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Abstract
Automatic ophthalmic disease diagnosis on fun-
dus images is important in clinical practice. How-
ever, due to complex fundus textures and limited
annotated data, developing an effective automatic
method for this problem is still challenging. In
this paper, we present a self-supervised method via
Polar transformation-based progressive Contrastive
learning, called PoCo, for ophthalmic disease di-
agnosis. Specifically, we novelly inject the polar
transformation into contrastive learning to 1) pro-
mote contrastive learning pre-training to be faster
and more stable and 2) naturally capture task-free
and rotation-related textures, which provides in-
sights into disease recognition on fundus images.
Beneficially, simple normal translation-invariant
convolution on transformed images can equiva-
lently replace the complex rotation-invariant and
sector convolution on raw images. After that, we
develop a progressive contrastive learning method
to efficiently utilize large unannotated images and
a novel progressive hard negative sampling scheme
to gradually reduce the negative sample number for
efficient training and performance enhancement.
Extensive experiments on three public ophthalmic
disease datasets show that our PoCo achieves state-
of-the-art performance with good generalization
ability, validating that our method can reduce anno-
tation efforts and provide reliable diagnosis. Codes
link: https://github.com/wjh892521292/PoCo.

1 Introduction
In clinical practice, fundus images are often used to diag-
nose various ophthalmic diseases, including glaucoma, di-
abetic retinopathy (DR) [He et al., 2020a; Li et al., 2019],
age-related macular degeneration (AMD) [Group and others,
2000; Yim et al., 2020], cataract [Zhang et al., 2019], patho-
logical myopia (PM) [Morgan et al., 2012], diabetic mac-
ular edema (DME) [Sahlsten et al., 2019], and more. Re-
cently, automatic computer-aided methods have been applied
to ophthalmic disease diagnosis with fundus images based
on deep learning (DL) [Chen et al., 2015; He et al., 2020a;
Li et al., 2019; Sahlsten et al., 2019; Yim et al., 2020;

Zhang et al., 2019]. However, these DL methods commonly
require a large amount of labeled data for model training. Un-
fortunately, acquiring labeled data is highly expensive due to
the tedious and laborious annotation process, even for experi-
enced doctors. Self-supervised learning (SSL), an advanced
and generic representation learning paradigm, can be used to
tackle this challenge efficiently by first pre-training with un-
labeled data and then fine-tuning for a downstream task with
limited labeled data. Therefore, exploring self-supervised
learning to reduce the labeling cost of fundus images for oph-
thalmic disease diagnosis is of great importance.

In the medical imaging domain, due to the potential of
training with a large amount of unlabeled data, SSL has been
widely used in various types of disease diagnosis (e.g., car-
diac MR image segmentation [Bai et al., 2019], nodule de-
tection [Tajbakhsh et al., 2019], and brain hemorrhage classi-
fication [Zhuang et al., 2019]). For ophthalmic disease diag-
nosis, as contrastive learning (CL, a type of SSL) in recent
years showed powerful representation capabilities in self-
supervised unlabeled training, more CL methods were devel-
oped. Li et al. [Li et al., 2020] applied CL to multi-modal
fundus images for retinal disease diagnosis. Li et al. [Li et
al., 2021] devised a rotation-oriented collaborative method
including a rotation prediction task and a multi-instance dis-
crimination CL task for retinal disease diagnosis. But, these
methods did not consider the specificity of ophthalmic dis-
ease analysis on fundus images. For example, the features
used for diagnosis are usually annular (e.g., vessel structures),
which are different from natural images. How to better ex-
tract such annular texture features is a key problem. Worse,
known CL methods also neglect negative sample selection
(especially hard samples), which could hinder model perfor-
mance considerably.

To address these issues, in this paper, we present a new
SSL approach via Polar transformation-based progressive
Contrast learning, called PoCo, for ophthalmic disease di-
agnosis on fundus images. Specifically, we propose to in-
ject polar transformation into the contrastive learning pre-
training process. The polar transformation is used to trans-
form raw fundus images to the polar coordinate system. Af-
ter this process, the rotation-invariance of the raw images is
equivalent to the translation-invariance of the transformed im-
ages, while the shape of convolution scanning is equivalently
transformed from square to sector. Thus, by polar transfor-
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Figure 1: An overview of our PoCo architecture. PoCo inputs n raw fundus images in one mini-batch, and performs random data augmentation
twice on each of these images to generate positive pairs. Then polar transformation is applied to the augmented views of the images to generate
transformed images. The transformed images are fed to a backbone CNN to extract high-dimensional feature vectors, which are used for the
first contrastive loss calculation. Via two FC layers, the feature vectors reduce their dimensions and are used to calculate the second and third
contrastive losses with a hard negative sampling strategy. Finally, the low-dimensional features learned by PoCo are used for ophthalmic
disease classification by fine-tuning the FC layers.

mation, rotation-invariant and annular features can be bet-
ter extracted for reliable ophthalmic disease analysis. And
interestingly, we find that polar transformation can promote
contrastive learning pre-training to be faster and more stable.
Further, we develop a progressive contrastive learning (PCL)
method based on a novel progressive hard negative sampling
(PHNS). PHNS removes part of negative samples and retains
only some hard ones for PCL, with which the computation
costs are reduced and hard negative samples are better distin-
guished to improve the training efficiency and performance.

Our main contributions are as follows.

• We propose a novel SSL method via polar
transformation-based progressive contrastive learn-
ing for automatic ophthalmic disease diagnosis on
fundus images. Our method reduces labeling effort by
pre-training on unlabeled data.

• We propose to inject the polar transformation into con-
trastive learning to enhance the contrastive learning pro-
cess and better extract rotation-invariant and rotation-
related features for downstream tasks.

• We develop a progressive contrastive learning method to
gradually reduce the negative sample number with a new
progressive hard negative sampling for efficient training
and performance improvement.

• We conduct extensive experiments on three public
datasets to verify the superiority of our PoCo over state-
of-the-art CL methods in various metrics.

2 Related Work
2.1 Polar Transformation
Polar Transformation aims to convert an image from the
Cartesian coordinates system to the polar coordinates sys-
tem. It has been applied in many areas for transforming fea-
ture distributions to simplify specific tasks, such as modu-
lation classification [Ghasemzadeh et al., 2020], and tropi-
cal cyclone analysis [chen2021cnn et al., 2021]. It is widely
used especially in medical image analysis since the focal fea-
tures of some diseases are more easily extracted after po-
lar transformation, like brain segmentation [Alakuijala et al.,
1992], disc segmentation [Fu et al., 2018], and glaucoma
classification [Lee et al., 2019], etc. In ophthalmic dis-
ease, since the shape of the pupil is a circle, the polar trans-
formation can transform some annular into rectangular fea-
tures to facilitate CNN network extraction [Hu et al., 2023;
Fu et al., 2018]. Motivated by this, we explore utilizing polar
transformation to solve a series of ophthalmic disease analy-
sis tasks. Different from previous studies using polar trans-
formation directly for feature extraction and classification in
specific tasks, we mainly propose the application of polar
transformation in contrastive learning for task-free, faster and
more stable pre-training, and can better solve any downstream
tasks of ophthalmic disease diagnosis.

2.2 Contrastive Learning
Contrastive learning (CL), as a type of self-supervised learn-
ing, has demonstrated the potential of similarity learning



Figure 2: Illustrating the pixel mapping from the Cartesian coordinate system (a) to the polar coordinate system (b) by using the polar
transformation. (c)-(d) A convolution kernel working on Cartesian coordinates and polar coordinates, respectively.

frameworks for both representation learning and downstream
tasks. The goal of CL is to maximize (minimize) similarities
of positive (negative) pairs at the instance level. The positive
pair is only built by two correlated views of the same instance
in general and the other data pairs are negative. A popular loss
function is InfoNCE loss [Oord et al., 2018], which can pull
together two data augmentation views from the same exam-
ple and push away the other negative examples. MoCo [He
et al., 2020b] proposes a memory queue to store the consis-
tent representations. SimCLR [Chen et al., 2020] optimizes
InfoNCE within a mini-batch and has found some effective
training tricks, e.g., data augmentation.

In the ophthalmic disease diagnosis domain, Li et al. [Li
et al., 2020] applied CL to multi-modal fundus images for
retinal disease diagnosis. Li et al. [Li et al., 2021] devised
a rotation-oriented collaborative method including a rotation
prediction task and a multi-instance discrimination CL task
for retinal disease diagnosis. But, these methods did not con-
sider the specificity of ophthalmic disease analysis on fun-
dus images. For example, the features used for diagnosis are
usually annular (e.g., vessel structures), which are different
from natural images. How to utilize these characteristics to
enhance the effectiveness of CL is worth exploring. On the
other hand, known methods also overlook that the negative
hard samples could hinder the efficiency of CL pre-training
and degrade the fine-tuning performance.

3 Method
Fig. 1 gives an overview of our proposed PoCo for ophthalmic
disease diagnosis on fundus images. Like most CL methods,
our main work aims to learn representations by maximizing
agreement between differently augmented views of the same
data samples via contrastive losses in the latent space. First,
in each mini-batch, we sample n fundus images from the
training dataset, S = {xi}ni=1, and for each image xi, apply
random data augmentation (for the augmentation operation
types, see the paragraph of Implementation Details in Other
Details) twice to generate two images qi and ki, where qi and
ki are different and considered as a positive pair. Then, we
apply a polar transformation to qi and ki, converting Carte-
sian coordinates to polar coordinates. Each transformed im-
age is fed to a CNN network to obtain a high-dimensional
feature vector f . Then, during the process of the feature vec-
tor f being further compressed into a lower dimensional space
by fully connected (FC) layers, we perform progressive con-

trastive learning with a novel progressive negative sampling
strategy for efficient self-supervised training. The feature f is
decoupled to fq and fk for contrastive loss calculations. After
that, the low-dimensional features learned by PoCo are used
for ophthalmic disease diagnosis by fine-tuning the FC layers.
Below we will elaborate on the polar transformation, progres-
sive contrastive learning, and other details of our model.

3.1 Polar Transformation (PoT)
To better capture rotation-invariant representations for oph-
thalmic disease diagnosis, we propose to apply a pixel-wise
polar transformation that transforms raw fundus images to the
polar coordinate system. As shown in Fig. 2(a), let p(x, y)
denote the Cartesian coordinates of a pixel p in a raw fundus
image, and the center pixel o(x0, y0) of the image be at the
origin of the Cartesian coordinate system. The correspond-
ing pixel of p in the polar coordinate system is p′(r, θ) (see
Fig. 2(b)), where r and θ are the radius and directional angle
of the pixel p in the raw image, respectively. We formulate
the transformation relation between the Cartesian coordinates
and polar coordinates as follows:
{

x = r cos θ
y = r sin θ

⇔
{

r =
√

(x− x0)2 + (y − y0)2,
θ = tan−1(y − y0)/(x− x0).

(1)

Further, in order to retain the same size as the raw images
(H,W ), we set the sampling distance d along the radius rmax

and the sampling angle ω as follows:

d =
rmax

H
, ω =

360

W
, (2)

where H and W are the height and width of the raw images,
respectively. For rmax, we do not refer to the default set-
ting where rmax =

√
H2 +W 2. Instead, we set rmax = W

2
since we only need the retina area which is the middle cir-
cular part of a fundus image. The polar transformation pro-
vides a pixel-wise representation of a raw image in the po-
lar coordinate system, which offers three benefits. (1) Spa-
tial constraint: As mentioned above, the polar transformation
extracts only the retina area to retain key information of the
raw image and remove the useless black area around the cor-
ners. (2) Equivalent augmentation: The polar transformation
is helpful for the model to efficiently learn rotation-invariant
features of the raw image since it also transforms the rotation-
invariance to the translation-invariance. That is, rotating raw
images is equivalent to the drift transformation on the images



in polar coordinates. But, rotating raw images by an arbitrary
angle is difficult while translation of images after the polar
transformation is simple. (3) Sector-shaped convolution: It
is difficult to directly perform sector convolution on raw im-
ages, while our polar transformation is a much simpler way to
transform the scanning of a convolution kernel from a square
to a sector, as shown in Fig. 2(c) and Fig. 2(d). That is, the
normal convolution on the transformed images is equivalent
to sector-shaped convolution on the raw images. For exam-
ple, sector-shaped convolution can highlight the annular mor-
phology of the main blood vessels to better capture annular
features for ophthalmic disease analysis.

3.2 Progressive contrastive Learning (PCL)
To better learn the latent representation of fundus images and
identify hard samples, we propose PCL to perform multi-
stage contrastive learning on different dimensional features
with a gradually refining negative sampling scheme. As
shown in Fig. 1, after extracting features of an image by the
CNN backbone (e.g., ResNet18 [He et al., 2016]), the ob-
tained feature vector will be fed to the first contrastive loss
calculation. Via another two FC layers, the obtained feature
vector further reduces the dimensions and is then fed to the
second and third contrastive loss calculation with the progres-
sive hard negative sample mining strategy. In this progressive
process, as the dimensions of the feature vector gradually de-
crease, the number of negative samples decreases correspond-
ingly. The details are given below.
Contrastive Loss. Contrastive learning aims to find the
transformation-invariant representation based on the key hy-
pothesis that for each image xi, different data-augmented
views of xi should be invariant in the latent feature space.
In Fig. 1, fq,i and fk,i denote the features of the augmented
views q̂i and k̂i, respectively. We expect that fq,i should be
similar to fk,i in a high-dimensional feature space. Formally,
we define the probability of each positive pair fq,i and fk,i
being recognized as augmented from the same raw image as:

P (fq,i|fk,i)

=
exp (sim (fq,i, fk,i) /τ)

exp (sim (fq,i, fk,i) /τ) +
∑

j∈S−
exp (sim (fq,i, fk,j) /τ)

,

(3)
where τ is a scalar temperature parameter, sim(fq,i, fk,i) =
fTq,ifk,i/∥fq,i∥∥fk,i∥ denotes the cosine similarity between fq,i
and fk,i, and S−

t denotes the negative sample set for the t-th
contrastive loss. Our goal is to increase the probability of
positive sample pairs’ matching and decrease the probability
of negative sample pairs’ matching. Thus, the final objective
is to minimize the sum of the negative log-likelihood over
all the images within a mini-batch, where the t-th contrastive
loss Lcon,t can be formulated as:

Lcon,t = −
n∑

i=1

logP (fq,i|fk,i)−
n∑

i=1

∑

j∈S−
t

log (1− P (fq,i|fk,j)) .

(4)
It can be seen that Eq. (3) is formally equivalent to the Soft-

max function, through the loss function in Eq. (4). The model

Method AUC Accuracy Recall Precision F1-score
ResNet18 76.1 82.0 71.1 62.4 64.9
SCL 80.5 84.2 78.8 65.6 68.6
SimCLR 77.3 83.0 73.5 63.7 66.2
LBCL 79.3 83.2 76.0 64.4 67.5
FundusNet 80.3 84.0 78.6 64.7 67.7
SimCLR-DR 80.0 83.5 78.6 64.5 67.6
PoCo (ours) 82.0 85.5 80.6 70.4 72.3

Table 1: Results of different methods obtained by pre-training on the
Kaggle-DR dataset and fine-tuning on the Kaggle-DR dataset (%).

is designed to push “negative pairs” apart and pull “positive
pairs” together, therefore learning the similarities of paired
samples and the specificity of unpaired samples.
Progressive Hard Sample Mining. Hard sample mining
aims to better distinguish the negative samples that are simi-
lar to positive samples (the “hard” negative samples). In our
PCL process, we hypothesize that hard negative samples are
gradually reduced due to some hard negative samples being
preliminarily discriminated in the early stage of contrastive
learning. Thus, we design a progressive hard negative sam-
pling strategy in the later contrastive learning stage that re-
duces the size of the negative sample set S− by retaining only
n′ (n′ < n) hard samples that are still similar to the positive
samples. For example, in the first contrastive loss calcula-
tion, S− contains n − 1 negative samples (all the samples in
a mini-batch except for the positive sample), but in the sec-
ond and third contrastive loss calculation, S− contains only
n/2− 1 and n/4− 1 negative samples, respectively. The cri-
terion for the negative samples to be selected as hard samples
is to have the largest cosine similarity value to the positive
sample. To determine the best possible negative sample num-
ber n′, we conduct experiments that explore the detailed in-
fluence of different n′ values for the progressive contrastive
learning performance in Paragraph 1 of Section Analysis.

Like most known contrastive learning methods, our PoCo
is a self-supervised pre-trained method that can learn a deep
representation of images without any annotation, thus effec-
tively reducing annotation effort. Moreover, our PoCo is bet-
ter at mining hard samples that are indistinguishable and effi-
ciently reduces computation costs by gradually reducing the
number of negative samples.

3.3 Other Details
Loss Function. For the self-supervised pre-training stage, the
total objective is the sum of the three progressive contrastive
losses, defined as:

Ltot = Lcon,1 + Lcon,2 + Lcon,3. (5)

In the fine-tuning stage, we use Cross-Entropy loss to train
only the FC layers.
Implementation Details. Our framework is built on Py-
Torch, and the experiments are conducted on an NVIDIA
GTX 3090 GPU. For data augmentation, we resize and ran-
domly crop images into patches of size 224 × 224. Following
previous methods [Li et al., 2021; Cai et al., 2022], we apply
random horizontal flipping with a probability of 0.5 and ran-
dom grayscaling with a probability of 0.2. Also, the bright-
ness, contrastive, and saturation of images are changed with
a random value chosen uniformly from [0.6, 1.4]. For the



Method Ichallenge-AMD Ichallenge-PM
AUC Accuracy Precision Recall F1-score AUC Accuracy Precision Recall F1-score

ResNet18 (baseline) 76.51 84.16 82.54 76.18 78.86 96.01 95.45 94.51 97.25 95.34
SimCLR [Chen et al., 2020] 77.19 87.09 82.98 77.82 79.27 98.04 97.66 97.30 98.04 97.53

Invariant [Ye et al., 2019] 81.62 87.51 81.92 81.62 81.35 98.02 97.84 97.56 98.02 97.75
Multi-modal [Li et al., 2020] 83.17 89.37 85.71 83.17 83.67 98.41 98.38 98.31 98.41 98.33

Li et al. [Li et al., 2021] 84.97 90.10 86.11 84.97 85.27 99.12 99.19 99.27 99.12 99.18
Uni4Eye [Cai et al., 2022] 85.85 90.45 86.44 85.85 86.14 98.53 98.24 97.90 98.53 98.18
LaCL [Cheng et al., 2023] 86.08 90.60 86.52 86.08 86.33 98.65 98.40 98.00 98.69 98.32

PoCo (ours) 88.30 92.25 86.53 87.70 88.04 99.87 99.25 99.23 99.87 99.27

Table 2: Results of different methods obtained by pre-training on the Kaggle-DR dataset and fine-tuning on the Ichallege-AMD or Ichallenge-
PM dataset (%).

Method PoT PCL AUC Accuracy Precision Recall F1-score
Baseline 81.62 87.51 81.92 81.62 81.35

PoCo ✓ 86.39 90.00 85.65 86.39 85.58
PoCo ✓ 86.52 90.24 85.73 86.52 85.90
PoCo ✓ ✓ 88.30 92.25 86.53 88.30 88.04

Table 3: Ablation study on the Ichallege-AMD dataset (%). PoT = Polar Transformation; PCL = Progressive contrastive Learning.

network architecture details, following the setting of the pre-
vious methods [Ye et al., 2019; Li et al., 2021], we choose
ResNet18 [He et al., 2016] as the backbone of our network.
The first and second FC layers reduce feature dimensions
from 512 to 256 and from 256 to 128, respectively. The tem-
perature τ in Eq. (3) is 0.5. The network is trained with the
Adam optimizer [Kingma and Ba, 2014] with weight decay =
0.0001 and an initial learning rate = 0.0001. The batch size is
set as 64, and thus the number of negative samples is 63, 31,
and 15 for the 1st, 2nd, and 3rd contrastive losses.

4 Experiments
Datasets. We evaluate the performance of our PoCo
approach using three public ophthalmic disease datasets:
Kaggle-DR1, Ichallenge-AMD2 [Fu et al., 2020] and
Ichallenge-PM3 [Huazhu et al., 2019]. The details of these
datasets are given as follows.

• Kaggle-DR: The Kaggle-DR dataset is used for dia-
betic retinopathy grading, which contains 35,126 high-
resolution fundus images. In this dataset, images were
annotated in five levels of diabetic retinopathy from 1
to 5, representing no DR (25,810 images), mild DR
(2,443 images), moderate DR (5,292 images), severe
DR (873 images), and proliferative DR (708 images),
respectively. This is a five-class classification task to
grade the DR level that a patient has. When pre-training,
all samples are used without annotations. When fine-
tuning, we spilt the dataset into 6:2:2 for training, vali-
dation and test sets.

• Ichallenge-AMD: The Ichallenge-AMD dataset is used
for age-related macular degeneration (AMD) detection
(binary classification task), which contains 1200 anno-
tated retinal fundus images from both non-AMD sub-
jects (77%) and AMD patients (23%). The training, val-
idation, and test sets each have 400 fundus images.

1https://www.kaggle.com/c/diabetic-retinopathy-detection
2http://ai.baidu.com/broad/introduction?dataset=amd
3http://ai.baidu.com/broad/introduction?dataset=pm

• Ichallenge-PM: The Ichallenge-PM dataset is used for
pathological myopia (PM) detection (binary classifica-
tion task), which contains 1200 annotated color fun-
dus images with labels, including both PM and non-PM
cases. All the photos were captured with Zeiss Visucam
500. The training, validation, and test sets each have 400
fundus images.

We first train our PoCo on the Kaggle-DR dataset without
annotated labels, then fine-tune PoCo on all three datasets.
More details of these datasets and the experimental settings
are given in the Supplementary Material.
Metrics. We evaluate classification performance using the
metrics of Accuracy, Precision, Recall, F1-score, and AUC.
AUC stands for the area under the receiver operating char-
acteristic (ROC) curve, which measures the entire two-
dimensional area underneath the entire ROC curve. ROC
curve is a graphical plot that shows the diagnostic capacity
of a binary classifier.
Performance on Kaggle-DR dataset. We first evaluate the
performance of our PoCo on the Kaggle-DR dataset and make
comparisons with other self-supervised contrastive learning
methods for diabetic retinopathy grading. For fair com-
parison, all the models are first pre-trained on the Kaggle-
DR dataset, and then fine-tuned on the Kaggle-DR dataset.
ResNet18 denotes the supervised ResNet18 model which is
the baseline model. SCL [Feng et al., 2022] proposes su-
pervised contrastive learning for diabetic retinopathy grad-
ing. Unlike our self-supervised contrastive learning, SCL
utilizes ground-truths during contrastive learning pretraining.
SimCLR [Chen et al., 2020] is the classic contrastive learn-
ing method and is the contrastive learning baseline. Huang
et.al [Huang et al., 2021] proposes a lesion-based contrastive
Learning (LBCL) for diabetic retinopathy grading. Fundus-
Net [Alam et al., 2023] applies neural style transfer to im-
prove the performance of contrastive learning for diabetic
retinopathy grading. SimCLR-DR [Ouyang et al., 2023] sim-
ply applies SimCLR with knowledge transfer learning for di-
abetic retinopathy early detection. The comparison results
are in Table 1. It can be observed that the SCL outperforms
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n′ values for each stage AUC Accuracy Precision Recall F1-score1st Stage 2nd Stage 3rd Stage
63 - - 86.39 90.00 85.65 86.39 85.58
63 63 63 87.25 90.50 86.30 87.25 86.47
63 31 15 88.30 92.25 86.53 88.30 88.04
63 15 3 87.70 91.50 86.48 87.70 86.94
63 7 1 87.43 90.50 86.32 87.43 86.65

Table 4: The performance of PoCo with different values of the negative sample number n′ for each stage on the Ichallenge-AMD dataset (%).

the baseline (ResNet18) model obviously since the super-
vised contrastive learning pre-training applied in SCL makes
full use of the label’s category information, but still depends
on label annotations. Compared to SCL, although the self-
supervised contrastive learning methods (including SimCLR,
LBCL, FundusNet and SimCLR-DR) perform not as well
as SCL, they still exceed the baseline model, and their pre-
training process does not require annotations, which effec-
tively saves the annotation cost. Compared to the state-of-
the-art (SOTA) self-supervised contrastive learning methods
FundusNet, our PoCo achieves great performance improve-
ments of 1.7% in AUC, 1.5% in Accuracy, 2% in Recall, 5.7%
in Precision and 4.6% in F1-score, which validates the effec-
tiveness of our proposed PoCo. Moreover, our PoCo outper-
forms the supervised method SCL by 1.3% to 4.8% in various
metrics, which further demonstrates the superiority of PoCo.

Performance on Fine-tuning Generalization. To validate
the universal diagnosis capability and transfer generaliza-
tion of our PoCo, we compare our PoCo with state-of-the-
art (SOTA) self-supervised contrastive learning methods on
fine-tuning performance on the other two ophthalmic disease
datasets. For fair comparisons, all the models are first pre-
trained on the Kaggle-DR dataset, and then fine-tuned on the
Ichallenge-AMD and Ichallenge-PM datasets. ResNet18 de-
notes the supervised ResNet18 model. As shown in Table 2,
SimCLR [Chen et al., 2020] and Invariant [Ye et al., 2019]
yield limited performance. This is probably because the em-
ployed heavy data augmentations may not be very suitable
for fundus images. The multi-modal method [Li et al., 2020]
introduces additional modal information for self-supervision
and gains much improvement. Li et al. [Li et al., 2021] ob-
tained better results since they attempted to learn rotation-
related features of fundus images. Uni4Eye [Cai et al., 2022]
unifies 2D and 3D images for self-supervision and achieves

SOTA performance. Although these known contrastive learn-
ing methods are beneficial in improving classification perfor-
mance, it is observed that our proposed PoCo outperforms
these SOTA methods and the supervised ResNet18 model, at-
taining improvements of 2.45% in AUC, 1.8% in Accuracy,
and 1.9% in F1-score on the Ichallenge-AMD dataset. On the
Ichallenge-PM dataset, our method outperforms the SOTA
methods in AUC by 0.75%, Accuracy by 0.06%, and F1-score
by 0.09%. As all methods obtain very high performance on
the PM classification task, it is very challenging to make even
a little improvement on the PM dataset. This demonstrates
the superiority of PoCo in self-supervised contrastive learn-
ing on universal ophthalmic disease diagnosis and suggests
the potential of our method on reducing annotation effort and
providing reliable diagnosis.

Ablation Study. Next, we conduct an ablation study to val-
idate the effect of each key component in our method. We
only report the results of the Ichallenge-AMD dataset in Ta-
ble 3. Other results are in the Supplementary Material. We
observe similar tendencies on all datasets. The baseline ap-
plies only data augmentations without polar transformation,
and calculates one contrastive loss after the final FC layer.
Compared to the baseline, the PoCo with the proposed polar
transformation largely improves the performance by 2.49%
to 4.77% in various metrics, validating the effectiveness of
the polar transformation for rotation-related feature extrac-
tion and can enhance contrastive learning to improve down-
stream task performance. The PoCo version that applies
only PCL also obtains improvement, showing that progres-
sive contrastive learning with progressive hard negative sam-
pling is beneficial to distinguishing hard samples and im-
proves contrastive learning performance. Moreover, by ap-
plying both polar transformation and PCL, the whole PoCo
version further achieves higher performance, which demon-



Figure 4: Visualization of CAM examples of AMD (a) and PM (b) images.

Figure 5: The contrastive loss learning curves of the PoCo with and
without the PoT.

strates the superiority of our method and the effects of its
components.

4.1 Analysis
Visualization of hard negative sampling hypothesis. To
validate our hypothesis that the number of negative samples
gradually decreases, we visualize the spatial distribution of
positive and negative samples by t-SNE at each stage, as
shown in Fig. 3. It is obvious that positive samples are in
the center of the latent space at first, and there are many simi-
lar samples (hard negative samples) nearby. After progressive
contrastive learning, positive samples gradually move to the
edge of the latent space, and the nearby similar samples (hard
negative samples) are gradually reduced, which makes posi-
tive samples easier to distinguish.
Do the different negative sample numbers resulting differ-
ent performances? To explore the best Hard Negative Sam-
pling settings, we conduct experiments on our PoCo with dif-
ferent values of the negative sample number n′ for each stage.
Table 4 shows the results, from which several observations
can be drawn. (1) The PoCo version with multi-stage cas-
cade contrast learning performs better than the PoCo version
with only one-stage contrast learning. This demonstrates the
effectiveness of our proposed cascade contrast learning. (2)
The PoCo version with different negative sample numbers in
the three stages outperforms the PoCo version with the same
number of negative samples in the three stages, validating that
the performance promotion comes mainly from our cascade
sampling strategy based on hard negative sample mining. (3)
Our proposed PoCo achieves the best performance with the
n′ numbers of 63, 31, and 15 for stages 1, 2, and 3, respec-
tively. This illustrates that PoCo is sensitive to the numbers of
negative samples in the three stages, and prefers a moderate

rate of negative sample number decrease. The results on the
other two datasets are reported in Supplementary Material.
Does the PoCo capture the annular features? To further
explain whether PoCo captures the annular features for dis-
ease analysis, we visualize some class activation mapping
(CAM) examples of our PoCo with and without polar trans-
formation. As shown in Fig. 4, the model without polar trans-
formation extracts the discrete block area of lesions but the
capture of the annular lesions is not very good. By apply-
ing the polar transformation, PoCo can better capture annular
features (e.g., optic disc and blood vessels) that help accu-
rate ophthalmic disease diagnosis, demonstrating the effec-
tiveness of polar transformation-based contrastive learning in
rotation-related feature extraction.
How does the Polar Transformation affect the model’s
performance? To further show the detail of why polar trans-
formation can improve the model performance, we plot the
learning curves of the total contrastive loss of the PoCo with
and without polar transformation in Fig. 5. It can be seen that
the PoCo with polar transformation has a more stable learn-
ing curve and achieves faster convergence, which we think is
because polar transformation can highlight important features
to reduce the fitting difficulty of contrast learning. Since the
polar transformation can promote the contrastive learning of
the model to be more stable and faster, the fine-tuning process
can benefit from it to achieve better results.

5 Conclusions
In this paper, we proposed a novel SSL framework, called
PoCo, for ophthalmic disease diagnosis on fundus images.
Our key idea is to better capture fundus textures and learn
latent invariant features in a faster and more stable way by
polar transformation based progressive contrastive learning.
The polar transformation extracts rotation-related features
and helps the contrastive learning process to be more effi-
cient. Further, progressive contrastive learning helps effi-
ciently explore the transformation-invariance of different fun-
dus images in the latent feature space by a progressive hard
negative sampling strategy. Extensive experiments validated
that our PoCo achieves state-of-the-art self-supervised perfor-
mance and showed the potential of our method on reducing
annotation effort and providing reliable diagnosis.

In the near future, we will expand our approach to other
retinal diseases to show the universal diagnosis capability of
PoCo on most ophthalmic diseases. Moreover, we will not
only apply our method for classification but also other differ-
ent tasks including object detection and segmentation.



References
[Alakuijala et al., 1992] J. Alakuijala, J. Oikarinen,

Y. Louhisalmi, X. Ying, and J. Koivukangas. Image
transformation from polar to cartesian coordinates sim-
plifies the segmentation of brain images. In 1992 14th
Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, volume 5, pages
1918–1919, 1992.

[Alam et al., 2023] Minhaj Nur Alam, Rikiya Yamashita,
Vignav Ramesh, Tejas Prabhune, Jennifer I Lim, Robi-
son Vernon Paul Chan, Joelle Hallak, Theodore Leng,
and Daniel Rubin. Contrastive learning-based pretrain-
ing improves representation and transferability of dia-
betic retinopathy classification models. Scientific Reports,
13(1):6047, 2023.

[Bai et al., 2019] Wenjia Bai, Chen Chen, Giacomo Tarroni,
Jinming Duan, Florian Guitton, Steffen E Petersen, Yike
Guo, Paul M Matthews, and Daniel Rueckert. Self-
supervised learning for cardiac MR image segmentation
by anatomical position prediction. In Medical Image
Computing and Computer Assisted Intervention–MICCAI
2019: 22nd International Conference, Shenzhen, China,
October 13–17, 2019, Proceedings, Part II 22, pages 541–
549. Springer, 2019.

[Cai et al., 2022] Zhiyuan Cai, Li Lin, Huaqing He, and
Xiaoying Tang. Uni4Eye: Unified 2D and 3D self-
supervised pre-training via masked image modeling Trans-
former for ophthalmic image classification. In Medical
Image Computing and Computer Assisted Intervention–
MICCAI 2022: 25th International Conference, Singapore,
September 18–22, 2022, Proceedings, Part VIII, pages 88–
98. Springer, 2022.

[Chen et al., 2015] Xiangyu Chen, Yanwu Xu, Damon
Wing Kee Wong, Tien Yin Wong, and Jiang Liu. Glau-
coma detection based on deep convolutional neural net-
work. In 2015 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society
(EMBC), pages 715–718. IEEE, 2015.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Inter-
national Conference on Machine Learning, pages 1597–
1607. PMLR, 2020.

[chen2021cnn et al., 2021] Boyo chen2021cnn, Buo-Fu
Chen, and Chun Min Hsiao. Cnn profiler on polar
coordinate images for tropical cyclone structure analysis.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 991–998, 2021.

[Cheng et al., 2023] Shuai Cheng, Qingshan Hou, Peng Cao,
Jinzhu Yang, Xiaoli Liu, and Osmar R Zaiane. Lesion-
aware contrastive learning for diabetic retinopathy diagno-
sis. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 671–
681. Springer, 2023.

[Feng et al., 2022] Xinxing Feng, Shuai Zhang, Long Xu,
Xin Huang, and Yanyan Chen. Robust classification model

for diabetic retinopathy based on the contrastive learning
method with a convolutional neural network. Applied Sci-
ences, 12(23):12071, 2022.

[Fu et al., 2018] Huazhu Fu, Jun Cheng, Yanwu Xu, Damon
Wing Kee Wong, Jiang Liu, and Xiaochun Cao. Joint op-
tic disc and cup segmentation based on multi-label deep
network and polar transformation. IEEE transactions on
medical imaging, 37(7):1597–1605, 2018.

[Fu et al., 2020] H Fu, F Li, JI Orlando, H Bogunovic,
X Sun, J Liao, Y Xu, S Zhang, and X Zhang. Adam:
Automatic detection challenge on age-related macular de-
generation. IEEE Dataport, 2020.

[Ghasemzadeh et al., 2020] Pejman Ghasemzadeh, Sub-
harthi Banerjee, Michael Hempel, and Hamid Sharif. A
novel deep learning and polar transformation framework
for an adaptive automatic modulation classification. IEEE
Transactions on Vehicular Technology, 69(11):13243–
13258, 2020.

[Group and others, 2000] Age-Related Eye Disease
Study Research Group et al. Risk factors associated
with age-related macular degeneration: A case-control
study in the age-related eye disease study: Age-related
eye disease study report number 3. Ophthalmology,
107(12):2224–2232, 2000.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778,
2016.

[He et al., 2020a] Along He, Tao Li, Ning Li, Kai Wang, and
Huazhu Fu. CABNet: Category attention block for imbal-
anced diabetic retinopathy grading. IEEE Transactions on
Medical Imaging, 40(1):143–153, 2020.

[He et al., 2020b] Kaiming He, Haoqi Fan, Yuxin Wu, Sain-
ing Xie, and Ross Girshick. Momentum contrast for un-
supervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9729–9738, 2020.

[Hu et al., 2023] Xiaoyan Hu, Ling-Xiao Zhang, Lin Gao,
Weiwei Dai, Xiaoguang Han, Yu-Kun Lai, and Yiqiang
Chen. Glim-net: chronic glaucoma forecast transformer
for irregularly sampled sequential fundus images. IEEE
Transactions on Medical Imaging, 2023.

[Huang et al., 2021] Yijin Huang, Li Lin, Pujin Cheng, Jun-
yan Lyu, and Xiaoying Tang. Lesion-based contrastive
learning for diabetic retinopathy grading from fundus im-
ages. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Confer-
ence, Strasbourg, France, September 27–October 1, 2021,
Proceedings, Part II 24, pages 113–123. Springer, 2021.

[Huazhu et al., 2019] F Huazhu, L Fei, and IO José. PALM:
PAthoLogic Myopia Challenge. Comput. Vis. Med. Imag-
ing, 2019.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.



[Lee et al., 2019] Jinho Lee, Youngwoo Kim, Jong Hyo
Kim, and Ki Ho Park. Screening glaucoma with red-free
fundus photography using deep learning classifier and po-
lar transformation. Journal of Glaucoma, 28(3):258–264,
2019.

[Li et al., 2019] Xiaomeng Li, Xiaowei Hu, Lequan Yu, Lei
Zhu, Chi-Wing Fu, and Pheng-Ann Heng. CANet: Cross-
disease attention network for joint diabetic retinopathy and
diabetic macular edema grading. IEEE Transactions on
Medical Imaging, 39(5):1483–1493, 2019.

[Li et al., 2020] Xiaomeng Li, Mengyu Jia, Md Tauhidul Is-
lam, Lequan Yu, and Lei Xing. Self-supervised feature
learning via exploiting multi-modal data for retinal dis-
ease diagnosis. IEEE Transactions on Medical Imaging,
39(12):4023–4033, 2020.

[Li et al., 2021] Xiaomeng Li, Xiaowei Hu, Xiaojuan Qi,
Lequan Yu, Wei Zhao, Pheng-Ann Heng, and Lei Xing.
Rotation-oriented collaborative self-supervised learning
for retinal disease diagnosis. IEEE Transactions on Medi-
cal Imaging, 40(9):2284–2294, 2021.

[Morgan et al., 2012] Ian G Morgan, Kyoko Ohno-
Matsui, and Seang-Mei Saw. Myopia. The Lancet,
379(9827):1739–1748, 2012.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[Ouyang et al., 2023] Jihong Ouyang, Dong Mao, Zeqi Guo,
Siguang Liu, Dong Xu, and Wenting Wang. Contrastive
self-supervised learning for diabetic retinopathy early de-
tection. Medical & Biological Engineering & Computing,
pages 1–12, 2023.

[Sahlsten et al., 2019] Jaakko Sahlsten, Joel Jaskari, Jyri
Kivinen, Lauri Turunen, Esa Jaanio, Kustaa Hietala, and
Kimmo Kaski. Deep learning fundus image analysis for
diabetic retinopathy and macular edema grading. Scien-
tific Reports, 9(1):10750, 2019.

[Tajbakhsh et al., 2019] Nima Tajbakhsh, Yufei Hu, Junli
Cao, Xingjian Yan, Yi Xiao, Yong Lu, Jianming Liang,
Demetri Terzopoulos, and Xiaowei Ding. Surrogate super-
vision for medical image analysis: Effective deep learning
from limited quantities of labeled data. In 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI
2019), pages 1251–1255. IEEE, 2019.

[Ye et al., 2019] Mang Ye, Xu Zhang, Pong C Yuen, and
Shih-Fu Chang. Unsupervised embedding learning via in-
variant and spreading instance feature. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6210–6219, 2019.

[Yim et al., 2020] Jason Yim, Reena Chopra, Terry Spitz,
Jim Winkens, Annette Obika, Christopher Kelly, Harry
Askham, Marko Lukic, Josef Huemer, Katrin Fasler, et al.
Predicting conversion to wet age-related macular degener-
ation using deep learning. Nature Medicine, 26(6):892–
899, 2020.

[Zhang et al., 2019] Hongyan Zhang, Kai Niu, Yanmin
Xiong, Weihua Yang, ZhiQiang He, and Hongxin Song.
Automatic cataract grading methods based on deep learn-
ing. Computer Methods and Programs in Biomedicine,
182:104978, 2019.

[Zhuang et al., 2019] Xinrui Zhuang, Yuexiang Li, Yifan
Hu, Kai Ma, Yujiu Yang, and Yefeng Zheng. Self-
supervised feature learning for 3D medical images by
playing a Rubik’s cube. In Medical Image Computing and
Computer Assisted Intervention–MICCAI 2019: 22nd In-
ternational Conference, Shenzhen, China, October 13–17,
2019, Proceedings, Part IV 22, pages 420–428. Springer,
2019.



Supplemental Document for Submission #166:
“PoCo: A Self-Supervised Approach via Polar
Transformation Based Progressive Contrastive
Learning for Ophthalmic Disease Diagnosis”

No Author Given

No Institute Given

1 Dataset Details and Experimental Settings

1.1 Kaggle-DR Dataset

Fig. 1. Some sample fundus images with different diabetic retinopathy levels of the
Kaggle-DR dataset.

Dataset Details. The Kaggle-DR dataset contains 35,126 high-resolution fun-
dus images. In this dataset, images were annotated in five levels of diabetic
retinopathy from 1 to 5, representing no DR (25,810 images), mild DR (2,443
images), moderate DR (5,292 images), severe DR (873 images), and prolifera-
tive DR (708 images), respectively. Some examples are shown in Fig. 1. Note
that we only use the images of this dataset without any annotations to pre-train
our PoCo. Then, we subsequently fine-tune PoCo on the Ichallenge-AMD and
Ichallenge-PM datasets, and report classification results on these two datasets.
Experimental Settings. For fair comparison, following the previous work, we
pre-train all unsupervised models on the Kaggle-DR dataset for 150 epochs. We
then freeze the model parameters and only evaluate the model performance on
the target datasets by fine-tuning the fully connected (FC) layers.

1.2 Ichallenge-AMD Dataset

Dataset Details. The Ichallenge-AMD dataset contains 1200 annotated retinal
fundus images from both non-AMD subjects (77%) and AMD patients (23%).
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The training, validation, and test sets each have 400 fundus images. Since only
training data is released with annotations, we apply 5-fold cross-validation on
the training set.
Experimental Settings. To fairly compare with the self-supervised methods,
when fine-tuning, we train all the models for 2000 epochs. We resize the in-
put images to 224 × 224, and apply only random horizontal flipping in data
augmentation, as in previous works.

1.3 Ichallenge-PM Dataset

Dataset Details. The Ichallenge-PM dataset contains 1200 annotated color
fundus images with labels, including both PM and non-PM cases. All the pho-
tos were captured with Zeiss Visucam 500. The training, validation, and test
sets each have 400 fundus images. Since only training data is released with an-
notations, we apply 5-fold cross-validation on the training set.
Experimental Settings. The experimental settings are the same as the settings
for the Ichallenge-AMD dataset, as described above.


