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Fermi sea in a metal can host exotic quantum topology, which determines its conductance quan-
tization and is characterized by Euler characteristic χF . Unlike gapped band topology described by
the global feature of wave function, this topology of gapless system is associated with the geometry
of Fermi sea, and thus probing and identifying χF are inherently difficult in higher-dimensional
systems. Here, we propose a dimensional reduction theory for Fermi sea topology in d-dimensional
metallic systems, showing that χF can be determined by the feature of so-called reduced critical
points on Fermi surfaces, with theoretical simplicity and observational intuitiveness. We also reveal
a nontrivial correspondence between the Fermi sea topology and the gapped band topology by using
an ingenious mapping, of which χF exactly equals to the topological invariant of gapped topologi-
cal phases. This provides a potential way to capture χF through the topological superconductors.
Our work opens an avenue to characterize and detect the Fermi sea topology using low-dimensional
momentum information.

Introduction.—Since the discovery of two-dimensional
(2D) integer quantum Hall effect [1], quantum topol-
ogy has played an important role in condensed matter
physics. A most fundamental phenomenon of topological
quantum phases is quantized response [2]. The quantiza-
tion is associated with the global feature of wave function
across the Brillouin zone, determined by defining topo-
logical invariant of the ground state [3, 4]. In metals,
there is another quantum topology that significantly im-
pacts the quantized response [5–8], which is dictated by
the geometry of Fermi sea. Although this conductance
quantization is not as robust as Hall conductance, it has
been observed in quantum point contacts [9], semicon-
ductor nanowires [10, 11], and carbon nanotubes [12].
There is a fundamental issue of how to exactly charac-
terize this Fermi sea topology.

A recent breakthrough has elucidated that Fermi sea
topology is characterized by Euler characteristic χF [13].
This remarkable discovery provides a novel insight for
understanding the quantization of conductance in met-
als. Various probing schemes of χF but in 2D systems
have also been proposed, such as multipartite entangle-
ment [14], Andreev state transport [15, 16], and density
correlations of Fermi gas [17]. The quantized response
may be possible to measured in an ultracold atomic
gas [18, 19]. Nevertheless, the observation of χF remains
challenging in a general dD metallic system. The reason
is that χF is associated with the properties of filled bands,
which are not easily captured for the higher-dimensional
systems. There is an urgent need to develop a simpler
characterization of χF and facilitate its detection.

The Fermi sea topology and the gapped band topol-
ogy have different topological origins, but there seems to
be subtle connection between them. A simple example
is that the single filled band can host a nontrivial χF

and the electrons on Fermi surfaces (FSs) can interact
to produce Cooper pairs, thereby inducing topological
superconductors (SCs) [20]. The numbers of Majorana

edge states in topological SCs is related to the Fermi sea
topology of the normal filled band [21, 22]. It is interest-
ing and necessary to reveal the connection between the
topological SC and χF of its normal filled band, which
may promote the discoveries of other novel physical ef-
fects caused by the Fermi sea topology.

In this Letter, we propose a generic reduction theory
for the Fermi sea topology in metals, of which χF is deter-
mined by the features of reduced critical points which are
discrete momentum points on the FSs. This character-
ization using lower-dimensional momentum information
has theoretical simplicity and observational intuitiveness.
We also demonstrate that the metallic systems can be
equivalently mapped to the gapped topological systems,
inducing a striking result that χF can equal to the topo-
logical invariant of the gapped systems. This reveals that
χF of normal filled band of the topological SCs exactly
determines the numbers of Majorana edge states. We fi-
nally show all dD topological SCs with above properties
in different topological classifications and provide the de-
tection scheme of χF for normal filled band via the aver-
age spin structure of topological SCs.

Generic characterization of Fermi sea topology.—Our
starting point is a dD metallic system, with electronic
dispersion Ek. Its Fermi sea topology determines the
quantization of conductance of this metal and is charac-
terized by the Euler characteristic χF [13]. For the 1D
case, χF is the number of disconnected components of
the Fermi sea. For the higher-dimensional case, χF is
expressed as a summation over the disconnected compo-
nents of the FSs. The Morse theory [23, 24] provides a
direct way to calculate χF based on the nondegenerate
critical points in the filled bands, shown by

χF =
∑
m

ηm. (1)

Here m labels the critical points km in Ek, where vk =
∇kEk = 0 for Ek < EF , with Fermi energy EF . The sig-
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nature of each critical point is given by ηm = sgn(det H),
where H is Hessian matrix of Ek and det H ̸= 0 hosts
that km are nondegenerate. When a minimum, maxi-
mum, or saddle point passes though EF , it allows that
χF changes at a Lifshitz transition [25].

However, a generic dD band dispersion can induce the
nonlinear behavior of vk near km, emerging det H = 0 at
km, which characterizes the degenerate critical points. It
is clear that Eq. (1) is ill for the degenerate km. We then
give ηm for the degenerate cases by defining an integer
topological index

ηm =
Γ(d/2)

2πd/2

1

(d− 1)!

∫
Lm

v̂k(dv̂k)
d−1 ∈ Z, (2)

which is the winding number of v̂k = vk/|vk| around
km. Here ‘d’ denotes the exterior derivative and Γ(a) is
Γ function. The counterclockwise contour Lm only en-
closes a single critical point km. This definition of ηm still
keeps χF to satisfy the Eq. (1), which is known as the
Poincaré-Hopf theorem [26]. Moreover, the Eq. (2) can
describe the signature of nondegenerate critical points
when vk approaches km linearly. Hence we hereby pro-
vide a generic ηm to characterize the nondegenerate and
degenerate km and identify χF .

To illustrate above results, we take a 2D band disper-
sion with Ek = e1e2e3 − µ, where e1 = sin2(kx/2) −
sin2(ky/2), e2 = sin(kx/2) sin(ky/2), and e3 = mz −
ts [cos(kx/2) + cos(ky/2)]. Here mz is a constant and µ is
used to shift EF . When mz = 0.5ts and µ = 0.18ts, this
single band is partially filled and has four hole-like FSs
[see Fig. 1(a)]. Meanwhile, both v1,k = 0 and v2,k = 0
give fourteen critical points in the band, of which the crit-
ical point at (kx, ky) = (0, 0) is degenerate [see Fig. 1(b)].
Based on Eq. (2), we obtain a high-value topological in-
dex ηm = −3 to characterize it. The remaining critical
points are nondegenerate with det H ̸= 0, characterized
by the positive or negative topological index with unit
value [see Fig. 1(c)]. Finally, the topology of the filled
Fermi sea is given by χF =

∑
m ηm = −4, which can

also be confirmed by the contribution of four hole-like
FSs [16]. For the completely filled band, χF is zero and
determined by all critical points in the Fermi sea.

Reduction of Euler characteristic.—The topology of
Fermi sea can be reduced by using a mapping. Specifi-
cally, we firstly map the metallic system to the gapped
topological system. By redefining v0,k ≡ Ek − EF and
vk ≡ (v1,k, v2,k, · · · , vd,k), we construct a dD Bloch
Hamiltonian with Z topological classification,

Hk =

d∑
i=0

vi,kγi. (3)

Here γ matrices obey the anticommutation relation and
satisfy the trace property Tr[

∏d
i=0 γi] = (−2i)d/2 (if d

is even) or Tr[γ
∏d

i=0 γi] = (−2i)(d+1)/2 (if d is odd),
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FIG. 1. (a) A 2D filled band Ek with four hole-like FSs (black
curves), which can be translated to two gapped energy bands
Eg(k) by a mapping. (b) Numerical results of det H, where
both v1,k = 0 (green dashed lines) and v2,k = 0 (blue dashed
lines) determine fourteen critical points. Only one critical
point at (kx, ky) = (0, 0) is degenerate (DCP) and the others
are nondegenerate. (c) Signature of each critical point, char-
acterized by ηm. The topology of filled Fermi sea is captured
by km within the region of Ek < EF (orange color), giving
χF =

∑
m ηm = −4. (d) The positive (red) or negative (blue)

reduced critical points on 1D FSs, where k̃c in the region of
v1,kc < 0 gives χF =

∑
c η̃c = −4. Here solid and open circles

indicate v1,kc < 0 and v1,kc > 0, respectively.

with γ = i(d+1)/2
∏d

i=0 γi. This ensures that the system

only has two energy bands with Eg(k) = ±
√∑d

i=0 v
2
i,k,

as shown in Fig. 1(a). The gapped Hk can host the
topological phases and characterized by the topologi-
cal invariant W, giving the d/2-th Chern number (if d
is even) or a dD winding number (if d is odd) [3, 27].
One can reduce this dD topology so that W counts the
winding of vk on the (d − 1)D momentum subspace
of v0,k = 0. When employing the topological charge

Cm = Γ(d/2)
2πd/2

∫
Lm

1
|vk|d

∑d
i=1(−1)i−1vi,kdv1,k∧· · ·∧d̂vi,k∧

· · · ∧ dvd,k at each km [28, 29], it is found that W is de-
termined by the summation of topological charges in the
regions of v0,k < 0, i.e.,

W =
∑
m

Cm. (4)

Comparing Eq. (1) and Eq. (4), we observe that χF ex-
actly equals to W, where ηm and FSs of the metallic sys-
tems are mapped to Cm and v0,k = 0 in the gapped topo-
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TABLE I. The Z-classified topological (crystalline) supercon-
ductors with the dimensionality d = 4n+j, where j = 1, 2, 3, 4
and n = 0, 1, 2, · · · . The BdG Hamiltonian can have time-
reversal symmetry (T ), particle-hole symmetry (P ), chiral
symmetry (C), and order-two spatial symmetry (S). The
superscript of S indicates the sign of S2, and the subscript of
S specifies the commutation (+)/anticommutation (−) rela-
tion between S and T and/or P . The fourth column shows
the topological classification of HBdG, captured by the zeroth
homotopy group of the classifying space.

Dimension Class Symmetry π0(∗)

d = 4n+ 1 BDI T , P , C Z

d = 4n+ 2 D P Z

d = 4n+ 3 DIII T , P , C Z

DIII, CII T , P , C , S+
+− (S−

−+) Z
d = 4n+ 4

D, C P , S+
− (S−

+ ) Z

logical systems, respectively. The Lifshitz transitions are
also mapped to the topological transitions of Hk. Ac-
tually, Equation (3) tells us that Ek can firstly be per-
formed band inversion, and then vk acts as a pseudospin-
orbit coupling to open its energy gap.

The above dD gapped band topology can be further
reduced to 1D winding number defined by the 1D effec-
tive Bloch Hamiltonian Hk̃ = vd−1,k̃γ̃d−1 + vd,k̃γ̃d, with

k̃ ≡ {k|v0,k = · · · = vd−2,k = 0} and the correspond-
ing Gamma matrices γ̃ [30]. Hence the total topologi-
cal charges defined by Hk̃ in the regions of vd−1,k̃ < 0

gives W =
∑

c sgn(∂vd,k̃/∂k̃), of which these topological

charges are located at k̃c ≡ {k̃|vd,k̃ = 0}. Following the
nontrivial mapping, we finally have

χF =
∑
c

(−1)q

2

[
sgn

(
vd,k̃c,R

)
− sgn

(
vd,k̃c,L

)]
(5)

in the metallic systems, where q = 0 (1) is for the
electron-like (hole-like) k̃. The subscripts R and L are the
right- and left-hand points of k̃c, respectively. Clearly,
km in the dD system is reduced to k̃c in 1D subsys-
tem, and then we call k̃c as reduced critical points. The
signature of k̃c is given by η̃c = (−1)q[sgn(vd,k̃c,R

) −
sgn(vd,k̃c,L

)]/2, as shown in Fig. 1(d). Note that these

reduced critical points in original BZ are located at
kc ≡ {k|v0,k = · · · = vd−2,k = vd,k = 0} and their char-
acterization are different from Ref. [15], in which kc of 2D
metallic systems capture the convexity (if ∂v2,k/∂k2 > 0)
or concavity (if ∂v2,k/∂k2 < 0) of FSs. By denoting the
number of convex or concave critical points as ce/h, the
Euler characteristic is given by χF = ce−ch. However, η̃c
in our theory actually characterizes the 0th Chern num-
ber of kc which is determined along 1D FSs. This theory
provides an elegant and generic expression to identify χF

via the reduced critical points on FSs.

Mapping to topological superconductors.—Mapping the
metallic systems to the gapped systems provides a way
to identify χF via the Z-classified topological SCs. A sin-
gle filled band Ek can perform the band inversion under
particle-hole symmetry, and then the nonzero pairing or-
der parameter ∆k can open energy gap. The topological
SCs are then emerged and described by Bogoliubov-de
Gennes (BdG) Hamiltonian

HBdG(k) =

[
Ek ∆k

∆†
k −Ek

]
. (6)

When ∆k have same form with the Fermi velocity vk,
the topological invariant W of topological SCs can ex-
actly gives χF of their normal filled band, which has been
shown for the special cases [31].

We hereby provide all dD topological (crystalline) SCs
with different topological classifications in Tab. 1, which
hosts above special properties. For the simplest four
cases of d = 1, 2, 3, and 4, the normal filled bands and
paring order parameters are

Ek = −ts

d∑
i=1

cos ki−µ, ∆k = (∆0/ts)∇kEk ·Γ(d), (7)

with Γ(d) being given by

Γ
(1)
BDI = −i, Γ

(2)
D = (1,−i),

Γ
(3)
DIII = (σz,−iσ0, σx),

Γ
(4)
DIII = (σxρz,−iσ0ρ0, σxρx, σzρ0),

Γ
(4)
CII = (σxρz,−iσ0ρ0, σyρ0, σzρ0),

Γ
(4)
D = (σzρx,−iσ0ρ0, σxρx, σ0ρz),

Γ
(4)
C = (σzρx,−iσ0ρ0, σ0ρy, σ0ρz).

(8)

These models describe 1D Kitaev chain [32], 2D p ± ip
superconductor [33], and 3D He-3 B phase [34], respec-
tively. For 4D systems, we seek the topological crystalline
SCs with order-two symmetries S [35]. These models in
classes DIII and D have symmetries S+

+,−(S
+
−) = τzσyρy,

T = iσyK and/or P = τxK, while S+
+,−(S

+
−) = ρx,

T = iσyK and/or P = iτxσzρyK are for classes CII
and C. The K is a complex conjugate operator. Here σ,
ρ, and τ are Pauli matrices acting on spin, orbit, and
Nambu degree of freedom, respectively.

We next show the Fermi sea topology of the normal
filled band can be detected in the topological (crystalline)
SCs. We employ the Eq. (5) and measure pseudospin
polarizations ⟨γi,k⟩ = ⟨uk| γi |uk⟩ with i = 0, 1, · · · , d,
where |uk⟩ are ground states of HBdG. Since γ obey
the anticommutation relation, we directly have ⟨γi,k⟩ =
−vi,k/ek with ek =

√∑d
i=0 v

2
i,k. Hence these discrete
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FIG. 2. (a) Reduction of Fermi sea topology in a 3D system. A 2D Fermi surface (orange color) with genus g = 3 gives

χF = 1 − g = −2. Reducing it to obtain 1D curves (green color) on the Fermi surface, denoted as k̃, in which the reduced
critical points with η̃2 and η̃3 determine χF = η̃2 + η̃3 = −2. (b) Measuring the topology of Fermi sea of the normal filled band

in a 3D topological superconductor. The pseudospin polarization of ⟨γ0,k⟩ at kx = 0 in (b1) and kx = −π in (b2) capture k̃ by
⟨γ0,k⟩ = 0. The topological charges C2,3 = −1 are determined by ⟨γ3,k̃⟩ = 0 and in the regions of ⟨γ2,k̃⟩ > 0, showing in (b3)
and (b4). Here we have ∆0 = ts and µ = −0.5ts.

points kc in FSs are determined by kc = {k|⟨γ0,k⟩ =
· · · = ⟨γd−2,k⟩ = ⟨γd,k⟩ = 0}. The reduced criti-
cal points are captured by η̃c = (−1)q[sgn(⟨γd,kc,L

⟩) −
sgn(⟨γd,kc,R

⟩)]/2 in the regions of ⟨γd−1,k⟩ > 0. The pseu-
dospin polarizations are measurable in realistic quantum
simulation experiments and have been applied to identify
the topological charges [36–38], providing a possible way
for detecting the topology of Fermi sea.

Numerical results.—We next provide the numerical re-
sults of 3D topological SCs of class DIII to determine χF

of the normal band. The BdG Hamiltonian in the Eq. (7)
is explicitly written as HBdG = Ekγ0 + ∆0(sin kxγ1 +
sin kyγ2 + sin kzγ3) with k1,2,3 = kx,y,z, where γ0 = τz,
γ1 = τxσz, γ2 = τy, and γ3 = τxσx. Firstly, the FS
of normal filled band is figured out by Ek = 0 when
µ = −0.5ts, showing a 2D geometry with genus g = 3.
This gives χF = 1 − g = −2 [16], as shown in Fig. 2(a).

(a) (b)

FIG. 3. (a) Numerical results of χF for the normal band
of the 3D topological SC. (b) Majorana edge states for the
parameters µ = −3.5ts, −2ts, −0.5ts, and 2ts. The number
of Majorana cones is given by |χF |.

By performing reduction, the 1D momentum curves de-
noted as k̃ are obtained by v1,k = 0 on the FS, which
are electron-like (hole-like) for kx = 0 (kx = −π). This
v3,k̃ = 0 determines four reduced critical points, giving
the topological indexes η̃1,2,3,4, where η̃2,3 are located in
regions of v2,k̃ < 0 and which give χF = η̃2 + η̃3 = −2.
This is consistent with the result of using the genus of FS
to determine χF . Furthermore, a complete result of χF

depending on µ is shown in Fig. 3(a). In the regions of
−3ts < µ < −ts and ts < µ < 3ts, we have χF = 1. Yet,
χF = −2 is for −ts < µ < ts. The Lifshitz transition
emerges at µ = ±3ts and ±ts.

We further show χF can be detected by the spin tex-
tures of topological SCs. By measuring pseudospin po-
larization of γ0 at kx = 0 and kx = −π, the above 1D
momentum curves k̃ are captured by ⟨γ0,k⟩ = 0, as shown
in Figs. 2(b1) and 2(b2). We further measure ⟨γ2,k̃⟩ and
⟨γ3,k̃⟩ along k̃ with the clockwise direction, as shown in
Figs. 2(b3) and 2(b4). It is seen that C2,3 are determined
by ⟨γ3,k̃⟩ = 0 and in the regions of ⟨γ2,k̃⟩ > 0, where the
charge value are identified by C2 = (⟨γ3,k̃R

⟩−⟨γ3,k̃L
⟩)/2 =

−1 and C3 = (⟨γ3,k̃L
⟩ − ⟨γ3,k̃R

⟩)/2 = −1. Hence the
Fermi sea topology of the normal filled band is given by
χF = W = −2, matching with the previous results.

Besides, detecting Majorana edge states is of great sig-
nificance [39, 40]. For the 3D metallic sample, we can put
it on the s-wave SC and which can be induced as the 3D
topological SC by the proximity effect. If the system has
a reasonable pairing order and Fermi energy, the num-
bers of Majorana cone should be given by |χF |. We nu-
merically calculate the Majorana edge states under the
z-direction open boundary condition, as shown in Fig. 3.
Our results may be helpful for the studies of Majorana
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zero modes.
Discussion and Conclusion.—The deeply studies of

gapped topological phases have driven many novel dis-
coveries, such as fractional charges [41], fractional statis-
tics [42], and non-Abelian statistics [43]. We have es-
tablished the connection between the Fermi sea topology
of metals and the gapped band topology. This nontriv-
ial result may facilitate the discovery of other physical
effects caused by the Fermi sea topology in the future.
Actually, our reduction for the Euler characteristic ori-
gins from the basic idea of dimensional reduction in the
gapped band topology [30]. In summary, our generic re-
duction characterization theory updates the understand-
ing for Fermi sea topology and contribute to its realistic
detection. This work shall advance research of quantum
topology of metals in both theory and experiments.

We thank Bao-Zong Wang for helpful discussions. This
work is supported by the start-up grant of Lanzhou Uni-
versity.
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