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LONG-TIME DYNAMICS OF A COMPETITION MODEL WITH

NONLOCAL DIFFUSION AND FREE BOUNDARIES:

VANISHING AND SPREADING OF THE INVADER

YIHONG DU†, WENJIE NI† AND LINFEI SHI‡

Abstract. In this work, we investigate the long-time dynamics of a two species competition model
of Lotka-Volterra type with nonlocal diffusions. One of the species, with density v(t, x), is assumed to
be a native in the environment (represented by the real line R), while the other species, with density
u(t, x), is an invading species which invades the territory of v with two fronts, x = g(t) on the left
and x = h(t) on the right. So the population range of u is the evolving interval [g(t), h(t)] and the
reaction-diffusion equation for u has two free boundaries, with g(t) decreasing in t and h(t) increasing
in t, and the limits h∞ := h(∞) ≤ ∞ and g∞ := g(∞) ≥ −∞ thus always exist. We obtain detailed
descriptions of the long-time dynamics of the model according to whether h∞ − g∞ is ∞ or finite.
In the latter case, we reveal in what sense the invader u vanishes in the long run and v survives
the invasion, while in the former case, we obtain a rather satisfactory description of the long-time
asymptotic limit for both u(t, x) and v(t, x) when a certain parameter k in the model is less than
1. This research is continued in a separate work, where sharp criteria are obtained to distinguish
the case h∞ − g∞ = ∞ from the case h∞ − g∞ is finite, and new phenomena are revealed for the
case k ≥ 1. The techniques developed in this paper should have applications to other models with
nonlocal diffusion and free boundaries.
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1. Introduction

We are interested in the long-time dynamics of the following Lotka-Volterra type competition
model with nonlocal diffusion and free boundaries
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ut = d1

∫ h(t)

g(t)
J1(x− y)u(t, y)dy − d1u+ u(1− u− kv), t > 0, g(t) < x < h(t),

vt = d2

∫

R

J2(x− y)v(t, y)dy − d2v + γv(1− v − hu), t > 0, x ∈ R,

u(t, x) = 0, t ≥ 0, x 6∈ (g(t), h(t)),

h′(t) = µ

∫ h(t)

g(t)

∫ ∞

h(t)
J1(x− y)u(t, x)dydx, t > 0,

g′(t) = −µ
∫ h(t)

g(t)

∫ g(t)

−∞
J1(x− y)u(t, x)dydx, t > 0,

h(0) = −g(0) = h0 > 0, u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R,

(1.1)

where d1, d2, h, k, γ, µ are given positive constants, and the initial functions satisfy

u0 ∈ C(R), u0(x) = 0 for |x| ≥ h0, u0(x) > 0 for |x| < h0, v0 ∈ Cb(R), v0(x) ≥ 0 in R,(1.2)

where Cb(R) is the space of continuous and bounded functions in R. The kernel functions J1, J2 are
assumed to satisfy
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(J) : Ji ∈ Cb(R), Ji(x) = Ji(−x) ≥ 0, Ji(0) > 0,

∫

R

Ji(x)dx = 1 for i = 1, 2.

System (1.1) may be viewed as a model describing the invasion of a species with density u into an
environment (represented by R here) where a native competitor, with density v, has already appeared.
The population range of u is given by the time-dependent interval [g(t), h(t)], with x = g(t) and
x = h(t) known as the free boundaries in the model, which represent the range boundary of u, or its
invading fronts.

The corresponding local diffusion version of (1.1) was first studied in [10]. As will be explained
below, the nonlocal diffusion model (1.1) poses several technical difficulties in the mathematical
treatment, and is capable of exhibiting strikingly different behaviour from its local diffusion corre-
spondent.

We remark that (1.1) is a reduced version of the following equivalent but more general looking
system:
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Ut = D1

∫ H(t)

G(t)
J1(x− y)U(t, y)dy −D1U + U(a1 − b1U − c1V ), t > 0, G(t) < x < H(t),

Vt = D2

∫

R

J2(x− y)V (t, y)dy −D2V + V (a2 − b2V − c2U), t > 0, x ∈ R,

U(t, x) = 0, t ≥ 0, x 6∈ (G(t),H(t)),

H ′(t) = µ̂

∫ H(t)

G(t)

∫ ∞

H(t)
J1(x− y)U(t, x)dydx, t > 0,

G′(t) = −µ̂
∫ H(t)

G(t)

∫ G(t)

−∞
J1(x− y)U(t, x)dydx, t > 0,

H(0) = −G(0) = H0 > 0, U(0, x) = U0(x), −H0 ≤ x ≤ H0,

V (0, x) = V0(x), t ≥ 0, x ∈ R,

(1.3)

Indeed, let

u(t, x) =
b1
a1
U

(

t

a1
, x

)

, v(t, x) =
b2
a2
V

(

t

a1
, x

)

, h(t) = H

(

t

a1

)

, g(t) = G

(

t

a1

)

,

d1 =
D1

a1
, d2 =

D2

a1
, γ =

a2
a1
, k =

a2c1
a1b2

, h =
a1c2
a2b1

, µ =
1

b1
µ̂.

Then a simple calculation shows that (1.3) is reduced to (1.1).

Several closely related models have been studied recently. In [16], the situation that the population
range of v is the same evolving interval [g(t), h(t)] was considered, and a technical difficulty in treating
the nonlocal competition model has been revealed: Due to the lack of compactness of the solutions
of the nonlocal diffusion problem, the fact [g(t), h(t)] remains uniformly bounded for all time t > 0,
does not lead to the conclusion of vanishing as in the corresponding local diffusion models. To recover
the vanishing property, [16] relied on the following extra assumption

(1.4) Ji(x) > 0 for all x ∈ R, i = 1, 2,

and a trick relating the left and right derivatives of M(t) := maxx∈[g(t),h(t)] u(t, x) to ut(t, ξ(t)) for
some suitable ξ(t) ∈ [g(t), h(t)]. It was conjectured in [16] that the assumption (1.4) is unnecessary.

In [7], the same system (1.1) was considered, while [27] considered the special case d1 = d2 and
J1 = J2. In [20], a predator-prey system with both species evolving over the same interval [0, h(t)]
was investigated. In these papers, the existence and uniqueness of the solution was established,
together with various results on the long-time dynamics of the model for certain selected ranges of
the parameters. However, to prove vanishing of u, they used the same trick as in [16] and made the
same additional assumption (1.4) for J1(x).

In this work, we will introduce new techniques to treat (1.1) without requiring (1.4), and obtain
precise description of the long-time dynamics of the model for broader parameter ranges. Moreover,
we will reveal several new behaviours of the model.
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Let us start by recalling the following well-posedness result:

Theorem A. ([7]) Assume (J) holds, and the initial functions satisfy (1.2). Then (1.1) admits a

unique solution (u, v, g, h) defined for all t > 0.

For the long-time dynamics, we will use some terminologies arising from the corresponding ODE
version of (1.1), namely

(1.5)











u′ = u(1− u− kv),

v′ = γv(1− v − hu),

u(0) > 0, v(0) > 0,

which always has the trivial equilibrium R0 = (0, 0) and semi-trivial equilibria R1 = (1, 0) and
R2 = (0, 1). Moreover, if min{h, k} > 1 or max{h, k} < 1, the problem has a unique positive
equilibrium R∗ := ( 1−k

1−hk ,
1−h
1−hk ). Regarding the long-time dynamics of (1.5), the following conclusions

are well known:

(1) R0 is always unstable;
(2) when max{h, k} < 1, R∗ is globally asymptotically stable;
(3) when k < 1 < h, R1 is globally asymptotically stable;
(4) when h < 1 < k, R2 is globally asymptotically stable;
(5) when min{h, k} > 1, both R1 and R2 are locally asymptotically stable while R∗ is unstable.

In case (2), the competitors co-exist in the long run, and it is often referred to as the weak

competition case, where no competitor wins or loses in the competition. Cases (3) and (4) are known
as the weak-strong competition cases. In case (3), the competitor u wipes v out in the long run and
wins the competition; so we will call u the strong competitor and v the weak competitor. Analogously
u is the weak competitor and v is the strong competitor in case (4). Case (5) is the strong competition

case, and depending on the location of (u(0), v(0)) in the first quadrant of R2, one of R1 and R2 is
the global attractor of (1.5) (except when (u(0), v(0)) lies on the one dimensional stable manifold of
R∗). We will keep using these terminologies which are determined solely by h and k for (1.1).

To state our main results in this paper, we also need to recall some properties of the principle
eigenvalue for some associated nonlocal diffusion operators. For Ω = (a, b) a finite interval, under
our assumption (J), it is well known that the following eigenvalue problem

λϕ = LΩ[ϕ](x) := d1

[
∫

Ω
J1(x− y)ϕ(y)dy − ϕ(x)

]

, ϕ ∈ C(Ω),

has a principal eigenvalue λ = λp(LΩ) associated with a positive eigenfunction ϕ (e.g., [5,8,18]), and
it has the following properties:

Proposition B. ([6, Proposition 3.4]) Assume that l > 0, and J1 satisfies (J). Then

(i) λp(L(a,a+l)) = λp(L(0,l)) for all a ∈ R,

(ii) λp(L(0,l)) is strictly increasing and continuous in l,
(iii) lim

l→∞
λp(L(0,l)) = 0,

(iv) lim
l→0

λp(L(0,l)) = −d1.

We are now ready to state our main results in this paper. Let (u, v, g, h) be the solution of (1.1).
Then g∞ := limt→∞ g(t) ∈ [−∞,−h0) and h∞ := limt→∞ h(t) ∈ (h0,∞] always exist. We will
describe the long-time dynamics of (1.1) according to the following two cases:

(a) : h∞ − g∞ <∞, (b) : h∞ − g∞ = ∞.

In case (a) the limit of the population range of u is finite and one expects u to vanish in the long
run, while in case (b), the limit of the size of the population range of u is infinite, and successful
invasion of u is expected.

For case (a), by introducing new techniques for the analysis of the function

U(t, x) :=

∫ x+L

x−L
u(t, y)dy
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for suitable values of L, we will prove the following result.

Theorem 1.1. Assume that (J) holds and (u, v, g, h) is the unique solution of (1.1). If h∞−g∞ <∞,

then necessarily

d1 > 1− k and λp(L(g∞,h∞)) ≤ k − 1;(1.6)

moreover

(1.7)








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
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



lim
t→∞

∫

R

u(t, x)dx = 0,

lim
t→∞

∫ L

L
|v(t, x)− 1)|dx = 0 for every L > 0,

lim
t→∞

v(t, x) = 1 locally uniformly for x ∈ R \ (g∞, h∞).

One naturally wonders whether in Theorem 1.1 the conclusions in (1.7) imply the following stronger
statements, as in the corresponding local diffusion model [10]:

(1.8) lim
t→∞

max
x∈[g(t),h(t)]

u(t, x) = 0 and lim
t→∞

v(t, x) = 1 locally uniformly for x ∈ R.

It turns out that this question is not easy to answer. Using (1.7) and viewing (1.1) as a perturbation
of the corresponding ODE problem (1.5), we are able to obtain a partial answer to this question.

Let us now be more precise. Denote d̃1 := d1 + k − 1 and

F (s) := γ(1 − hk)s2 + [d̃1γh− γ(1− hk)− d2]s− d̃1γh,(1.9)

which arises from the analysis of (1.5). Define the sets Θ1 and Θ2 by

(1.10)

{

Θ1 := {(γ, h, k, d1, d2) ∈ R
5
+ : F (s) 6= 0 for s ∈ [0, 1]},

Θ2 := {(γ, h, k, d1, d2) ∈ R
5
+ : F (s) = 0 has at least one root in [0, 1]}.

Clearly Θ2 = R
5
+ \Θ1, so for any given parameters (γ, h, k, d1, d2) in (1.1), it belongs to either Θ1 or

Θ2. It is easy to show (see Remark 3.2 below) that (γ, h, k, d1, d2) ∈ Θ1 if

d1 ≥ 1 or kh ≤ 1 +
d2
γ
.

(So in the weak competition case where k, h ∈ (0, 1), we always have (γ, h, k, d1, d2) ∈ Θ1. )

Regarding the above question on the validity of (1.8), we have the following answer.

Theorem 1.2. Under the assumptions of Theorem 1.1, the following conclusions hold:

(i) If d1 ≥ 1 or if d1 < 1 and (γ, h, k, d1, d2) ∈ Θ1, then (1.8) holds.
(ii) If d1 < 1 and (γ, h, k, d1, d2) ∈ Θ2, then either (1.8) still holds or there is an open set

Ω ⊂ (g∞, h∞) with |Ω| = h∞ − g∞, Ω 6= (g∞, h∞), such that

(1.11) lim
t→∞

(u(t, x), v(t, x)) =







(0, 1) locally uniformly for x ∈ Ω,

(kx∗ − d̃1, 1− x∗) for x ∈ (g∞, h∞)\Ω,
where x∗ ∈ (0, 1) is the smallest positive root of F (s) = 0 in [0, 1].

Remark 1.3. We do not know whether (1.11) can actually happen, and conjecture that it never

happens.

For the case h∞ − g∞ = ∞, we will prove the following result.

Theorem 1.4. Assume that (J) holds and (u, v, g, h) is the unique solution of (1.1). If h∞−g∞ = ∞
and k < 1, then h∞ = ∞, g∞ = −∞ and

lim
t→∞

(u(t, x), v(t, x)) =

{

(1, 0) if h ≥ 1,

( 1−k
1−hk ,

1−h
1−hk ) if h < 1,

where the convergence is locally uniform for x ∈ R.
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The assumption k < 1 in Theorem 1.4 cannot be removed. In a separate following up work [14], we
will show that, when k ≥ 1, it is possible to have h∞ = ∞ while g∞ is finite. Since (1.1) generates a
monotone dynamical system, it is possible to obtain sharp criteria for h∞−g∞ = ∞ or h∞−g∞ <∞
to happen; this will also be carried out in this following up paper.

For nonlocal diffusion models with free boundary, compared with the corresponding models with
local diffusion, a new phenomena occurs on the asymptotic spreading speed, namely accelerated
spreading may happen. For the Fisher-KPP single species model, and for certain cooperative models,
such a phenomena was investigated recently in [9,11–13,15]. We leave the study of this behaviour of
the competition system here to future work.

There are extensive recent works on competition systems with nonlocal diffusion over a fixed
bounded domain or over the entire Euclidean space. Since no free boundaries appear in these sit-
uations, compared to our work here, usually significantly different techniques are used; indeed, the
technical difficulties here do not appear in these problems. For works on a bounded domain, we
mention as examples [1–3,19] and the references therein. For works on nonlocal competition systems
over the entire space, an incomplete sample includes [17, 21, 22, 24, 26] and the references therein.
In [17], the authors obtained conditions for coexistence and extinction of the species, and also con-
sidered the system in higher dimensions. In [21], the authors constructed entire solutions behaving
like two monotone traveling-wave solutions moving toward each other from the ancient time −∞,
giving rise to the phenomena of successful invasion of a species with speed c1 from x = −∞ and with
speed c2 from x = +∞. In [24] and [22], the propagation behaviour under a shifting environment
was investigated. In [26], a strong competition system was considered, where interesting results on
the stability of bistable traveling waves and the long-time propagation behaviour of the system were
obtained.

The rest of this paper is organised as follows. In Sections 2 and 3, we prove Theorems 1.1 and 1.2,
respectively. The proof of Theorem 1.4 is given in Section 4.

2. Proof of Theorem 1.1

We prove Theorem 1.1 by a sequence of lemmas.

Lemma 2.1. If h∞ − g∞ <∞, then (1.6) holds.

Proof. To prove the second inequality in (1.6), we argue indirectly: Assume, on the contrary, that
λp(L(g∞,h∞)) > k − 1. Then λp(L(g∞,h∞) > k(1 + ǫ) − 1 for sufficiently small ǫ > 0, say ǫ ∈ (0, ǫ1).
For such ǫ, we can find Tǫ > 0 such that

h(t) > h∞ − ǫ, g(t) < g∞ + ǫ for t > Tǫ,

v(t, x) < 1 + ǫ for t > Tǫ, x ∈ R.

Let wǫ be the unique solution of the auxiliary problem










wt = d1

∫ h∞−ǫ

g∞+ǫ
J1(x− y)w(t, y)dy − d1w + w(1 − w − k(1 + ǫ)), t > Tǫ, x ∈ [g∞ + ǫ, h∞ − ǫ],

w(Tǫ, x) = u(Tǫ, x), x ∈ [g∞ + ǫ, h∞ − ǫ].

Since λp(L(g∞,h∞)) > k(1+ǫ)−1, from [6, Proposition 3.5], it follows that wǫ converges to the unique
positive steady-state Wǫ(x) uniformly in [g∞ + ǫ, h∞ − ǫ] as t → ∞. Moreover, a simple comparison
argument yields that u(t, x) ≥ wǫ(t, x) for t > Tǫ, and x ∈ [g∞ + ǫ, h∞ − ǫ]. Therefore, there exists
Tǫ1 > Tǫ such that

u(t, x) ≥ 1

2
Wǫ(x) > 0, ∀ t ≥ Tǫ1 , x ∈ [g∞ + ǫ, h∞ − ǫ].

It follows that, for t ≥ Tǫ1 ,

h′(t) = µ

∫ h(t)

g(t)

∫ ∞

h(t)
J1(x− y)u(t, x)dydx
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≥ µ

∫ h∞−ǫ

h∞−2ǫ

∫ h∞+ǫ

h∞

J1(x− y)
1

2
Wǫ(x)dydx

≥ µ

∫ h∞−ǫ

h∞−2ǫ

∫ h∞+ǫ

h∞

min
z∈[−3ǫ,−ǫ]

J1(z)
1

2
min

z∈[0,h∞]
Wǫ(z)dydx

= µǫ2 min
z∈[−3ǫ,−ǫ]

J1(z)
1

2
min

z∈[0,h∞]
Wǫ(z) =: σǫ > 0

provided that ǫ > 0 is sufficiently small (recall that J1(0) > 0). But this implies h∞ = ∞, a
contradiction. Thus λp(L(g∞,h∞)) ≤ k − 1 holds true. This proves the first inequality in (1.6).

The first inequality in (1.6) is a consequence of the second. Indeed, by Proposition B, we have
−d1 < λp(L(g∞,h∞)) ≤ k − 1, i.e., d1 > 1− k. The proof is finished. �

Our analysis below will make use of Barbalat’s Lemma [4], which is recalled below and can be
proved by elementary calculus directly.

Lemma 2.2 (Barbalat’s Lemma). Suppose that ψ : [0,∞) → R is uniformly continuous and that

lim
t→∞

∫ t

0
ψ(s)ds ∈ R exists. Then lim

t→∞
ψ(t) = 0.

Lemma 2.3. If h∞ − g∞ <∞, then

lim
t→∞

∫

R

u(t, y)dy = 0.(2.1)

Proof. By the argument in the proof of Lemma 3.1 in [16], we obtain that lim
t→∞

g′(t) = lim
t→∞

h′(t) = 0.

Due to Ji(0) > 0, there is small ǫ > 0 such that inf
x∈[−ǫ,ǫ]

J1(x) > 0. Then for large t > 0,

h′(t) = µ

∫ h(t)

g(t)

∫ ∞

h(t)
J1(x− y)u(t, x)dydx

≥ µ

∫ h(t)

h(t)−ǫ/2

∫ h(t)+ǫ/2

h(t)
J1(x− y)u(t, x)dydx

= µ

∫ h(t)

h(t)−ǫ/2

∫ x−h(t)

x−(h(t)+ǫ/2)
J1(z)u(t, x)dzdx

≥ µ
ǫ

2
inf

x∈[−ǫ,ǫ]
J1(x)

∫ h(t)

h(t)−ǫ/2
u(t, x)dx ≥ 0,

which implies

lim
t→∞

∫ h(t)

h(t)−ǫ/2
u(t, x)dx = 0 and hence lim

t→∞

∫ ∞

h∞−ǫ/4
u(t, x)dx = 0.(2.2)

Similarly, using lim
t→∞

g′(t) = 0 we deduce

lim
t→∞

∫ g(t)+ǫ/2

g(t)
u(t, x)dx = 0 and hence lim

t→∞

∫ g∞+ǫ/4

−∞
u(t, x)dx = 0.(2.3)

In the following, we show that

limt→∞ U(t, x) = 0 for every x ∈ R,(2.4)

where

U(t, x) :=

∫ x+L

x−L
u(t, y)dy, L = ǫ/8.

Due to (2.2), (2.3) and the fact that u(t, x) ≡ 0 for t ≥ 0 and x ∈ R\[g(t), h(t)], clearly (2.4) holds
for x ∈ R\(g∞ + 3ǫ/16, h∞ − 3ǫ/16). It remains to show (2.4) for x ∈ (g∞ + 3ǫ/16, h∞ − 3ǫ/16).



DYNAMICS OF A COMPETITION MODEL 7

In view of the equation satisfied by u, we deduce for large t and x ∈ [g∞ + 3ǫ/16, h∞ − 3ǫ/16],

Ut = d1

∫ x+L

x−L

∫ h(t)

g(t)
J1(y − z)u(t, z)dzdy +

∫ x+L

x−L
[−d1u+ u(1− u− kv)]dy.(2.5)

From the boundedness of u and v, we easily see from the above equation that |Ut(t, x)| is uniformly
bounded for all large t and x ∈ [g∞ +3ǫ/16, h∞ − 3ǫ/16]. Hence for any fixed x ∈ [g∞ +3ǫ/16, h∞ −
3ǫ/16], t→ U(t, x) is uniformly continuous in t for all large t, and hence for all t ∈ [0,∞).

Now take x0 = h∞ − 3ǫ/16 and recall that (2.4) holds with x = x0; so we have

lim
t→∞

∫ t

0
Ut(s, x0)ds = lim

t→∞
U(t, x0)− U(0, x0) = −U(0, x0).

We may now apply Lemma 2.2 with ψ(t) = Ut(t, x0) to conclude that limt→∞ Ut(t, x0) = 0. Moreover,
using (2.4) with x = x0 we further obtain

lim
t→∞

∫ x0+L

x0−L
[−d1u+ u(1− u− kv)]dy = 0.

Hence we can use (2.5) to deduce

lim
t→∞

d1

∫ x0+L

x0−L

∫ h(t)

g(t)
J1(y − z)u(t, z)dzdy = 0.

It follows, due to infx∈[−ǫ,ǫ] J1(x) > 0 and L = ǫ/8, that

0 = lim
t→∞

∫ x0+L

x0−L

∫ h(t)

g(t)
J1(y − z)u(t, z)dzdy ≥ lim sup

t→∞

∫ x0+L

x0−L

∫ x0+2L

x0−2L
J1(y − z)u(t, z)dzdy

≥ 2L inf
x∈[−ǫ,ǫ]

J1(x) lim sup
t→∞

∫ x0+2L

x0−2L
u(t, z)dz ≥ 0,

which implies

lim
t→∞

∫ x0+2L

x0−2L
u(t, z)dz = 0.

In particular, limt→∞ U(t, x) = 0 for all x ∈ [x0 − L, x0].
Now we may repeat the above argument with x0 replaced by x1 := x0 − L, and similarly show

limt→∞ U(t, x) = 0 for x ∈ [x1 − L, x1] = [x0 − 2L, x0 − L].
Analogously we may take y0 = g∞ +3ǫ/16 and show that (2.4) holds for x ∈ [y0, y0 +L] and then

continue to show that (2.4) holds for x ∈ [y0 + L, y0 + 2L], etc.
Clearly after finitely many steps we reach the conclusion that (2.4) holds for all x ∈ [y0, x0], as

desired. We have thus proved that (2.4) holds for every x ∈ R, namely

lim
t→∞

∫ x+L

x−L
u(t, y)dy = 0 for every x ∈ R.

Since u(t, y) = 0 for all t > 0 and y 6∈ [g∞, h∞], this implies (2.1). The proof of the lemma is now
complete. �

Remark 2.4. If g∞ = −∞ and h∞ < +∞, then we could take x1 = x0 − L, ... xn+1 = xn − L and

repeat the argument in the proof of Lemma 2.3 finitely many times to obtain

lim
t→∞

∫ ∞

−M
u(t, x)dx = 0 for every M > 0.

When g∞ > −∞ and h∞ = +∞, we can show

lim
t→∞

∫ M

−∞
u(t, x)dx = 0 for every M > 0.

To prove the next lemma, we will need a trick introduced in the proof of Theorem 3.3 in [16],
which is formulated in a more general form below.
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Lemma 2.5. Suppose that s1(t) and s2(t) are continuous bounded functions over [0,∞) satisfying

s1(t) < s2(t) for all t ≥ 0. Let U(t, x) be a continuous bounded function over Ω := {(t, x) : t ≥ 0, x ∈
[s1(t), s2(t)]}, with Ut(t, x) also continuous in Ω. Then there exist sequences (tn, xn) and (t̄n, x̄n)
with xn ∈ [s1(tn), s2(tn], x̄n ∈ [s1(t̄n), s2(t̄n)] and limn→∞ tn = limn→∞ t̄n = ∞ such that

{

limn→∞ U(tn, xn) = U, limn→∞Ut(tn, xn) = 0,

limn→∞ U(t̄n, x̄n) = U, limn→∞Ut(t̄n, x̄n) = 0,

where

U := lim inf
t→∞

min
x∈[s1(t),s2(t)]

U(t, x), U := lim sup
t→∞

max
x∈[s1(t),s2(t)]

U(t, x).

Proof. We only prove the existence of (t̄n, x̄n) since the existence of (tn, xn) then follows by considering
the function V (t, x) = −U(t, x).

Denote

M(t) := max
x∈[s1(t),s2(t)]

U(t, x) and X(t) := {x ∈ [s1(t), s2(t)] : U(t, x) =M(t)}.

Then X(t) is a compact set for each t > 0. Therefore, there exist ξ(t), ξ(t) ∈ X(t) such that

Ut(t, ξ(t)) = min
x∈X(t)

Ut(t, x), Ut(t, ξ(t)) = max
x∈X(t)

Ut(t, x).

We claim that M(t) satisfies, for each t > 0,














M ′(t+ 0) := lim
s>t,s→t

M(s)−M(t)

s− t
= Ut(t, ξ(t)),

M ′(t− 0) := lim
s<t,s→t

M(s)−M(t)

s− t
= Ut(t, ξ(t)).

(2.6)

Indeed, for any fixed t > 0 and s > t, we have

U(s, ξ(t))− U(t, ξ(t)) ≤M(s)−M(t) ≤ U(s, ξ(s))− U(t, ξ(s)).

It follows that

lim inf
s>t,s→t

M(s)−M(t)

s− t
≥ Ut(t, ξ(t)),(2.7)

and

lim sup
s>t,s→t

M(s)−M(t)

s− t
≤ lim sup

s>t,s→t

U(s, ξ(s))− U(t, ξ(s))

s− t
.

Let sn ց t satisfy

lim
n→∞

U(sn, ξ(sn))− U(t, ξ(sn))

sn − t
= lim sup

s>t,s→t

U(s, ξ(s))− U(t, ξ(s))

s− t
.

By passing to a subsequence if necessary, we may assume that ξ(sn) → ξ as n→ ∞. Then U(t, ξ) =
lim
n→∞

M(sn) = M(t) and hence ξ ∈ X(t). Due to the continuity of Ut(t, x), it follows immediately

that

lim
n→∞

U(sn, ξ(sn))− U(t, ξ(sn))

sn − t
= Ut(t, ξ) ≤ Ut(t, ξ(t)).

We thus obtain

lim sup
s>t,s→t

M(s)−M(t)

s− t
≤ Ut(t, ξi(t)).

Combining this with (2.7) we obtain

M ′(t+ 0) = Ut(t, ξ(t)).

Analogously we can show

M ′(t− 0) = Ut(t, ξ(t)).
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Let us note from (2.6) that M ′(t − 0) ≤ M ′(t + 0) for all t > 0. Therefore if M(t) has a local
maximum at t = t0, then M

′(t0) exists and M ′(t0) = 0.
Regarding the function M(t) we have three possibilities:
(a) it has a sequence of local maxima {tn} such that

limn→∞ tn = ∞ and limn→∞M(tn) = lim supt→∞M(t),

(b) it is monotone nondecreasing for all large t and so limt→∞M(t) exists,
(c) it is monotone nonincreasing for all large t and so limt→∞M(t) exists.

In case (a) we take t̄n = tn, x̄n = ξ(tn) and so

Ut(t̄n, x̄n) =M ′(tn) = 0, U(t̄n, x̄n) = U(tn, ξ(tn)) =M(tn) → lim sup
t→∞

M(t) as n→ ∞.

In case (b) necessarily M ′(tn − 0) → 0 along some sequence tn → ∞ for otherwise M ′(t + 0) ≥
M ′(t − 0) ≥ δ > 0 for some δ > 0 and all large t, which leads to the contradiction M(t) → ∞ as
t→ ∞. We now take t̄n = tn and x̄n = ξ(tn), and obtain

{

Ut(t̄n, x̄n) = Ut(tn, ξ(tn)) =M ′(tn − 0) → 0,

U(t̄n, x̄n) = U(tn, ξ(tn)) =M(tn) → limt→∞M(t) as n→ ∞.

In case (c), necessarily M ′(sn + 0) → 0 along some sequence sn → ∞ for otherwise M ′(t − 0) ≤
M ′(t+ 0) ≤ −δ < 0 for some δ > 0 and all large t, which leads to the contradiction M(t) → −∞ as
t→ ∞. We now take t̄n = sn and x̄n = ξ(sn), and obtain

{

Ut(t̄n, x̄n) = Ut(sn, ξ(sn)) =M ′(sn + 0) → 0,

U(t̄n, x̄n) = U(sn, ξ(sn)) =M(sn) → limt→∞M(t) as n→ ∞.

The proof is complete. �

Lemma 2.6. If h∞ − g∞ <∞, then for any given L > 0, we have

lim inf
t→∞

min
x∈[−L,L]

v(t, x) > 0,(2.8)

and for any ǫ > 0, there is L∗ = L∗(ǫ, L) ≫ 1 such that L1 ≥ L∗ leads to

lim inf
t→∞

min
|x|∈[L1,L1+L]

v(t, x) ≥ 1− ǫ,(2.9)

which implies

lim inf
t→∞

v(t, x) ≥ 1− ǫ for every x ≥ L1.

Proof. Step 1. We first show (2.9), and only consider the case of x > 0, as the case x < 0 can be
treated similarly.

Recalling that u(t, x) = 0 for all x 6∈ [g∞, h∞], we see that v satisfies

vt ≥ d2

∫ ∞

h∞

J2(x− y)v(t, y)dy − d2v + γv(1 − v), t > 0, x ∈ [h∞,∞).

To prove (2.9), we will utilize the conclusions of [6, Propositions 3.5 and 3.6] about the solution
of a nonlocal diffusion problem over a fixed spatial interval. To be precise, for constants a < b, let
w(t, x) be the solution of the following problem

wt = d2

∫ b

a
J2(x− y)w(t, y)dy − d2w + γw(1 −w) t > 0, x ∈ (a, b),

with continuous initial function w(0, x) ≥, 6≡ 0 in [a, b]. Then by [6, Proposition 3.5], for sufficient
large b−a, the solution w(t, x) converges to wab(x) uniformly for x ∈ [a, b] as t→ ∞ with λp(L(a,b)+
γ) > 0, where wab(x) satisfies

d2

∫ b

a
J2(x− y)wab(y)dy − d2wab + γwab(1− wab) = 0, x ∈ (a, b).
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[6, Proposition 3.6] then asserts

lim
a→−∞, b→∞

wab(x) = 1 locally uniformly in R,

Hence, there is large L∗ > L such that for −a, b ≥ L∗,

wab(x) > 1− ǫ/2 in [−L,L].
Recalling from [6, Proposition 3.6] that wab has the shifting invariance property: for ã = a + δ and

b̃ = b + δ, there holds wãb̃(x) = wab(x − δ) for x ∈ [ã, b̃]. Taking −a = b = L̃1 ≥ L∗, ã = h∞ and

b̃ = 2L̃1 + h∞, we obtain

wãb̃(x) ≥ 1− ǫ/2 for x ∈ [L1, L1 + L]

with L1 := L̃1 + h∞, due to wãb̃(x) = wab(x − h∞ − L̃1) for x ∈ [ã, b̃]. Then, the convergence

limt→∞w(t, x) = wãb̃(x) as a solution defined on (t, x) ∈ [0,∞) × [ã, b̃] gives

lim inf
t→∞

min
|x|∈[L1,L1+L]

w(t, x) ≥ 1− ǫ.(2.10)

Letting w(0, x) := v(1, x) for x ∈ [ã, b̃] = [h∞, h∞ + 2L̃1], by the comparison principle, we obtain

v(t, x) ≥ w(t, x) for t ≥ 0, x ∈ [h∞, h∞ + 2L̃1],(2.11)

and so (2.9) follows from (2.10).

Step 2. We now verify (2.8).
From (2.11) we see that for any [A,B] ⊂ R\(g∞, h∞),

lim inf
t→∞

min
x∈[A,B]

v(t, x) > 0,

Hence, to show the validity of (2.8), we only need to check

lim inf
t→∞

min
x∈[g∞,h∞]

v(t, x) > 0.(2.12)

Denote

δ0 := lim inf
t→∞

min
x∈[h∞,h∞+1]

v(t, x) > 0

and choose ǫ0 > 0 small so that J2(x) > 0 for x ∈ [−2ǫ0, 2ǫ0]. We show that

δ1 := lim inf
t→∞

min
x∈[h∞−ǫ0,h∞]

v(t, x) > 0.

Suppose, on the contrary, δ1 = 0, we are going to derive a contradiction. Using δ1 = 0 and Lemma
2.5, we can find two sequences tn → ∞ and xn ∈ [h∞ − ǫ0, h∞] satisfying xn → x0 ∈ [h∞ − ǫ0, h∞]
such that

lim
n→∞

v(tn, xn) = 0, lim
n→∞

vt(tn, xn) = 0.

Then, letting (t, x) = (tn, xn) and n→ ∞ in the equation satisfied by v, we obtain

0 = lim
n→∞

∫

R

J2(xn − y)v(tn, y)dy ≥ lim inf
n→∞

∫ h∞+1

h∞

J2(xn − y)v(tn, y)dy

≥ δ0

∫ h∞+1

h∞

J2(x0 − y)dy > 0,

where we have used Fatou’s Lemma in the third inequality. This is a contradiction. Hence δ1 > 0.
We may now similarly show that

δ2 = lim inf
t→∞

min
x∈[h∞−2ǫ0,h∞−ǫ0]

v(t, x) > 0.

Repeating the argument several times, one can obtain the desired inequality (2.12). The proof is
completed. �
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Lemma 2.7. If h∞ − g∞ <∞, then for every L > 0, we have

lim
t→∞

∫ L

−L
|v(t, y)− 1|dy = 0(2.13)

and

lim
t→∞

v(t, x) → 1 uniformly for x ∈ [−L,L]\(g∞, h∞).(2.14)

Proof. Step 1. We prove that

lim
t→∞

V (t, x) = 1 for every x ∈ R,(2.15)

where

V (t, x) :=
1

2L

∫ x+L

x−L
v(t, y)dy.

Since

1

2L

∫ x+L

x−L

∫

R

J2(y − z)v(t, z)dzdy =
1

2L

∫ x+L

x−L

∫

R

J2(z)v(t, y − z)dzdy

=
1

2L

∫

R

J2(z)

(
∫ x+L

x−L
v(t, y − z)dy

)

dz =

∫

R

J2(z)V (t, x− z)dz

=

∫

R

J2(x− y)V (t, y)dy,

by the equation for v, the function V (t, x) satisfies

(2.16)

Vt = d2
1

2L

∫ x+L

x−L

∫

R

J2(y − z)v(t, z)dzdy − d2V +
1

2L

∫ x+L

x−L
γv(1− v − hu)dy

= d2

∫

R

J2(x− y)V (t, y)dy − d2V +
1

2L

∫ x+L

x−L
γv(1− v − hu)dy for t > 0, x ∈ R.

To show (2.15), it suffices to verify for any given 0 < δ < 1,

lim inf
t→∞

V (t, x) = lim inf
t→∞

1

2L

∫ x+L

x−L
v(t, y)dy ≥ δ for every x ∈ R.

We first show that this is true when |x| is large. In fact, by (2.9), for any ǫ ∈ (0, 1− δ), any a > 0
and all large L1 > 0, say L1 ≥ L∗(a) > 0,

lim inf
t→∞

min
|x|∈[L1,L1+a]

v(t, x) ≥ 1− ǫ > δ.

Hence, for |x| ≥ L∗(2L) + L, by Fatou’s Lemma,

lim inf
t→∞

V (t, x) = lim inf
t→∞

1

2L

∫ x+L

x−L
v(t, y)dy ≥ 1

2L

∫ x+L

x−L
lim inf
t→∞

v(t, y)dy > δ.(2.17)

For |x| ≤ L∗(2L) + L, the desired conclusion is a consequence of the following stronger result:

lim inf
t→∞

min
|x|≤L1

V (t, x) ≥ δ for every L1 > 0.(2.18)

Otherwise, there exists L1 > 0 such that

δ1 := lim inf
t→∞

min
|x|≤L1

V (t, x) < δ.

Without loss of generality, we may assume that L1 > L∗(2L) +L. By Lemma 2.5 we can choose two
sequences tn → ∞ and xn ∈ [−L1, L1] satisfying xn → x0 ∈ [−L1, L1] such that

lim
n→∞

V (tn, xn) = δ1, lim
n→∞

Vt(tn, xn) = 0.
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We may also require, by passing to a subsequence if necessary, that the following limits exist

lim
n→∞

∫

R

J2(xn − y)V (tn, y)dy, lim
n→∞

1

2L

∫ xn+L

xn−L
γv(tn, y)[1− v(tn, y)]dy.

Then from (2.16) we deduce, upon using (2.1),

0 = lim
n→∞

d2

∫

R

J2(xn − y)V (tn, y)dy − d2δ1 + lim
n→∞

γ

2L

∫ xn+L

xn−L
v(tn, y)[1− v(tn, y)]dy

≥ d2

∫

R

lim inf
n→∞

[J2(xn − y)V (tn, y)] dy − d2δ1

+
γ

2L

∫ L

−L
lim inf
n→∞

(

v(tn, y + xn)[1− v(tn, y + xn)]
)

dy.

where Fatou’s Lemma is used in the last inequality. In view of the definition of δ1 and (2.17), we
have

d2

∫

R

lim inf
n→∞

J2(xn − y)V (tn, y)dy − d2δ1 ≥ d2

∫

R

J2(x0 − y)δ1dy − d2δ1 = 0.

From v ≥ 0 and lim sup
t→∞

v(t, y) ≤ 1, we obtain

∫ L

−L
lim inf
n→∞

(

v(tn, y + xn)[1− v(tn, y + xn)]
)

dy ≥ 0.

Thus we have

0 = lim
n→∞

d2

∫

R

J2(xn − y)V (tn, y)dy − d2δ1 + lim
n→∞

γ

2L

∫ xn+L

xn−L
v(tn, y)[1− v(tn, y)]dy ≥ 0,

which implies

lim
n→∞

∫

R

J2(xn − y)V (tn, y)dy − d2δ1 = 0

lim
n→∞

∫ xn+L

xn−L
v(tn, y)[1− v(tn, y)]dy = 0.(2.19)

Moreover, comparing v with the solution w of the ODE

w′ = γw(1 − w), w(0) = k1 := max
x∈R

v0(x) + 1,

we obtain

v(t, x) ≤ w(t) ≤ 1 + (k1 − 1)e−γt for t ≥ 0, x ∈ R.(2.20)

Claim. For small ǫ1 > 0,

lim
n→∞

∫ x0+L−ǫ1

x0−L+ǫ1

[1− v(tn, y)]dy = 0.(2.21)

In view of (2.19), xn → x0, and lim inf
n→∞

v(tn, y + xn)[1− v(tn, y + xn)] ≥ 0, we have

lim
n→∞

∫ x0+L−ǫ1

x0−L+ǫ1

v(tn, y)[1 − v(tn, y)]dy = 0.(2.22)

Denote

Ω1(tn) := {x ∈ [x0 − L+ ǫ1, x0 + L− ǫ1] : v(tn, x) ≤ 1},
Ω2(tn) := {x ∈ [x0 − L+ ǫ1, x0 + L− ǫ1] : v(tn, x) > 1}.

Then clearly
∫ x0+L−ǫ1

x0−L+ǫ1

v(tn, y)[1− v(tn, y)]dy
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=

∫

Ω1(tn)
v(tn, y)[1 − v(tn, y)]dy +

∫

Ω2(tn)
v(tn, y)[1 − v(tn, y)]dy

≥ k0

∫

Ω1(tn)
[1− v(tn, y)]dy +

∫

Ω2(tn)
v(tn, y)[1 − v(tn, y)]dy,

where k0 := min{t≥1, y∈[x0−L+ǫ1,x0+L−ǫ1]} v(t, y) > 0 by (2.8).
By (2.20),

lim
n→∞

max
y∈Ω2(tn)

|1− v(tn, y)| = 0,

which implies

lim
n→∞

∫

Ω2(tn)
[1− v(tn, y)]dy = lim

n→∞

∫

Ω2(tn)
v(tn, y)[1− v(tn, y)]dy = 0.

Therefore, as n→ ∞, by (2.22),

0 ≤ k0

∫

Ω1(tn)
[1− v(tn, y)]dy

≤
∫ x0+L−ǫ1

x0−L+ǫ1

v(tn, y)[1 − v(tn, y)]dy −
∫

Ω2(tn)
v(tn, y)[1 − v(tn, y)]dy → 0.

It follows that

lim
n→∞

∫

Ω1(tn)
[1− v(tn, y)]dy = 0.

Hence

lim
n→∞

∫ x0+L−ǫ1

x0−L+ǫ1

[1− v(tn, y)]dy = lim
n→∞

[

∫

Ω1(tn)
[1− v(tn, y)]dy +

∫

Ω2(tn)
[1− v(tn, y)]dy

]

= 0.

This proves (2.21).
Now we are ready to use the above information to get a contradiction. Recalling the definition of

V and xn → x0 as n→ ∞, one sees that for large n,

V (tn, xn) =
1

2L

∫ xn+L

xn−L
v(tn, y)dy ≥ 1

2L

∫ x0+L−ǫ1

x0−L+ǫ1

v(tn, y)dy.

Then by (2.21) we obtain, for sufficiently small ǫ1 > 0,

lim
n→∞

V (tn, xn) ≥ lim
n→∞

1

2L

∫ x0+L−ǫ1

x0−L+ǫ1

v(tn, y)dy =
L− ǫ1
L

> δ1,

which contradicts to the fact lim
n→∞

V (tn, xn) = δ1. Therefore (2.15) holds.

Step 2. We show (2.13).
We first observe that (2.18) and (2.20) imply

lim
t→∞

V (t, x) = 1 locally uniformly for x ∈ R.(2.23)

Next by a simple computation we have

1

2L

∫ L

−L
|v(t, y)− 1|dy = 1− V (t, 0) +

1

L

∫

Ω2

[v(t, y)− 1]dy

where Ω2 = Ω2(t) := {y ∈ [−L,L] : v(t, y) > 1}. Now (2.13) follows directly from (2.23) and (2.20).
Step 3. We prove (2.14).
Since u(t, x) ≡ 0 for x 6∈ (g∞, h∞), the function v satisfies, for any interval [a, b] ⊂ R\(g∞, h∞),

vt = d2

∫

R

J2(x− y)v(t, y)dy − d2v + γv(1 − v), t > 0, x ∈ [a, b].(2.24)
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Denote

δ2 = lim inf
t→∞

min
x∈[a,b]

v(t, x).

To show (2.14), we only need to prove δ2 = 1 due to the arbitrariness of [a, b].
By Lemma 2.5 we can choose two sequences tn → ∞ and xn ∈ [a, b] satisfying xn → x0 ∈ [a, b] as

n→ ∞ such that

lim
n→∞

v(tn, xn) = δ2, lim
n→∞

vt(tn, xn) = 0.

We may also require that the following limit exists

B := lim
n→∞

∫

R

J2(xn − y)v(tn, y)dy.

We claim that B = 1. Otherwise, B 6= 1. Since lim sup
t→∞

v ≤ 1, we must have B < 1. Due to
∫

R
J2(x)dx = 1, there is large L̂ > 0 such that

∫ L̂

−L̂
J2(x0 − y)dy > B.

By (2.13),
∫

R

J2(xn − y)v(tn, y)dy ≥
∫ L̂

−L̂
J2(xn − y)v(tn, y)dy

=

∫ L̂

−L̂
J2(xn − y)dy +

∫ L̂

−L̂
J2(xn − y)[v(tn, y)− 1]dy

≥
∫ L̂

−L̂
J2(xn − y)dy − ‖J2‖∞

∫ L̂

−L̂
|v(tn, y)− 1|dy

→
∫ L̂

−L̂
J2(x0 − y)dy > B as n→ ∞.

This is a contradiction. Hence B = 1.
Taking (t, x) = (tn, xn) in (2.24) and letting n→ ∞, in view of B = 1, we obtain

0 = d2 − d2δ2 + γδ2(1− δ2) = (1− δ2)(d2 + γδ2),

which implies δ2 = 1, as desired. The proof is finished. �

Theorem 1.1 clearly follows directly from Lemmas 2.1, 2.3 and 2.7.

3. Proof of Theorem 1.2

Th arguments in the corresponding local diffusion case considered in [10] indicate that h∞− g∞ <
∞ implies (1.8). Next we investigate whether this is also true in our nonlocal situation here. To this
end we will make use of the estimates in Theorem 1.1 and regard (1.1) as a perturbation of an ODE
system.

Denote

m1(t, x) := d1

∫ h(t)

g(t)
J1(x− y)u(t, y)dy ≥ 0, m2(t, x) := d2

∫

R

J2(x− y)v(t, y)dy − d2.

Then by Lemma 2.3 and Lemma 2.7, it is easily seen that, as t→ ∞,

(3.1) m1(t, x) → 0 uniformly for x ∈ R, m2(t, x) → 0 locally uniformly for x ∈ R.

The functions u(t, x) and v(t, x) satisfy, for t ≥ 0, x ∈ (g(t), h(t)),
{

ut = m1 + u(1− d1 − u− kv),

vt = m2 + d2(1− v) + γv(1− v − hu),
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which can be viewed as an ODE system for each fixed x.
Recall that under the assumption h∞ − g∞ <∞, necessarily

d̃1 = d1 + k − 1 > 0.

Let F (s) and Θ1,Θ2 be given by (1.9) and (1.10). Note that F (0) = −d̃1γh < 0 and F (1) = −d2 < 0.
Therefore if (γ, h, k, d1, d2) ∈ Θ1, then

F∗ := max
s∈[0,1]

F (s) < 0.(3.2)

Lemma 3.1. Assume d̃1 = d1 + k − 1 > 0. Denote

a := γ(1− hk), b := d̃1γh− γ(1− hk)− d2, c := −d̃1γh,
and so F (s) = as2 + bs+ c. Then

(γ, h, k, d1, d2) ∈ Θ2 ⇐⇒ a ≤ c and

√

c

a
≤ b

−2a
≤ 1.

Proof. Clearly a + b+ c+ d2 = 0 and c < 0. If a = 0 then F (s) = 0 implies s = −c
b = −c

−c−d2
which

can never be in [0,1]. If a > 0 then F (s) = 0 and s ∈ [0, 1] imply

s =
−b+

√
b2 − 4ac

2a
≤ 1.

It follows that
√

b2 − 4ac ≤ 2a+ b =⇒ b2 − 4ac ≤ b2 + 4ab+ 4a2 =⇒ a(a+ b+ c) ≥ 0 =⇒ a+ b+ c ≥ 0.

But a+ b+ c = −d2 < 0. We have thus proved that

(γ, h, k, d1, d2) ∈ Θ2 =⇒ a < 0.

With a < 0 and b2 − 4ac ≥ 0 we easily see that
√
b2 − 4ac < |b| and so

−b±
√
b2 − 4ac

2a
has the same sign as

−b
2a
.

Thus

(γ, h, k, d1, d2) ∈ Θ2 ⇐⇒ a < 0 < b, b2 − 4ac ≥ 0 and
−b+

√
b2 − 4ac

2a
≤ 1.

With a < 0 < b, clearly b2 − 4ac ≥ 0 is equivalent to b ≥ 2
√
ac, and −b+

√
b2−4ac
2a ≤ 1 is equivalent to√

b2 − 4ac ≥ 2a+ b, which holds trivially when b ≤ −2a. If b > −2a then
√

b2 − 4ac ≥ 2a+ b =⇒ b2 − 4ac ≥ b2 + 4ab+ 4a2 =⇒ a(a+ b+ c) ≤ 0 =⇒ a+ b+ c ≥ 0

which is impossible since a+ b+ c = −d2 < 0. We have thus proved that

(γ, h, k, d1, d2) ∈ Θ2 ⇐⇒ a < 0 and 2
√
ac ≤ b ≤ −2a.

Finally, it is easily seen that

a < 0 and 2
√
ac ≤ b ≤ −2a⇐⇒ a ≤ c and

√

c

a
≤ b

−2a
≤ 1.

This completes the proof. �

Remark 3.2. Suppose d̃1 > 0. It can be easily checked that (γ, h, k, d1, d2) ∈ Θ1 if

d1 ≥ 1 or kh ≤ 1 +
d2
γ
.

Indeed,

d1 ≥ 1 =⇒ d̃1 ≥ k =⇒ c ≤ −γkh = a− γ < a,

and by Lemma 3.1 we see (γ, h, k, d1, d2) 6∈ Θ2. Thus d1 ≥ 1 implies (γ, h, k, d1, d2) ∈ Θ1.
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If kh ≤ 1 + d2
γ , then for s ∈ (0, 1),

F (s) = γ(1− hk)s2 − [γ(1− hk) + d2]s+ d̃1γhs− d̃1γh

< γ(1− hk)s2 − [γ(1− hk) + d2]s

= γ(hk − 1)(s − s2)− d2s ≤ d2(s − s2)− d2s = −d2s2 < 0.

Recalling F (0) = −d̃1γh < 0, F (1) = −d1 < 0, we see that kh ≤ 1 + d2
γ implies (γ, h, k, d1, d2) ∈ Θ1.

Lemma 3.3. Suppose h∞ − g∞ <∞ and denote ṽ := 1− v. Then there exists M ∈ (0, 1) such that

lim sup
t→∞

max
x∈[g∞,h∞]

u(t, x) ≤ max{0, kM − d̃1}, lim sup
t→∞

max
x∈[g∞,h∞]

|ṽ(t, x)| ≤M.(3.3)

If further d1 ≥ 1, then (1.8) holds.

Proof. From (2.8), there is m∗ > 0 such that

lim inf
t→∞

min
x∈[g∞,h∞]

v(t, x) ≥ m∗ > 0,

which, combined with the fact that lim sup
t→∞

maxx∈R v(t, x) ≤ 1, implies

lim sup
t→∞

max
x∈[g∞,h∞]

|ṽ(t, x)| ≤ 1−m∗.

Then using the equation of ut and the uniformly convergence of m1(t, x) to 0 in R, we deduce by a
simple comparison argument that

lim sup
t→∞

max
x∈[g∞,h∞]

u(t, x) ≤ max{0, k(1 −m∗)− d̃1}.

We have thus proved (3.3).

Suppose d1 ≥ 1, and so d̃1 ≥ k. In this case, from ṽ = 1− v ≤ 1, we deduce

ut ≤ m1 + u(k − d̃1 − u) ≤ m1 − u2 for t > 0, x ∈ [g(t), h(t)].

For any given small ǫ > 0, since m1(t, x) converges to 0 as t → ∞ uniformly for x in R, we can find
T = Tǫ > 0 so that

m1(t, x) ≤ ǫ for t ≥ T, x ∈ R.

Let U(t) be the solution of the ODE problem

U ′ = ǫ− U2, U(T ) = ‖u(T, ·)‖∞.
Then by the comparison principle we deduce u(t, x) ≤ U(t) for t ≥ T , x ∈ [g(t), h(t)]. It follows that

lim sup
t→∞

max
x∈[g(t),h(t)]

u(t, x) ≤ lim
t→∞

U(t) =
√
ǫ.

Letting ǫ→ 0 we deduce

lim
t→∞

max
x∈[g(t),h(t)]

u(t, x) = 0.

Thus for any small δ > 0 there exists Tδ > 0 so that u(t, x) ≤ δ for t ≥ Tδ and all x ∈ R. It follows
that

vt ≥ d2

∫

R

J2(x− y)v(t, y)dy − d2v + γv(1− v − hδ) for t ≥ Tδ, x ∈ R.

Let V (t, x) be the unique solution of






Vt = d2

∫

R

J2(x− y)V (t, y)dy − d2V + γV (1− hδ − V ) for t ≥ Tδ, x ∈ R,

V (Tδ) = v(Tδ, x) for x ∈ R.

Since 1− hδ > 0 for all small δ > 0, it is well known that

V (t, x) → 1− hδ as t→ ∞ locally uniformly for x ∈ R.
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By the comparison principle we have v(t, x) ≥ V (t, x) for t > T and x ∈ R. It follows that

lim inf
t→∞

v(t, x) ≥ 1− hδ locally uniformly in x ∈ R.

Letting δ → 0 we obtain

lim inf
t→∞

v(t, x) ≥ 1 locally uniformly in x ∈ R.

This implies, in view of (2.20),

lim
t→∞

v(t, x) = 1 locally uniformly in x ∈ R.(3.4)

Hence (1.8) holds. The proof is complete. �

Lemma 3.4. Suppose h∞ − g∞ <∞. If

d1 < 1 and (γ, h, k, d1, d2) ∈ Θ1,

then (1.8) holds.

Proof. Recall that ṽ = 1− v. So the functions u and ṽ satisfy

(3.5)

{

ut = m1 + u(−d̃1 − u+ kṽ),

ṽt = −m2 + γhu− (d2 + γ)ṽ + γṽ(ṽ − hu).

Claim 1. limt→∞maxx∈[g∞,h∞] u(t, x) = 0.
Suppose by way of contradiction that the desired conclusion in Claim 1 is not true. Then there

exists a sequence (tn, xn) with tn → ∞ and xn ∈ (g∞, h∞) such that

u(tn, xn) > ǫ0 > 0 for all n ≥ 1 and some small ǫ0 > 0.

We may assume that tn > T∗ for n ≥ 1. For later arguments we also assume that ǫ0 > 0 is small
enough such that ǫ20 + γhǫ0 + F∗ < F∗/2 < 0, where F∗ is given by (3.2).

We will derive a contradiction by constructing a family of invariant sets for the solution pair (u, v).
For

σ ∈ (
d̃1
k
, 1) and ǫ0 chosen above,

define

ǫ(σ) := min{kσ − d̃1, ǫ0}, M(σ) := kσ − d̃1 + ǫ(σ),

and

Aσ := {(p, q) ∈ R
2 : 0 ≤ p < M(σ), q < σ}.

We will show that Aσ is the desired invariant family.

Clearly M(σ) is a continuous and strictly increasing function of σ over the interval [ d̃1k , 1], with

M( d̃1k ) = 0. Let σ0 ∈ ( d̃1k , 1) be uniquely determined by

M(σ0) = ǫ0.

By (3.3), there exists σ∗ ∈ (σ0, 1) and T∗ > 0 such that

(u(t, x), ṽ(t, x)) ∈ Aσ∗ for all x ∈ [g∞, h∞], t ≥ T∗.

In view of (3.1), by enlarging T∗ we may assume that

m1(t, x) ≤ ǫ2(σ0), |m2(t, x)| ≤ ǫ2(σ0) for t ≥ T∗, x ∈ [g∞, h∞].(3.6)

For fixed σ ∈ [σ0, σ∗], x ∈ [g∞, h∞], T ≥ T∗, s > 0 and each (p, q) ∈ Aσ, we consider the solution
map

Sx(T + s, T )(p, q) := (p̄, q̄),
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defined by (p̄, q̄) = (u(T + s, x), ṽ(T + s, x), where (u(t, x), ṽ(t, x)) solves










ut = m1 + u(−d̃1 − u+ kṽ), t > T,

ṽt = −m2 + γhu− (d2 + γ)ṽ + γṽ(ṽ − hu), t > T,

u(T, x) = p, v(T, x) = q.

Claim 2. For each σ ∈ [σ0, σ∗], t ≥ T∗ and x ∈ [g∞, h∞],

Sx(t+ s, t)(∂Aσ) ⊂ Aσ for all s > 0.(3.7)

To prove (3.7), it suffices to show that

u(t, x) =M(σ) and ṽ(t, x) ≤ σ =⇒ ut(t, x) < ǫ(σ)(−kσ + d̃1) < 0,(3.8)

u(t, x) ≤M(σ) and ṽ(t, x) = σ =⇒ ṽt(t, x) < F∗/2 < 0.(3.9)

Indeed, by (3.5) and (3.6), u(t, x) =M(σ) > 0 and ṽ(t, x) ≤ σ imply x ∈ (g(t), h(t)) and

ut(t, x) ≤ ǫ2(σ) − (kσ − d̃1 + ǫ(σ))ǫ(σ) = ǫ(σ)(−kσ + d̃1) < 0,

which proves (3.8). To verify (3.9), suppose ṽ(t, x) = σ and u(t, x) ≤M(σ). Then by (3.5) and (3.6)
we obtain

ṽt(t, x) =−m2 + γhu(1 − ṽ)− (d2 + γ)ṽ + γṽ2

≤ ǫ2(σ) + γh(kσ − d̃1 + ǫ(σ))(1 − σ)− (d2 + γ)σ + γσ2

= ǫ2(σ) + (1− σ)γhǫ(σ) + γ(1− hk)σ2 + [γ(hk − 1)− d2 + d̃1γh]σ − d̃1γh

= ǫ2(σ) + (1− σ)γhǫ(σ) + F (σ) ≤ ǫ20 + γhǫ0 + F∗ < F∗/2 < 0.

Hence (3.9) holds. This proves (3.7) and so Claim 2 holds true.

We are now ready to reach a contradiction and hence complete the proof of Claim 1. Consider
Pn(t) := (u(t, xn), ṽ(t, xn)) for t ∈ [T∗, tn]. Since u(tn, xn) > ǫ0 and tn > T∗, by Claim 2 and the
definition of σ∗, there exists σn(t) ∈ [σ0, σ∗] such that Pn(t) ∈ ∂Aσn(t) and σn(t) is nonincreasing in
t for t ∈ [T∗, tn]. In particular,

Pn([T∗, tn]) ⊂ A := Aσ∗ \ Aσ0
.

If we define










A+ := {(p, q) ∈ A : p > M(q)},
A− := {(p, q) ∈ A : p < M(q)},
Γ := {(p, q) ∈ A : p =M(q)},

then from (3.8) and (3.9) we see that, for t ∈ [T∗, tn],
{

Pn(t) ∈ A+ ∪ Γ =⇒ ṽt ≤ −c0,
Pn(t) ∈ A− ∪ Γ =⇒ ut ≤ −c0,

where c0 := min{F∗/2, ǫ(σ0)(kσ0 − d̃1)} > 0.
Define











I+n := {t ∈ (T∗, tn) : Pn(t) ∈ A+},
I−n := {t ∈ (T∗, tn) : Pn(t) ∈ A−},
I0n := {t ∈ (T∗, tn) : Pn(t) ∈ Γ}.

Then I+n and I−n are open sets (possibly empty for one of them). Hence each of them is the union
of some (at most countably many) non-overlapping intervals when it is not the empty set. In the
following, we derive a contradiction in each of the possible cases.

If one of I+n and I−n is empty, say I−n = ∅, then

−σ∗ ≤ ṽ(tn, xn)− ṽ(T∗, xn) =
∫ tn

T∗

ṽt(t, xn)dt ≤ −c0(tn − T∗) → −∞ as n→ ∞,

which is a contradiction. Similarly I+n = ∅ leads to a contradiction.
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If both I+n and I−n are the union of some non-overlapping intervals, say for some non-empty but
at most countable index sets K+

n and K−
n ,

I+n = ∪k∈K+
n
(sk, tk), I

−
n = ∪k∈K−

n
(s̃k, t̃k),

then
{

k ∈ I+n and sk 6= T∗ =⇒ sk ∈ Γ,

k ∈ I−n and s̃k 6= T∗ =⇒ s̃k ∈ Γ.

By the invariance property of Aσ we have


















sk ∈ Γ =⇒ ṽ(tk, xn) ≤ ṽ(sk, xn), i.e.,

∫ tk

sk

ṽt(t, xn)dt ≤ 0

s̃k ∈ Γ =⇒ u(t̃k, xn) ≤ u(s̃k, xn), i.e.,

∫ t̃k

s̃k

ut(t, xn)dt ≤ 0,

and


















sk = T∗ =⇒ ṽ(tk) ≤ σ∗ =⇒
∫ tk

sk

ṽt(t, xn)dt ≤ σ∗,

s̃k = T∗ =⇒ u(t̃k) ≤M(σ∗) =⇒
∫ t̃k

s̃k

ut(t, xn)dt ≤M(σ∗).

It follows that
∫

I+n

ut(t, xn)dt ≤M(σ∗),
∫

I−n

ṽt(t, xn)dt ≤ σ∗.

Hence

− σ∗ ≤ ṽ(tn, xn)− ṽ(T∗, xn) ≤ σ∗ +
∫

I+n ∪I0n
ṽt(t, xn)dt ≤ σ∗ − c0|I+n ∪ I0n|,

−M(σ∗) ≤ u(tn, xn)− u(T∗, xn) ≤M(σ∗) +
∫

I−n ∪I0n
ut(t, xn)dt ≤M(σ∗)− c0|I−n ∪ I0n|.

Adding the above inequalities we obtain the following contradiction:

−2[σ∗ +M(σ∗)] ≤ −c0(|I−n ∪ I0n|+ |I+n ∪ I0n|) ≤ −c0(tn − T∗) → −∞ as n→ ∞.

Claim 1 is thus proved.

Claim 3. limt→∞ v(t, x) = 1 locally uniformly in x ∈ R.
This follows from Claim 1 in the same way as argued in the proof of Lemma 3.3 for the case

d1 ≥ 1. �

Lemma 3.5. Suppose h∞ − g∞ <∞. If

d1 < 1 and (γ, h, k, d1, d2) ∈ Θ2,

then either (i) (1.8) holds or (ii) there is an open set Ω ⊂ (g∞, h∞) with |Ω| = h∞−g∞, Ω 6= (g∞, h∞)
such that

lim
t→∞

(u(t, x), v(t, x)) = (0, 1) uniformly for x in any compact subset of Ω,(3.10)

lim
t→∞

(u(t, x), v(t, x)) = (kx∗ − d̃1, 1− x∗) for x ∈ (g∞, h∞)\Ω,(3.11)

where x∗ > 0 is the smallest positive root of F (s) = 0 in [0, 1].

Proof. We must have kx∗ − d̃1 > 0, since kx∗ − d̃1 ≤ 0 implies

0 = F (x∗) = γh(kx∗ − d̃1)(1− x∗)− (d2 + γ)x∗ + γx2∗ ≤ −(d2 + γ)x∗ + γx2∗ < 0,

which is clearly impossible.
Step 1. We show that there exists an open set Ω as described in (3.10).
For

σ ∈ (
d̃1
k
, x∗) and ǫ1 > 0 small to be determined as later argument desires,
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define

ǫ̃(σ) := min{kσ − d̃1, ǫ1}, M̃(σ) := kσ − d̃1 + ǫ̃(σ),

and

Ãσ := {(p, q) ∈ R
2 : 0 ≤ p < M̃(σ), q < σ}.

Fix σ̃∗ ∈ ( d̃1k , x∗). Since F (0) < 0 necessarily

F̃∗ := max
s∈[0,σ̃∗]

F (s) < 0.

From (2.1) and (2.13), we see

lim
t→∞

∫ h∞+1

g∞−1
[u(t, y) + |ṽ(t, y)|]dy = 0.

Hence u(t, x) + |ṽ(t, x)| → 0 in measure for x over [g∞, h∞]. By Egorov’s theorem, for each small
ǫ > 0, there exists a set Ωǫ ⊂ (g∞, h∞) such that

{

|Ωǫ| ≥ h∞ − g∞ − ǫ,

u(t, x) + |ṽ(t, x)| → 0 uniformly for x ∈ Ωǫ as t → ∞.

Therefore, there exists Tǫ > 0 such that

(u(t, x), ṽ(t, x)) ∈ Ãσ̃∗/2 for all t ≥ Tǫ and x ∈ Ωǫ.

By the continuous dependence of u(Tǫ, x) and ṽ(Tǫ, x) on x, we see that there exists an open set Oǫ

such that
{

(g∞, h∞) ⊃ Oǫ ⊃ Ωǫ,

(u(Tǫ, x), ṽ(Tǫ, x)) ∈ Ãσ̃∗ for all x ∈ Oǫ.

We are now in a position to show

(3.12) lim
t→∞

max
x∈Oǫ

u(t, x) = 0

by repeating the argument that leads to the conclusion in Claim 1 of the proof of Lemma 3.4, except
that we replace (Aσ∗ , [g∞, h∞], σ∗, F∗) there by the above defined (Ãσ̃∗ , Oǫ, σ̃∗, F̃∗).

Since ǫ > 0 is arbitrary, choosing ǫn > 0 converging to 0 monotonically as n increasing to ∞, we
can obtain a sequence of open sets {Oǫn} such that (3.12) holds for each Oǫn . Let Ω := ∪∞

n=1Oǫn .
Then Ω ⊂ (g∞, h∞) is an open set with |Ω| = h∞ − g∞, and since (3.12) holds for every Oǫn we see
that

(3.13) lim
t→∞

u(t, x) = 0 uniformly for x in any compact subset of Ω.

This implies that

ṽt = −m̃2 − (d2 + γ)ṽ + γṽ2

with m̃2 = m̃2(t, x) → 0 as t → ∞ uniformly for x in any compact subset of Ω. This fact, together
with ṽ(t, x) ≤ 1 and lim inft→∞ ṽ(t, x) ≥ 0 uniformly in x, leads to

lim
t→∞

ṽ(t, x) = 0 uniformly for x in any compact subset of Ω

by a simple comparison argument; we omit the details. Step 1 is now completed.

Step 2. Let Ω be the maximal open set contained in (g∞, h∞) such that (3.10) holds. If Ω =
(g∞, h∞), then (1.8) holds.

Arguing indirectly we assume that Ω = (g∞, h∞), but (1.8) does not hold. Since the first identity
in (1.8) implies the second, we see that there must exist sequences tn → ∞ and xn ∈ (g(tn), h(tn))
such that

(3.14) u(tn, xn) ≥ ǫ0 for all n ≥ 1 and some ǫ0 > 0.
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By passing to a subsequence we may assume that xn → x∗ ∈ [g∞, h∞]. By our assumption,
(3.10) holds and so (u(t, x∗), v(t, x∗)) → (0, 1) as t → ∞ if x∗ ∈ (g∞, h∞). If x∗ = g∞ or h∞, then
u(t, x∗) ≡ 0 and by (2.14), v(t, x∗) → 1 as t→ ∞. Thus we always have

(u(t, x∗), v(t, x∗)) → (0, 1) as t→ ∞.

Let Ãσ, σ̃∗ and F̃∗ be defined as in Step 1 above. Then there exists T0 > 0 such that

(u(T0, x
∗), ṽ(T0, x

∗)) ∈ Ãσ̃∗/2.

By continuous dependent of u(T0, x) and ṽ(T0, x) on x, there exists a δ > 0 small such that

(u(T0, x), ṽ(T0, x)) ∈ Ãσ̃∗ for all x ∈ Oδ := [x∗ − δ, x∗ + δ] ∩ [g∞, h∞].

This implies, as in Step 1,

(3.15) lim
t→∞

max
x∈Oδ

u(t, x) = 0

by repeating the argument that leads to the conclusion in Claim 1 of the proof of Lemma 3.4. But
this is a contradiction to (3.14). This completes Step 2.

Step 3. Let Ω be the maximal open set contained in (g∞, h∞) such that (3.10) holds. Suppose
that Ω 6= (g∞, h∞) and let x1 ∈ (g∞, h∞) \ Ω. We are going to show that

lim
t→∞

u(t, x1) = kx∗ − d̃1, lim
t→∞

ṽ(t, x1) = x∗.

Let

v1 := lim inf
t→∞

ṽ(t, x1).

Then there is a sequence tn → ∞ such that ṽ(tn, x1) → v1 and ṽt(tn, x1) → 0 as n→ ∞. By passing
to a subsequence we may also assume that u(tn, x1) → u1. From the equation of ṽt and m2 → 0 as
t→ ∞, we deduce

0 = γhu1(1− v1)− (d2 + γ)v1 + γv21 .(3.16)

We show next that

v1 ≥ x∗.(3.17)

Arguing indirectly we assume v1 < x∗. Using F (x∗) = 0 we see that the function

G(s) :=
(d2 + γ)s − γs2

γh(1 − s)
=

s

γh

( d2
1− s

+ γ
)

satisfies G(x∗) = kx∗ − d̃1. By (3.16) we obtain G(v1) = u1. Clearly G(s) is strictly increasing for
s ∈ (0, 1). Therefore

v1 < x∗ implies u1 = G(v1) < G(x∗) = kx∗ − d̃1.

We show below that this leads to a contradiction and therefore (3.17) must hold. Indeed, u1 < kx∗−d̃1
and v1 < x∗ imply that for any given σ̂∗ < x∗ close enough to x∗, with Ãσ as defined in Step 1,

(u(tn, x1), ṽ(tn, x1)) ⊂ Ãσ̂∗
for all large n.

Clearly F̂∗ := maxs∈[0,σ̂∗] F (s) < 0. We may now repeat the argument that leads to the conclusion in

Claim 1 of the proof of Lemma 3.4 but with (Aσ∗ , [g∞, h∞], σ∗, F∗) there replaced by (Ãσ̂∗
, x1, σ̂∗, F̂∗),

to conclude that

lim
t→∞

u(t, x1) = 0.

This implies limt→∞ ṽ(t, x1) = 0 by making use of the equation satisfied by ṽ(t, x1). But this is a
contradiction to our assumption that x1 6∈ Ω. We have thus proved (3.17).

Let

v2 = lim sup
t→∞

ṽ(t, x1).
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Then there exists a sequence tn such that

v2 = lim
n→∞

ṽ(tn, x1), 0 = lim
n→∞

ṽt(tn, x1).

By passing to a subsequence there exists u2 ≥ 0 such that

u2 := lim
n→∞

u(tn, x1).

Then the equation of ṽt and m2 → 0 as t→ ∞ yield

0 = γhu2(1− v2)− (d2 + γ)v2 + γv22 .(3.18)

By (3.3), we know

u2 ≤ kM − d̃1 and v2 ≤M for some 0 < M < 1.

We now set to show that

v2 ≤ x∗.(3.19)

Argue indirectly we assume that v2 > x∗ and seek a contradiction.
Since F (s) is a quadratic function satisfying F (0) < 0 and F (1) < 0, either x∗ is a degenerate

root, namely

(3.20) F (s) < 0 for s ∈ [0, x∗) ∪ (x∗, 1],

or there is another root x∗ ∈ (x∗, 1) such that

(3.21) F (s) < 0 for s ∈ [0, x∗) ∪ (x∗, 1], F (s) > 0 for s ∈ (x∗, x
∗).

Using the function G(s) defined earlier we obtain from (3.18) and F (x∗) = 0 that

u2 = G(v2) > G(x∗) = kx∗ − d̃1.

We will prove (3.19) by deriving a contradiction under the assumption v2 > x∗ for both cases
(3.20) and (3.21).

Claim 1. Case (3.20) leads to a contradiction.
When (3.20) happens, we fix

σ̄∗ ∈ (M, 1) such that kσ̄∗ − d̃1 > u2,

and then fix

σ̄0 ∈ (x∗, σ̄∗) close to x∗ such that kσ̄0 − d̃1 < u2, σ̄0 < v2.

It is now clear that

F̄∗ := max
s∈[σ̄0,σ̄∗]

F (s) < 0.

We next choose ǫ1 > 0 small enough such that

ǫ21 + γhǫ1 + F̄∗ < F̄∗/2 < 0, kσ̄0 − d̃1 + ǫ1 < u2,

and define, for σ ∈ (x∗, σ̄∗],

ǭ(σ) := min{σ − x∗, ǫ1}, M̄(σ) := kσ − d̃1 + ǭ(σ),

and

Āσ := {(p, q) ∈ R
2 : 0 ≤ p < M̄(σ), q < σ}.

Clearly M̄(σ) is continuous and strictly increasing in σ with

M̄(x∗) = kx∗ − d̃1 < M̄(σ̄0) < u2 < M̄ (σ̄∗).

We also have

σ̄0 < v2 ≤M < σ̄∗.

Therefore, for all large n,
(u(tn, x1), ṽ(tn, x1)) ∈ Āσ̄∗ \ Āσ̄0

,
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and by (3.1),

m1(t, x) ≤ ǭ(σ̄0)
2, |m2(t, x)| ≤ ǭ(σ̄0)

2 for t ≥ tn.(3.22)

Fix such an n and let the solution map Sx(t+ s, t) be defined as in Claim 1 of the proof of Lemma
3.4; then the same calculations as in the proof there yield the following:

For each σ ∈ [σ̄0, σ̄∗], t ≥ tn,

(3.23)











Sx1
(t+ s, t)(∂Āσ) ⊂ Āσ for all s > 0,

u(t, x1) = M̄(σ) and ṽ(t, x1) ≤ σ =⇒ ut(t, x1) < ǭ(σ)(−kσ + d̃1) < 0,

u(t, x1) ≤ M̄(σ) and ṽ(t, x1) = σ =⇒ ṽt(t, x1) < F̄∗/2 < 0.

Consider P (t) := (u(t, x1), ṽ(t, x1)) for t ∈ [tn, tn+m], m ≥ 1. Since for every m ≥ 1,

(u(tn+m, x1), ṽ(tn+m, x1)) ∈ Āσ̄∗ \ Āσ̄0
,

by (3.23) there exists σ(t) ∈ [σ̄0, σ̄∗] such that P (t) ∈ ∂Āσ(t) and σ(t) is nonincreasing in t for
t ∈ [tn, tn+m].

We may now apply the same argument used to prove Claim 1 in the proof of Lemma 3.4 to obtain
a contradiction, and Claim 1 is proved.

Claim 2. Case (3.21) also leads to a contradiction.

Since u2 > kx∗ − d̃1 and v2 > x∗, we can find σ̂ ∈ (x∗, x∗) such that

u2 > kσ̂ − d̃1, v2 > σ̂.

Fix ǫ̂ > 0 small so that

−ǫ̂2 − γhǫ̂+ F (σ̂) > 0, kσ̂ − d̃1 − ǫ̂ > 0.

Then choose T̂ > 0 so that

m1(t, x) ≤ ǫ̂2, |m2(t, x)| ≤ ǫ̂2 for t ≥ T̂ and x ∈ [g∞, h∞].

We now define

B̂ := {(p, q) : p > kσ̂ − d̃1 − ǫ̂, q > σ̂}.
Clearly (u2, v2) ∈ B̂ and therefore (u(tn, x1), ṽ(tn, x1)) ∈ B̂ for all large n, say n ≥ n0. By enlarging

n0 we may also assume that tn0
≥ T̂ . By the continuous dependence of u(tn0

, x) and ṽ(tn0
, x) on x,

there exists ǫ > 0 sufficiently small so that

(u(tn0
, x), ṽ(tn0

, x)) ∈ B̂ for all x ∈ [x1 − ǫ, x1 + ǫ].

We show below that for each x ∈ [x1− ǫ, x1+ ǫ], the trajectory {(u(t, x), ṽ(t, x)) : t ≥ tn0
} is trapped

inside B̂. It suffices to show that for any t ≥ tn0
,

u(t, x) = kσ̂ − d̃1 − ǫ̂ and ṽ(t, x) ≥ σ̂ implies ut(t, x) > 0,(3.24)

u(t, x) ≥ kσ̂ − d̃1 − ǫ̂ and ṽ(t, x) = σ̂ implies ṽt(t, x) > 0.(3.25)

Indeed, (3.24) follows from the simple calculation below

ut = m1 + u(−d̃1 − u+ kṽ) ≥ (kσ̂ − d̃1 − ǫ̂)ǫ̂ > 0,

and to verify (3.25), we calculate

ṽt(t, x) =−m2 + γhu(1− ṽ)− (d2 + γ)ṽ + γṽ2

≥− ǫ̂2 + γh(kσ̂ − d̃1 − ǫ̂)(1− σ̂)− (d2 + γ)σ̂ + γσ̂2

=− ǫ̂2 − (1− σ̂)γhǫ̂+ γ(1− hk)σ̂2 + [γ(hk − 1)− d2 + d̃1γh]σ̂ − d̃1γh

=− ǫ̂2 − (1− σ̂)γhǫ̂+ F (σ̂) > −ǫ̂2 − γhǫ̂+ F (σ̂) > 0.

Thus (3.25) holds and we have proved that

(u(t, x), ṽ(t, x)) ∈ B̂ for all t ≥ tn0
, x ∈ [x1 − ǫ, x1 + ǫ].
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It follows that [x1 − ǫ, x1 + ǫ] ⊂ [g∞, h∞] \Ω, which is a contradiction to |Ω| = h∞ − g∞. Claim 2 is
now proved.

The above Claims 1 and 2 prove that (3.19) holds, namely v2 ≤ x∗. As we have already proved in
(3.17) that v1 ≥ x∗, by the definitions of v1 and v2 we must have v1 = v2 = x∗ and

ṽ(t, x1) → x∗ as t→ ∞.

It follows that u(t, x1) satisfies

ut = m̃1 + u(kx∗ − d̃1 − u)

with m̃1 = m̃1(t, x1) → 0 as t→ ∞, which implies

u(t, x1) → kx∗ − d̃1 as t→ ∞.

This concludes Step 2 and the proof of the lemma is now complete. �

Theorem 1.2 now follows directly from Lemmas 3.3, 3.4 and 3.5.

4. Proof of Theorem 1.4

We divide the proof into three steps.
Step 1. We show that h∞ = −g∞ = ∞.
We only show that h∞ = ∞ implies g∞ = −∞, as it can be shown similarly that g∞ = −∞

implies h∞ = ∞.
Assume on the contrary that h∞ = ∞ > −g∞. Then by Remark 2.4,

lim
t→∞

∫ L

−∞
u(t, y)dy = 0 for every L > 0.(4.1)

Since we always have
lim sup
t→∞

v(t, x) ≤ 1 uniformly for x ∈ R,

for any given ǫ > 0 small, there exists a large T = Tǫ > 0 such that

ut ≥ d1

∫ h(T )

g(T )
J1(x− y)u(t, y)dy − d1u+ u[1− (k + ǫ)− u] for t > T, g(T ) < x < h(T ).

However, as 1− k − ǫ > 0 and we can make h(T ) − g(T ) as large as we want by enlarging T , the
above inequality for u implies, for such ǫ and T , by the comparison principle and [6, Propositions 3.5
and 3.6], that

lim inf
t→∞

inf
x∈[g(T ),h(T )]

u(t, x) > 0.

This contradicts (4.1). Step 1 is finished.
Step 2. We show that h ≥ 1 implies

(4.2) lim
t→∞

u(t, x) = 1, lim
t→∞

v(t, x) = 0 locally uniformly for x ∈ R.

We always have

(4.3) lim sup
t→∞

[sup
x∈R

u(t, x)] ≤ 1, lim sup
t→∞

[sup
x∈R

v(t, x)] ≤ 1.

In view 1− k > 0, by making use of Lemma 3.14 in [16], we derive

lim inf
t→∞

u(t, x) ≥ 1− k := u1 locally uniformly in R.

The following proof will be presented according to two cases.
Case 1. 1− h(1 − k) ≤ 0.
In this case 1− hu1 ≤ 0. By Proposition 4 (i) in [27], we have

lim sup
t→∞

v(t, x) ≤ 0 locally uniformly in R.

Since v(t, x) ≥ 0, it follows that lim
t→∞

v(t, x) = 0 locally uniformly in R.
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Fix L≫ 1 and 0 < ε1 ≪ 1. There exists T = Tε1,L > 0 such that v(t, x) ≤ ε1 and h(T )−g(T ) ≫ L
for t > T and x ∈ [−L,L]. Thus, u satisfies

ut ≥ d1

∫ L

−L
J1(x− y)u(t, y)dy − d1u+ u(1− kǫ1 − u) for t > T, −L < x < L.

Since both 0 < ǫ1 ≪ 1 and L ≫ 1 can be chosen arbitrarily, a simple comparison argument can be
used to show that lim inf

t→∞
u(t, x) ≥ 1 locally uniformly for x ∈ R. This, combined with lim sup

t→∞
u(t, x) ≤

1, gives lim
t→∞

u(t, x) = 1 locally uniformly for x ∈ R. Thus (4.2) holds in Case 1.

Case 2. 1− h(1 − k) > 0.
Now

1− hu1 = 1− h(1 − k) > 0.

By Lemma 3.14 (ii) in [16], we have

lim sup
t→∞

v(t, x) ≤ 1− hu1 := v2 locally uniformly in R.

Clearly u2 := 1 − kv2 = 1 − k(1 − h(1 − k)) = (1 − k)(1 + kh) > 0. According to Lemma 3.14 (i)
in [16], we have

lim inf
t→∞

u(t, x) ≥ u2 locally uniformly in R.

If 1− hu2 ≤ 0, then similar to Case 1, we deduce lim
t→∞

v(t, x) = 0 and then lim
t→∞

u(t, x) = 1 locally

uniformly for x ∈ R.
If 1− hu2 > 0, then

lim sup
t→∞

v(t, x) ≤ 1− hu2 := v3 locally uniformly in R.

This and u3 := 1− kv3 = (1− k)(1 + kh+ kh2) > 0 imply, as above,

lim inf
t→∞

u(t, x) ≥ u3 locally uniformly in R.

Continue with this procedure, we will obtain a sequence {uj} and {vj} such that

vj+1 = 1− huj, uj+1 = 1− kvj+1 for j = 1, 2, ...

and there are two possibilities:
(a) there is a first j ≥ 1 such that huj ≥ 1, then as in Case 1 we deduce (4.2).
(b) huj < 1 for all j = 1, 2, .... Then repeating the above analysis we obtain

lim sup
t→∞

v(t, x) ≤ vj locally uniformly in R,

lim inf
t→∞

u(t, x) ≥ uj locally uniformly in R.

Moreover, 1 ≥ uj = (1− k)
∑j−1

i=0 (hk)
i for every j ≥ 1. This implies that hk < 1 and

lim
j→∞

(uj, vj) = (
1− k

1− hk
,
1− h

1− hk
).

Since vj > 0 for all j we further deduce h ≤ 1.
Summarising, we see that case (a) must happen when h > 1. When h = 1, if case (a) happens

then the above discussion indicates that (4.2) holds, and if case (b) happens, then

lim
j→∞

(uj, vj) = (
1− k

1− hk
,
1− h

1− hk
) = (1, 0),

which, in view of (4.3), again implies (4.2). Therefore h ≥ 1 always leads to (4.2). This concludes
Step 2.

Step 3. We show that h ∈ (0, 1) implies

lim
t→∞

u(t, x) =
1− k

1− hk
, lim

t→∞
v(t, x) =

1− h

1− hk
locally uniformly in R.
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In this situation, apart from the sequences {uj} and {vj} obtained in Step 2, we can use 0 < h < 1
to define another two analogous sequences {uj} and {vj} with v1 = 1− h such that

uj+1 = 1− kvj, vj+1 = 1− huj+1 for j = 1, 2, ...,

lim sup
t→∞

u(t, x) ≤ uj locally uniformly in R,

lim inf
t→∞

v(t, x) ≥ vj locally uniformly in R.

It should be noted that 0 < k < 1 and 0 < h < 1 guarantee that these sequences are defined for all
j ≥ 1.

It follows that

vj = (1− h)

j−1
∑

i=0

(hk)i → 1− h

1− hk
as j → ∞,

and so uj = 1− kvj → 1−k
1−hk as j → ∞. We thus obtain

lim sup
t→∞

u(t, x) ≤ 1− k

1− hk
, lim inf

t→∞
v(t, x) ≥ 1− h

1− hk
locally uniformly for x ∈ R.

From the sequences {uj} and {vj} obtained in Step 2, we also have

lim inf
t→∞

u(t, x) ≥ 1− k

1− hk
, lim sup

t→∞
v(t, x) ≤ 1− h

1− hk
locally uniformly for x ∈ R.

The proof of Theorem 1.4 is now complete. �
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