟨nt, . . . , nE⟩ .
7: Reconstruct the path to get [xr,t,xr,t+1, . . . ,xr,t+N],

which is the reference state matrix used in the cost J .
8: while Iteration j (not converged OR j < jmax) do
9: Linearize system dynamics with X̄j

t , Ū
j
t (constraints).

10: Get linear DHOCBFs hscp(x
j
t,k|x̄

j
t,k), k ∈ {1, . . . , N}

from safe convex polyhedra.
11: Solve a convex finite-time constrained optimal control

problem (CFTOC) with cost J and linear constraints to
get optimal values of states and inputs X∗,j

t , U∗,j
t .

12: X̄j+1
t = X∗,j

t , Ūj+1
t = U∗,j

t , j = j + 1
13: end while
14: Extract optimized states and inputs X∗

t = X∗,j
t ,U∗

t = U∗,j
t

from last iteration and extract u∗
t,0 from U∗

t .
15: Apply u∗

t,0 with respect to system dynamics (1) to get
xt+1 = f(xt,u

∗
t,0), and record x(t+ 1) = xt+1.

16: Update Ū0
t+1 with U∗

t and propagate to calculate X̄0
t+1.

17: t = t+ 1.
18: end for
19: return closed-loop trajectory [x(0), . . . ,x(tsim)]

state as it evolves according to the system dynamics over
a specified discretization interval. This process enables us
to derive the output closed-loop trajectory using iMPC-
DHOCBF approach.

A. Dynamic Path Planning-Dynamic JPS

In Alg. 1, we can use JPS to find the optimal path. Since
the locations of dynamic obstacles in grid maps vary over
time, we need to replan the path to the destination after each
movement of the robot and this explains the necessity of
dynamic path planning. At each time step t, the system state
x(t) is updated by solving the CFTOC and the corresponding
location nt can be extracted from x(t). The safe and shortest
path πt = ⟨nt, n1, . . . , nE⟩ , which consists of a series of
point coordinates from nt to nE , can be repeatedly found by
repeatedly calling JPS, and thus each path consists of straight
line segments of varying lengths. By following these paths,
our robot also walks a relatively short path under the action
of the safety-critical controller.

B. Path Reconstruction

To illustrate the necessity of path reconstruction, consider
a simplified unicycle model in the formxt+1−xt

yt+1−yt
θt+1−θt

=

v cos(θt)∆tv sin(θt)∆t
0

+

 0
0
∆t

ut, (8)

where xt = [xt, yt, θt]
T captures the 2-D location and

heading angle, v denotes constant linear speed, and ut

represents angular velocity. ∆t denotes the discretized time
interval. Note that the optimal path we get in Sec. III-A
only contains information about desired 2-D locations, i.e.,
the desired heading angles are lost. Moreover, the distance
between points on the optimal path πt may be too large to
follow. These reasons all lead to the optimal path πt not
being viable as reference state vectors in cost J. To address
this problem, we propose the path transformation approach
next.

Given a constant speed v in the simplified unicycle model,
the step size of robot is L = v ∗∆t. The maximum number
of steps between points nt and n1 is i1 = S1−(S1 mod L)

L ,

where S1 =
√
(n1 − nt)T (n1 − nt). A list of reference state

vectors up to i1 are then expressed asxr,t+i+1

yr,t+i+1

θr,t+i+1


︸ ︷︷ ︸

xr,t+i+1

=

xr,t+i + v cos (θr,t+i)
yr,t+i + v sin (θr,t+i)

atan2(n1[2]−nt[2]
n1[1]−nt[1]

)

 , (9)

where i ∈ {0, 1, . . . , i1 − 1}, and xr,t =

xr,tyr,t
θr,t

 = nt[1]nt[2]
θr,t+1

 . Replace nt, n1 with
[
xr,t+i1

yr,t+i1

]
, n2 respectively.

Similarly we have i2 = S2−(S2 mod L)
L , where S2 =√

(n2 − nt+i1)
T (n2 − nt+i1). We can obtain a list of ref-

erence state vectors up to i2 based on (9) then replace

nt+i1 , n2 with
[
xr,t+i2

yr,t+i2

]
, n3 respectively. Do the above

process repeatedly until we find a number im(m ≥ 1) which
satisfies the inequality

∑m
j=1 ij ≥ N. We can stack the

past reference state vectors into a reference state matrix
as [xr,t,xr,t+1, . . . ,xr,t+N]. The connection of each point
(denoted by the first two rows of reference state matrix)
depicts the reconstructed path, which is slightly different
from the optimal path πt. As ∆t decreases, this difference
will also gradually diminish to a negligible extent. The trans-
formation approach we propose here targets a special class
of systems with well-defined kinematics-geometric structures
(e.g., a simplified unicycle model in (8)). This approach can
be extended to other types of systems, as long as we can find
a reasonable transformation to get the reference state matrix
[xr,t,xr,t+1, . . . ,xr,t+N].

Another approach that might be suitable for all dynamic
systems purely depends on parameters tuning. We can just
insert N points on the path πt as reference locations (e.g.,
[xr,t, xr,t+1, . . . , xr,t+N], [yr,t, yr,t+1, . . . , yr,t+N]) and pre-
define other reference states except locations (e.g.,
[θr,t, θr,t+1, . . . , θr,t+N]), then formulate them into a cost
function as

J =

N−1∑
k=0

(||xj
t,k − xr,t+k||2Q + ||xj

t,N − xr,t+N ||2P), (10)

where xr,t+k = [xr,t+k, yr,t+k, θr,t+k]
T , k ∈ {0, . . . , N}

denotes the reference state vector at each time step. Q,P
are diagonal matrices served as weight matrices. We can
increase the weights in the weight matrices corresponding
to reference locations (e.g., the first and second elements on
diagonal in Q,P) to focus more on minimizing the deviation
from the desired path.

C. Linearization of Dynamics

At iteration j, an improved vector uj
t,k is achieved by

linearizing the system around x̄j
t,k, ū

j
t,k:

xj
t,k+1−x̄j

t,k+1=A
j(xj

t,k−x̄j
t,k) +Bj(uj

t,k−ūj
t,k), (11)

where 0 ≤ j < jmax; k and j represent open-loop time step
and iteration indices, respectively. We also have

Aj = Dxf(x̄
j
t,k, ū

j
t,k), B

j = Duf(x̄
j
t,k, ū

j
t,k), (12)

where Dx and Du denote the Jacobian of the system
dynamics f(x,u) with respect to the state x and the input u.
This approach allows to linearize the system at (x̄j

t,k, ū
j
t,k)

locally between iterations. The convex system dynamics
constraints are detailed in (11), given that all nominal vectors
(x̄j

t,k, ū
j
t,k) from the current iteration are constant, having

been constructed from the previous iteration j − 1.

D. DHOCBF-Safe Convex Polyhedron

In this section, we show how to get linear DCBFs up to
the highest order from Safe Convex Polyhedron (SCP). Note
that in a 2-D map it is in fact a convex polygon. Based
on the grid map Gt+k, at iteration j, in order to formulate
DHOCBF candidates hscp(x

j
t,k|x̄

j
t,k), a square (depicted by

blue square with dashed lines in Fig. 1) delineating the
obstacle detection range is drawn, with its geometric center
being the current position of the robot (x̄j

t,k). We segment
the boundaries of obstacles within the square, identifying
a series of points (depicted by black points), then we find
the point closest to the robot among these points and draw
a perpendicular line segment through this point to the line
connecting the point and the robot. This line segment belongs
to the boundary of SCP (depicted by a red line segment),
which designates the area on the side opposite the robot as
the detected zone and excludes it (depicted by grey). Repeat
the above process for undetected area within the square
until the closed boundary of SCP is found. This boundary
consists of nscp line segments. Some of them are expressed
by linear equations hl(x

j
t,k|x̄

j
t,k) = alx

j
t,k + bly

j
t,k + cl, l ∈

{1, . . . , lscp} , lscp ≤ nscp. The parameters are obtained by

al = x̄jt,k − x̃j,lt,k,

bl = ȳjt,k − ỹj,lt,k,

cl = −(x̄jt,k − x̃j,lt,k)x̃
j,l
t,k − (ȳjt,k − ỹj,lt,k)ỹ

j,l
t,k,

(13)

where (x̃j,lt,k, ỹ
j,l
t,k) denotes the lth closest point on lth

line segment. Other segments are from four sides of the
square. This allows us to define a safe region (inner
area of the polygon) expressed by Cj

t,i := {xj
t,i ∈

Rn : hscp(x
j
t,k|x̄

j
t,k) ≥ 0}, hscp(x

j
t,k|x̄

j
t,k) ≥ 0 ⇐⇒{

h1(x
j
t,k|x̄

j
t,k) ≥ 0, . . . , hnscp(x

j
t,k|x̄

j
t,k) ≥ 0

}
. The relative

degree of hscp(x
j
t,k|x̄

j
t,k) with respect to system (1) is m.

In order to guarantee safety with forward invariance based
on Thm. 1, two sufficient conditions need to be satisfied: (1)
the sequence of DHOCBFs ψ̃n

0 (·), . . . , ψ̃n
mcbf−1(·) is larger or

equal to zero at the initial condition xt, and (2) the highest-
order DCBF constraint ψ̃n

mcbf
(x) ≥ 0 is always satisfied,

where ψ̃n
i (·) is defined as:

ψ̃n
0 (x

j
t,k) :=hn(x

j
t,k|x̄

j
t,k)

ψ̃n
i (x

j
t,k) :=ψ̃

n
i−1(x

j
t,k+1)− ψ̃n

i−1(x
j
t,k)+γ

n
i ψ̃

n
i−1(x

j
t,k).

(14)

Here, we have 0 < γni ≤ 1, i ∈ {1, . . . ,mcbf}, n ∈
{1, . . . , nscp}, and mcbf ≤ m (as in (7)).

Note that nscp is not predefined. As the number of ob-
stacles within the square increases, nscp may become very
large. The swift rise in the number of constraints may make
solving the optimization problem infeasible. In order to
handle this issue, we introduce a slack variable ωj,n

t,k,i with
a corresponding decay rate (1 − γni). Similar to [3], we
reformulate ψ̃n

i (x
j
t,k) ≥ 0 in (14) as

ψ̃n
i−1(x

j
t,k) +

i∑
ν=1

Zn
ν,i(1− γni)

kψ̃n
0 (x

j
t,ν) ≥

ωj,n
t,k,iZ

n
0,i(1− γni)

kψ̃n
0 (x

j
t,0), j ≤ jmax ∈ N+,

n ∈ {1, . . . , nscp}, i ∈ {1, . . . ,mcbf}, ωj,n
t,k,i ∈ R.

(15)

In the above, the slack variable ωj,n
t,k,i is a decision variable,

determined by minimizing a term in the cost function to
meet the DCBF constraints from the initial condition at any
given time step (see [3]). Zν,i is a constant that aims to
make constraint (15) linear in terms of decision variables
xj
t,k, ω

j,n
t,k,i, and can be obtained as follows. When 2 ≤ i, ν ≤

i− 2, we have

Zn
ν,i =

lmax∑
l=1

[(γζ1 − 1)(γζ2 − 1) · · · (γζi−ν−1
− 1)]l,

ζ1 < ζ2 < · · · < ζi−ν−1, ζs ∈ {1, 2, . . . , i− 1},

(16)

where [·]l denotes the lth combination of the product of the
elements in parenthesis, therefore we have lmax =

(
i−1

i−ν−1

)
.

ζs denote all ζ in (16). For the case ν = i− 1, if 2 ≤ i, we
define Zn

ν,i = −1; if i = 1, we define Zn
ν,i = 1. Beside that,

we define Zn
ν,i = 0 for the case ν = i.

Remark 1. Note that in Sec. III-D, we illustrate the process
of getting the safe convex polygon in a 2-D map. We can
mimic the process to get a safe convex polyhedron in a 3-D
map, i.e., draw a normal plane section (face of polyhedron)
through the closest point to the line connecting the point and
the robot to get candidate DHOCBF hn(x

j
t,k|x̄

j
t,k), which

can be extended into DCBFs (14) as safety constraints. A
similar method, named Safe Flight Corridor (SFC) to get
safe convex polyhedron for a non-point robot based on a
shrinking ellipsoid was investigated in [5].

Fig. 1: A schematic diagram illustrating how to find the SCP (red).
The obstacle detection range is denoted by blue dashed square with
geometry center x̄j

t,k. The obstacles are depicted by green circles.

E. CFTOC Problem

In Secs. III-C and III-D, we have illustrated the lin-
earization of system dynamics as well as the process to
get linear DCBFs. This approach enables us to incorporate
them as constraints within a convex MPC framework at
every iteration, an approach we refer to as convex finite-
time constrained optimization control (CFTOC) [3]. This
is solved at iteration j with optimization variables Uj

t =
[uj

t,0, . . . ,u
j
t,N−1] and Ωj,n

t,i = [ωj,n
t,0,i, . . . , ω

j,n
t,N,i], where

i ∈ {1, . . . ,mcbf}, n ∈ {1, . . . , nscp}.

CFTOC of iMPC-DHOCBF at iteration j:

min
U

j
t ,Ω

j,n
t,1 ,...,Ω

j,n
t,mcbf

p(xj
t,N) +

N−1∑
k=0

q(xj
t,k,u

j
t,k, ω

j,n
t,k,i) (17a)

s.t. xj
t,k+1−x̄j

t,k+1=A
j(xj

t,k − x̄j
t,k)+B

j(uj
t,k − ūj

t,k), (17b)

uj
t,k ∈ U , xj

t,k ∈ X , ωj,n
t,k,i ∈ R, (17c)

ψ̃n
i−1(x

j
t,k) +

i∑
ν=1

Zn
ν,i(1− γn

i)
kψ̃n

0 (x
j
t,ν) ≥

ωj,n
t,k,iZ

n
0,i(1− γn

i)
kψ̃n

0 (x
j
t,0), (17d)

In the CFTOC, the linearized dynamics constraints in (11)
and the DCBF constraints in (15) are enforced with con-
straints (17b) and (17d) at each open loop time step
k ∈ {0, . . . , N − 1}. The state and input constraints are
considered in (17c). The slack variables are left uncon-
strained because the optimization’s objective is to mini-
mize deviation from the nominal DCBF constraints through
a cost term q(·, ·, ωj,n

t,k,i), while ensuring feasibility of
the optimization, as discussed in [3]. It’s important to
note that to uphold the safety guarantee provided by the
DCBFs, the constraints (17d) are strictly enforced using
i ∈ {0, . . . ,mcbf}, n ∈ {1, . . . , nscp}, where Zn

ν,i ∈ R is
defined in (16) with ν ∈ {0, .., i}. The optimal decision
variables of (17) at iteration j is a list of control input vectors
as U∗,j

t = [u∗,j
t,0 , . . . ,u

∗,j
t,N−1] and a list of slack variable

vectors as Ω∗,j
t,i = [Ω∗,j,1

t,i , . . . ,Ω
∗,j,nscp
t,i] where Ω∗,j,n

t,i =

[ω∗,j,n
t,0,i , . . . , ω

∗,j,n
t,N,i]. The CFTOC is solved iteratively in

Alg. 1, i.e., in sequential grip maps [Gt, Gt+1, . . . , Gt+N],
we generate red polygons based on red points (x̄1

t,k), the
purple points (x̄2

t,k) will be generated inside red polygons;
based on purple points we generate purple polygons, and the
blue points (x̄3

t,k) will be generated inside purple polygons.

Repeat this process once the convergence criteria or the
maximum iteration number jmax is reached, and the open-
loop trajectory (black points x∗,jmax

t,k) can be extracted as
shown in Fig. 2.

IV. CASE STUDY AND SIMULATIONS

In this section, we present numerical results to demon-
strate the effectiveness of our proposed method through the
application of a unicycle model. For iMPC-DHOCBF, we
used OSQP [22] to solve the convex optimizations at all
iterations. The simulator for grip-map animation was based
on RViz in Robot Operating System (ROS) Noetic Ninjemys.
We used a Linux desktop with Intel Core i9-13900H running
c++ for all computations.

A. Numerical Setup

1) System Dynamics: Consider a discrete-time unicycle
model in the form

xt+1−xt
yt+1−yt
θt+1−θt
vt+1−vt

=


vt cos(θt)∆t
vt sin(θt)∆t

0
0

+


0 0
0 0
∆t 0
0 ∆t

[
u1,t
u2,t

]
, (18)

where xt = [xt, yt, θt, vt]
T captures the 2-D location, head-

ing angle, and linear speed; ut = [u1,t, u2,t]
T represents an-

gular velocity (u1) and linear acceleration (u2), respectively.
The system is discretized with ∆t = 0.01. System (18) is
subject to the following state and input constraints:

X = {xt ∈ R4 :[−50,−50,−10,−40]T ≤ xt,

xt ≤ [50, 50, 10, 40]T },
U = {ut ∈ R2 :[−15,−5]T ≤ ut ≤ [15, 5]T }.

(19)

2) System Configuration: The initial state is
[−35,−35, θ0, 25]

T , the target state is [45, 45, θtsim , 25]
T , and

the reference state vector at time step t up to horizon N is
xr,t+k = [xr,t+k, yr,t+k, θr,t+k, vr,t+k]

T , k ∈ {1, . . . , N} .
We use the first path transformation method introduced
in Sec. III-B, and set all reference speed vr,t+k = 25.
θ0, θtsim , θr,t+k are calculated by the atan2(Y,X) where
the values of (Y,X) are from every pair of adjacent points
on the optimal path πt. The other reference vectors are
ur = [0, 0]T and ωr = [1, 1]T .

3) DHOCBF: We get each candidate DHOCBF
hn(x

j
t,k|x̄

j
t,k) from SCP introduced in Sec. III-D and set

mcbf = 1. From (16), we have Z0,1 = 1. The decay rate γn1
is 0.1. The obstacle detection range (the side length of the
blue dashed square in Fig. 1) is 40.

4) MPC Design: The cost function of the MPC problem
consists of stage cost q(xj

t,k,u
j
t,k, ω

j,n
t,k,i) =

∑N−1
k=0 (||xj

t,k −
xr,t+k||2Q + ||uj

t,k − ur||2R + ||ωj,n
t,k,i − ωr||2S) and terminal

cost p(xj
t,N) = ||xj

t,N − xr,t+N ||2P , where Q = P =

[10000, 10000, 100, 10]T , R = I2 and S = 100000 · I2.

Fig. 2: A schematic diagram illustrating how to find the open-loop trajectory (depicted by black points) based on SCP in sequential grip
maps at time step t. Note that polygons of each color are generated based on the points of the corresponding color, and points in the next
iteration can only be generated within the polygon created in the current iteration.

5) Convergence Criteria: We use the following absolute
and relative convergence functions as convergence criteria
mentioned in Alg. 1:

eabs(X
∗,j
t ,U∗,j

t) = ||X∗,j − X̄∗,j ||
erel(X

∗,j
t ,U∗,j

t , X̄j
t , Ū

j
t) = ||X∗,j − X̄∗,j ||/||X̄∗,j ||.

(20)

The iterative optimization stops when eabs < εabs or erel <
εrel, where εabs = 0.05, εrel = 10−2 and the maximum
iteration number is set as jmax = 3.

B. Performance

1) Avoiding Convex-Shape Dynamic Obstacles: The area
that 2-D map covers is a square with [−50,−50]T ≤
[x, y]T ≤ [50, 50]T , consisting of 1200 by 1200 grids. We
generate 7 square-shaped dynamic obstacles, each with side
randomly generated within [3, 6] and linear constant speed
randomly generated within [2, 4]. The radius of a circular
unicycle is 2. To enable the robot to avoid obstacles, we
inflated the outer boundary of the obstacles by the radius
of the robot. Fig. 3 shows the snapshots and the robot
can find and follow a safe path during the simulation with
tsim = 600. The video showcases successful animations in
tighter environments, featuring obstacles with side lengths
ranging within [1, 2]. To validate the computation speed at
each time step and success rate of the algorithm, we altered
the number of obstacles and the number of horizon, and set
tsim = 100. We randomly generated the robot’s initial and
target positions in the map, with initial and reference speeds
randomly generated between 10 and 40. Simulation results
in Tab. I indicate that our algorithm’s per-step computation
speed increases with the horizon size, yet it maintains a
relatively fast computation speed (less than 0.2 seconds per
step). This computation speed could be further enhanced
by employing methods such as parallel computing. The
obstacle avoidance success rate based on different numbers
of obstacles was calculated from 50 sets of experiments,
measured > 85%.

2) Avoiding Nonconvex-Shape Dynamic Obstacles: To
show that our proposed algorithm works in a more com-
plicated map, we generate 3 rotating windmills, each with
3 equal-length blades. The size of each blade measures
1 ∗ 7 and the angle between two adjacent blades is 2π

3 .

Num of Obs N = 4 N = 12 N = 20 N = 20
20 0.032s 0.100s 0.180s 98%
30 0.036s 0.105s 0.193s 90%
40 0.042s 0.108s 0.196s 86%

TABLE I: Average computation speed at each time step (the middle
three columns) and success rate (the last column) of the Alg. 1. N
denotes the number of horizon.

We randomly generate the constant translational speed of
the blade’s geometric center within [0, 5], and the constant
rotational speed of the blades is randomly generated within
[0, 6]. The radius of a circular unicycle is 2. Fig. 4 shows
the snapshots. Additional animations are available in the
video, featuring obstacles with rotation speeds ranging within
[0, 12]. In these animations, the robot can always find and
follow a safe path during the simulation with tsim = 600,
even the space allowed for the robot to pass through is often
very narrow.

V. CONCLUSION AND FUTURE WORK

We proposed an iterative convex optimization procedure
using discrete-time control barrier functions for dynamic
obstacle avoidance in grip maps. The proposed formulation
has been shown to be applied as a rapid optimization
for control and planning for general nonlinear dynamical
systems. We validated our approach on navigation problems
with obstacles of varying numbers, speeds, and shapes. There
are still some scenarios the current method can not perfectly
handle, i.e., the future information about dynamic obstacles
in grid maps is unknown to us. We will address this limitation
in future work.

REFERENCES

[1] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53rd IEEE Conference on Decision and Control, 2014, pp. 6271–
6278.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[3] S. Liu, J. Zeng, K. Sreenath, and C. A. Belta, “Iterative convex
optimization for model predictive control with discrete-time high-
order control barrier functions,” in 2023 American Control Conference
(ACC), 2023, pp. 3368–3375.

Fig. 3: Snapshots from simulation of path (blue) and SCP (red polygon) found at specific time step of convex-shape dynamic obstacle
avoidance (colorful squares) with a controlled robot (small red circle). The interval between each snapshot is 50 time steps and N = 20.

Fig. 4: Snapshots from simulation of path (blue) and SCP (red polygon) found at specific time step of nonconvex-shape dynamic obstacle
avoidance (colorful windmills) with a controlled robot (small red circle). The interval between each snapshot is 50 time steps and N = 20.

[4] J. Zeng, Z. Li, and K. Sreenath, “Enhancing feasibility and safety of
nonlinear model predictive control with discrete-time control barrier
functions,” in 2021 60th IEEE Conference on Decision and Control
(CDC), 2021, pp. 6137–6144.

[5] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[6] A. Agrawal and K. Sreenath, “Discrete control barrier functions
for safety-critical control of discrete systems with application to
bipedal robot navigation.” in Robotics: Science and Systems, vol. 13.
Cambridge, MA, USA, 2017.

[7] J. Zeng, B. Zhang, Z. Li, and K. Sreenath, “Safety-critical control
using optimal-decay control barrier function with guaranteed point-
wise feasibility,” in 2021 American Control Conference (ACC), 2021,
pp. 3856–3863.

[8] R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-
layered safety for legged robots via control barrier functions and
model predictive control,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 8352–8358.

[9] H. Ma, X. Zhang, S. E. Li, Z. Lin, Y. Lyu, and S. Zheng, “Fea-
sibility enhancement of constrained receding horizon control using
generalized control barrier function,” in 2021 4th IEEE International
Conference on Industrial Cyber-Physical Systems (ICPS), 2021, pp.
551–557.

[10] Y. Xiong, D.-H. Zhai, M. Tavakoli, and Y. Xia, “Discrete-time control
barrier function: High-order case and adaptive case,” IEEE Transac-
tions on Cybernetics, pp. 1–9, 2022.

[11] S. He, J. Zeng, and K. Sreenath, “Autonomous racing with multiple

vehicles using a parallelized optimization with safety guarantee us-
ing control barrier functions,” in 2022 International Conference on
Robotics and Automation (ICRA), 2022, pp. 3444–3451.

[12] Z. Li, J. Zeng, A. Thirugnanam, and K. Sreenath, “Bridging model-
based safety and model-free reinforcement learning through system
identification of low dimensional linear models,” in Proceedings of
Robotics: Science and Systems, 2022.

[13] G. Paolo, I. Ferrara, and L. Magni, “Mpc for robot manipulators
with integral sliding mode generation,” IEEE/ASME Transactions on
Mechatronics, vol. 22, no. 3, pp. 1299–1307, 2017.

[14] N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “Mpc for
humanoid gait generation: Stability and feasibility,” IEEE Transactions
on Robotics, vol. 36, no. 4, pp. 1171–1188, 2020.

[15] T. D. Son and Q. Nguyen, “Safety-critical control for non-affine
nonlinear systems with application on autonomous vehicle,” in 2019
IEEE 58th Conference on Decision and Control (CDC), 2019, pp.
7623–7628.

[16] J. M. Eklund, J. Sprinkle, and S. S. Sastry, “Switched and symmetric
pursuit/evasion games using online model predictive control with
application to autonomous aircraft,” IEEE Transactions on Control
Systems Technology, vol. 20, no. 3, pp. 604–620, 2012.

[17] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli,
and M. Diehl, “An auto-generated nonlinear mpc algorithm for real-
time obstacle avoidance of ground vehicles,” in 2013 European
Control Conference (ECC), 2013, pp. 4136–4141.

[18] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[19] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based colli-

sion avoidance,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 3, pp. 972–983, 2020.

[20] D. Harabor and A. Grastien, “Online graph pruning for pathfinding
on grid maps,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 25, no. 1, 2011, pp. 1114–1119.

[21] M. Sun and D. Wang, “Initial shift issues on discrete-time iterative

learning control with system relative degree,” IEEE Transactions on
Automatic Control, vol. 48, no. 1, pp. 144–148, 2003.

[22] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

	Introduction
	Motivation
	Related work
	Discrete-Time CBFs
	Model Predictive Control (MPC)
	Path Planning Algorithms

	Contributions

	Preliminaries
	subsec: Discrete-Time High-Order Control Barrier Function (DHOCBF)
	Jump Point Search

	Methodology
	Dynamic Path Planning-Dynamic JPS
	Path Reconstruction
	Linearization of Dynamics
	DHOCBF-Safe Convex Polyhedron
	CFTOC Problem

	Case Study and Simulations
	Numerical Setup
	System Dynamics
	System Configuration
	DHOCBF
	MPC Design
	Convergence Criteria

	Performance
	Avoiding Convex-Shape Dynamic Obstacles
	Avoiding Nonconvex-Shape Dynamic Obstacles

	Conclusion and Future Work
	References

