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Abstract— Both fixed-gain control and adaptive learning
architectures aim to mitigate the effects of uncertainties. In
particular, fixed-gain control offers more predictable closed-
loop system behavior but requires the knowledge of uncertainty
bounds. In contrast, while adaptive learning does not necessar-
ily require such knowledge, it often results in less predictable
closed-loop system behavior compared to fixed-gain control.
To this end, this paper presents a novel symbiotic control
framework that offers the strengths of fixed-gain control and
adaptive learning architectures. Specifically, this framework
synergistically integrates these architectures to mitigate the
effects of uncertainties in a more predictable manner as
compared to adaptive learning alone and it does not require
any knowledge on such uncertainties. Both parametric and
nonparametric uncertainties are considered, where we utilize
neural networks to approximate the unknown uncertainty basis
for the latter case. Counterintuitively, the proposed framework
has the ability to achieve a desired level of closed-loop system
behavior even with an insufficient number of neurons (e.g.,
when the neural network approximation error is large) or in
the face of injudiciously selected adaptive learning parameters
(e.g., high leakage term parameters).

I. INTRODUCTION

As dynamical systems evolve in complexity, the discrep-
ancies between mathematical models and actual physical
systems continue to increase due to idealized assumptions,
simplifications, linearization, degraded modes of operation,
and changes in equations of motion. In turn, these dis-
crepancies called uncertainties can lead to poor closed-loop
system behavior and even instability. To mitigate the effects
of uncertainties, there are two fundamental approaches in the
literature; namely, fixed-gain control and adaptive learning
architectures. For example, robust control [1,2] and sliding
mode control [3,4] are well-known fixed-gain control ap-
proaches, whereas adaptive control [5,6,7] and reinforcement
learning [8,9] are well-known adaptive learning approaches.

As compared to adaptive learning, fixed-gain control offers
more predictable closed-loop system behavior. Because, the
gains of the resulting control algorithm do not vary as a
function of time or state. Yet, it requires the knowledge
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of uncertainty bounds for guaranteeing closed-loop system
stability (see [2, Chapter 2] and [10, Assumption 3.1] for
examples). For dynamical systems of complex nature or
when these systems experience changes in dynamics, ob-
taining such bounds can be challenging. In contrast, adap-
tive learning does not necessarily require such knowledge.
However, due to their nonlinear parameter adjustment mech-
anism and the need for neural networks for approximating
uncertainties of nonparametric nature, it often results in
less predictable closed-loop system behavior compared to
fixed-gain control especially during their transient period
[11,12,13,14,15,16,17,18].

A. Contribution and Relevant Literature
The contribution of this paper is a novel control framework

that offers the strengths of fixed-gain control and adaptive
learning architectures. Inspired by biology, we term this
framework symbiotic control since symbiosis refers to the
relationship or interaction between two dissimilar organisms1

19. Specifically, symbiotic control synergistically integrates
these architectures to mitigate the effects of uncertainties in
a more predictable manner as compared to adaptive learning
alone and it does not require any knowledge on such uncer-
tainties. Both parametric and nonparametric uncertainties are
considered, where we utilize neural networks to approximate
the unknown uncertainty basis for the latter case.

In the adaptive learning literature, it is well-known by the
Weierstrass approximation theorem 20 that an insufficient
number of neurons can result in a large neural network
approximation error over a compact region. Since this of-
ten leads to poor closed-loop system behavior, the authors
of [21,22,23] have recently explored deep neural network
methods to minimize this approximation error. In addition,
it is also well-known that high leakage term parameters
used in the parameter adjustment mechanisms can result in
poor closed-loop system behavior since they slow down the
learning process. Counterintuitively, the proposed symbiotic
control framework has the ability to achieve a desired-level
of closed-loop system behavior even with an insufficient
number of neurons and without a deep neural network
method, or in the face of high leakage term parameters.

Finally, the authors of [14,15,17] propose symbiotic con-
trol frameworks that are related to the results presented in
this paper. To this end, the following two points are needed to

1Within the context of this paper, two dissimilar organisms refer to the
fixed-gain control and adaptive learning architectures.
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be mentioned. First, none of these results focus on nonpara-
metric uncertainties as opposed to the results documented in
this paper. Second, although nonparametric uncertainties are
not considered, the findings in 17 align more closely with
the results of this paper. However, the authors of 17 make
an assumption that requires some knowledge of uncertainty
bounds for guaranteeing closed-loop system stability (i.e.,
[17, (34)], where we here remove this assumption for both
parametric and nonparametric uncertainty cases.

B. Content and Notation

In the remainder of this paper, we state the problem
formulation and the relevant preliminaries on fixed-gain
control and adaptive learning architectures in Section II.
We next present the symbiotic control framework in Section
III for dynamical systems with parametric uncertainty and
in Section IV for dynamical systems with nonparametric
uncertainty. Illustrative numerical examples are then given
in Section V to show the efficacy of the contributions of this
paper. Finally, conclusions are summarized in Section VI.

A fairly standard notation is used in this paper. In partic-
ular, R, Rn, and Rn×m respectively denote the sets of real
numbers, real vectors, and real matrices; R+, R+, Rn×n

+ , and
Rn×n

+ respectively denote the sets of positive real numbers,
nonnegative real numbers, positive-definite real matrices,
and nonnegative-definite real matrices; and “≜” denotes the
equality by definition. Furthermore, we use (·)−1 for the
inverse, (·)T for the transpose, tr(·) for the trace, ∥·∥2 for
the vector Euclidean norm or the matrix induced 2-norm,
∥·∥F for the matrix Frobenius norm, diag(a) for the diagonal
matrix with the real vector a ∈ Rn on its diagonal, and λ (A)
and λ (A) respectively for the minimum and the maximum
eigenvalues of the real matrix A ∈ Rn×n.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider the uncertain dynamical system
represented in the state-space form given by

ẋ(t) = Ax(t) +BΛ
(
u(t) + δ(x(t))

)
, x(0) = x0, (1)

where x(t) ∈ D ⊆ Rn is the measurable state and u(t) ∈ Rm

is the control signal2. Here, A ∈ Rn×n is the known system
matrix and B ∈ Rn×m is the known full column rank control
matrix such that the pair (A,B) is controllable. Furthermore,
Λ = diag(λ) ∈ Rm×m

+ , λ = [λ1, . . . , λm]T, is an unknown
control effectiveness matrix and δ(x(t)) : D → Rm is a
parametric (D = Rn in this case) or nonparametric (D ⊂ Rn

in this case with D being a compact set) uncertainty that is
composed of locally Lipschitz functions.

Next, let un(t) ∈ Rm be a nominal control signal that
satisfies

un(t) = −K1x(t) +K2r(t), (2)

where K1 ∈ Rm×n is a feedback gain matrix such that A−
BK1 is Hurwitz, K2 ∈ Rm×p is a feedforward gain matrix,

2Around an equilibrium point, a considerable number of uncertain dynam-
ical systems including aerial and ground vehicles adhere to the state-space
form given by (1) either explicitly or approximately [6, Section 2].

and r(t) ∈ Rp is a given uniformly continuous and bounded
reference signal3. The purpose of (2) is to define a nominal
(i.e., ideal) closed-loop system behavior given by

ẋn(t) = Anxn(t) +Bnr(t), xn(0) = xn0, (3)

in the absence of uncertainties (i.e., δ(x(t)) ≡ 0 and Λ ≡ I)
and u(t) ≡ un(t), where An ≜ A−BK1 and Bn ≜ BK2.

To mitigate the effects of uncertainties, let uf(t) ∈ Rm be
the fixed-gain control signal and ua(t) ∈ Rm be the adaptive
learning signal. We can now define the control signal as

u(t) = un(t) + uf(t) + ua(t), (4)

with uf(t) and ua(t) being defined in the next sections. Using
(4) with (2) in (1), one can write

ẋ(t) = Anx(t) +Bnr(t) +BΛ
(
uf(t) + ua(t)

+π(x(t), un(t))
)
, (5)

where

π(x(t), un(t)) ≜ δ(x(t)) + (I − Λ−1)un(t) (6)

is the total uncertainty.
The problem studied in this paper is to synergistically

integrate fixed-gain control signal uf(t) and adaptive learning
signal ua(t) (i.e., symbiotic control) to mitigate the total
uncertainty π(x(t), un(t)) in a more predictable manner as
compared to adaptive learning alone and without requiring
any knowledge on this uncertainty. Section III (respec-
tively, Section IV) addresses this problem when δ(x(t)) in
π(x(t), un(t)) is parametric (respectively, nonparametric),
where we are now ready to cover important preliminaries
in the next subsections of this section.

A. Preliminaries on Fixed-Gain Control

For the preliminaries presented in this subsection, let
ua(t) ≡ 0 and consider the fixed-gain control signal

uf(t) = −αBi(x(t)−x0)+αBi

∫ t

0

(
Anx(s)+Bnr(s)

)
ds,

(7)

where α ∈ R+ is the fixed-gain control parameter and
Bi ≜ (BTB)−1BT. Note that since B has full column
rank, the inverse of BTB exists. For instances where x0
is not perfectly known, note also that its estimate can be
used instead and this change only affects the initial transient
closed-loop system behavior. We now present a key lemma.

Lemma 1. The fixed-gain control signal given by (7) is
equivalent to

u̇f(t) =−αΛ
(
uf(t)+π(x(t), un(t))

)
, uf(0) = 0. (8)

Proof. Multiplying both sides of (5) with Bi yields

Λ
(
uf(t)+π(x(t), un(t))

)
=Bi

(
ẋ(t)−Anx(t)−Bnr(t)

)
, (9)

3Without loss of generality, we use a static nominal control signal as given
by (2). If preferred, a dynamic nominal control signal can be employed (see
[6, Section 3-B] for an example), where the results presented in this paper
only experience minor modifications in this case.



where using (9) in (8) gives

u̇f(t) =−αBi

(
ẋ(t)−Anx(t)−Bnr(t)

)
. (10)

Finally, taking the integral of (10) results in (7). ■

While the fixed-gain control signal given by (7) is imple-
mentable, its equivalent form given by (8) is not. Because,
the matrix Λ and the term π(x(t), un(t)) are unknown in (8).
While this is the case, (8) is needed for an important result
presented in the next proposition.

Proposition 1. If α in (7) is sufficiently large, then the
solution to (5) approximately behaves as the solution to the
nominal (i.e., ideal) closed-loop system given by (3).

Proof. Recall that (7) is equivalent to (8) by Lemma 1.
Now, let ε ≜ α−1 and rewrite (8) as

εu̇f(t) =−Λ
(
uf(t)+π(x(t), un(t))

)
, (11)

where (5) and (11) together represents a singularly perturbed
dynamical system. In this case, a sufficiently large α implies
that ε ≡ 0 in (11), which results in the unique root

uf(t) = −π(x(t), un(t)). (12)

Using (12) in (5), we arrive to the reduced-order dynamical
system given by

ẋr(t) = Anxr(t) +Bnr(t), xr(0) = x0, (13)

which has an exponentially stable equilibrium point. One can
also write the boundary layer dynamical system as

dufb(τ)/dτ = −Λufb(τ), ufb(0) = 0, t = ετ, (14)

which also has an exponentially stable equilibrium point
since the unknown matrix −Λ is Hurwitz by definition. All
conditions of Tikhonov’s theorem are now met [24, Theorem
11.1]. Therefore, the solution to (5) can be approximated
using the solution to the reduced-order dynamical system
given by (13). Since the solution to (13) is identical to the
solution to (3), the proof is now complete. ■

Remark 1. If the fixed-gain control parameter α is suf-
ficiently large, then it is evident from Proposition 1 that
the solution to the uncertain dynamical system given by
(5) approximates the solution to the nominal (i.e., ideal)
closed-loop system given by (3). This is a strong result
that holds for both parametric or nonparametric uncertainty
cases and without an adaptive learning signal. However, it
is not possible to know in practice how large α needs to
be. Furthermore, analyzing closed-loop system stability on
how α needs to be properly chosen without an adaptive
learning signal requires a specific uncertainty structure and
an upper bound on this uncertainty, where such analysis can
be conservative as well (see [10] for an examplary study
involving small gain theorem). To avoid all these, we employ
a form of the fixed-gain control signal given by (7) in the
following sections with an adaptive learning signal (i.e.,
symbiotic control). Importantly, we harness the presence of
this fixed-gain control signal for achieving a more predictable
closed-loop system behavior as α increases.

B. Preliminaries on Adaptive Learning

For the preliminaries presented in this subsection, let
uf(t) ≡ 0. First, consider that δ(x(t)) is a parametric
uncertainty such that

δ(x(t)) =WT
δ σδ(x(t)), x(t) ∈ Rn, (15)

holds, where Wδ ∈ Rs×m is an unknown weight and
σδ(x(t)) : Rn → Rs is a known basis function. In this case,
the total uncertainty given by (6) can be represented as

π(x(t), un(t)) ≜WTσ(x(t), un(t)), (16)

where W ≜ [WT
δ , (I−Λ−1)]T ∈ R(s+m)×m is unknown and

σ(x(t), un(t)) ≜ [σT
δ (x(t)), u

T
n (t)]

T : Rn ×Rm → Rs+m is
known by definition. In addition, let the adaptive learning
signal be

ua(t) = −ŴT(t)σ(x(t), un(t)), (17)

where Ŵ (t) ∈ R(s+m)×m is an estimate of W that is learned
through the parameter adjustment mechanism given by
˙̂
W (t) = βσ(x(t), un(t))

(
x(t)−xn(t)

)T
PB, Ŵ (0) = Ŵ0,

(18)

with β ∈ R+ being the adaptive learning parameter, xn(t)
satisfying (3), and P ∈ Rn×n

+ being the unique solution to
the Lyapunov function

0 = AT
nP + PAn +R (19)

for a given R ∈ Rn×n
+ . Note that if x0 is not perfectly known,

its estimate can be used instead to initialize (3) and this
change only affects the initial transient closed-loop system
behavior. We are now ready for the next proposition.

Proposition 24. Consider the dynamical system given by
(5) with the parametric uncertainty given by (15), where
uf(t) ≡ 0. Consider also the adaptive learning signal given
by (17), (18), and (3). The trajectories of the closed-loop
system are then bounded and limt→∞

(
x(t)− xn(t)

)
= 0.

Next, consider that δ(x(t)) is a nonparametric uncertainty
such that

δ(x(t)) =WT
δ σδ(x(t)) + ϵ(x(t)), x(t) ∈ D, (20)

holds, where Wδ ∈ Rs×m is an unknown weight, σδ(x(t)) :
D → Rs is a known basis function that contains a unity bias
and sf ≜ s−1 radial basis functions, and ϵ(x(t)) is a bounded
approximation error5. In this case, the total uncertainty (6)
can be represented as

π(x(t), un(t)) ≜WTσ(x(t), un(t)) + ϵ(x(t)), (21)

where W and σ(x(t), un(t)) have the same forms given after
(16). In addition, let the adaptive learning signal be given by
(17), where Ŵ (t) is an estimate of W that is learned through
the parameter adjustment mechanism given by

4See [6, Section 3-C] for the proof of this proposition.
5By the Weierstrass approximation theorem 20, this feedforward radial

basis function neural network guarantees that ϵ(x(t)) → 0 as sf → ∞.



˙̂
W (t) = β1σ(x(t), un(t))

(
x(t)−xn(t)

)T
PB − β2Ŵ (t),

Ŵ (0) = Ŵ0, (22)

with β1 ∈ R+ being the adaptive learning parameter, β2 ∈
R+ being the leakage parameter, xn(t) satisfying (3), and
P ∈ Rn×n

+ being the unique solution to the Lyapunov
equation (19). We are now ready for the next proposition.

Proposition 36. Consider the dynamical system given by
(5) with the nonparametric uncertainty given by (20), where
uf(t) ≡ 0. Consider also the adaptive learning signal given
by (17), (22), and (3). The trajectories of the closed-loop
system are then bounded.

Remark 2. A form of direct adaptive control method given
in Propositions 2 and 3 is used in the next sections for con-
structing the adaptive learning signal ua(t). Because, direct
adaptive control does not require persistency of excitation for
mitigating the effects of uncertainties. If preferred, one can
also explore other adaptive learning methods to use together
with fixed-gain control. However, it is worth noting that
direct adaptive control, like other adaptive learning methods,
can exhibit less predictable, poor closed-loop system behav-
ior due to their nonlinear parameter adjustment mechanism
and in the presence of high neural network approximation
errors (i.e., ϵ(x(t)) in (20)) and high leakage parameter
(i.e., β2 in (22)). We address this issue by synergistically
integrating the fixed-gain control signal with the adaptive
learning signal (i.e., symbiotic control) in the next sections.

Remark 3. The following two observations about Propo-
sition 3 are now given. First, it holds when x(t) stays in
D. To enforce x(t) to stay in D without necessarily making
D arbitrarily large, one can use set-theoretic direct adaptive
control method [25]. Second, Proposition 3 holds when one
uses a projection operator in (22) instead of the leakage term
(i.e., −β2Ŵ (t)). We prefer not to use a projection operator
in order not to make any assumptions on the bounds of W .

C. Preliminaries on Composite Function Construction

We construct a composite function given by

κ(z(t)) =


ρz(t), z(t) ∈ [0, a],
κc(z(t)), z(t) ∈ (a, b),
z(t), z(t) ∈ [b,∞),

(23)

where z(t) ∈ R+, ρ ∈ [0, 1), a ∈ R+, and b ∈ R+ such that
a < b. In (23), κc(z(t)) : R+ → R+ is a transition function
that is chosen as

κc(z(t)) =

l∑
k=0

ψkz
k(t). (24)

Letting κ′c(z(t)) ≜ dκc(z(t))/dz(t) =
∑l

k=1 kψkz
k−1(t)

and κ′′c (z(t)) ≜ d2κc(z(t))/dz
2(t) =

∑l
k=2 k(k −

1)ψkz
k−2(t), the conditions κc(a) = ρa, κ′c(a) = ρ,

κ′′c (a) = 0, κc(b) = b, κ′c(b) = 1, and κ′′c (b) = 0 are needed
to hold for (23) to be twice continuously differentiable. To

6From [6, Section 3-E], the proof of this proposition follows.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

0 0.5 1 1.5 2 2.5 3
0

1

2

3

0 0.5 1 1.5 2 2.5 3

-5

0

5

Fig. 1. Composite function κ(z(t)) given by (23) for a = 1, b = 2,
and ρ = 0.1, where κ′(z(t)) ≜ dκ(z(t))/dz(t) and κ′′(z(t)) ≜
d2κ(z(t))/dz2(t).

this end, using κc(z(t)), κ′c(z(t)), and κ′′c (z(t)) in these
conditions for l = 5, we arrive

1 a a2 a3 a4 a5

0 1 2a 3a2 4a3 5a4

0 0 2 6a 12a2 20a3

1 b b2 b3 b4 b5

0 1 2b 3b2 4b3 5b4

0 0 2 6b 12b2 20b3



ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

 =


ρa
ρ
0
b
1
0

 , (25)

where solution ψi, i = 0, . . . , 5, to (25) gives the parameters
to implement the transition function (24), where this solution
should always exist [26]. Figure 1 illustrates the composite
function κ(z(t)) given by (23) for a = 1, b = 2, and ρ = 0.1.

Remark 4. We draw attention to two points. First, we
require that κ(z(t)) ∈ R+ and κ′(z(t)) ∈ R+ when ρ = 0,
and κ(z(t)) ∈ R+ and κ′(z(t)) ∈ R+ otherwise7. Second,
the gradient κ′(z(t)) of the composite function (23) can be
made sufficiently small over z(t) ∈ [0, a] by selecting ρ
sufficiently small (e.g., κ′(z(t)) = 0.1 for z(t) ∈ [0, 1]
in Figure 1). In the next sections, this gradient is used to
decrease the effect of the nonlinear terms resulting from the
standard adaptive learning method outlined in Section II-B
when the trajectories of the uncertain dynamical system (6)
and the trajectories of the nominal (i.e., ideal) closed-loop
system (3) remain close to each other.

III. SYMBIOTIC CONTROL OF DYNAMICAL SYSTEMS
WITH PARAMETRIC UNCERTAINTY

Consider the uncertain dynamical system given by (5)
subject to (6). In this section, we focus on the parametric
uncertainty case such that (15) holds over x(t) ∈ Rn, where
the total uncertainty is represented as (16).

A. Control Architecture
To begin with, consider a form of the fixed-gain control

signal given by

uf(t) = −αBi(x(t)−x0)+αBi

∫ t

0

(
Anx(s)+Bnr(s)

)
ds

+

∫ t

0

ug(s)ds, (26)

7The composite function κ(z(t)) is not unique and one can explore its
other versions with the results presented in the next sections.



where α ∈ R+ is the fixed-gain control parameter and Bi ≜
(BTB)−1BT. In (26), ug(t) ∈ Rm satisfies

ug(t) = −β1β−1
2 κ′

(
eT(t)Pe(t)

)
Λ̂(t)BTPe(t), (27)

where e(t) ≜ x(t) − xn(t) ∈ Rn is the error sig-
nal, κ′

(
eT(t)Pe(t)

)
≜ dκ

(
eT(t)Pe(t)

)
/d

(
eT(t)Pe(t)

)
with

κ
(
eT(t)Pe(t)

)
satisfying (23), and P ∈ Rn×n

+ is the unique
solution to the Lyapunov function (19) for a given R ∈ Rn×n

+

(β1 ∈ R+ and β2 ∈ R+ are defined below). In (27),
Λ̂(t) ∈ Rm×m is an estimate of Λ that is learned through
the parameter adjustment mechanism

˙̂
Λ(t) = γκ′

(
eT(t)Pe(t)

)
BTPe(t)uTf (t), Λ̂(0) = Λ̂0, (28)

with γ ∈ R+ being the adaptive learning parameter. Next,
consider the adaptive learning signal given by (17), where
Ŵ (t) ∈ R(s+m)×m is an estimate of W that is learned
through the parameter adjustment mechanism

˙̂
W (t) = β1κ

′(eT(t)Pe(t))σ(x(t), un(t))eT(t)PB,
−β2ασ(x(t), un(t))uTf (t), Ŵ (0) = Ŵ0, (29)

with β1 ∈ R+ and β2 ∈ R+ being the adaptive learning
parameters.

Remark 5. The proposed symbiotic control architecture
for dynamical systems with parametric uncertainty is given
above8. Observe that the proposed fixed-gain control signal
(26) is a version of the original fixed-gain control signal
(7) with an added integral of (27) containing the adaptive
parameter Λ̂(t). Likewise, (29) is a version of (18) with an
added term containing the fixed-gain control signal uf(t). In
other words, the fixed-gain control and adaptive learning ar-
chitectures interact with each other to mitigate the effects of
uncertainties in a more predictable manner without requiring
any knowledge of such uncertainties.

B. System-Theoretical Analysis

We begin with a key lemma.

Lemma 2. The form of the fixed-gain control signal given
by (26) is equivalent to

u̇f(t) = −αΛ
(
uf(t)+ua(t)+π(x(t), un(t))

)
+ug(t),

uf(0) = 0. (30)

Proof. Multiplying both sides of (5) with Bi yields

Λ
(
uf(t) + ua(t) + π(x(t), un(t))

)
= Bi

(
ẋ(t)−Anx(t)−Bnr(t)

)
, (31)

where using (31) in (30) gives

u̇f(t) =−αBi

(
ẋ(t)−Anx(t)−Bnr(t)

)
+ug(t). (32)

Finally, taking the integral of (32) results in (26). ■

8To implement this architecture, one primarily needs to choose α for (26),
γ for (28), β1 and β2 for (29), and ρ for (23) (one can set R = I for (19),
Λ̂0 = 0 for (28), and Ŵ0 = 0 for (29)). We refer to Section V-A for the
selection of these parameters.

While the form of the fixed-gain control signal given
by (26) is implementable, its equivalent form given by
(30) is not since the matrix Λ and the term π(x(t), un(t))
are unknown. This equivalent form is only needed for the
system-theoretical analysis presented in this subsection. We
are now ready to present an important theorem.

Theorem 1. If α in (26) is sufficiently large, then the
solution to (5) approximately behaves as the solution to the
nominal (i.e., ideal) closed-loop system given by (3).

Proof. Let ζ(t) ≜ −ua(t)−π(x(t), un(t)), where (30) can
be rewritten in the Laplace domain as uf(s) = G1(s)ζ(s) +
G2(s)ug(s), where G1(s) ≜ (sI + αΛ)−1(αΛ), G2(s) ≜
(sI +αΛ)−1, and s is the Laplace variable9. As α becomes
sufficiently large (i.e., α → ∞), the magnitude and the
phase of G1(s) (respectively, G2(s)) respectively approach
0 decibels and 0 degrees (respectively, −∞ decibels and
0 degrees). This implies that uf(t) approaches ζ(t), and
hence, the solution to (5) approaches the solution to (3) as
α becomes sufficiently large. ■

Theorem 1 shows that the closed-loop system behavior
becomes more predictable as α increases, where a discussion
similar to the one given in Remark 1 also applies to this
theorem. Next, using (16) and (17) in (30), we arrive

u̇f(t) = −αΛ
(
uf(t)− W̃T(t)σ(x(t), un(t))

)
+ug(t), (33)

where W̃ (t) ≜ Ŵ (t)−W ∈ R(s+m)×m. Furthermore, using
(5) and (3), the time derivative of the error signal is written
in the form given by

ė(t) = Ane(t) +BΛ
(
uf(t) + ua(t) + π(x(t), un(t))

)
,

e(0) = 0, (34)

Once again, using (16) and (17) in (34), we arrive

ė(t) = Ane(t) +BΛ
(
uf(t)− W̃T(t)σ(x(t), un(t))

)
. (35)

We are now ready to present our first main result. For this
purpose, we also define Λ̃(t) ≜ Λ̂(t)− Λ ∈ Rm×m.

Theorem 2. Consider the dynamical system given by (5)
with the parametric uncertainty given by (15). In addition,
consider the form of the fixed-gain control signal given
by (26) with (27) and (28). Consider also the form of
the adaptive learning signal given by (17), (29), and (3).
The trajectories

(
e(t), uf(t), W̃ (t), Λ̃(t)

)
of the closed-loop

system are then bounded and

lim
t→∞

(
κ′
(
eT(t)Pe(t)

)
e(t), uf(t)

)
=

(
0, 0

)
. (36)

Proof. Consider the energy function given by

V(·) = β1κ
(
eT(t)Pe(t)

)
+β2u

T
f (t)uf(t)

+tr
(
W̃ (t)Λ

1
2

)T(
W̃ (t)Λ

1
2

)
+β1γ

−1trΛ̃T(t)Λ̃(t). (37)

9As opposed to the proof of Proposition 1, we may not be able to
use singular perturbation theory here since the origin of the reduced-order
dynamical system may not be exponentially stable due to the presence of
the adaptive learning architecture [24, Example 9.13]. This is the reason
why we do the current proof in the Laplace domain.



Note that V(0, 0, 0, 0) = 0, V(e(t), uf(t), W̃ (t), Λ̃(t)) ∈ R+

when ρ ̸= 0 in (23) and V(e(t), uf(t), W̃ (t), Λ̃(t)) ∈ R+ oth-
erwise, and V(e(t), uf(t), W̃ (t), Λ̃(t)) is radially unbounded.
The time derivative of (37) satisfies

V̇(·) = 2β1κ
′(·)eT(t)P

[
Ane(t)+BΛ

(
uf(t)−W̃T(t)σ(·)

)]
+2β2u

T
f (t)

[
−αΛ

(
uf(t)− W̃T(t)σ(·)

)
+ug(t)

]
+2trW̃T(t)

[
β1κ

′(·)σ(·)eT(t)PB − β2ασ(·)
×uTf (t)

]
Λ + 2β1trΛ̃

T(t)
[
κ′(·)BTPe(t)uTf (t)]

= −β1κ′(·)eT(t)Re(t) + 2β1κ
′(·)eT(t)PBΛuf(t)

−2αβ2u
T
f (t)Λuf(t)− 2β1κ

′(·)uTf (t)Λ̂(t)BTPe(t)

+2β1trΛ̃
T(t)

[
κ′(·)BTPe(t)uTf (t)]

= −β1κ′(·)eT(t)Re(t)− 2αβ2u
T
f (t)Λuf(t)

−2β1κ
′(·)uTf (t)Λ̃(t)BTPe(t)

+2β1trΛ̃
T(t)

[
κ′(·)BTPe(t)uTf (t)]

= −β1κ′(·)eT(t)Re(t)− 2αβ2u
T
f (t)Λuf(t), (38)

which implies the boundedness of the closed-loop sys-
tem trajectories

(
e(t), uf(t), W̃ (t), Λ̃(t)

)
. From the LaSalle-

Yoshizawa theorem [27, Theorem 4.7], (36) now holds. ■

IV. SYMBIOTIC CONTROL OF DYNAMICAL SYSTEMS
WITH NONPARAMETRIC UNCERTAINTY

Consider the uncertain dynamical system given by (5)
subject to (6). In this section, we focus on the nonparametric
uncertainty case such that (20) holds over x(t) ∈ D, where
the total uncertainty is represented as (21).

A. Control Architecture

To begin with, consider a form of the fixed-gain control
signal given by (26), where α ∈ R+ is the fixed-gain control
parameter and Bi ≜ (BTB)−1BT. In (26), ug(t) ∈ Rm

satisfies (27), where e(t) ≜ x(t) − xn(t) ∈ Rn is the error
signal, κ′

(
eT(t)Pe(t)

)
≜ dκ

(
eT(t)Pe(t)

)
/d

(
eT(t)Pe(t)

)
with κ

(
eT(t)Pe(t)

)
satisfying (23), and P ∈ Rn×n

+ is the
unique solution to the Lyapunov function (19) for a given
R ∈ Rn×n

+ (β1 ∈ R+ and β2 ∈ R+ are defined below).
In (27), Λ̂(t) ∈ Rm×m is an estimate of Λ that is learned
through the parameter adjustment mechanism

˙̂
Λ(t) = γ1κ

′(eT(t)Pe(t))BTPe(t)uTf (t)− γ2Λ̂(t),

Λ̂(0) = Λ̂0, (39)

with γ1 ∈ R+ being the adaptive learning parameter and
γ2 ∈ R+ being the leakage parameter. Next, consider
the adaptive learning signal given by (17), where Ŵ (t) ∈
R(s+m)×m is an estimate of W that is learned through the
parameter adjustment mechanism

˙̂
W (t) = β1κ

′(eT(t)Pe(t))σ(x(t), un(t))eT(t)PB
−β2ασ(x(t), un(t))uTf (t)− β3Ŵ (t),

Ŵ (0) = Ŵ0, (40)

with β1 ∈ R+ and β2 ∈ R+ being the adaptive learning
parameters, and β3 ∈ R+ being the leakage parameter. Note

that similar version of Remark 5 also applies to the proposed
symbiotic control architecture given above for dynamical
systems with nonparametric uncertainty10.

B. System-Theoretical Analysis

We begin with the note that Lemma 2 and Theorem 1 also
hold for the nonparametric uncertainty case. Next, using (21)
and (17) in (30), we arrive

u̇f(t) = −αΛ
(
uf(t)− W̃T(t)σ(x(t), un(t)) + ϵ(x(t))

)
+ug(t), uf(0) = 0. (41)

Furthermore, using (5) and (2), the time derivative of the
error signal is written in the form given by (34). Once again,
using (21) and (17) in (34), we arrive

ė(t) = Ane(t) +BΛ
(
uf(t)− W̃T(t)σ(x(t), un(t))

+ϵ(x(t))
)
, e(0) = 0. (42)

We are now ready to present our second main result, where
recall that W̃ (t) ≜ Ŵ (t)−W and Λ̃(t) ≜ Λ̂(t)− Λ.

Theorem 3. Consider the dynamical system given by
(5) with the nonparametric uncertainty given by (20). In
addition, consider the form of the fixed-gain control signal
given by (26) with (27) and (39). Consider also the form of
the adaptive learning signal given by (17), (40), and (3). If
ρ ̸= 0 in (23), the trajectories

(
e(t), uf(t), W̃ (t), Λ̃(t)

)
of

the closed-loop system are then bounded according to

V(·) = β1κ
(
eT(t)Pe(t)

)
+β2u

T
f (t)uf(t)

+tr
(
W̃ (t)Λ

1
2

)T(
W̃ (t)Λ

1
2

)
+β1γ

−1
1 trΛ̃T(t)Λ̃(t) ≤ V⋆, (43)

V⋆ ≜ β1λ(P )l
−1
1 l5 + β2l

−1
2 l5 + λ(Λ)l−1

3 l5

+β1γ
−1
1 l−1

4 l5, (44)

where l1 ≜ β1(λ(R) − d1)κ
′ with d1 ∈ (0, λ(R))

and κ′ ≜ mineT(t)Pe(t)κ
′(eT(t)Pe(t))∈ R+, l2 ≜

(2 − d2)αβ2λ(Λ) with d2 ∈ (0, 2), l3 ≜ (2 −
d3)β3λ(Λ) with d3 ∈ (0, 2), l4 ≜ (2 − d4)β1γ

−1
1 γ2

with d4 ∈ (0, 2), and l5 ≜ β1d
−1
1 ||P ||22||B||22||Λ||22ϵ2 +

αβ2d
−1
2 ||Λ||2ϵ2 + β3d

−1
3 ||W ||2Fλ(Λ) + β1γ

−1
1 γ2d

−1
4 λ

2
(Λ)

with κ′ ≜ maxeT(t)Pe(t)κ
′(eT(t)Pe(t))∈ R+ and

||ϵ(x(t))||2 ≤ ϵ ∈ R+.
Proof. Consider the energy function given by (43). Note

that V(0, 0, 0, 0) = 0, V(e(t), uf(t), W̃ (t), Λ̃(t)) ∈ R+, and
V(e(t), uf(t), W̃ (t), Λ̃(t)) is radially unbounded. The time
derivative of (43) satisfies11

V̇(·) = −β1κ′(·)eT(t)Re(t)− 2αβ2u
T
f (t)Λuf(t)

+2β1κ
′(·)eT(t)PBΛϵ(x(t))−2αβ2u

T
f (t)Λϵ(x(t))

−2β3trW̃
T(t)

(
W̃ (t) +W

)
Λ− 2β1γ

−1
1 γ2trΛ̃

T(t)

×
(
Λ̃(t) + Λ

)
. (45)

10To implement this architecture, one primarily needs to choose α for
(26); γ1 and γ2 for (39); β1, β2, and β3 for (40); and ρ for (23) (one can
set R = I for (19), Λ̂0 = 0 for (39), and Ŵ0 = 0 for (40)). We refer to
Section V-B for the selection of these parameters.

11The same steps taken in the proof of Theorem 2 are not repeated.



Next, we resort to Young’s inequality for sign-indefinite
terms in (45) as

2eT(t)PBΛϵ(x(t)) ≤ d1β1κ
′(·)eT(t)e(t)

+β1κ
′d−1

1 ||P ||22||B||22||Λ||22ϵ2, (46)
2uTf (t)Λϵ(x(t)) ≤ d2u

T
f (t)Λuf(t) + d−1

2 ||Λ||2ϵ2, (47)
2trW̃T(t)WΛ ≤ d3trW̃

T(t)W̃ (t)Λ

+d−1
3 ||W ||2Fλ(Λ), (48)

2trΛ̃T(t)Λ ≤ d4trΛ̃
T(t)Λ̃(t) + d−1

4 λ
2
(Λ). (49)

Using (46), (47), (48), and (49) in (45) results in

V̇(·) ≤ −l1||e(t)||22 − l2||uf(t)||22 − l3trW̃
T(t)W̃ (t)

−l4trΛ̃T(t)Λ̃(t) + l5. (50)

Now, one can immediately observe that (50) implies V̇(·) ≤ 0

outside the compact set S ≜
{
ξ(t) : ||e(t)||2 ≤

√
l−1
1 l5

}
∩
{
ξ(t) :

||uf(t)||2 ≤
√
l−1
2 l5

}
∩
{
ξ(t) : ||W̃ (t)||F ≤

√
l−1
3 l5

}
∩
{
ξ(t) :

||Λ̃(t)||F ≤
√
l−1
4 l5

}
, where ξ(t) ≜ (e(t), uf(t), W̃ (t), Λ̃(t)).

Therefore, the evolution of V(·) is upper bounded by V(·) ≤
max(

e(t),uf (t),W̃ (t),Λ̃(t)
)
∈S

V(·) = V⋆ since V(·) cannot grow
outside S. This implies that the closed-loop system trajecto-
ries

(
e(t), uf(t), W̃ (t), Λ̃(t)

)
are bounded by (44). ■

Remark 6. We would like to highlight three points. First,
as opposed to Theorem 2, ρ = 0 is not permitted in Theorem
3. Second, smaller leakage parameters (i.e., γ2 in (39) and
β3 in (40)) and larger number of radial basis functions tend
to make the upper bound of V(·) in (44) smaller. Third, from
Theorem 1, an alternative and effective way to stay close to
the nominal (i.e., ideal) closed-loop system behavior given
by (3) against high neural network approximation errors and
high leakage parameters is to increase α appearing in (26).

V. ILLUSTRATIVE NUMERICAL EXAMPLES

We now present two examples to show the efficacy
of the contributions presented in Sections III and IV,
where A =

[
0 1
0 0

]
and B =

[
0
1

]
are considered for (1);

K1 = [0.16 0.57], K2 = [0.16], and a filtered square-wave
reference signal are considered for (2); and R = I is
considered for (19). We also consider zero initial conditions.

A. Parametric Uncertainty Example

Consider the unknown term Λ = 0.9 representing a
10% degradation in control effectiveness and the uncertainty
δ(x(t)) = 0.2x1(t) + 0.2x2(t) + 0.8x1(t)x2(t) + 0.1x31(t) +
0.1x22(t) for (1), where this uncertainty is treated as para-
metric (i.e., σδ(x(t)) in (15) is known). Figure 2 shows the
results, where the thick (yellow) line denotes the nominal
(i.e., ideal) closed-loop system behavior and the thin (green,
red, blue, and black) lines denote the actual closed-loop
system behavior for four different cases.

In particular, the green line denotes the closed-loop system
behavior with standard adaptive learning signal and without
fixed-gain control signal (i.e., Proposition 2 with β = 1),
where state and control responses include oscillations. The
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Fig. 2. Closed-loop system behavior under parametric uncertainty.

red line denotes the closed-loop system behavior with sym-
biotic control signal when κ

(
eT(t)Pe(t)

)
= eT(t)Pe(t) and

κ′
(
eT(t)Pe(t)

)
= 1 (i.e., Theorem 2 with α = 1, β1 = 1,

β2 = 1, and γ = 1), where state and control responses
include less oscillations as compared with the former case.
The blue line denotes the closed-loop system behavior also
with symbiotic control signal when κ

(
eT(t)Pe(t)

)
is chosen

as shown in Figure 1 (i.e., Theorem 2 with α = 1, β1 = 1,
β2 = 1, and γ = 1), where state and control responses
include oscillations having lower-frequency as compared
with the former case. The black line denotes the closed-loop
system behavior once again with symbiotic control signal
when κ

(
eT(t)Pe(t)

)
is chosen as shown in Figure 1 (i.e.,

Theorem 2 with α = 3, β1 = 1, β2 = 1, and γ = 1), where
the fixed-gain control parameter α is increased motivated by
Theorem 1 to achieve a smooth closed-loop system behavior
that remains sufficiently close to its nominal one.

B. Nonparametric Uncertainty Example

Consider the unknown term Λ = 0.8 representing
a 20% degradation in control effectiveness and the
uncertainty δ(x(t)) = 0.4x1(t)+0.4x2(t)+1.6x1(t)x2(t)+
0.2x31(t) + 0.2x22(t) for (1), where this uncertainty
is treated as nonparametric (i.e., σδ(x(t)) in (20) is
constructed with a unity bias and 4 radial basis functions
over D = (−4, 4) × (−4, 4) according to σδ(x(t)) = [1,
e−0.5(x1(t)−1)2 , e−0.5(x1(t)+1)2 , e−0.5(x2(t)−1)2 , e−0.5(x2(t)+1)2 ]T).
Figure 3 shows the results, where the thick (yellow) line
denotes the nominal (i.e., ideal) closed-loop system behavior
and the thin (green, red, blue, and black) lines denote the
actual closed-loop system behavior for four different cases.

In particular, the green line denotes the closed-loop system
behavior with standard adaptive learning signal and without
fixed-gain control signal (i.e., Proposition 3 with β1 = 1
and β2 = 1), where state and control responses include
oscillations. The red line denotes the closed-loop system
behavior also with standard adaptive learning signal and
without fixed-gain control signal (i.e., Proposition 3 with
β1 = 1 and β2 = 2), where the leakage term parameter
β2 is increased to achieve a smooth closed-loop system
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Fig. 3. Closed-loop system behavior under nonparametric uncertainty.

behavior. However, the resulting behavior deviates more
from the nominal closed-loop system behavior due to the
neural network approximation error and high leakage term
parameter. The blue line denotes the closed-loop system
behavior with symbiotic control signal when κ

(
eT(t)Pe(t)

)
is chosen as shown in Figure 1 (i.e., Theorem 3 with α = 3,
β1 = 1, β2 = 1, β3 = 2, γ1 = 1, and γ2 = 2), where state
responses remain sufficiently close to their ideal ones. This
shows that the proposed symbiotic framework has the ability
to achieve a desired level of closed-loop system behavior
even in the presence of neural network approximation errors
and high leakage term parameters. The black line denotes the
closed-loop system behavior with fixed-gain control signal
and without any adaptive learning signal (i.e., Proposition 1
with α = 9), where α is increased to maintain a response
similar to the former case12.

VI. CONCLUSION

The contribution of this paper was to present the symbiotic
control framework that offered the strengths of fixed-gain
control and adaptive learning architectures. Specifically, a
more predictable closed-loop system behavior was shown
to be achieved owing to the presence of the fixed-gain
control signal (see Theorem 1). Furthermore, the presence
of the adaptive learning signal avoided a specific uncertainty
structure and an upper bound on this uncertainty, where both
parametric (see Theorem 2) and nonparametric (see Theorem
3) uncertainty cases were considered. In addition to the
presented system-theoretical results, illustrative numerical
examples were also given to show that the proposed symbi-
otic control framework had the ability to achieve a desired-
level of closed-loop system behavior even with an insufficient
number of neurons and without a deep neural network
method, or in the face of high leakage term parameters.

12While this closed-loop system behavior is remarkable without an
adaptive learning signal, we may not know in practice how large α needs
to be as noted in Remark 1, and therefore, we include this result here only
to support Proposition 1.
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