
ar
X

iv
:2

40
3.

19
13

0v
1

 [
cs

.G
T

]
 2

8
M

ar
 2

02
4

Gamu Blue: A Practical Tool for Game Theory

Security Equilibria ∗

Ameer Taweel

Koç University

Burcu Yıldız

EPFL

Alptekin Küpçü

Koç University

March 29, 2024

Abstract

The application of game theory in cybersecurity enables strategic anal-
ysis, adversarial modeling, and optimal decision-making to address secu-
rity threats’ complex and dynamic nature. Previous studies by Abraham
et al. and Biçer et al. presented various definitions of equilibria to exam-
ine the security aspects of games involving multiple parties. Nonetheless,
these definitions lack practical and easy-to-use implementations. Our pri-
mary contribution is addressing this gap by developing Gamu Blue, an
easy-to-use tool with implementations for computing the equilibria defini-
tions including k-resiliency, ℓ-repellence, t-immunity, (ℓ, t)-resistance, and
m-stability.

1 Introduction

Game theory provides a powerful toolkit for understanding, analyzing, and ad-
dressing the complex challenges in cybersecurity. Cybersecurity researchers and
professionals use game theory for strategic analysis, adversarial modeling, op-
timal decision-making, risk/vulnerability analysis, collaborative security, and
protocol/mechanism design [1–5]. By applying game-theoretic concepts, one
can analyze the interactions between attackers and defenders, identify optimal
strategies, and understand the implications of different decisions in a dynamic
and adversarial environment. It also facilitates collaborative approaches where
multiple parties can coordinate their actions to enhance security. Moreover,
game-theoretic principles guide the design of secure protocols and mechanisms
that incentivize desired behaviors and discourage malicious activities [2–4,6–8].

Security solutions based on game theory rely on the rational behavior of
the parties involved. In scenarios involving multiple parties, it is often safe to
assume that individuals will not engage in malicious actions if those actions are
detrimental to themselves. As a result, one can focus on addressing threats that

∗This paper has been accepted for publication by IEEE under copyright © 2024 IEEE.

1

http://arxiv.org/abs/2403.19130v1

are advantageous to the attacker rather than trying to countermeasure against
all possible threats.

Previously, [9] and [6] presented equilibria definitions for analyzing games’
security in the multi-party setting, but there are not any existing implementa-
tions to compute these equilibria. Our main contribution is developing Gamu
Blue, an easy-to-use tool with implementations for computing these equilib-
ria. Our tool allows game theory and cybersecurity researchers to analyze their
games using the security-related game-theoretic equilibria definitions. More-
over, it provides a baseline to compare future algorithmic improvements against
previous ones.

2 Preliminaries

2.1 Basics

Definition 1 (n-Player Normal-Form Game). An n-player perfect infor-
mation normal-form game can be defined by a set of players N = {p1, . . . , pn},
a set of actions Ai = {a1i , . . . , a

mi

i } for each player i, and a utility function Ui

for each player i that gives the utility of player i, given the actions chosen by all
players. All players have complete and perfect knowledge of the game’s state,
including the other players’ utility functions and available actions.

Strategy si of player i is a probability distribution over the possible actions
of the player i. si is a pure strategy if it always chooses the same action.
Otherwise, si is a mixed strategy. We will only consider pure strategies in this
paper because our algorithms rely on exhaustive search, and there are infinitely
many mixed strategies. si(a) is the probability the strategy si assigns to the
action a. sD = {spa

, . . . , spb
} is a strategy profile (an ordered set) containing

the strategies of all players in the set D = {pa, . . . , pb}. s−i is the strategy
profile of all the players excluding player i. s−D the strategy profile of all the
players that are not in D. Given a strategy profile sN , we denote by Ui(sN)
the expected utility of the player i, if the players in the game play the strategy
profile sN .

Definition 2 (Nash Equilibrium). For any game with the player set N , a
strategy profile sN = {sp1

, . . . spn
} is a Nash equilibrium if ∀i ∈ N ∀s′i 6=

si Ui(sN) ≥ Ui(s
′

i ∪ s−i).
Nash equilibrium is a fundamental concept in game theory that describes

a state in which no player has an incentive to unilaterally deviate from their
chosen strategy, given the strategies of other players. John Nash proved in [10]
that every finite game (games with a finite number of players and actions per
player) has at least one Nash equilibrium.

Definition 3 (Weakly Dominant Strategy of a Player). A strategy si of
a player i is its weakly dominant strategy if for all strategies s′i 6= si of i and
for all strategy profiles s′

−i of players other than i, Ui(si ∪ s′
−i) ≥ Ui(s

′

i ∪ s′
−i).

A weakly dominant strategy is not guaranteed to exist.

2

Definition 4 (Coalition Utility). Let sN be a strategy profile for all players
in a game. Then, the utility UC(sN) of a coalition C is defined as UC(sN) =∑

i∈C Ui(sN).
This coalition utility definition simplifies the analysis by abstracting out how

participants share utility internally.

Definition 5 (Weakly Dominant Strategy of a Coalition). A strategy
profile sC of a coalition C is its weakly dominant strategy if for all strategy
profiles s′C 6= sC of C and for all strategy profiles s′

−C of the players outside C:
UC(sC ∪ s′

−C) ≥ UC(s
′

C ∪ s′
−C).

2.2 Multi-Party Secure Equilibria Definitions Introduced
In [9]

Definition 6 (k-resiliency). Given a player set C ⊆ N , sC is a group best
response for C to s−C , if for all strategies s

′

C played by C and ∀i ∈ C, we have
Ui(sC ∪ s−C) ≥ Ui(s

′

C ∪ s−C). A joint strategy sN is a k-resilient equilibrium,
if ∀C ⊆ N with |C| ≤ k, sC is a group best response for C to s−C , where
sN = sC ∪ s−C .

The authors of [9] proposed k-resiliency to protect the mechanism outcome
against a single coalition. If sN is k-resilient, it is secure against any single
coalition of size less than or equal to k because no such coalition can increase
the utility of any of its members by deviating from sN .

Definition 7 (t-immunity). A joint strategy sN is a t-immune equilibrium,
if ∀T ⊆ N with |T | ≤ t, for all strategies s′T played by the players in T , and
∀i /∈ T , we have Ui(s

′

T ∪ s−T) ≥ Ui(sN), where sN = sT ∪ s−T .
[9] proposed t-immunity to protect the mechanism outcome against Byzan-

tine players. If sN is t-immune, it is secure against up to t Byzantine players
because such players cannot decrease the utility of any other player by deviating
from sN .

Definition 8 ((k, t)-robustness). A joint strategy sN is a (k, t)-robust equi-
librium, if ∀C ⊆ N , ∀T ⊆ N such that C ∩ T = ∅, |C| ≤ k, and |T | ≤ t, for all
strategies s′T played by the players in T , and for all strategies s′C played by the
players in C, and ∀i ∈ C, we have Ui(s−T ∪ s′T) ≥ Ui(s−(C∪T)∪ s

′

C ∪ s
′

T), where
sN = sC ∪ sT ∪ s−(C∪T).

The authors of [9] proposed (k, t)-robustness to protect the mechanism out-
come against a single coalition and Byzantine players. If sN is (k, t)-robust, it
is secure against up to t Byzantine players and any single rational coalition of
size up to k: the Byzantine players cannot harm the other players by deviating
from sN , and no single coalition can increase the utility of any of its members
by deviating from sN .

3

2.3 Improved Multi-Party Secure Equilibria Definitions
Introduced In [6]

Definition 9 (ℓ-repellence). Given a player set C ⊆ N , sC is a best collective
response for C to s−C , if for all strategies s′C played by C, we have UC(sC ∪
s−C) ≥ UC(s

′

C ∪ s−C). A joint strategy sN is an ℓ-repellent equilibrium, if
∀C ⊆ N with |C| ≤ ℓ, sC is a best collective response for C to s−C , where
sN = sC ∪ s−C .

The authors of [6] proposed ℓ-repellence to replace k-resiliency. ℓ-repellence
analyzes the security of a mechanism against the presence of a single coalition.
If sN is ℓ-repellent, it is secure against any single coalition of size up to ℓ
because no such coalition can increase its total utility by deviating from sN .
Note that ℓ-repellence improves k-resiliency because it employs the transferable
utility assumption [11] and abstracts out how the utility is shared among the
participants internally. Thus, rather than considering the individual members
of a coalition, it considers the total benefit of the coalition.

Definition 10 ((ℓ, t)-resistance). A joint strategy sN is an (ℓ, t)-resistant equi-
librium, if ∀C, T ⊆ N s.t. C ∩ T = ∅, |C| ≤ ℓ, and |T | ≤ t, for all strategies
s′T played by the players in T , and for all strategies s′C played by C, we have
UC(s−T ∪ s′T) ≥ UC(s−(C∪T) ∪ s′T ∪ s′T), where sN = sC ∪ sT ∪ s−(C∪T).

[6] proposed (ℓ, t)-resistance to replace (k, t)-robustness. (ℓ, t)-resistance
analyzes the security of a mechanism against the presence of a single coalition
and Byzantine players. If sN is (ℓ, t)-resistant, it is secure against up to t
Byzantine players and any single coalition of size up to ℓ: the Byzantine players
cannot harm the other players by deviating from sN , and no single coalition can
increase its total utility by deviating from sN . (ℓ, t)-resistance improves over
(k, t)-robustness by employing the transferable utility assumption.

Definition 11 (m-stability). A joint strategy sN is an m-stable equilibrium,
if for all natural numbers p ≤ |N | and for all coalitions C1, . . . , Cp satisfying the
following conditions:

1. 1 ≤ |C1|, . . . , |Cp| ≤ m

2. C1 ∪ · · · ∪ Cp = N

3. ∀i, j ∈ {1, . . . , p} such that i 6= j, Ci ∩ Cj = ∅

we have that for each i = 1, . . . , p, the strategy sCi
is weakly dominant for the

coalition Ci and that sC1
∪ · · · ∪ sCp

= sN .
The authors of [6] proposed m-stability to analyze the security of a mecha-

nism against the presence of multiple coalitions. If sN is m-stable, it is secure
against any number of coalitions of size up to m because no coalition has in-
centive to deviate from sN , even if it expects others to deviate from sN . Like
other definitions introduced in [6], m-stability employs the transferable util-
ity assumption. [6] proved that (n − 1)-stability implies (n − 1)-repellence and
(ℓ, n− ℓ)-resistance for all ℓ ≤ n− 1.

4

3 Algorithms

We mainly focus on the optimization problem with one strategy profile. Con-
sider, for example, ℓ-repellence: Given a game G and a strategy profile sN , find
the maximum c such that sN is c-repellent. We can define similar sub-problems
for all security equilibria definitions.

Computing Nash Equilibrium is PPAD-Complete. [12] showed that
the problem of computing a Nash equilibrium with at least three players is
PPAD-complete. [13] showed that the problem is also PPAD-complete for two
players.

The class of PPAD problems contains computational problems for which
polynomial-time algorithms are not known to exist. Therefore, PPAD problems
are considered intractable.

Some of our security equilibria, like k-resiliency and ℓ-repellence, are also
Nash Equilibria, so computing them is also PPAD-complete. Therefore, one
should not expect our implementations to be efficient.

k-resiliency and ℓ-repellence. Algorithm 1 finds the maximal k (or ℓ), in
O(2n×S×n) time, where n is the number of players, and S is the total number
of strategy profiles. The two outer for loops go over all possible coalitions
(combinations) of N , which is O(2n). Then we loop over all possible strategy
profiles for each coalition, which is O(S). For k-resiliency, we loop over the
members of the current coalition, which is O(n). For ℓ-repellence, we compute
the coalition utility of each coalitions, which internally calls the utility functions
of all the coalition members, which is also O(n). Note that S =

∏
i |Ai|, so S is

exponential in the number of players and number of actions.

Algorithm 1 Given a game G and a strategy profile sN , find the maximum c
such that sN is c-resilient/repellent.

1: INPUT: G, sN , type
2: N ← G.players
3: n← |N |
4: for c← 1, n do
5: for C ∈ N.combinationsOfSize(c) do
6: s−C ← G.remainingStrategies(C)
7: for s′C ∈ G.possibleStrategies(C) do
8: if type = resiliency then
9: for i ∈ C do

10: if Ui(sN) < Ui(s
′

C ∪ s−C) then
11: return c− 1
12: if type = repellence then
13: if UC(sN) < UC(s

′

C ∪ s−C) then
14: return c− 1
15: return n

t-immunity. Algorithm 2 finds the maximal t inO(2n×S×n) time. The two
outer for loops go over all possible groups of Byzantine players (combinations)

5

of N , which is O(2n). Then we loop over all possible strategy profiles for each
group, which is O(S). Finally, we loop over the players outside of the current
Byzantine group, which is O(n).

Algorithm 2 Given a game G and a strategy profile sN , find the maximum c
such that sN is c-immune.

1: INPUT: G, sN
2: N ← G.players
3: n← |N |
4: for c← 1, n do
5: for T ∈ N.combinationsOfSize(c) do
6: s−T ← G.remainingStrategies(T)
7: for s′T ∈ G.possibleStrategies(T) do
8: for i /∈ C do
9: if Ui(s

′

T ∪ s−T) < Ui(sN) then
10: return c− 1
11: return n

(k, t)-robustness and (ℓ, t)-resistance. Algorithm 3 finds maximal k, t, ℓ
in O(22n × S2 × n) time. The two outer for loops go over all possible coalitions
(combinations) of N , then we loop over all possible groups of Byzantine players
(combinations) of N − C, which is O(22n). Then we loop over all possible
strategy profiles for each coalition and each Byzantine group, which is O(S2).
For (k, t)-robustness, we loop over the members of the current coalition, which
is O(n). For (ℓ, t)-resistance, we compute the coalition utility of each coalitions,
which is also O(n).

m-stability. Algorithm 4 finds the maximal m in O(2n×S2×n) time. The
two outer for loops go over all possible coalitions (combinations) of N , which
is O(2n). Then we loop over all possible strategy profiles for players outside of
the coalition, which is O(S). We then loop over all possible strategy profile for
players of the coalition, which is O(S) as well. Finally, we compute the coalition
utility of each coalitions, which is O(n).

4 Experimental Results

4.1 Multi-Party Games

In this section, we briefly describe two games that we use in our experiments.
Incentivized Outsourced Computation (IOC) [2]: The authors of [2]

defined an Incentivized Outsourced Computation (IOC) game. The game in-
volves a boss and n rational contractors as players. The boss wants to outsource
the execution of a costly algorithm to the contractors. Each contractor has the
option to choose between the diligent strategy and the lazy strategy. The dili-
gent strategy involves running the correct algorithm, which costs c(1), while the
lazy strategy uses a less costly algorithm known as the ”q algorithm”, which

6

Algorithm 3 Given a game G and a strategy profile sN , find the set of maximal
c1 and c2 such that sN is (c1, c2)-robust/resistant.

1: INPUT: G, sN , type
2: S ← {}
3: N ← G.players
4: n← |N |
5: LABEL: Outer Loop
6: for c1 ← 1, n− 1 do
7: for C ∈ N.combinationsOfSize(c1) do
8: for c2 ← 1, n− c1 do
9: for T ∈ (N − C).combinationsOfSize(c2) do

10: s−(C∪T) ← G.remainingStrategies(C ∪ T)
11: for s′T ∈ G.possibleStrategies(T) do
12: for s′C ∈ G.possibleStrategies(C) do
13: if type = robustness then
14: for i ∈ C do
15: if Ui(s

′

T ∪ s−T) < Ui(s
′

T ∪ s′C ∪ s−(C∪T)) then
16: if t = 1 then
17: return S
18: S.append((c1, c2 − 1))
19: continue Outer Loop
20: if type = resistance then
21: if UC(s

′

T ∪ s−T) < UC(s
′

T ∪ s′C ∪ s−(C∪T)) then
22: if t = 1 then
23: return S
24: S.append((c1, c2 − 1))
25: continue Outer Loop
26: S.append((c1, n− c1))
27: return S

Algorithm 4 Given a game G and a strategy profile sN , find the maximum c
such that sN is m-stable.

1: INPUT: G, sN
2: N ← G.players
3: n← |N |
4: for c← 1, n do
5: for C ∈ N.combinationsOfSize(c) do
6: sC ← G.remainingStrategies(N − C)
7: for s′

−C ∈ G.possibleStrategies(N − C) do
8: for s′C ∈ G.possibleStrategies(C) do
9: if UC(sC ∪ s′

−C) < UC(s
′

C ∪ s′
−C) then

10: return c− 1
11: return n

7

costs c(q). The q algorithm has a probability q of producing the correct output
and is assumed to be the same for all lazy players. If all contractors provide the
same output, the boss accepts it as correct and rewards each contractor with
reward r. However, if there is a difference in the outputs, the diligent contrac-
tors collaborate with the boss to identify and penalize the lazy ones. In this
case, the diligent contractors receive the reward r and an additional bounty b,
while each contractor contributes a share towards the total bounties and incurs
a fixed fine f . Table 1 illustrates the resulting expected utility matrix. Note
that for this mechanism to be meaningful, it is necessary that c(q) < c(1) < r.

Table 1: IOC Payoff Matrix (where 0 < k < n)

Others / This Diligent Lazy
All diligent r − c(1) rq − (f + b(n− 1))(1 − q)− c(q)

k lazy r + b(1− q)− c(1) rq − (f + b(n−k−1)
k+1)(1− q)− c(q)

All lazy r + b(1− q)− c(1) r − c(q)

The desired outcome of the game is all players choosing the diligent strategy.
[6] proved that IOC is not 2-resilient. They also proved that for n > 2, if the
boss sets the reward and bounty as r(n− 1)/(n− 2) ≥ b > r/(1− q), then IOC
is (n− 1)-stable. Moreover, they proved that IOC is (n− 1)-immune.

Forwarding Dilemma (FD) [14]: The authors of [14] introduced the
Forwarding Dilemma (FD) game as a model to study the forwarding behavior
of flooded packets in wireless ad hoc networks. Network nodes are the players
of FD. Each node receives the same flooded packet. Each player can either
forward the packet or drop it. Two factors determine the utility of each player:
the network gain factor g and the forwarding cost c. Table 2 shows the specific
utilities for each player, considering their strategy and the strategies of others.
It is essential to have c < g.

Table 2: FD Payoff Matrix
Others / This Forward Drop

All drop g − c 0
At least one forward g − c g

The desirable strategies in this game are when one player forwards the
packet, and the rest drops it. [6] proved that FD is not 2-resilient, is n-repellent,
is not (1, 1)-resistant, is not (1, 1)-robust, is not 1-immune, and is not 1-stable.

4.2 Input Format

We implemented Gamu Blue in Python, using the Python interface to the Gam-
bit1 library. The source code is openly available on GitHub.

1https://github.com/gambitproject/gambit

8

https://github.com/CRYPTO-KU/GamuBlue-Game-Theory-Equilibrium-Finder
https://github.com/gambitproject/gambit

The Gambit library is a powerful tool for game-theory analysis, offering a
range of features. One of its key strengths is its implementation of various algo-
rithms for computing Nash Equilibria, providing researchers and practitioners
with efficient methods to analyze strategic interactions. Additionally, Gambit
includes a user-friendly graphical user interface (GUI) that facilitates the exam-
ination of small games, allowing users to visualize game structures and explore
their strategic dynamics. Moreover, Gambit offers a Python interface, enabling
developers to leverage its game representations and develop custom game-theory
algorithms. This flexibility and accessibility make the Gambit library a valuable
resource for studying and understanding game-theoretic concepts and applica-
tions.

Gamu Blue accepts the NFG and AGG game representations defined by the
Gambit library. The core difference is that AGG tends to be much more compact
than NFG for highly structured games. The Gambit library’s documentation
contains a detailed explanation of both representations. Figures 1 and 2 show
example input representations for IOC with N = 3, cost(1) = 10, cost(q) = 5,
q = 0.5, r = 20, b = 20, and f = 2.5 in NFG and AGG formats, respectively.
Figures 3 and 4 show example input representations for FD with N = 3, g = 2,
and c = 1 in NFG and AGG formats, respectively.

NFG 1 R "IOC"

{"P1" "P2" "P3"}

{{"L" "D"} {"L" "D"} {"L" "D"}}

15.0 15.0 15.0 20.0 -1.25 -1.25

-1.25 20.0 -1.25 20.0 20.0 -16.25

-1.25 -1.25 20.0 20.0 -16.25 20.0

-16.25 20.0 20.0 10.0 10.0 10.0

Figure 1: IOC Represented in NFG Format For 3 Players

#AGG

3 2 0

2 2 2

0 1 0 1 0 1

2 0 1 2 0 1

0 -16.25 -1.25 15.0

0 20.0 20.0 20.0

Figure 2: IOC Represented in AGG Format For 3 Players

9

NFG 1 R "FD"

{"P1" "P2" "P3"}

{{"D" "F"} {"D" "F"} {"D" "F"}}

0.0 0.0 0.0 1.0 2.0 2.0

2.0 1.0 2.0 1.0 1.0 2.0

2.0 2.0 1.0 1.0 2.0 1.0

2.0 1.0 1.0 1.0 1.0 1.0

Figure 3: FD Represented in NFG Format For 3 Players

#AGG

3 2 0

2 2 2

0 1 0 1 0 1

2 0 1 2 0 1

0 2.0 2.0 0.0

0 1.0 1.0 1.0

Figure 4: FD Represented in AGG Format For 3 Players

4.3 Timing Benchmarks

Experimental Setup. We conducted the experiments on a machine with an
Intel Core i7-8750H 2.20GHz processor, 16GB of DDR4 RAM, and 512GB of
SSD storage. We ran each algorithm on each input 100 times. We report the
mean running times of these runs.

Figure 5 for k-resiliency shows that Algorithm 1 terminates quickly (less
than one second for 12 players). These timings are due to neither IOC nor
FD being 2-resilient, as shown by [6]. The timings have fluctuations because
external operating system factors have a significant impact on this small scale.

[6] proved that IOC is (n−1)-repellent and FD is n-repellent. The timings in
Figure 6 align with this, and they also show the exponential nature of Algorithm
1.

In Figure 7, we can see the rapid growth of Algorithm 2 timings in IOC as
the number of players increases. However, Algorithm 2 does not seem to get
slower on FD. The reason is that IOC is (n− 1)-immune, while FD is not even
1-immune, as proven by [6], and hence the algorithm terminates early finding
this fact.

Similarly in Figure 8, we can see the rapid growth of Algorithm 3 timings in
IOC as the number of players increases. However, Algorithm 3 does not seem
to get slower on FD. The reason is that FD is not (1, 1)-robust, as proven by [6],
while the experiments show that IOC is (1, n− 1)-robust.

10

2 4 6 8 10 12

10−0.35

10−0.3

10−0.25

Number of players n

M
ea
n
ru
n
n
in
g
ti
m
e
(s
ec
)

IOC
FD

Figure 5: Experimental Performance of k-resiliency

2 4 6 8 10 12

100

101

Number of players n

M
ea
n
ru
n
n
in
g
ti
m
e
(s
ec
)

IOC
FD

Figure 6: Experimental Performance of ℓ-repellence

11

2 4 6 8 10 12

100

101

Number of players n

M
ea
n
ru
n
n
in
g
ti
m
e
(s
ec
)

IOC
FD

Figure 7: Experimental Performance of t-immunity

2 4 6 8 10 12
10−0.4

10−0.2

100

100.2

Number of players n

M
ea
n
ru
n
n
in
g
ti
m
e
(s
ec
)

IOC
FD

Figure 8: Experimental Performance of (k, t)-robustness

12

Again in Figure 9, we can see the rapid growth of Algorithm 3 timings in
IOC as the number of players increases. However, Algorithm 3 does not seem to
get slower on FD. The reason is that IOC is (ℓ, n− ℓ)-resistant for all ℓ ≤ n− 1,
while FD is not even (1, 1)-resistant, as proven by [6].

2 4 6 8 10 12

100

101

Number of players n

M
ea
n
ru
n
n
in
g
ti
m
e
(s
ec
)

IOC
FD

Figure 9: Experimental Performance of (ℓ, t)-resistance

In Figure 10, we can see the rapid growth of Algorithm 4 timings in IOC
as the number of players increases. However, Algorithm 4 does not seem to get
slower on FD. The reason is that IOC is (n − 1)-stable, while FD is not even
1-stable, as proven by [6]. All these results confirm that our algorithms return
the maximal k, ℓ, t,m values as soon as they are found.

5 Conclusion

We implemented a tool for computing equilibria definitions: k-resiliency, t-
immunity, (k, t)-robustness, ℓ-repellence, (ℓ, t)-resistance, and m-stability. We
also analyzed the worst-case time complexity of each of the algorithms. We
conducted experiments on the Incentivized Outsourced Computation (IOC)
and Forwarding Dilemma (FD) games. Our tool is available open source:
github.com/CRYPTO-KU/GamuBlue-Game-Theory-Equilibrium-Finder

Acknowledgements

We thank TÜBİTAK (the Scientific and Technological Research Council of
Turkey) project 119E088.

13

https://github.com/CRYPTO-KU/GamuBlue-Game-Theory-Equilibrium-Finder

2 4 6 8 10 12

100

101

102

Number of players n

M
ea
n
ru
n
n
in
g
ti
m
e
(s
ec
)

IOC
FD

Figure 10: Experimental Performance of m-stability

References

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern, “Distributed computing
meets game theory: Robust mechanisms for rational secret sharing and
multiparty computation,” in ACM PODC ’06.

[2] A. Küpçü, “Incentivized outsourced computation resistant to malicious
contractors,” IEEE TDSC, vol. 14, no. 6, pp. 633–649, 2017.

[3] S. Eidenbenz, V. S. A. Kumar, and S. Zust, “Equilibria in topology control
games for ad hoc networks,” in ACM DIALM-POMC ’03.

[4] S. Kamara and A. Küpçü, “Dogfish: Decentralized optimistic game-
theoretic file sharing,” in Applied Cryptography and Network Security, 2018,
pp. 696–714.

[5] Z. Tian, X. Gao, S. Su, J. Qiu, X. Du, and M. Guizani, “Evaluating rep-
utation management schemes of internet of vehicles based on evolutionary
game theory,” IEEE TVT, vol. 68, no. 6, pp. 5971–5980, 2019.

[6] O. Bicer, B. Yildiz, and A. Küpçü, “M-stability: Threshold security meets
transferable utility,” in ACM CCSW ’21.

[7] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyan-
skaya, “Incentivizing outsourced computation,” in ACM NetEcon ’08.

[8] A. Küpçü and R. Safavi-Naini, “Smart contracts for incentivized outsourc-
ing of computation,” in ESORICS CBT, 2021, pp. 245–261.

14

[9] I. Abraham, D. Dolev, R. Gonen, and J. Halpern, “Distributed computing
meets game theory: Robust mechanisms for rational secret sharing and
multiparty computation,” in ACM PODC ’06.

[10] J. Nash, Non-cooperative games. Cambridge University Press, 1989, p.
82–94.

[11] H. Peters, Game Theory: A Multi-Leveled Approach. Springer, 2015.

[12] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complexity
of computing a nash equilibrium,” SIAM Journal on Computing, vol. 39,
no. 1, pp. 195–259, 2009.

[13] X. Chen and X. Deng, “Settling the complexity of two-player nash equilib-
rium,” in IEEE FOCS’06.

[14] M. Naserian and K. Tepe, “Game theoretic approach in routing protocol
for wireless ad hoc networks,” Ad Hoc Networks, vol. 7, no. 3, pp. 569–578,
2009.

15

	Introduction
	Preliminaries
	Basics
	Multi-Party Secure Equilibria Definitions Introduced In old-definitions
	Improved Multi-Party Secure Equilibria Definitions Introduced In new-definitions

	Algorithms
	Experimental Results
	Multi-Party Games
	Input Format
	Timing Benchmarks

	Conclusion

