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Abstract

Continual learning (CL) aims to help deep neural net-
works to learn new knowledge while retaining what has
been learned. Recently, pre-trained vision-language mod-
els such as CLIP [63], with powerful generalization abil-
ity, have been gaining traction as practical CL candidates.
However, the domain mismatch between the pre-training
and the downstream CL tasks calls for finetuning of the
CLIP on the latter. The deterministic nature of the exist-
ing finetuning methods makes them overlook the many pos-
sible interactions across the modalities and deems them un-
safe for high-risk CL tasks requiring reliable uncertainty
estimation. To address these, our work proposes Continual
LeArning with Probabilistic finetuning (CLAP). CLAP de-
velops probabilistic modeling over task-specific modules
with visual-guided text features, providing more reliable
fine-tuning in CL. It further alleviates forgetting by exploit-
ing the rich pre-trained knowledge of CLIP for weight ini-
tialization and distribution regularization of task-specific
modules. Cooperating with the diverse range of exist-
ing prompting methods, CLAP can surpass the predomi-
nant deterministic finetuning approaches for CL with CLIP.
Lastly, we study the superior uncertainty estimation abili-
ties of CLAP for novel data detection and exemplar selec-
tion within CL setups. Our code is available at https :
//github.com/srvCodes/clap4clip.

1. Introduction

Learning in the real world involves dealing with the ever-
changing distributions of task streams and their data [6, 26,
49, 85]. Given the constraints on resources and privacy,
there is also no guarantee on re-training a network on all
previously seen data [7]. Continual learning (CL) aims to
learn from such data/task stream without catastrophic for-
getting [0, 33] of past data/tasks. A challenging CL setup is
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class-incremental learning, where new classes emerge with
new tasks, and at test time, a model must infer from all seen
classes without known task IDs [48].

Recent years have seen a surge of pre-trained multi-
modal foundation models achieving state-of-the-art perfor-
mances on several domains [1, 63, 84]. One such exam-
ple for the vision-language (VL) domain is the Contrastive
Language-Image Pre-training (CLIP) [63] model. CLIP
comes with strong zero-shot generalization ability acquired
by learning to match large-scale image-text pairs with con-
trastive loss [56]. However, to adapt well to downstream
tasks, CLIP must be finetuned on the task-specific data
[17, 94]. Considering both the need for continually finetun-
ing pre-trained models to streaming tasks and their perks
over training from scratch [70], our work investigates CL
with CLIP.

An issue with the existing deterministic approaches
[17,94] is that these overlook the uncertainties arising from
many possible interactions between visual and textual cues.
For instance, on the textual side, while a good default hand-
crafted prompt for a number of tasks is “A photo of a
{class}”, there can be tasks where a more specific prompt
can help improve the image-to-text coherence [63]. On the
visual side, images from the same class have diverse range
of backgrounds, poses, orientations, etc. Overlooking the
uncertainties in image-text matching may cause overfitting
to the downstream task data and forgetting of the generaliz-
able knowledge [36]. This has particularly worse implica-
tions for CL where we seek to adapt CLIP on a stream of
tasks. While some methods model the uncertainties through
probabilistic finetuning [12, 47], these remain subpar at
CL given: (a) their inaptness to existing prompt-based ap-
proaches [47], (b) their trading of in-domain performance
for generalization [12].

Uncertainty-awareness can further be crucial for CL
models deployed in mission-critical settings (healthcare,
transport, etc.) as it can help calibrate predictions to re-
liably assess the models’ predictive confidences [27, 39].
Hence, to enhance the usage of pre-trained CLIP models for
real-world CL tasks, we design a probabilistic finetuning
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approach with three properties: A) uncertainty-aware
modeling of cross-modal task cues for better generaliza-
tion; B) compatibility with existing prompt-based finetun-
ing methods [29, 70, 74, 94] to exploit their task-specific
knowledge; C) leveraging the rich pre-trained knowledge
of CLIP to further counter forgetting without extra training
data.

To this end, we design a Variational Inference (VI)
framework to model the distribution of visual-guided text
features (rather than modeling the distribution of either
modality alone), thus validating property #A. This helps
our method implicitly address the biases in the image-text
alignment [62, 95] (see Fig. 2b). Namely, we design
a task-shared visual-guided attention module to encour-
age the alignment, and then perform specialized forward
passes through lightweight task-specific inference mod-
ules to learn stochastic factors for CL tasks. To further
counter the forgetting in these modules, we propose using
the pre-trained language information of CLIP for weight
initialization and task distribution regularization (property
#C). Lastly, the plug-and-play nature of our probabilistic
fine-tuning method makes it compatible with other model
adaption/fine-tuning methods (such as [74]) and diverse
types of prompts that are hand-crafted [63], uni-modal [94],
multi-modal [29], or input-specific [74] (property #B).
We backronymize our finetuning approach as CLAP -
Continual LeArning with Probabilistic finetuning — for the
pre-trained CLIP model.

Our experiments across several settings show that
CLAPACLIP enhances prompt-based finetuning for CLIP
and surpasses the predominant deterministic finetuning
methods for CL all while sharing a similar resource over-
head. To further explore the out-of-the-box perks of
CLAP’s probabilistic nature, we study its superior uncer-
tainty quantification capabilities on a proposed post-hoc
novel data detection setup and on exemplar selection for
CL.

2. Related work

Continual Learning (CL). The existing CL literature
is predominated by three categories of methods: (a)
Regularization-based methods [2, 33, 44] alleviate forget-
ting by punishing changes to the parameters that are impor-
tant to previous tasks; (b) Architecture-based approaches
learn parameters that are specialized for individual tasks ei-
ther by network expansion [14, 27] or by sub-network com-
position [28, 57]; (c) Rehearsal-based approaches [7, 65]
rely on storing a fraction of the past task experiences in a
memory to train with the current task. Nevertheless, each
category has its own flaw — methods in (a) struggle to dis-
criminate inter-task classes [41]; those in (b) often require
task oracle during inference and can induce dramatic mem-
ory overhead for a larger number of tasks; those in (c) are

sensitive to the memory sizes besides being prone to overfit-
ting on the memory samples [72]. Hence, practical CL calls
for combining these. Our work leverages (a) via function-
space regularization (Sec. 3.7), (b) via task-specific mod-
ules (Sec. 3.5), and (c) via herding-based replay [65] (Sec.
4).

Vision-Language Models (VLMs) finetuning. The pow-
erful generalizability of pre-trained VLMs [1, 84] like the
CLIP [63] has enabled their zero-shot applications to a
range of downstream tasks, including CL [70]. In practice,
their performance on downstream out-of-distribution data
remains rather weak [60, 79]. For such cases, finetuning on
task-specific data is a natural choice [79]. Instead of per-
forming full finetuning on all parameters, some parameter-
efficient finetuning methods learn a lightweight feature
adapter module for textual and/or visual paths [17, 87]. An-
other line of parameter-efficient finetuning methods learns
soft prompts which are a few continuous tokens serving as
inputs to the frozen visual and/or textual encoder(s) to cap-
ture task-specific information [93, 94]. Existing works on
CL with pre-trained CLIP have leveraged either [67, 74] or
both [92] of these methods. However, such finetuning meth-
ods remain deterministic in nature. This imposes an explicit
constraint on the modeling of the possible ways in which the
visual and the textual semantics interact.

To address the aforesaid flaw, one could turn to adapt-
ing the existing probabilistic finetuning approaches to cap-
ture the cross-modal interactions in CL tasks. For instance,
[47] learn the distribution of hand-crafted prompts while
[12] leverage VI to model the distributions of soft prompts
conditioned on the input images. Yet these methods are
limited in their efficacies. While [47] is incompatible with
conditional prompt learning [93], [12] lags in terms of in-
domain performance and computational efficiency. Hence,
our work aims to bridge these gaps for probabilistic finetun-
ing all while adapting it for CL.

3. Methodology
3.1. Preliminaries

Continual Learning (CL). Class-incremental
CL [48] aims to learn from a sequence of T
tasks  [(C1, DY), (C?,D?),...,(CT, D). Each
task ¢ € [1,7] has its training data D' =
{(Xl, y1)7 (XQ, yg), ey (th7ykt)}, where x and Yy are
the input images and labels, respectively from the set of
classes C* = {ct,ch,...,c!.}. Following [24, 44, 48], we
assume any two task-specific sets of classes to be disjoint:
C'NC7 = (). A neural network with parameters ¢ is then
trained on task ¢ using D! to minimize the cross-entropy
loss over C*. At test time, the model is evaluated on all
seen classes Ule C', where the past task predictions are
prone to forgetting. As a solution, rehearsal-based methods
[5, 80] replay past task samples from a memory M during
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Figure 1. CLAP4CLIP overview: the visual-guided attention (VGA) inference module uses the text features as query (Q), and the visual
features as keys (K) and values (V) to produce visual-guided text features. The task-specific text features are fed to their respective task

distribution encoders ("

training. We use herding [78] to maintain M.

3.2. CLIP with prompt design

CLIP comprises an image encoder f(x) acting on an image
x € R¥*HXW and a text encoder g(t) acting on a word
embedding vector t € R(“*¢) derived from a text prompt
p € R(E=Dxe) Here, H and W are the height and the
width of the image, respectively, L is the text length, and e
is the text embedding dimension. Both the encoders output
a d—dimensional encoding, which are used in the prediction
of the class y; of the image as:

9(t:))/7)

plysf) = exp ((f(x)7
S exp ((F(x)7, g(t)) /7)

where 7 is a learnable temperature parameter, (-,-) is the
cosine similarity, and t. = [p, e.] is the result of adding a
class-specific word embedding e, to the prompt p. The tex-
tual encoding g(t.)’s for all classes are used as the weights
of a linear classifier. In CL, g(t.) encodes the class names
seen until task ¢t. Eq. (1) thus forms contrastive training
criteria for the text and visual modalities, whose rich repre-
sentation allows pre-trained CLIP to be used for zero-shot
classification through hard prompt templates, i.e., p¢ = “A
photo of a {c*® class}”.

(D

3.2.1 CLIP finetuning with soft prompts

To improve the CLIP performance on a downstream task
t, prompt learning employs soft prompts as a set of learn-
able vector tokens p = {p*', p?, ..., pL'}. CoOp [94] shares
p with all classes and averages them to use in {. MaPLe
[29] learns multi-modal prompts by employing two such
token sets p, and p; until the J-th layers of the vision
and the text encoders of CLIP, respectively. AttriCLIP [74]

o). The task distribution samples are then fused with the original task features prior to deriving the task logits
y'. All task logits are concatenated to produce the final prediction 7'

selects input-conditioned tokens {{p’}1<;<r|xx}. Learn-
ing p (with frozen CLIP weights) thusly helps encode
class/modality/instance-conditioned context for a given
task.

3.2.2 CLIP finetuning with adapters

Adapter-based methods, e.g., CLIP-Adapter [17], learn a
lightweight adapter module over the text and/or visual fea-
tures of the frozen CLIP model. With a text adapter A,
the updated text encoder features from Eq. (1) can now be
rewritten (with a slight abuse of notation) as:

g(ti) = adAs(g(t:)) + Bg(ti), (2)

where « and /3 control the strength of the residual connec-
tion between the adapted and the pretrained features, e.g.,
B =1 — ain [17]. Unlike soft prompts, however, the gra-
dients of the adapter do not back-propagate through all the
text encoder layers. This gives them a computational edge
in training.

in

3.3. Probabilistic modeling and inference

CLAP4CLIP

In Sec. 3.3 - 3.7, we develop our CLIP-based probabilistic
finetuning model with a variational inference (VI) frame-
work, as shown in Fig. 1. We start by introducing a basic
prediction-aware latent variable model for CLAPACLIP in
this section.

3.3.1 Prediction-aware variational modelling

We are interested in modeling the stochastic processes that
generate the labels y for the inputs x of a CL task ¢. To this
end, we assume a prior distribution p,, over the text features



{py(tc)}S,. In the feature space, we use the reparameter-
ization trick [32] to represent t.(p) ~ py(t.(p)) as a lin-
ear combination of the deterministic text features g(t.) and
a stochastic latent variable z ~ p,, which can be readily
plugged into Eq. (1):

te(p) = g(te(p)) + 2| 2 ~ py, (3a)

e (T D)
bl = | S (T PP
(3b)

where ¢(+) is defined in Eq. (2). By modeling the generative
processes behind the inputs, Eq. (3b) injects data-driven un-
certainties into the predictions. It also offers us further ad-
vantages over other variational frameworks, such as [12].
First, as the latent variable z is used to infer the logits, it
favors generalization by encoding prediction-aware infor-
mation. Second, Eq. (3b) is prompt-agnostic as the text fea-
tures could be derived from any existing soft [29, 74, 93] or
hard [17, 70] prompt-based method. Third, defining the dis-
tribution over the encoder outputs rather than the prompts
helps inherit the computational efficiency of adapters.

To deal with the intractability of the marginal likelihood
in Eq. (3b), one could optimize for an evidence lower bound
(ELBO) using a variational posterior ¢4 that matches the
prior p, based on the KL-divergence loss Dk :

log p(y[x) = Eq, (s1¢.) log p(y[x, 2)] — D (g6 (2lte) Py ) -
“)
Following standard practices [18, 32], g4 can be modeled as
a Gaussian distribution N'(u(t.), o(t.)) whose mean p and
standard deviation o are parameterized by linear adapter
layers — we thus refer to [u; o] as probabilistic adapter. A
simple choice for the static prior p, is N(0,I). Lastly, a
finite set of Monte-Carlo (MC) samples {z,,}}_, can be
drawn from the posterior by reparameterization [32].
However, finetuning adapters for CL is not straightfor-
ward. Namely, we have the overhead of search for the
dataset-specific residual ratio o (see Eq. (2)) [17, 87].
This has particularly worse implications for a probabilis-
tic adapter like ours, where a too large « can inject enough
noise to corrupt the pre-trained representations to the point
of catastrophic forgetting (see Fig. 2a). To preserve our
property #B (Sec. 1) for backward compatibility with ex-
isting prompting techniques, we first seek to have no addi-
tional overhead of hyperparameter search for the residual
ratio. Subsequently, we use &« = § = 1 through our work.

3.4. Cross-modal feature alignment

To investigate the source of catastrophic forgetting in fine-
tuning methods, we study how CL effects the cross-modal
deviation [53] between the text and the image features of
CLIP. Here, we consider two basic CL models: the CoOp
[94] and the CoOp with a CLIP-Adapter [17]. Then, for
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Figure 2. Need for Visual-guided Attention (VGA) inference
module. Fig. 2a: A simple adapter is inadequate at prevent-
ing catastrophic forgetting in CL — marked by high BWT scores;
Fig. 2b: VGA module encourages cross-modal alignment among
text and image features — marked by a decrease in average angle
arccos(t, 1) between them — where otherwise the former devi-
ates further with incremental training steps.

the base task (tf = 1) test samples of CIFAR100, we com-
pute the average of the Rotation Angle Matrix (RAM) [53]
using the CL models’ frozen visual f(x) and learnable tex-
tual g(t.(p)) features at each incremental test step. Fig.
2b shows the deviation of the learned textual features from
their (frozen) visual counterparts for the CoOp. This im-
plies that the cross-modal retrieval performance of CLIP
finetuned with learnable prompt deteriorates with incremen-
tal training. Moreover, a simple adapter (CoOp + Adapter)
does not remedy the cross-modal deviation.

3.4.1 Modelling with visual-guided text features

To alleviate the cross-modal deviation due to incremen-
tal training, we consider explicit enriching of communi-
cation among the encoders’ features. To this end, we
adopt a standard transformer-styled decoder block [71] as a
visual-guided attention (VGA) module that refines the task-
specific text features based on the visual features as con-
text. While in a non-CL setup, the VGA module has been
shown to guide the text features to attend to the informative
per-pixel spatial features (obtained before global average-
pooling in a ViT [13]), here we use the globally pooled vi-
sual features of the ViT for guiding the text features. This
setting reflects our primary motivation for aligning the text
features which we can later employ for variational mod-
elling. Further, using globally pooled visual features favors
the computational efficiency of our framework for large CL
datasets where attending to per-pixel spatial features can in-
cur much higher latency (App. 8.3).

Leveraging the task-specific text features g(t%) as
queries @ and the visual global context f(x) as keys K and
values V, the VGA performs context-context self-attention
followed by context-query cross-attention. To eliminate the
influence of the queries from other tasks, a naive strategy
is to perform specialized VGA forward passes [14] with
task-specific query. Instead, we replace several such costly
passes with a single pass. To do so, we exploit the global
nature of our context and mask out (set to —oo) all inter-task
connections in the query using a target mask. This ensures
that only the task-specific text features in the query undergo
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Figure 3. Need for task-specific distribution encoders: Cosine
distance between the centroids of class-specific latent variables
produced without (left) and with (right) the use of task-specific
encoders on CIFAR100 (10 tasks, 10 classes per task). Centroids
of class-specific latent variables are more separable on the right.

without (Avg. = 0.689)  with (Avg. = 0.804)

self-attention while the entire query cross-attends to the vi-
sual context:

0= {Ok}gczl
= {‘E’S}Zzl ®)
= VGA(Q = {t{}j_1, K =V = f(x)),

where O is the set of task-specific visual-guided text fea-
tures tf. We fuse the original task-specific text features t,
to derive the task embeddings t:

tl =t +t. (6)

3.5. Task-specific distribution encoders

Instead of feeding the concatenated text encoding
{tL,%2,...,t'} to one shared adapter g,, we maintain task-
specific encoders {qé, qi, ey qé}; each comprising a prob-
abilistic adapter to parameterize the t—th task-specific pos-

terior distribution N (u?, ot) over its task embeddings t%:

{zm b= ~ a5 (2lte) = N (u'(£0), o' (£0), (D

where {z!}M_, are the M task-specific MC samples. Task-
specific encoders help us sample latent variables that are
more discriminative across tasks. This is depicted in Fig. 3
using the cosine distance between the embeddings of class-
specific samples. With task-specific encoders (right), the
cross-task class centroids are further apart than those with
one global encoder (left).

During each incremental training step (¢ > 1), we keep
the past task encoders frozen. Lastly, to reduce the for-
getting of past task encoders, we follow other parameter-
isolation techniques [5, 14, 82] to finetune on a class-
balanced dataset of new data and rehearsal data M at the
end of each incremental training step (¢ > 1). We refer to
this as memory consolidation training (see App. 8.2).

3.6. Alleviating forgetting with language-aware
CLIP knowledge

Finetuning methods are prone to trading generalization for

downstream task performances [93, 94]. On the contrary,

a pre-trained CLIP with hand-crafted prompts has strong

generalizability. To alleviate forgetting (i.e., losing gener-
alization) in CL, we propose to leverage the rich language
information captured by the text encoder with hand-crafted
prompts. In the following, we assume {tZ’l € Rd}le to
be the features corresponding to the L hand-crafted textual
prompts for the class y € C*.

3.6.1 Weight initialization

An informed weight initialization can help bridge the sta-
bility gap [37] in CL by stabilizing the learning for new
task components over random initialization [20]. We thus
leverage the t—th task text features {t//}], to initialize
the weights wi', w¢ € R4 of our ¢—th task mean and std.
dev. modules. Lets,,s, € RI'1*¢ be the mean and the

std. dev. of the L text features. We initialize w}" and w¢ as:

1 - 1
E<sﬂvs;1;>awt = g<SU,SZ>. 3

b
W =

3.6.2 Past-task distribution regularization

The functional spaces of the past task distributions are prone
to forgetting in CL. Though replay helps alleviate the for-
getting up to a certain degree, repeated training on the mem-
ory samples can lead to overfitting on these [43, 72]. To ad-
dress this, previous works [27, 58] exploit functional priors
for regularizing the visual space alongside memory replay.
Here, we propose regularizing the past task distributions in
the textual space by using the features {t}-'} | todistill the

past task samples { {2, }2_, -
of z! belonging to class y € C’ 1s

exp ((th!, 21)
Mzzl Z IC\ y )

1 D e 1eXp t( ,zfn>)

€))
The resulting language-aware distillation loss using Pkp is
thus given as:

Namely, the probability

Pxo(y|zh,)

T-1|C"|
Lxp = — Z Zlog PKD(C|Zt)yca (10)
t=1 c=1
where Lkp is a data-free (i.e., no training samples required)
text-to-text distribution regularizer that encourages the la-
tent variables to stay close to the text features from hand-
crafted prompts. Lastly, as Lkp acts on the functional space
of past tasks, this sets apart our setting from the non-CL
setup of Bulat et al. [4] where the language-aware distilla-
tion loss regularizes the vector space.

3.7. Training objective and framework overview
3.7.1 Approximate ELBO

Unlike Eq. (4), the task-specific encoders qu, now serve to
approximate the intractable task-specific functional posteri-
ors. The resulting ELBO (see App. 10 for derivation) with
the static prior p,, = N(0,1) is:



Algorithm 1: A forward CLAPACLIP pass at test
step ¢

Input : {t?}!_,: text features, f(x): image features

O}]_tput : g}lit (predictions for classes seen till task ¢)
1 {87}, « VGA{t }_,, f(=) // Eq. (5
2 forie 1<t i+=1do
3 =t 4+t // Eq. (6)
4 N(ui,oi) <—q;(fi) // Sec. 3.5
5 gt <+ 0 // Null prediction set
6 form < 1; m < M; m += 1do
7 z;n ~ N(;ﬁ, _01) // Sampling
8 t;” —t'+z, B // Late fusion
9 Iy — (FOT,15,) // Using Eq. (1)
10 gt g Uy, // Set Union

1:t t

n gttt 90 // Concatenation

log p(y" " Ix; 8) = Y {Eq;)(zt‘x;e&) [logpa(y’ 12" x:E0)]
t=1

- D (b D)l ()
(11
3.7.2 Integrated objective

Denoting the loss weights by A and , our total loss consists
of the following three terms:

L = Lcg — ADxr + 7Lk, (12)

where the cross-entropy Lcg and the prior-matching Dy,
terms act on the outputs of all task encoders while the dis-
tribution regularization term Lkp acts only on the past task
encoders during finetuning. A\ is set to 0.001. As the past
task encoders are trainable only during the memory consol-
idation training stage, A for these is set to O during training.
v is set to 15.

3.7.3 Algorithm overview

Algo. 1 outlines the pseudo-code of a forward pass of
CLAPACLIP at the t—th task test step. Here, a test image is
to be classified among one of the seen classes {1, ..., |C*|}.
Our method executes the computationally heavy VGA lay-
ers only once. The task-specific VGA outputs are passed
through their respective task encoders. By limiting the
quadratic complexity of the VGA module pass, our method
induces minimal time overhead. Moreover, by only expand-
ing the task encoder per task, our memory overhead is neg-
ligible compared to the large backbone of the pre-trained
CLIP model (see Fig. 5b).

4. Experiments

Datasets. We evaluate our method on CIFAR100 [65, 85],
ImageNet100 [24, 80], ImageNet-R [76], CUB200 [73],
and VTAB [73]. CIFARI100 [34] and ImageNet100 [35]
setups split their respective original datasets into 10 tasks
with 10 classes each. ImageNet-R [23] and CUB200 split
200 classes into 10 tasks with 20 classes each. VTAB has

5 tasks with 10 classes each [91]. While CIFAR100, Im-
ageNet100, and CUB200 are robust settings for evaluating
CL methods in the face of large forgetting, ImageNet-R and
VTAB are rather fair yet challenging settings for CL meth-
ods using pre-trained models as these might include test im-
ages in their pre-training set (see App. 8.1 for details).

Baselines. We compare CLAP4ACLIP against several
baselines and state-of-the-art finetuning methods. These
include: (a) CLIP-based methods — Continual-CLIP [70],
CoOp [94], CLIP-Adapter [17], AttriCLIP [74], MaPLe
[29], and PROOF [92], (b) pre-trained vision-only meth-
ods — DualPrompt [76] and L2P [77], (c) the baseline CIL
method — iCaRL [65]. For a fair comparison, we adhere
to the experimental protocols of PROOF [92] throughout.
We adopt ViT-B/16 with the pre-trained weights of OpenAl
[63] as our backbone unless otherwise specified. As the up-
per bounds on performance, we use the CLAPACLIP with
single and task-specific encoders, trained on all tasks jointly
(JOINT).

Variants. We integrate our method with four prompt-
based approaches: Ours uses CLAP with hand-crafted
prompt templates, CoOp + Ours with soft prompts [94],
MaPLe + Ours uses multi-modal soft prompts [29],
and AttriCLIP + Ours uses CLAP4ACLIP with instance-
conditioned soft prompts [74]. Lastly, Ours w/o Varitional
Inference (VI) is the deterministic variant of Ours (App. fig.
7).

Implementation and training. We train the model using
SGD, with a batch size of 64, for 5 epochs, including 1
epoch of linear warmup. The initial learning rate (LR) is
set to le-3 and decays with cosine annealing. At the end
of each incremental task (¢ > 1), we perform memory con-
solidation training for 2 epochs, with an LR of 1e-4, on the
class-balanced memory dataset (see App. 8.2.)

Performance measure. We report the final accuracy af-
ter the last incremental step (Last) and the average of the
accuracies after each step (Avg) [65].

4.1. Results

We report performances in Table 1 on all five datasets.
Our method consistently achieves the best results among all
the methods compared. Notably, on CIFAR100 and Ima-
geNet100, our variants using the hand-crafted and multi-
modal prompts outperform the others. On the challenging
ImageNet-R setup with significant intra-class diversity, our
method can better leverage the instance-conditioned prompt
knowledge of AttriCLIP [74], which helps it outperform
PROOF [92] by 1.46% in terms of average accuracy. On
CUB200 and VTAB, sharing the prompt pool among all
tasks gives CoOp [94] an edge over other baselines. Lever-
aging CoOp offers us the best results on these, while sur-
passing PROOF, which also builds upon CoOp with task-



Method CIFAR100 ImageNet100 ImageNet-R CUB200 VTAB
Avg? Lastt Avg?T Last?T Avg?T Last?T Avg?T Last? Avgt Last?
Single-task JOINT 80.28 81.08 80.92 75.4 89.29
Task-specific JOINT 82.9 83.55 83.07 85.72
iCaRL [65] 72.93 57.6 68.62 59.5 66.34 43.71 82.39 75.1 53.38 41.6
L2P [77] 78.92 70.04 77.07 69.33 76.98 68.47
DualPrompt [76] 82.11 74.31 82.73 76.41 82.37 76.29
PROOF [92] 84.84 76.55 84.89 79.7 83.98 79.35
Continual-CLIP [70] 78.65 68.26 83.99 74.2 84.43 76.94 67.0 54.8 68.5 60.97
CoOp [94] 81.17 70.58 79.14 64.9 84.7 78.66 76.62 68.53 87.06 81.25
MaPLe [29] 82.74 74.52 79.23 64.06 85.28 79.71 73.38 64.43 83.91 81.81
AttriCLIP [74] 79.31 68.45 82.29 70.76 83.09 76.53 65.26 52.12 71.84 64.09
CLIP-Adapter [17] 78.75 68.32 84.13 73.96 84.49 78.1 67.41 54.49 68.23 61.02
Ours w/o VI 84.36 76.8 86.11 76.48 85.69 79.83 72.21 61.87 90.74 88.64
Ours 86.13 78.21 87.76 79.16 85.77 79.98 86.93 81.64 91.37 89.67
CoOp + Ours 85.71 774 86.8 78.18 85.32 79.52 86.99 81.95 92.51 91.28
MaPLe + Ours 86.06 78.48 87.47 79.02 86.25 80.56 81.53 74.24 90.97 88.83
AttriCLIP + Ours 78.06 67.59 87.37 79.3 86.35 80.6 83.71 79.01 74.84 71.12

Table 1. Performance comparison of different methods averaged over three runs. Best scores are in bold. Second best scores are in blue.
The results for L2P, DualPrompt, and PROOF are taken from [92]. See App. Table 14 for std. dev. scores.
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Figure 4. Performance evolution of different methods. The top-1 accuracy (%) is reported upon learning of each task (see App. fig. 8

for results on all datasets).

specific soft prompts. Lastly, Fig. 4 shows that our vari-
ants perform consistently better than their baseline prompt-
ing methods throughout the incremental steps.

Backward transfer (BwT) [46] is a crucial metric to
monitor forgetting. Table 15 shows that in general, plugging
CLAPACLIP with prompt-based finetuning methods helps
improve the BWT scores of the latter. It is worth noting
that on the cross-dataset setting of VTAB [91], our variants
are the only methods that effectively transfer the knowledge
learned from incremental tasks to improve the performance
on past tasks (i.e., BWT > 0). This indicates that our prob-
abilistic modeling strategy does not only counter forgetting
but can also help bring anti-forgetting properties onto exist-
ing finetuning methods.

Transfer score [89] measures the extent of zero-shot
transfer ability of finetuning methods. App. table 16 shows
that our method consistently enhances the transfer scores of
the underlying prompting algorithms to help solve the fu-
ture tasks through increased positive knowledge transfer.

Expected calibration error (ECE) [52] measures the cal-
ibration of a CL model’s predictions to deem its fitness for
high-risk applications [51]. App. table 17 compares the
ECE of our variants and their respective underlying base-
lines at the last test step. In general, our variants help en-
hance (decrease) the ECE scores of the underlying prompt-
ing methods. This implies that even in the face of forgetting,
CLAP retains more reliability in its predictive confidence.

4.2. Cross-Datasets Continual Learning (CDCL)

To simulate real-world settings with long sequence of tasks
and large distribution shifts, the CDCL setting [74] trains
a model sequentially on ImageNet100 and CIFAR100 (i.e.,
on 20 tasks), and evaluates it jointly on these. For a fair
comparison with [74], we adopt the ViT-L/14 as our CLIP
backbone and set the train/test batch size to 32. All other
settings remain the same as in Sec. 4.1. Table 2 reports
the last task accuracy of different methods. While all our
variants improve the CDCL performances of their respec-
tive baselines, combining ours with AttriCLIP [74] leads to
the most gains. This further suggests that our framework
can reliably leverage the diverse nature of learned prompts



CIFAR100 +

Method ImageNet100 ImageNet100
DualPrompt [76] 81.9 67.1
Continual-CLIP [70] 75.4 54.9
CoOp [94] 79.3 55.4
MaPLe [29] 84.81 76.2
AttriCLIP [74] 83.3 78.3
Ours 83.51 83.83
CoOp + Ours 82 82.63
MaPLe + Ours 82.97 83.6
AttriCLIP + Ours 84.14 84.56

Table 2. Performance comparison on the CDCL setting [74].
All CLIP-based methods use the ViT-L/14 backbone.

to inherit their setting-specific advantages.
4.3. Ablation Studies
4.3.1 Influence of components.

We ablate the importance of different components of
CLAP4CLIP in Table 3. On top of the base CLIP model, we
first train a probabilistic encoder. Adding the VGA mod-
ule and the memory consolidation training stage helps us
achieve much stable performances while countering forget-
ting. We then apply task-specific encoders which makes the
centroids of the class-specific latent variable more separa-
ble (see Fig. 3) thus improving the last task accuracy by
2.21%. Language-aware weight initialization and regular-
ization help improve the last task accuracies by 0.78% and
0.23%, respectively. Weight initialization further helps us
tackle the stability gap [20, 37] (see App. 8.5.4 for more
ablations on language-aware components).

. & o &>
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S %o&fb. & S q@%pf Rt
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D | T L TV & Ae Lt
#1 | v 278 11.49
#2 v v 82.82 73.41
#3 v v v 844 74.99
#4 v v v v 85.7 772
#5 v v v v v 86.01 77.98
#6 v v v v v v 86.13 78.21

Table 3. Ablations of the key components of CLAPACLIP on
CIFAR100.

4.3.2 Effect of forgetting on task heads

We ablate the task head predictions over the test set of each
task on CIFAR100 (see App. 8.5.1 for more details). Fig.
9a shows that the past task heads are relatively less accurate
at identifying their respective test instances. However, their
amount of forgetting do not necessarily correspond to the
task order. This is further evident in Fig. 9b where at each
step, the past task heads lag unevenly in performance. The
uneven performances could be because of the role of task
semantics behind forgetting [40, 64].

4.3.3 Probabilistic vs Deterministic inference

To understand our probabilistic inference modules further,
we examine their performance against the deterministic

. Runtime
Prior type Lastt Avg?T BWT1T ECEJ per iter. 1
Static 78.21 86.13 -0.141 0.204 0.169
Data-driven 78.32 86.15 -0.115 0.216 0.172
Language-aware 78.38 86.22 -0.112 0.214 0.17

Table 4. Performances of different priors averaged over 3 runs
on CIFAR100.

variant of ours (Ours w/o VI). Table 1 shows that our prob-
abilistic inference module consistently outperforms its de-
terministic counterpart in terms of Avg and Last accuracy.
This emphasizes the advantages of considering uncertainty
in finetuning. We further introspect the effects of the num-
ber of layers for the VGA and task encoder modules in our
framework in App. 8.5.2.

4.3.4 Sensitivity to the number of Monte Carlo (MC)
samples

We vary the number of MC samples M from 1 to 50. In
Fig. 5a, the accuracy is poorer in range [1,10], grows in
range [10, 20], and saturates thereafter. Hence, we set M to
20 for all our experiments.

4.3.5 More informed priors

To study the role of a more informed prior in our VI frame-
work, we study three choices of priors to be used in the
prior-matching term of eq. (11): (a) the static (standard
normal) prior, (b) the language-aware prior using the dis-
tribution obtained from the task encoders using the hand-
crafted prompts’ features {t"/}/, (sec 3.6), (c) the data-
driven prior using a randomly chosen subset of a training
minibatch as the context set to condition the prior on (see
App. 11 for more details). Table 4 shows that while (b)
and (c) slightly improve over (a) in terms of accuracies and
forgetting (BwT), these come at the cost of poorer model
calibration and longer runtime per iteration.

4.3.6 Parameter analyses

The additional parameters in CLAP4CLIP come from the
shared VGA module and the task-specific encoders. For
a ViT-B/16 backbone of output dimension d = 512 on
CIFAR100, the VGA module contains 4,204,032 parame-
ters. The mean and the std. dev. layers for 10 tasks have
d x d parameters each, i.e., 524, 2880 parameters. Hence,
the CLAPACLIP has 9.5 million extra parameters, which is
negligible compared to the pre-trained CLIP with ~ 150
million parameters. We report the parameter counts in fig.
5b.

4.3.7 Time analyses

We investigate the inference time per iteration for different
methods. As shown in Table 18, our variants need more
inference time than other finetuning methods for the perfor-
mance gains. The increased time comes mainly from the
VGA and from inferring the M latent variables.
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Figure 5. Ablations on CIFAR100 showing: (a) performance
trade-off with the number of MC samples M, (b) the number of

trainable parameters in different finetuning methods.

5. Added utilities of probabilistic finetuning

We study the out-of-the-box utilities of CLAP4CLIP’s un-
certainty quantification (UQ) capabilities. Our motivation
for these is not to achieve state-of-the-art performance but
to highlight the perks of probabilistic modeling in scenarios
where the deterministic CL finetuning methods struggle.

5.0.1 Post-hoc novel data detection (PhNDD)

PhNDD uses a pre-trained classification model to identify
novel data based on the output confidence [21, 83]. For CL,
this can help discern the arrival of new tasks, expand the
network, etc. To evaluate the PhNDD capabilities of mod-
els within a CL setup, we design a simple setting. Namely,
at all but the last test step, we treat the test data from the
past and the current tasks as seen while those from all fu-
ture tasks as novel. We then use FPR95, AUROC [11], and
AUPR [66] scores as our performance metrics (see App. 8.6
for more details). We average these metrics over all but last
incremental test steps.

Method AUROCt AUPR?T  FPRY5 |
Continual-CLIP [70] 74.46 71.11 77.33
Ours w/o VI 82.29 78.88 63.83
Ours 82.21 79.54 68.72
CoOp [94] 80.15 77.62 66.8
+ Ours w/o VI 81.98 78.88 66.21
+ Ours 83.73 80.97 62.68

Table 5. PhNDD performances averaged over 3 runs on CI-
FAR100. Best scores for each variant are in bold.

To quantify the output confidence, we rely on the Energy
score [45] given its aptness for pre-trained models. Table 5
compares the averaged PhNDD performances. Our proba-
bilistic models enhance the PANDD capabilities of their un-
derlying prompting frameworks. Lastly, the inferior results
of the deterministic (i.e., w/o VI) versions of our models
imply that considering uncertainty-awareness for PhNDD
helps us maintain richer and more diverse features [88].

5.0.2 Exemplar selection

To study uncertainty-based exemplar selection, we first em-
ploy entropy of the output softmax distributions as our se-
lection criteria [6]. Table 6 shows the efficacy of entropy-
based rehearsal for our method, where other deterministic
methods lag behind due to their inconsistent UQ capabili-
ties. Next, we employ the energy [45] and the variance of

- Avg Last

3 > > A9 >
90153 @17 > ¥ B

Method Avg Last N
CoOp [94] 1 = EEELE o'
0Op [94 . . 3
Clip-Adapter [17] ~ 78.78 6849 <70
Ours w/o VI 8444  76.55 eoto® (€AY [ ado™ coerd | qance
Ours 85.18 77.92 Exemplar selection strategy

Table 6. Entropy-based exem- Figure 6. Analyses of various
plar selection results for differ- strategies for exemplar selection
ent methods on CIFAR100. w/ our method on CIFAR100.

softmax distributions of the M predictions as our selection
criterion, and contrast these against other criteria proposed
in [6]. Figure 6 shows that variance-based exemplar selec-
tion outperforms random, and is only second to iCaRL [65]
in terms of Last accuracy. Lastly, we note that determinis-
tic finetuning methods are inherently limited at leveraging
variance for exemplar selection.

6. Conclusion

In this paper, we propose CLAP4CLIP, a probabilistic fine-
tuning method for learning task-specific distributions over
visual-guided textual features. Our model shares the visual-
guided text alignment module across all tasks while adding
lightweight task-specific encoders to learn fine grained task
distributions. Besides leading to little memory overhead,
this architecture is compatible with several prompt-tuning
based methods thus helping us inherit their respective perks
on different CL settings. Our experiments show the superior
results of CLAPACLIP across several datasets and settings.
We conclude with two out-of-the-box utilities of our method
wherein existing continual learning methods lag: post-hoc
novel data detection and uncertainty-based exemplar selec-
tion.

7. Future research directions

Few potential directions of research for CLAP4CLIP
include the design of: (a) parameter-efficient adapters
[25] for very large CL settings; (b) better regularization
techniques to alleviate forgetting; and (c¢) more informed
[9] yet computationally efficient priors for inference.
Similarly, along the direction of alleviating forgetting
and mitigating the stability gap [20, 37], it would be
interesting to see how class-specific prompts generated
by pre-trained Large Language Models (LLMs) can be
exploited to obtain task-relevant language-aware CLIP
knowledge while preserving the zero-shot transfer ability
of the learned prompts (see App. table 19 for a pre-
liminary investigation). Lastly, we consider applying
CLAP4ACLIP to more sophisticated Vision-Language
tasks [68] as another possible direction for research
(see App. table 20 for a preliminary investigation). We
elaborate further on each of these directions in App. 9.
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Supplementary Material

8. Experiments and Benchmarks
8.1. Datasets

We evaluate our method on five datasets, the details of
which are reported in Table 7. Following Zhou et al. [92],
we shuffle the order of training classes for all but the VTAB
dataset with the random seed 1993. While the original
VTAB [86] includes 19 evaluation tasks from three cate-
gories (natural, specialized, and structured) and their re-
spective sub-domains, we rely on the five datasets cross-
domain class-incremental subset proposed in SimpleCIL
[91]. The five datasets (used in the same streaming order)
include Resisc45 [8], DTD [10], Pets [59], EuroSAT [22],
and Flowers [54]. To make the classes emerge from domain
to domain, we do not shuffle the class order for VTAB.

8.1.1 Exemplar selection

Following [24, 65], we employ the herding algorithm [78]
to choose the exemplars for our main experiments. Fol-
lowing the previous works [90, 92], we rely on two typical
methods to populate the memory:

1. Fixed memory budget maintains a static memory M
with K instances. Upon having seen |)p| number of
classes after an incremental training stage, the model se-
lects % exemplars per class.

2. Expandable exemplar set dynamically expands the
memory M with the arrival of more incremental tasks.
After each incremental training stage, the model here
stores || X k. exemplars, where k. is the number of
exemplars per class.

For CIFAR100, ImageNet100 and VTAB, given their
lesser number of classes, we employ the first policy, and
keep a total of 2,000, 1,000, and 1,000 exemplars, respec-
tively. This amounts to the respective sub-totals of 20 and
10 exemplars per class after the last incremental stage. We
choose these sizes for a straightforward comparison with
the existing works, i.e., PROOF [92] for CIFAR100 and
AttriCLIP [74] for ImageNet100. For VTAB, the chosen
memory size reflects the fact that we have only 1, 796 train-
ing instances in total (see Table 7). For ImageNet-R and
CUB200 with 200 classes each, we adopt the second policy
and store 20 exemplars per class.

8.2. Hyperparameter selection and tuning

To the end goal of obtaining task-agnostic hyperparameters
[15], we tuned our hyperparameters using a validation set

comprising 10% of the CIFAR-100 training dataset. Simi-
lar to [14], performing the hyperparameter search only on
the CIFAR100 setup helps us avoid optimizing for the num-
ber of tasks while generalizing across all our other setups.
Table 8 shows the candidate values for the hyperparame-
ter grid search and their best chosen values. Tables 9, 10,
11, and 12 report the last task accuracy scores (Last) cor-
responding to the hyperparameter search for the number of
training epochs, the number of finetuning epochs, the coef-
ficient v and the coefficient A, respectively. Fig. 5a in the
main paper reports the accuracy and the runtimes for the
different number of MC samples M. We will release the
full source code upon the acceptance of our paper.
Training for memory consolidation. To alleviate the for-
getting of past tasks, we finetune on the class-balanced
dataset of new data and rehearsal data M at the end of
each incremental training step (t > 1) [14, 24]. Following
other well-established parameter-isolation CL algorithms
[5, 14, 82], we freeze the past task encoders during the nor-
mal training. This helps us avoid knowledge interference
from the dominant new task training samples. During the
memory consolidation training stage, we optimize all the
task encoders while freezing the task-shared VGA module
parameters.

8.3. Latency comparison for VI-CLIP styled VGA
vs Ours

We compare the performance of VT-CLIP styled VGA with
Ours. To align the text features with the image features, the
former uses per-pixel spatial features obtained from the ViT
prior to global pooling while we use the globally pooled fea-
tures. Table 13 shows that VI-CLIP styled VGA achieves
similar accuracy as ours while incurring ~ 6x higher infer-
ence time.

8.4. Results
8.4.1 Performance evolution

To complement the results in Table 1, Fig. 8 compares
the accuracy of different methods at each evaluation step
across all datasets. Our major conclusions are briefed as
follows. A) The base task performance of CLAP4CLIP
(ours) is consistently higher than other methods including
the state-of-the-art PROOF [92]. This suggests that our
probabilistic finetuning framework is effective for general
downstream tasks in a non-incremental setting. B) For the
CL settings in Table 1 where either of the CLAP4CLIP
variants achieve the best performances, their performance
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Figure 7. Illustration of the deterministic variant of Ours (Ours w/o VI in Table 1): the task-specific text features are fed to their
respective task encoders, consisting of only the mean p layer each. There is no sampling involved and the task mean outputs are fused

directly with the original task features prior to deriving the task logits y*. All task logits are concatenated to produce the final prediction
1:t

y
Dataset \ # training instances ~ # testing instances ~ # Classes  # Tasks  Link
CIFAR100 50,000 10,000 100 10 URL
ImageNet100 130,000 5,000 100 10 URL
ImageNet-R 24,000 6,000 200 10 URL
CUB200 9,430 2,358 200 10 URL
VTAB 1,796 8,619 50 5 URL

Table 7. Benchmark datasets and their details.

Hyperparameter Range Chosen value Finetuning ep. 1 2 3 4
Le‘g;:)“cisrate 56'3’317‘;’,;?% Be-4 165'3 Last 7765 7821 782 78.18
Warmup epochs 0.5,1,1.5 1
Finetuning epochs 1,2,3,4 2 Table 10. Accuracy vs. Finetuning epochs
¥ 1, 5,10, 15, 20, 25 15
A 0.0001, 0.001,0.01,0.1 0.001
M 1, 5,10, 15, 20, 25, 30, 50 20 ¥ 1 5 10 15 20 25

Last 78.04 7794 781 7821 7796 77.14

Table 8. Hyperparameter tuning: we run a gridsearch on the CI-
FAR100 setup with a validation set comprising 10% of the training Table 11. Accuracy vs. weight “y” for Lxp
set. The chosen values are reused across all other setups.

A 00001 0001 001 0.1
Epochs 3 5 7 Last 7816 7821 7799 774
Last 7732 7821 78.18

Table 12. Accuracy vs. weight “\” for Dgr,
Table 9. Accuracy vs. Training epochs

we notice that CLAP4CLIP achieves a significant perfor-

curves also consistently retain superior results across all mance improvement over vision-only methods (L2P and
evaluation steps. This validates the effectiveness of our DualPrompt). This indicates the merits of considering text
method at tackling forgetting. C) Similar to Zhou et al. [92], and visual cues together for continual learning.


https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/challenges/LSVRC/index.php
https://github.com/hendrycks/imagenet-r
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://drive.google.com/file/d/1xUiwlnx4k0oDhYi26KL5KwrCAya-mvJ_/view?usp=sharing
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Figure 8. Performance evolution of different methods. The top-1 accuracy (%) is reported upon learning of each task.

Method | Avg. | Last | Inference time (s)
VT-CLIP styled VGA 86.54 77.98 0.94
Ours 86.13 78.21 0.16

Table 13. Performance comparison of VI-CLIP styled VGA with
Ours on CIFAR-100.

8.5. Ablation studies

8.5.1 Task head selection interpretation and results.

To elaborate on Sec. 4.3, Fig. 9a reports the accuracy of
test set samples corresponding to the task encoder heads at
the end of incremental training on the last task. Here, the
first row is to be interpreted as follows: 77% of test sam-

ples belonging to test set of the first task (test set ID 1) were
correctly allocated to task head 1, 1.4% of test samples be-
longing to test set of the first task (test set ID 1) were incor-
rectly allocated to task head 2, and so on. Visualizing the
task head selection results for the last task evaluation helps
us uncover the amount of forgetting among the individual
task heads at the end of the incremental training.

Fig. 9b compares the evolution of the task head selection
accuracy across the incremental test steps. Here, at the first
test step, we have only one task head and thus the task head
selection accuracy is 100%. At the second test step, we have
the test samples from two seen tasks as well as two available
task heads. Out of all test samples of task 1, the reported
94.5% were correctly classified into the task head 1 while



Method CIFARIO0  ImageNetl00  ImageNet-R  CUB VTAB

Continual-CLIP [70] 1.416 2.175 1.98 2.087 0.614
+Ours 1.39 2.19 1.86 2.06 0.443

CoOp [94] 1.57 2.47 1.95 1.99 0.54
+Ours 1.533 2.074 2.011 1.885 0.516
MaPLe [29] 1.3 2.052 2.16 1.803 0.49
+Ours 1.36 1.956 1.84 1.62 0.407
AttriCLIP [74] 1.781 2.54 2.37 2.419 0.996
+Ours 1.677 2.019 2.388 2.410 0.98

Table 14. Standard deviation (std. dev.) scores comparison for Avg. accuracy scores of Table 1 between our variants and their corre-
sponding baseline prompt-based finetuning methods over three runs. In general, our std. dev. scores are comparable to or lower than the
corresponding baseline methods and are thus statistically significant.

Method CIFARI00  ImageNetl00  ImageNet-R CUB VTAB
Continual-CLIP [70] -0.086 -0.091 -0.066 -0.124  -0.041
+Ours -0.106 -0.117 -0.107 -0.117  0.012

CoOp [94] -0.257 -0.338 -0.12 -0.162  -0.007
+Ours -0.129 -0.139 -0.112 -0.106  0.011
MaPLe [29] -0.209 -0.352 -0.1 -0.145 0.037
+Ours -0.105 -0.112 -0.093 -0.102 0.005
AttriCLIP [74] -0.128 -0.152 -0.082 -0.151 -0.099
+Ours -0.143 -0.1 -0.092 -0.037 0.041

Table 15. Backward Transfer (BwT) scores 1 comparison between our variants and their corresponding baseline prompt-based finetuning
methods averaged over three runs. Best scores across each pair is highlighted in bold.

Method CIFARI00  ImageNetl00  ImageNet-R CUB VTAB
Continual-CLIP [70] 65.34 53.13 61.67 59.55 65.13
+Ours 65.47 53.07 64.05 58.11 66.91
CoOp [94] 64.09 52.6 60.93 62.11 69.38
+Ours 66.2 55.09 63.44 58.6 74.1
MaPLe [29] 68.22 57.04 66.56 61.6 71.51
+Ours 76.17 62.33 70.03 67.8 78.29
AttriCLIP [74] 61.45 50.4 56.41 57.04 61.59
+Ours 61.87 50.56 58.03 57.95 64.3

Table 16. Transfer scores [89] 1 comparison between our variants and their corresponding baseline prompt-based finetuning methods
averaged over three runs. Best scores across each pair is highlighted in bold.

Method CIFARIO0  ImageNetl00  ImageNet-R CUB VTAB
Continual-CLIP [70] 0.288 0.238 0.206 0.208 0.186
+Ours 0.216 0.207 0.201 0.203 0.165

CoOp [94] 0.245 0.3 0.191 0.21 0.191
+Ours 0.224 0.217 0.207 0.204 0.136
MaPLe [29] 0.168 0.243 0.149 0.195 0.195
+Ours 0.214 0.208 0.146 0.184 0.159
AttriCLIP [74] 0.256 0.256 0.205 0.209 0.191
+Ours 0.304 0.205 0.19 0.198 0.304

Table 17. Expected Calibration Error (ECE) scores | (computed over 15 bins) comparison between our variants and their corresponding
baseline prompt-based finetuning methods averaged over three runs. Best scores across each pair is highlighted in bold.

the rest 5.5% were incorrectly classified into the task head 2, and so on. Hence, by studying the task head selection per
2. Similarly, for test samples belonging to task 2, 3.1% incremental step, we can investigate the trend of forgetting
were incorrectly classified into the task head 1 while the among the individual task heads.

reported 96.9% were correctly classified into the task head
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Figure 9. Task head selection accuracies reported on CIFAR-
100 upon: (a) evaluation on the last step, (b) evaluation on each
incremental step.

8.5.2 Effect of inference module types.

To further investigate the effects of inference modules on
performances, we vary the number of layers for the VGA
module (sec. 3.4) and for the task-specific encoders (sec.
3.5). Fig. 10a reports the results of varying the num-
ber of Transformer Decoder layers [71] in the VGA mod-
ule. As the number of layers grow, the average accu-
racy (Avg) increases while the last task accuracy (Last) de-
creases. This indicates that while a larger number of layers
in the VGA module lead to an increase in the initial tasks’
performances, these are amenable to larger forgetting on lat-
ter incremental steps.

In Fig. 10b, we report the performances for varying
number of MLP layers in the mean and the standard de-
viation heads of the task distribution encoders. Unlike the
VGA module, here we observe a consistent trend of de-
creasing last and average task accuracy with the increase in
the number of layers. This clearly indicates the superiority
of using a single-layered task distribution encoder.

8.5.3 Inference time for different finetuning methods.

Table 18 investigates the inference time per iteration for
different methods. Among the compared prompt-based
methods, the inference time for AttriCLIP [74] is notably
the highest. This is because it relies on selecting test
instance-conditioned prompt tokens from a pool of prompt
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Figure 10. Ablation studies on CIFAR100 showing: (a) the vari-
ation of accuracy with the number of Transformer decoder layers
in the VGA module, (b) the variation of accuracy with the number
of linear layers in the task-specific mean and standard deviation
encoders.

tokens. The instance-specific prompts are fed to the text
encoder which further outputs an equivalent number of
instance-specific text features to be used in the deriva-
tion of logits through eq. 1. These operations increase
the inference time of AttriCLIP beyond our proposed vari-
ants of CLAP4CLIP with hand-crafted prompts (Ours),
class-conditioned prompts (CoOp + Ours), and multi-modal
prompts (MaPLe + Ours) where the latter three outperform
AttriCLIP significantly across all our settings.

Method Inference time (s)
Continual-CLIP [70] 0.017
CoOp [94] 0.018
MaPLe [29] 0.035
AttriCLIP [74] 0.257
CLIP-Adapter [17] 0.019
Ours 0.163
CoOp + Ours 0.182
MaPLe + Ours 0.064
AttriCLIP + Ours 0.299

Table 18. Average inference time for different finetuning methods
on CIFAR100.



8.5.4 Influence of language-aware knowledge compo-
nents on training dynamics.

Continuing our ablations from sec. 4.3, here we visualize
the effects of using language-aware pre-trained knowledge,
i.e., weight initialization and task distribution regularization
on the training dynamics of our model. For thorough anal-
yses, we consider four variants of our model: (a) Ours uses
both weight initialization and task distribution regulariza-
tion, (b) Ours without weight initialization, (c) Ours without
task distribution regularization, and (d) Ours without either
of the language-aware components.

Does language-aware weight initialization help allevi-
ate stability gap [37]? To answer this, we first investigate
the evolution of the training loss during the initial train-
ing stages of each incremental task. Figure 11 shows the
loss £ (eq. (12)) during the initial 100 training iterations
of each task. We observe that our proposed weight initial-
ization technique leads to lower training losses for the sce-
narios with or without task distribution regularization, i.e.,
in general, red values < and blue values <

. Following Harun et al. [20], our observa-
tions support the hypothesis that larger loss values lead to
the stability gap [37] for CL, and that an informed weight
initialization method can help tackle it by reducing the ini-
tial training loss.

To further verify the benefit of our proposed weight ini-
tialization strategy for reducing the stability gap, we ablate
the accuracy evolution of the first task test samples during
the early training stages of each task. Figures 12 and 13 con-
trast these for CIFAR100. In general, our proposed weight
initialization strategy helps mitigate the drop in accuracy
during the initial training phases. On average, the first task
accuracy upon the first iteration of training across all tasks
remains 78.12 without weight initialization and grows to
79.5 with weight initialization, i.e. a gain of 1.38 percent-
age points.

How does language-aware knowledge help learning
of task distributions in general? To understand the effect
of language-aware knowledge on task distribution learning,
we next investigate the evolution of the means and stan-
dard deviations learned by the past and the new task heads
throughout the training iterations. To this end, Fig. 14 and
Fig. 15 report the training iterations against the L2 norm
of means and standard deviations for the past task heads
(at each incremental training step) and the new task heads
(at each training step). We observe two consistent trends
regarding the evolution of distributions of the past and the
new task heads. First, the proposed initialization of weights
helps stabilize the learning of the means and standard de-
viations with (red against ) or without (blue against

) regularizing the task distributions. Second, regu-
larizing the task distributions increases the L2 norms of the
learned mean and the standard deviation as these now have
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Figure 11. Evolution of the loss value £ during the first 100
training iterations of each task on CIFAR100. Training with our
proposed weight initialization strategy consistently leads to lower
training losses thus bridging the stability gap [37] in CL.

to encode more information to mimic the distributions of
the hand-crafted text features.
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three different runs, the orange shades denote £1 standard error
of the mean. The labels to the vertical bars denote the accuracy
values for the first iteration of training on each task.

8.6. Post-hoc novel data detection

Our post-hoc novel data detection (PhNDD) setting aims to
evaluate the continual learning methods at identifying novel
data on the fly. To do so, we design an evaluation setup that
uses no additional data resource other than that provided by
the dataset-specific CL setting. Starting from the first test
step, we treat the test data of the future tasks as novel while
those of the seen tasks (including the most recently trained
one) as seen. Since the last test step of a CL dataset has
no future tasks, we exclude this step for our PhNDD eval-
uation, i.e., we carry our PANDD evaluation of CL models
starting from the first until the penultimate test step.
Following other standard practices [21, 45], we use the
Energy scores [45] of the outputs for each test sample as a
measure of the model’s confidence score. The samples as-
signed with a confidence score below the pre-defined confi-
dence threshold are classified as novel. By assuming the
seen data as the positive class and the novel data as the
negative class, we can obtain a series of true positives rate
(TPR) and false positive rate (FPR) by varying the confi-
dence thresholds. One of our PANDD evaluation metrics —
the FPROS5 then measures the FPR when the TPR is 0.95. As
such, a lower FPROS5 score indicates better PhANDD perfor-
mance. Our other two PANDD performance metrics include
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Figure 13. Test accuracy with weight initialization on the first
task for the initial 100 iterations of incremental training on all
ten tasks of CIFAR100. The green lines are the means over three
different runs, the orange shades denote 11 standard error of the
mean. The labels to the vertical bars denote the accuracy values
for the first iteration of training on each task.

the the area under receiver operating characteristic curve
(AUROC [11]) calculated based on FPR and TPR, and the
precision-recall curve (AUPR [66]). Higher values of AU-
ROC and AUPR indicate better PANDD performance.

In Table 5 in the main paper, we report the PANDD met-
rics averaged over all the evaluated steps. Here, in Fig. 16,
we show the evolution of these metrics with each evaluation
starting from the first test step until the penultimate test step
of CIFAR100. We observe that the zero-shot Continual-
CLIP [70] has the poorest PANDD performances (highest
FPRO95, and least AUROC and AUPR scores) across all
steps given that it has not been finetuned on the downstream
CL tasks. Among the finetuned methods, the CoOp [94] ex-
hibits the poorest performances across all tasks. Among the
variants of our method, combining CoOp with ours (CoOp
+ Ours) achieves the best PANDD performances across all
tasks. Furthermore, the deterministic versions: Ours w/o VI
and CoOp + Ours (w/o VI) remain sub-optimal to their re-
spective probabilistic variants, i.e., Ours and CoOp + Ours.
The latter results validate the added perks of our probabilis-
tic modeling framework for post-hoc novel data detection.
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Figure 14. Evolution of mean and standard deviation of past task encoders with training iterations.
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9. Limitations and further research directions

Parameter overhead. For each incoming task,
CLAP4CLIP initializes a new head consisting of d x d
parameters where d is the output dimension of the CLIP
model’s encoder. For a very large number of real-world
CL tasks, the number of finetunable parameters for
CLAP4CLIP may thus become comparable to or larger
than that of the pre-trained CLIP model’s ~ 150 million
parameters. For example, using a VIT-B/16 encoder
with d = 512 brings an overhead of ~ 525,000 new
parameters with each incoming task. After having seen

10

~ 300 new tasks, the number of CLAP parameters to be
finetuned thus amount to ~ 158 million, which is larger
than the frozen CLIP itself, and thus defeats the purpose
of finetuning at the first place. One solid future direction
to use CLAPACLIP for very large real-world CL settings
could thus be introducing more strict parameter-efficiency
measures [75, 81] and/or learning probabilistic adapters
with low-rank weights [25].

Design choices. Other future directions for improving
CLAPACLIP could include the use of better regularization
techniques to further prevent forgetting (see Table 15 for
the current forgetting in CLAP), and the search for more in-
formed yet computationally efficient priors (see Table 4 for
the computational overhead attached with more informed
priors).

LLM-generated class descriptions as language-aware
knowledge. In Sec. 3.6, we proposed using the text fea-
tures from hand-crafted prompts as language-aware CLIP
knowledge to help alleviate forgetting. However, hand-
crafted prompts require manual labelling of data which
is not always practical. Hence, several recent works
[30, 50, 61] have opted to mining Large Language Models
(LLMs) for efficiently obtaining the class-specific descrip-
tions. To study the feasibility of alleviating forgetting using
such LLM-generated class descriptions, we leverage the di-
verse prompts from CuPL [61] obtained using the GPT-3
[3] model. Our preliminary investigation suggests that the
hand-crafted prompts have an upper hand over GPT-3 based
prompts for CLAP4CLIP performance (see Table 19). This
could be because of the broad range of knowledge encoded
in the GPT-generated prompts — which at times are irrele-
vant for the test images.

Prompt Runtime

fype Lastt  Avg? BWIT ECEL R CFL
Hand-crafted 7821 8613  -0.141  0.204 0.169
GPT-3 7776 857  -0.099 0219 0.151

Table 19. Performance comparison on CIFAR100 using hand-
crafted vs. LLM-generated prompts for encoding language-aware
CLIP knowledge. The results reported are averages over 3 runs.
Best results across the metrics are highlighted in bold.

Based on the above finding, we suggest leveraging task-
relevant LLM-generated descriptions as language-aware
knowledge to be another promising future research direc-
tion. Lastly, it is worth noting that a number of existing
methods that rely on LLM-generated prompts are limited
in their transferable knowledge across unseen classes and
datasets [50, 61] (e.g., any new class at test-time would re-
quire mining the LLM descriptions in advance). On the
contrary, our proposed weight initialization and task dis-
tribution regularization strategies provide a natural frame-



work for LLM-generated prompts to be used alongside ar-
bitrary learnable prompts (e.g. replacing t”! in eq. (9)).
This compliments the idea of LLM-based text-only super-
vision frameworks [30] that seek to enrich zero-shot trans-
fer of prompts to new classes by extracting rich contextual
information from LLM data.'

Compatibility with Vision-Language datasets The
tasks we have covered so far in the paper are based solely
on Vision datasets. To further demonstrate that our method
is compatible with more sophisticated vision-language
datasets, we here consider using a toy Visual Question An-
swering (VQAV2) task from the CLiMB dataset [68]. The
CLiMB dataset hosts a number of tasks/settings to evalu-
ate multi-modal and low-shot transfer abilities of CL algo-
rithms. However, given the intricacies of these tasks (vi-
sual question answering, reasoning, etc.), we leave a full
in-depth engagement with CLiMB [68] as a separate future
direction for research.’

To show the aptness of our method for the dataset’s tasks,
we carry out preliminary experiments on the single-task
learning setting [69] of the VQAV2 subset of CLiMB. Fol-
lowing [69], we rely on the BART model [42] for text gen-
eration here. Table 20 shows that our method surpasses the
Continual-CLIP by 9.29 percentage points on the VQAv2
task, thus showing that ours enhances the zero-shot gener-
alization capability of CLIP.

Model VQAV?2 task score
Continual-CLIP 57.42
Ours 66.71

Table 20. Single-task learning performance on the VQAv2 subset
of the CLiMB dataset.

IGiven that new classes might emerge at test time for which we do
not have the LLM-generated descriptions, it is important that the learned
prompts preserve their zero-shot generalization ability.

2The CLiMB dataset [68] was introduced as an independent
CL benchmark with a number of tasks (Visual Question Answer-
ing/Reasoning/Entailment) and training settings including low-shot and
unimodal learning. Existing works [69] that study CLiMB thus rely solely
on it and not on additional datasets for evaluations.
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10. Derivation of ELBO for the static prior.

We seek to maximize the likelihood p(y'?) for all observed labels 7. To derive the predictions, our framework uses
the visual-aligned text features t''7" and the image inputs x (see eq. (1)). Our evidence is thus p(y"|x;t1”) for which
we derive the lower bound (ELBO). In the following, we denote the prior network as py(z*) for which the true posterior is
po(zt|x;tt). We approximate the true posterior using the variational posterior g, (z¢|x;t!). Our derivation ends up with the
reconstruction term pg(y?|2t, x; fﬁ) that can be seen as a deterministic function converting a given latent vector z* and an
input image x into an observation y¢. For our CLIP-based variational framework, this deterministic function is the cosine
similarity operation followed by the softmax application (Eq. (3b)).
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11. Data-driven prior

The choice of prior is pivotal to a Bayesian inference work-
flow like ours [16]. While a standard Gaussian prior p, =
N (0, I') adapts well to a range of settings, it is (seemingly)
uninformative regarding the nature of a given task [19].
With the end goal of deriving more informative priors, we
thus seek to replace p, with task data-dependent prior dis-
tributions p?, wherever applicable.

To this end, we first note that the outputs of the VGA
module remain invariant not only to the order of the input
text features (due to self-attention) but also to the order of
the contextual image features (due to cross-attention). The
latter invariance implies that the joint task-specific distribu-
tion learned by the encoder q(’; (conditioned on the VGA

outputs fé from eq. 5) is preserved if we were to permute
the elements of the task-specific visual context set. More
formally, this observation helps guarantee the (finite) ex-
changeability and the consistency properties of a stochastic
process [55].

Motivated by the above, we treat the t—th task image
features x' as the target set 7* and employ a randomly cho-
sen subset of it as our context set C! to align the ¢—th task
text features and to condition our prior p’ on:

tL=VGA(Q =t K =V = ('),
P =qh(tr) = (1'(t0), o' (1Y)

where t! is the fused task-specific text feature following
eq. (6). The task-specific prior p’ thus endows our train-
ing framework with a resemblance to the neural process
(NP) architectures [18, 27, 31]. Following NPs, we use the
same encoder qé to parameterize the conditional prior and
the variational posterior. This results in the following ap-
proximate ELBO (see App. 10 for the ELBO derivation):

(14)

log p(y""[x,c*") >
T

D

t=1

— D (g4(="|T") %(ztlct))}

|:Eq¢(ztx) |:10gp(yt|zt7x%’7ct):| (15)

where in practice, the entire set of t—th images in a train-
ing minibatch form the target set 7 and a randomly chosen
subset of the targets make up the context C* [38]. Note that
unlike NPs, our framework does not entirely rely on data-
driven priors. Namely, while training on a CL task ¢, the
past-task encoders are frozen and we have ample ¢—th task
data points to condition the prior on. We thus resort to op-
timizing the ELBO (15) during training. On the other hand,
during finetuning, we have limited task-specific data points
to condition our context on. As such, we empirically found
that switching to the static prior yields better results and
thus resort to optimizing the ELBO (11) during finetuning.
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11.1. Effect of the context size on data-driven prior.

Table 4 in the main paper compares the results of using a
data-driven prior against the uniform normal prior and the
language-aware prior (see Sec. 3.6), where the latter is
driven from the pre-trained text encoder using hand-crafted
prompts. We observe that data-driven prior leads to minor
accuracy improvements over the standard normal prior but
falls narrowly behind the language-aware prior. Here, we
study the influence of the batch size of the context set se-
lected at random to derive our prior from.

Table 21 shows the last task accuracy with varying con-
text sizes and a fixed target batch size of 64. We find that a
smaller context set size hurts the performance of the model
to the extent of falling behind the standard normal prior.
Given that the context sets are the sampled subsets of the
training (target) minibatches, a much smaller context set can
lead to the increase in the prior matching loss values. We
find that the context set batch size of 40 performs the best,
and thus use this to ablate the prior-dependent performances
in the main paper.

4 8 16 3 40 so | Static
prior
Accuracy | 761 7699 7741 7803 7832 7735 | 7821

Table 21. Influence of the context set size used to derive the data-
driven prior on CIFAR100.



11.2. Derivation of ELBO for the data-driven prior.

Similar to App. 10, we start with the log-likelihood of the evidence which now involves conditioning on an additional
context set C*T'. The ¢—th task context set is used to condition our prior network py(2¢|C?). Following the standard practices
of other data-driven prior frameworks [18, 27], we introduce parameter-sharing between our conditional prior and variational
posterior networks. This allows us to replace our prior network with the variational posterior network g, (2| 7"), where T is
the target set for task ¢.

log po (Y7 x5 ,CHT) (Log-likelihood of evidence)
= logpe(y%:ﬂx%T»Cl:T)/%(ZI:T\XEFT,CI:TWZLT (- /q¢(zliT|x¥T,C1:T)dzlzT =1)
= /Q¢(ZLT|X%5T7CIZT)(logpe(Y%:T|X%iT7CI:T))dzlzT (Bring evidence into integral)
=E,, 7 j71r[log po(Y7 x5, CH ) (By definition)

I
M~

Eq, (zt|71)[log pe (YF|x5, Ct)]} (Rewrite using sum)

o
Il
-

t ottt
M] ] (Re-introduce z* by Chain rule of probability)

po (2t|xt, YL, Ct)

I
M~

Eq¢(zt\Tt) [log

o«
Il
-

[
M~

Yizt xt Ct 2t ct . .
Eq,(zt17t) [10g po(Y7] - (Zt|7'?f)p6( | )H (By Chain rule of probability; C C T)

po(Yr|2", X7, C") po(2'IC") qu(z'|T")
Baetra e 2 )

o~
Il
—

(Equivalent fraction)

[
M~

o~
Il
-

EQ¢(2t\Tt) [logpg(Yﬂzt’ Xrtr7 Ct)]

I
M=

t=1 *
po(2']C") s (2'|T") - -
+Eg, =t [log q¢(zt|7't)} + Eq, 2t [10g pg(zt|7't)} (Split the expectation)
T
= Z |:Eq¢(zt‘7't) [1ng9(Y7t*|Zt, X%’, Ct)]
t=1
— Dxe (g6 (2" T |Ipo (2*1C*)) + Dxe (g0 (2 |T°) o (2" |’Tt))} (By definition of KL divergence)
T
> Z {E%(thg [1ogp9(Y7t—|zt,x%—,Ct)] - ID)KL(q¢(zt|7’t)Hpg(zt|Ct))] (.- KL divergence > 0)

-
Il

1
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