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Abstract. Diffusion models have revolutionized image synthesis, setting
new benchmarks in quality and creativity. However, their widespread
adoption is hindered by the intensive computation required during the
iterative denoising process. Post-training quantization (PTQ) presents a
solution to accelerate sampling, aibeit at the expense of sample quality,
extremely in low-bit settings. Addressing this, our study introduces a
unified Quantization Noise Correction Scheme (QNCD), aimed at min-
ishing quantization noise throughout the sampling process. We iden-
tify two primary quantization challenges: intra and inter quantization
noise. Intra quantization noise, mainly exacerbated by embeddings in
the resblock module, extends activation quantization ranges, increasing
disturbances in each single denosing step. Besides, inter quantization
noise stems from cumulative quantization deviations across the entire
denoising process, altering data distributions step-by-step. QNCD com-
bats these through embedding-derived feature smoothing for eliminat-
ing intra quantization noise and an effective runtime noise estimatiation
module for dynamicly filtering inter quantization noise. Extensive exper-
iments demonstrate that our method outperforms previous quantization
methods for diffusion models, achieving lossless results in W4A8 and
W8A8 quantization settings on ImageNet (LDM-4). Code is available
at: https://github.com/huanpengchu/QNCD

1 Introduction

Recently, diffusion models have achieved remarkable progress in various synthe-
sizing tasks, such as image generating [11], super-resolution [21], image editing
and in-panting [27], image translation [23] etc. Compared to traditional SOTA
generative adversarial networks (GANs [7]), diffusion models do not suffer from
the problem of model collapse and posterior collapse, exhibit higher stability.

However, this comes at the cost of the high computational resources and
a large number of parameters required to run these models, which are only
available on cloud-based devices. For example, Stable Diffusion [20] requires 16
GB of running memory and GPU and more than 10 GB of VRAM, which is not
feasible for most consumer-grade PCs, let alone resource-limited edge devices.

Our work employs post-training quantization (PTQ) to speed up the sam-
pling process in all time steps, while avoiding the high cost of retraining diffu-
sion models. PTQ, having been well-studied in traditional deep learning tasks
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Fig. 1: Comparison of metrics for denoising processes w.r.t.timestep (t). LPIPS
Distance between the quantized Stable Diffusion model (W8A8) outputs and
its floating-point counterpart on MS-COCO, along with their respective CLIP
scores and FID (Fréchet Inception Distance) scores.

like classification and segmentation [2,3,8], stands out as a preferred compression
method due to the minimal requirements on training data and the convenience
of direct deployment on hardware devices. Despite the many attractive benefits
of PTQ, its implementation in diffusion models remains challenging. The main
reason for this is that the framework of diffusion models is quite different from
previous PTQ implementations (e.g., CNN and ViT [5,17] for image recognition).
Specifically, diffusion models commonly use UNet structures, which incorporate
embedding. In addition, diffusion models iteratively invoke the same UNet model
during sampling. In recent work, PTQ4DM [24] and Q-Diffusion [14] first ap-
ply PTQ to diffusion models and attribute the challenge to the fact that the
activation distribution is constantly changing with time steps. PTQD [9] inte-
grates partial quantization noise into diffusion perturbed noise and proposes a
mixed-precision scheme.

In contrast, we analyze in detail the sources of quantization noise and its
negative impact on sampling direction, image quality. Specifically, we propose
QNCD, a novel post-training quantization noise correction scheme dedicated
for diffusion models. First, we identify embeddings in resblock modules as the
primary source of intra quantization noise, as embeddings amplifies the outliers
of original features, making quantization challenging. We compute smoothing
factors from embeddings, making features easy for quantization, thus reducing
intra quantization noise. Besides, for inter quantization noise accumulated among
sampling steps, we propose a run-time noise estimation module based on the
diffusion and denoising theory of diffusion model. By filtering out the estimated
quantization noise, our QNCD can dynamically correct deviations in output
distribution throughout the sampling steps.

As shown in Fig. 1, with a smaller LPIPS Distance [6] and a higher CLIP
Score [19], the sampling direction of our QNCD more closely aligns with that of
full-precision (FP) model. In addition, our method’s FID [10] metric consistently
outperforms Q-Diffusion, with a final FID reduction of 2.23, reaching 27.33.
Overall, our contributions are shown as follows:
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– We propose QNCD, a novel post-training quantization scheme for diffusion
models to filter out quantization noise.

– We find that a new challenge in quantizing diffusion models is the ongoing
emergence and accumulation of quantization noise, which alters sampling
direction and final image quality.

– We introduce a feature smooth approach to reduce intra quantization noise
when combining features with embeddings. Simultaneously, we utilize a run-
time noise estimation module to correct inter quantization noise

– Our extensive experiments show that our method achieves new state-of-the-
art performance for post-training quantization of diffusion models, especially
in low-bit cases. Additionally, our methodology aligns more closely with the
full-precision models in both objective metrics and subjective evaluations.

2 Related Work

Model quantization is a method that transitions from floating-point computa-
tions to low-precision fixed-point operations. This shift can effectively diminish
the model’s computational burden, reduce parameter size and memory usage,
and expedite computational processes.It can be divided into two main categories:
quantization-aware training (QAT) [12] and post-quantization training (PTQ).
QAT integrates simulated quantization throughout the training phase. During
backpropagation, gradients are calculated to refine the pre-quantized weights,
enabling the model to acclimate to quantization errors as training progresses.
QAT often yields superior outcomes with significantly fewer bits, but comes
with the cost of substantial training overhead and a need for the raw dataset.
In constract, PTQ bypasses the need for extensive data retraining, leveraging
just a fraction of unlabeled data for calibration, making it a more cost-effective
and deployment-friendly alternative. Given that retraining for diffusion has an
unaffordable cost (e.g the training of Stable Diffusion [20] requires a cluster of
over 4000 NVIDIA A100 GPUs), current works have pivoted towards PTQ to
obtain low-bit diffusion models.

Until now, only a handful of current studies have focused on post-training
quantization of diffusion models. Among them, PTQ4DM [24] devised a time-
step aware sampling strategy for calibration dataset, but its experiments are
limited to small datasets and low resolutions. Q-Diffusion [14] employs a state-
of-the-art PTQ method (BRECQ [15]) to obtain the performance, which imposes
an additional training burden. PTQD [9] integrates partial quantization noise
into diffusion perturbed noise and proposes a mixed-precision scheme. TDQ [25]
dynamically adjusts the quantization interval based on time step information.

Our method analyze in detail the sources of quantization noise and propose
corresponding correction modules. In addition, we employ the most primitive
PTQ methods, inherently attributing the performance improvement to our ap-
proach.
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3 Method

In Section 3.1, we provide an introduction to the sampling process of the diffusion
model and present a unified formula for quantization noise. Following this, in
Section 3.2, we analyze the sources of quantization noise and its impact on the
sampling direction. In Section 3.3, we present the entire workflow of QNCD.

3.1 Preliminaries

Diffusion models are a family of probabilistic generative models that progres-
sively destruct real data by injecting noise, then learn to reverse this process
for generation, represented notably by denosing diffusion probabilistic models
(DDPMs [11]). DDPM is composed of two chains: a forward chain that perturbs
data to noise, and a reverse chain that converts noise back to data. The former is
usually designed by hand and its goal is to convert any data distribution into a
simple prior distribution (e.g., a standard Gaussian distribution). Given a data
distribution x0, the forward process generates a sequence of random variables
with transition kernel q(xt|xt−1), as follows:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√
αtxt−1, βtI)

(1)

where αt and βt are hyper parameters and βt = 1− αt.
In the denoising process, with a Gaussian noise xT , the diffusion model can

generate samples by iterative sampling xt−1 from pθ(xt−1|xt) until obtaining
x0, where the Gaussian distribution pθ(xt−1|xt) is a simulation of the unavail-
able real distribution q(xt−1|xt). The mean value µθ(xt−1|xt) of pθ(xt−1|xt) is
calculated from the noise prediction network ϵθ (usually the UNet model):

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
(2)

where αt =
∏t

i=1 αi. Therefore, the sampling process of xt−1 is shown as
follows:

xt−1 =
1

√
αt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
+ σtz, z ∈ N(0, I) (3)

The diffusion model continuously evokes the noise prediction network to acquire
the noise ϵθ(xt, t) and filter it out. The huge number of iterative time steps
(sometimes T=4000) and the complexity of the noise prediction network ϵθ make
the sampling of diffusion models expensive.

Post-training quantization for diffusion models is performed on the noise
prediction network ϵθ, which inevitably introduces quantization noise.
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b,  activation and embedding distributiona, Cosine similarity in a single step
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Fig. 2: (a) shows the similarity of individual layer features across the entire UNet
model during a single sampling step, illuminating that quantization noise primar-
ily arises from the incorporation of embeddings. (b) illustrates the distribution
of activations before and after the incorperation of embedding (within the last
Resblock). When combined with embeddings, outliers in features are amplified,
which can be efficiently mitigated using our smoothing factor.

x̃t−1=
1

√
αt

(
x̃t−

βt√
1− αt

ϵ̃θ(x̃t, t)

)
+ σtz, z∈ N(0, I)

=
1

√
αt

(
x̃t−

βt√
1− αt

(
ϵθ(x̃t, t) + qθ(x̃t, t)

))
+ σtz.

(4)

The noise prediction network UNet ϵθ is constructed from multiple Resblocks,
where parameterized operations (such as convolutions, fully connected layers,
etc.) will generate intra quantization noise within the single-step sampling. From
the perspective of complete sampling process, these intra quantization noises
accumulate to form inter quantization noise qθ(x̃t, t) which further accumulates
in the current output x̃t−1 , thus affecting subsequent sampling processes.

3.2 Quantization noise analysis

Intra Quantization Noise introduced by embedding We consider the
quantization noise within the denoising network UNet in a single sampling step
as intra quantization noise, which is strongly affected by embedding. As shown
in Fig. 2(a), intra quantization noise of the diffusion model exhibits periodic
changes during a single step. It escalates when embedding is incorporated into
features but then decreases during the fusion of UNet’s low-level and high-level
features. This cyclical behavior underscores that the primary culprit of quan-
tization noise is the embedding integration phase. Take the embedding fusion
stage of DDIM as an example:

scalet, shiftt = layeremb(embt).split(),

ht = norm(ht) ∗ (1 + scalet) + shiftt
(5)
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a, Mean and Std among sampling steps b, Output distribution of a single step

Fig. 3: (a) demonstrates the mean and std of outputs across all time steps, while
(b) visualizes the output distribution at a specific step , revealing a substantial
discrepancy between the output of the quantized diffusion model (Orange) and
that of the full-precision model (gray). The gray dashed line in (a) represents
when our noise estimation module is running.

Where ht stands for activation and embt is the corresponding embedding. The
embedding embt imparts an utterly different distribution to activation ht. In
Fig. 2(b), the distribution of feature ht generally stabilizes within a quantization-
friendly range after processing through a normalization layer. However, the emer-
gence of outliers within the activated correlation channel may pose a challenge.

These outliers are several magnitudes larger than the majority of the data,
leading to a skew in the maximum magnitude measurement during quantiza-
tion. This dominance by outliers could possibly result in reduced precision for
the majority of non-outlier values. Further complications arise with the incor-
poration of embedding, as shown in the middle part of Fig. 2(b). Embedding
separates a 1× c dimensional scale vector scalet which scales the feature ht

on a channel-by-channel basis. This channel-specific scaling alters the distribu-
tion of the activation ht in a manner that certain channels, especially those
with problematic outliers, experience amplification. Since activations are typi-
cally per-tensor quantized, the combined effect of embedding magnification and
existing outliers makes the quantization of activations less efficient.

In summary, after normalization, feature ht is easily quantifiable, but with the
introduction of embedding embt, it becomes challenging to quantify , indicating
an increase in intra quantization noise.

Inter Quantization Noise Diffusion models attain their final outputs through
iterative denoising network calls. During this procedure, the inter quantization
noise, expressed as qθ(x̃t, t) in Eq. 4, assimilates into xt−1 and advances to the
subsequent denoising step, exerting an influence over the entire sampling process.

As shown in Fig. 3, we plot the variation curves of the output Mean and Std
during sampling steps. The accumulated inter quantization noise changes the



7

distribution of synthesized data. With continuous sampling, the data distribution
of the quantization model further deviates from that of the full-precision model.
Effect of Quantization Noise Quantization noise reduces the sampling effi-
ciency of the diffusion model, changes the sampling direction, and ultimately
reduces the quality of the synthesized image.

First, the introduction of quantization noise gives rise to new noise sources
that necessitate denoising, substantially impairing the sampling efficiency of dif-
fusion models. As depicted in Fig. 1, we compare LPIPS distance and FID met-
rics at each step between the full-precision model and the quantized model. The
quantized diffusion model has a FID metric of 194.11 after 30 steps, which is
still much larger than the result of the full-precision (FP) model after only 10
steps (FID = 140.76).

Besides, quantization noise also alters the iteration direction of diffusion mod-
els. In Fig. 1, we visualize the changing trend of CLIP Score for different methods
to provide a more intuitive representation of the iteration direction. At the be-
ginning of the iteration, all methods start with relatively low CLIP Scores, while
full-precision model’s score continues to rise, indicating correct iteration direc-
tion. By step 25, quantized diffusion model shows a 3.16% difference in CLIP
Score compared to full-precision model (26.09% vs. 29.25%).

In conclusion, quantization noise presents challenges in maintaining perfor-
mance following model quantization. This not only calls for minimizing intra
quantization noise as much as possible at all steps but also necessitates estimat-
ing and filtering out the remaining accumulated inter quantization noise.

3.3 Qunantization Noise Correction for Diffusion Models

We propose two techniques: intra quantization correction techniques and inter
quantization correction techniques to address the challenges identified in the
previous section.

Intra Quantization Correction As shown in Fig.2, during the single-step
sampling process, embedding amplifies outliers of activation, leading to an im-
balance among channels. Ultimately, this induces a periodic increase in intra
quantization noise. For reducing intra quantization noise, we propose the utiliza-
tion of a channel-specific smoothing factor S. By dividing activation with their
respective S values, channels are balanced out and more adaptable to quanti-
zation. We then incorporate the filtered factor into weights, thus maintaining
mathematical equivalence of the convolution, as follows:

Y = Q(ht) ∗Q(W ) = Q(
ht

S
) ∗Q(SW ). (6)

Ultimately, we can transfer the quantization challenges presented by embedding
from activations to weights, which are more robust to quantization.

Since embedding operates on a channel-by-channel basis, our goal is to derive
a factor S for each channel from the embedding, making ht = ht/S easier to



8

quantize. As evident from Eq. 5, the term 1+scalet, derived from the separation
from embedding, accentuates the discrepancies among the activation channels.
However, 1 + scalet is dynamic and fluctuates based on the time step t. Conse-
quently, we examine the embedding across all t scenarios to ascertain the mean
value of 1 + scalet and employ it as a static factor S:

S =
1

T

T∑
t=1

| 1 + scalet |,

scalet, shiftt = embt.split().

(7)

As shown in Fig. 2(b), The static factor S we obtained serves to calibrate
these unbalanced channels, harmonizing the distribution across each one, render-
ing the eventual activations more conducive to per-tensor quantization. Different
scalet and S are highly similar, with only minor amplitude differences present
on some channels. See Appendix for visualization of scalet and S.

In addition, in LDM-type diffusion models, embedding is incorporated dif-
ferently than in Eq. 5:

ht =
(ht + embt)− µ(ht+embt)

σ(ht+embt)
∗ α+ β, (8)

where α and β are pretrained affine transform parameters in the Group-Norm
operation. At this point, the distribution of the final activation ht is jointly
determined by embt and the coefficients α of group norms. Thus, our smoothing
factor S is calculated as follows:

S =
1

T

T∑
t=1

embt − µembt

σembt

∗ α. (9)

Inter Quantization Noise Correction Eq. 4 shows the process of a single-
step sampling in diffusion models, where UNet outputs the filtered noise ϵ̃θ(x̃t, t).
It consists of two parts, the de-noising noise ϵθ(x̃t, t), and inter quantization
noise qθ(x̃t, t), which keeps accumulating in x̃t. Ideally, we filter out qθ(x̃t, t),
thus avoiding the accumulation of quantization noise, but it is impractical to
separate qθ(x̃t, t) from ϵ̃θ(x̃t, t).

The training stage of the diffusion model gives us a possibility to separate
qθ(x̃t, t):

xt =
√
αtxt−1 +

√
1− αtz1 z1 ∈ N(0, I). (10)

Eq. 10 does a single-step diffusion operation, where a Gaussian noise z1 is
added to xt−1 to get xt.

Lsimple
t = Et∼[1,T ],xt,ϵθ [||z1 − ϵθ(xt, t)||]. (11)

The training process of the diffusion model (Eq. 11) drives the denoising
network ϵθ to learn the distribution of Gaussian noise z1, which means ϵθ(xt, t) ≈
z1 is satisfied in the pre-trained diffusion model.
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Fig. 4: The pipeline of our proposed method. We initiate by saving the accurate
embedding and deduce the smoothing factor S in the calibration stage. During
the inference stage, the pre-computed S is applied to smooth the features ht,
thereby the intra quantization noise is diminished. Besides, at periodic intervals,
the inter quantization noise qθ(x̃t, t) is estimated through our noise estimation
module, which is filter out in output distribution.

This property is still guaranteed in the quantized pre-trained diffusion model:

x̂t =
√
αtx̃t−1 +

√
1− αtz1,

ϵ̃θ(x̂t, t) = ϵθ(x̂t, t) + qθ(x̂t, t) ≈ z1 + qθ(x̂t, t).
(12)

As shown in Fig. 4 and Eq. 12, we add the standard Gaussian noise z1 to x̃t−1

to get x̂t, and feed it into the quantized model ϵ̃θ. The output of the quantized
model contains both the Gaussian noise z1 to be filtered out and the newly
introduced quantization noise qθ(x̂t, t). x̂t is obtained by a single-step denoising
and diffusion process on x̃t, thus their distributions remain highly similar as well
as the corresponding quantization noise:

qθ(x̃t, t) ≈ qθ(x̂t, t) ≈ ϵ̃θ(x̂t, t)− z1. (13)

Finally, the quantization noise qθ(x̃t, t) can be determined, as the Gaussian
noise z1 is manually designed and ϵ̃θ(x̂t, t) is the output of the noise predicting
network, both of which are ascertainable. Based on the above analysis, we can
estimate the quantization noise by simulating the diffusion model training pro-
cess. We first add the deterministic noise z1 to x̃t−1, which can be filtered out in
the diffusion sample process, and then the rest of the indeterministic noise is the
quantization noise qθ(x̃t, t). Besides, the quantization noise is obtained through
estimation and doesn’t align perfectly with the actual noise in terms of pixel
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dimension, whereas it is identical at the level of the overall distribution. Thus
we get the distribution of the quantization noise at stage t−1 and correct the
output sample in Eq. 4.

The above procedure is for single-step quantization noise estimation. In the
diffusion model, the distributions of samples from neighboring steps are very sim-
ilar, as well as the corresponding quantization noise distribution (qθ(x̃t+1, t+1) ≈
qθ(x̃t, t)). Therefore, in actual sampling process, we divide entire sampling steps
into multiple stages, estimating the distribution of quantization noise one time
per stage. For example our method run only 4 times to estimate the quantiza-
tion noise during a sampling process of 100 time steps, which brings a negligible
increase in sampling duration. As shown in Fig. 3, our QNCD periodically es-
timates the distribution of inter quantization noise and corrects distribution
deviations caused by this noise. This noise correction enables the distribution of
sample outputs to closely align with the full-precision models.

3.4 Summary of methods

As shown in Fig. 4, our method contains two major blocks: intra quantiza-
tion noise correction module and inter quantization noise correction module.
Firstly, we determine the smoothing factor S on a channel-by-channel basis, con-
sequently transitioning the distribution disparities induced by embedding over
to the weights, which makes the activation easier for quantization. Secondly, we
discern the distribution of quantization noise via our run-time noise estimation
module, enabling its exclusion in subsequent sampling steps.

4 Experiments

4.1 Implementation Details

Datasets and quantization settings: Consistent with the experimental de-
tails of PTQ4DM [24], Q-Diffusion [14], we conduct image synthesis experiments
using pre-trained denoising diffusion implicit models (DDIM [26]) , latent dif-
fusion models (LDM [20]) and Stable Diffusion on four standard benchmarks:
CIFAR(32×32) [13], ImageNet(256×256) [4], LSUN-Bedrooms(256×256) [29],
MS-COCO(512×512) [16]. All experimental configurations, including the num-
ber of steps, variance, etc., follow the official implementation. To facilitate quan-
tification and comparison of the validity of the methods, we use the most naive
PTQ method (mse-based range setting) in the 8-bit case, which is simple and
fast. For the case where the weights are quantized to 4bit, we adopt BRECQ [15]
as well as Adaround [18] to ensure quantization model performance, in consis-
tency with Q-Diffusion. In addition, we sample uniformly from all time steps to
obtain the calibration dataset for PTQ with 5120 samples on all datasets.
Evaluation Details: Consistent with PTQ4DM and Q-Diffusion, for each ex-
periment we report the widely adopted Frechet Inception Distance (FID) [10]
and sFID [22] to evaluate performance. For ImageNet and CIFAR experiments,
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Table 1: Quantization results on CIFAR(32 × 32) with DDIM. (50,000 samples)

Method
Bitwidth DDIM(Steps=100) DDIM(Steps=250)

(W/A) IS ↑ FID ↓ sFID ↓ IS ↑ FID ↓ sFID ↓
FP 32/32 9.04 4.19 4.41 9.06 4.00 4.35

TDQ 8/8 8.85 5.99 - - - -
Q-Diffusion 8/8 9.17 3.93 4.34 9.38 3.84 4.27

Ours 8/8 9.24 3.36 4.24 9.41 3.46 4.21

Q-Diffusion 4/8 9.41 4.92 5.13 9.64 4.37 4.59
Ours 4/8 9.53 4.85 5.06 9.78 4.43 4.51

Q-Diffusion 4/6 7.53 39.07 43.36 7.81 34.65 37.29
Ours 4/6 8.86 12.26 14.83 9.01 11.09 13.46

Table 2: Comparisons with extra SOTA methods on ImageNet (LDM-
4,Steps=20) and LSUN-Bed (LDM-4,Steps=200). ”*” means results in the cor-
responding paper.(50,000 samples)

Method

ImageNet(FID ↓ / IS ↑) LSUN-Bed(FID ↓ / SFID ↓)
(FP:11.42/245.39) (FP:3.16/7.84)

W8A8 W4A8 W4A6 W8A8

PTQD∗ 11.94/153.92 10.40/214.73 - 3.75/9.89
TDQ∗ - - 41.23/- -

Q-Diffusion 10.92/229.31 9.56/219.64 41.25/89.82 4.03/10.15
QNCD 10.57/231.85 9.48/221.62 20.14/136.49 3.82/9.65

we additionally report Inception Score (IS) [1] for reference to ensure consis-
tency of reported results. For MS-COCO, we introduce CLIP Score to ensure
the correspondence between the synthesized images and prompts.

In line with Q-Diffusion, we generated 50,000 samples for evaluating our
method. However, the sampling process for diffusion models is time-consuming,
especially for high-resolution images such as MS-COCO(512×512). Consequently,
in the experiment where Stable Diffusion is used for generating MS-COCO, we
produce only 10,000 samples to speed up comparative process.

4.2 Unconditional Generation

Results on CIFAR: The results are displayed in Tab 1. Note that WnAm
means n-bit quantization for weights and m-bit quantization for activations.
It can be seen that at the W8A8 bitwidth, our method achieves FIDs and
sFIDs that are very close to the full-precision model, with FID reductions of
0.57 (steps=100) and 0.38 (steps=250) compared to Q-Diffusion. In addition,
previous methods confronted great difficulties in mitigating large amounts of
quantization noise due to low-bit quantization. For example, in the settings of
W4A6 and 100 steps, Q-Diffuison obtains FIDs and sFIDs as high as 39.07 and
43.36, implying that the large amount of activation noise leads to a performance
breakdown. While our method conducts a detailed analysis of quantization noise
and effectively eliminates it, it still achieves a lower FID value of 12.26, proving
the effectiveness of our method. Our method performs 6-bit quantization of ac-
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(a) Q-Diffusion (b) Ours (c) Full Precision

Fig. 5: Stable Diffusion 512 × 512 text-guided image synthesis results using Q-
Diffusion and our QNCD under W8A8 precision. All text prompts are sourced
exclusively from MS-COCO dataset.

tivation on diffusion models and ensures that the performance does not collapse,
whereas previous methods have been performed at 8-bit.
Results on LSUN-Bedrooms: At the W8A8 bitwidth, our method reduces
the FID by 0.21 compared to Q-Diffusion as shown in Tab. 2, proving the effec-
tiveness of our method on the task of high-resolution image synthesis.

4.3 Class-conditional Generation

Results on ImageNet: we carry out complex experiments on the generation of
conditional ImageNet datasets to demonstrate the effectiveness of our method.
To facilitate the validation, we adopt the LDM-4 model with 20 steps. As shown
in the Tab. 2, our method consistently narrows the performance gap between
quantized and full-precision diffusion models. Specifically, under the settings of
W8A8 and W4A8, our QNCD can approach lossless performance. It is worth
noting that at the W4A6 bidwidth setting, the IS of Q-Diffusion drops to 89.82,
which is 156.1 lower than that of the full-precision model (245.39). Our method
well handles the low-bit quantization of the activation. Compared to the FID of
Q-Diffusion which is as high as 41.25, the FID of our method is 20.14, indicating
the effectiveness of our method. The visualizations are available in the Appendix.

4.4 Text-guided Image Generation

We assess the performance of QNCD through Stable Diffusion for text-guided
image generation, using text prompts derived from the MS-COCO dataset. As
demonstrated in Tab. 6, our method surpasses Q-Diffusion in both FID metrics
and CLIP Scores.

In addition, we visualize the final generated image in Fig. 5. For all three
methods (FP, Q-Diffusion, and ours), we have given the same content conditions
as input to facilitate comparison. It can be noticed that the accumulated quanti-
zation noise changes the content space of the image, causing the final synthesized
image to be shifted. As shown in the red box in Fig.5, the synthesized image
shows the importation of abnormal content , such as abnormal faces, incomplete
bowls and floating cows. Compared with Q-Diffusion, our method provides a
higher quality image, which is closer to the full-precision model synthesized im-
age and has more realistic details, colors, and richer semantic information. In
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Fig. 6: Quantization results for Stable Diffusion(steps=50) on MS-COCO (10,000
samples). The dashed lines represent results of full-precision model.

Table 3: The effect of different modules of QNCD with Stable Diffusion on MS-
COCO(512×512).

Method
Bitwidth Stable Diffusion(Steps=50)

(W/A) FID ↓ CLIP Score ↑
FP 32/32 23.80 30.54

Q-Diffusion 8/8 27.84 30.23
Intra-QNCD 8/8 27.41 30.25
Inter-QNCD 8/8 27.60 30.29

QNCD 8/8 27.33 30.32

conclusion, our method effectively mitigates the quantization noise, and is closer
to the full-precision model not only in terms of statistical metrics, but also in
terms of visualization. More visualization results are shown in Appendix.

4.5 Ablation Study

Effects of each module As shown in Tab. 3, we performe ablation experiments
on Stable Diffusion (step=50) of MS-COCO 512×512 dataset to demonstrate
the effectiveness of our proposed method. Our QNCD method consists of two
parts, intra quantization noise correction (Intra-QNCD) and inter quantization
noise correction (Inter-QNCD). By using Intra-QNCD, we achieve a reduction
of 0.43 in FID compared to Q-Diffusion. And our Inter-QNCD is able to reduce
0.24 in FID and improve 0.06 in CLIP Score. By introducing both blocks, our
method QNCD achieves a reduction of 0.51 in FID, showing that these two
blocks can collaborate to achieve higher performance improvement. These results
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Table 4: Inference performance and Image Quality Assessment(IQA) for MS-
COCO via Stable Diffusion (512∗512, 50 steps).

FP16 Original PTQ(W8A8) Q-Diffusion(W8A8) QNCD(W8A8)

Inference Time 959.5ms 601.8ms 628.3ms 631.2ms
IQA Score↑(0 ∼ 1) 0.847 0.728 0.775 0.793

demonstrate the effectiveness of our proposed techniques for noise correction in
post-training quantization of diffusion models.
Comparison of real inference efficiency For fair comparison, we provide end-to-
end inference times in Tab. 4. Inference times are based on the UNet of Stable
Diffusion V1.4, which denote whole denoising process of diffusion models. The
experimental background is A100, TensorRT-8.6 and CUDA-11.7. Similarly to
our QNCD, Q-Diffusion introduces the Short-Cut split operation in pursuit of
better model performance, which also imposes an additional inference burden
(26.5ms compared to original PTQ). Our method runs at a similar speed to
Q-Diffusion, but with higher image quality.
Comparison through Image Quality Assessment As shown in Tab. 2, the FID
metrics of PTQD and Q-Diffusion on ImageNet dataset are 11.94 and 10.92,
superior to the FP’s score of 12.45 under the W8A8 setting. This same pattern
extends to the LSUN-Bedrooms and CIFAR datasets, which is unexpected and
implies that the FID metric may not be an optimal indicator of image quality.
This is because FID focuses more on the overall distribution similarity rather
than the specific quality of each image. For a more comprehensive comparison, we
further refer to objective Image Quality Assessment(IQA) metrics proposed
in CLIP-IQA [28] to evaluate 5000 synthesized images. Our method achieves an
IQA metric of 0.793, which is better than Q-Diffusion (0.775), but still falls short
compared to FP (0.847).

5 Conclusion

In this paper, we propose QNCD, a unified quantization noise correction scheme
for diffusion models. To start with, we do a detailed analysis of the sources and
effects of quantization noise in terms of visualization and actual metrics, and find
that the periodic increase in intra quantization noise comes from embedding’s
alteration of feature distributions. Thus, we calculate a smoothing factor for fea-
tures to reduce quantization noise. Besides, a run-time noise estimation module
is proposed to estimate the distribution of inter quantization noise, which is fur-
ther filtered out in the sampling process of the diffusion model. Leveraging these
techniques, our QNCD surpasses existing state-of-the-art post-training quantized
diffusion models, especially at low-bit activation quantization (W4A6). Our ap-
proach achieves the current SOTA on multiple diffusion modeling frameworks
(DDIM , LDM and Stable Diffusion) and multiple datasets, demonstrating the
broad applicability of QNCD.
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