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Abstract 

A universal dynamical crossover temperature, Tcr, in glassy liquids, associated with the 

α-β bifurcation temperature, TB, has been observed in dielectric spectroscopy and other 

experiments. Tcr lies significantly above the glass transition temperature. Here, we 

introduce a new class of glass-forming liquids, binary mixtures of prolate and oblate 

ellipsoids. This model system exhibits sharp thermodynamic and dynamic anomalies, 

such as the specific heat jump during heating and a sharp variation in the thermal 

expansion coefficient around a temperature identified as the glass transition temperature, 

Tg. The same temperature is obtained from the fit of the calculated relaxation times to the 

Vogel-Fulcher-Tammann (VFT) form. As the temperature is lowered, the single peak 

rotational relaxation spectrum splits into two at a temperature TB significantly above the 

estimated Tg. Similar bifurcation is also observed in the distribution of short-to-

intermediate time translational diffusion. Interrogation of the two peaks reveals a lower 

extent of dynamic heterogeneity in the population of the faster mode. We observe an 

unexpected appearance of a sharp peak in the product of rotational relaxation time τ2 

and diffusion constant D at a temperature Tcr, close to TB,  but above the glass transition 

temperature. Additionally, we coarse-grain the system into cubic boxes, each containing, 

on average, ~62 particles, to study the average dynamical properties. Clear evidence of 

large-scale sudden changes in the diffusion coefficient and rotational correlation time 

signals first-order transitions between low and high-mobility domains. 
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I.   INTRODUCTION 

Many liquids form disordered, amorphous solids if the temperature is rapidly lowered 

below their melting point, avoiding crystallization.1–10 During this cooling process and 

subsequent heating, the glassy systems exhibit fascinating thermodynamic and dynamic 

anomalies. Sharp changes in properties are found to occur near a certain temperature, referred 

to as the glass transition temperature, Tg. 1,2,11–13,3–10 When the glass transition is approached 

from above, dynamical parameters such as the structural relaxation time or the dielectric 

relaxation time are found to diverge, indicating a large-scale slowdown of relaxation in the 

supercooled liquids.6–15 Additionally, the viscosity tends to diverge.14–16 Understanding the 

molecular mechanism of the slow dynamics in glass transitions has remained a challenging and 

central problem for condensed matter science. Fortunately, many excellent reviews and papers 

exist that have summarized the progress in the area.1-30 

The well-known bifurcation of the dielectric relaxation spectrum observed in 1967 by 

Johari and Goldstein, also known as the α-β bifurcation,  has continued to draw attention.31,32 

This phenomenon appears to be universal and observed in all different glass-forming liquids, 

although the underlying molecular origin could be different in different systems.33–35 It is 

widely believed that the crossover embodied in Johari-Goldstein (JG) bifurcation holds the key 

to many of the observed anomalies of the glass transition phenomena that continue to appear 

below the bifurcation temperature (TB).36,37 More recently, in an interesting study using quasi-

elastic neutron scattering (QENS), Cicerone et al. observed a similar bifurcation phenomenon 

in a glass-forming liquid but on a much shorter time scale, in the ns to ps time window.38 The 

authors performed QENS studies on five liquids, namely, propylene carbonate (PC), propylene 

glycol (PG), glycerol, ortho-terphenyl (OTP), and sorbitol. The bifurcation observed resembled 

Johari-Goldstein splitting, although the time scales differ by several orders of magnitude.  
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It then appears to make sense to search for this bifurcation and to try to understand it 

through computer simulations. Unfortunately, most of the simulation studies have been 

restricted to spherical model systems.6,39–41 The real molecules are hardly spherical. While 

studies have made notable advancements in elucidating the properties of colloidal glasses, 42–

46  the intricate influence of orientation on the dynamics of glassy liquids continues to be a 

subject of active exploration.47–56 Ideally, one would like to observe the two bifurcations to 

emerge simultaneously, as would be predicted by general theories like the random first-order 

theory (RFOT)57,58 and the mode coupling theory (MCT).48,49 We have discussed below that 

derails can be different because the packing of anisotropic molecules can be different from 

spherical molecules. 

The initial studies of Kauzmann, Gibbs, and DiMarzio gave rise to the entropy crisis 

theory,1–3 while Cohen, Turnbull, and Grest 4,5 introduced a theory based on the disappearance 

(or reappearance) of connected free volume via percolation. As mentioned above, several more 

sophisticated theories have been developed, like the mode coupling theory (MCT),39–41,48,49,52 

the inherent structure-based analysis,15,30,59 and the random first-order theory (ROFT).10,37,57–66 

All these theories have thrown considerable light on many aspects of this intriguing problem, 

yet many questions remain unanswered. Many of these theories find evidence of a crossover 

temperature (Tcr), which is offered as the explanation of the Johari-Goldstein α-β bifurcation 

temperature.37,67 Mode coupling theory predicts a crossover temperature by fitting the time 

constant of density correlation decay to an anticipated power law.60,63–66 This crossover 

temperature is found to lie above the actual glass transition temperature.67–69 Inherent structure 

analysis finds a crossover temperature from diffusive dynamics to a landscape-influenced 

regime when relaxation becomes non-exponential.59,61,70 This crossover temperature is also 

substantially above the glass transition temperature. Wolynes and coworkers used the random 

first-order theory (RFOT) to suggest that two free energy barrier distributions merge (or 
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bifurcate) at the crossover temperature.10,37,57,58,62 The relaxation mechanism in the secondary 

(or β) relaxation occurs through strings. A relation between TB and Tcr, if indeed exists and if 

could be established, shall advance our understanding of the origin of anomalous dynamics 

significantly. 

A quantitative understanding of the Johari-Goldstein bifurcation is partly plagued by 

the fact that both in computer simulation and in theoretical studies, one mostly employs models 

of spherical molecules, 6,39–41,71,72 although experimental systems involve molecules that are 

often highly non-spherical. Among the models studied, the Kob-Andersen (KA) model (a 

binary mixture of Lennard-Jones (LJ) spheres) has been widely employed in computer 

simulations of supercooled atomic liquids. 39–41 In this model, one introduces a certain size ratio 

and disparate interactions as additional complexity (compared to that of one-component 

systems) to prevent crystallization. As already mentioned above, one major problem remains, 

however. Most of the experimental studies, such as dielectric relaxation, nuclear magnetic 

resonance (NMR), and infrared (IR) spectra, primarily probe the orientational motion of 

molecules.73 As aspherical molecules can rotate to facilitate molecular motion, this extra 

channel needs attention. Additionally, the aspherical molecules can be packed more densely 

than spherical molecules, as discussed in more detail below.74,75 More recently, a study of 

glassy dynamics in a liquid of prolate-shaped colloidal particles has been reported.76 

The density (or the packing fraction) of closely and randomly packed ellipsoids has 

been studied extensively.74,75,77 Within certain aspect ratios not too different from unity, 

ellipsoids can pack better than spheres, giving higher density. The maximum packing fraction 

occurs at an aspect ratio of 0.6 for oblate spheroids and 1.80 for prolate spheroids.75 A well-

studied problem is the packing of M&M candies, which are oblates, and they pack in the 

disordered state better than spheres with a packing fraction close to 0.68.75  It is well-known 

that the random closed pack (RCP) state of hard spheres can achieve a maximum packing 
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fraction in the range of 0.62 to 0.64.78 This packing fraction played an important role in our 

understanding of hard sphere glass transition or jamming transition. For hard prolate 

ellipsoidal, the estimate of the maximum packing fraction of random close packing ranges 

between 0.68 and 0.71.75 This enhancement of packing fraction by 8-10% is expected to play 

a major role in the dynamics of ellipsoidal near the glass transition. 

In fact, molecular shape and molecular geometry increasingly determine physical 

properties as the density of the liquid is increased. In particular, aspherical molecules can rotate 

and translate simultaneously to achieve a significant displacement. As discussed elsewhere, a 

prolate molecule exhibits faster diffusion along its long axis.76,79,80 This translation-rotation 

coupling is absent in spherical molecules. Thus, the models employing spherical molecules 

lack certain fundamental aspects of the molecular dynamics of dense and supercooled liquids. 

These studies fail to address and reproduce many of the features observed near the glass 

transition. For example, in a classic study, Cicerone and Ediger observed that as the glass 

transition temperature was approached, the tagged non-spherical molecule translated further 

and further during its one rotational correlation time.81,82 This was interpreted as arising from 

a decoupling of translational motion from viscosity due to dynamic heterogeneity. While 

decoupling of translational diffusion from viscosity has been observed in models of spherical 

molecules,83 the issue of the continued coupling of rotation to viscosity has not yet been 

satisfactorily resolved. 

 The role of rotation in relaxation was demonstrated in a study of a system where an 

isolated ellipsoid was immersed in a sea of glass-forming liquid.84  It was observed that rotation 

of the tagged ellipsoid could lead to the relaxation of the local stress tensor, thus lowering the 

local viscosity. Therefore, two opposite factors play out in a glassy liquid consisting of 

aspherical molecules: the ellipsoidal shape allows better packing so that glass transition can 

occur at higher density, whereas rotational motion can open up additional relaxation channels 
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of stress relaxation and also transport. Thus, it could be fascinating to investigate the dynamics 

of molecules with orientational degrees of freedom across the supercooled regime.  

In this work, we introduce a new class of glass-forming liquids that are binary mixtures 

of aspherical molecules (prolates and oblates). We present several new results. We find that 

the translational and rotational relaxation spectrum splits into two peaks at a temperature TB, 

which is near, 0.6,T =  while the glass transition temperature is 0.43. We identify this with the 

α-β bifurcation. Analysis of the individual peaks reveals fascinating insights. The slow peak 

shows greater heterogeneity. We attribute this to the presence of two different energy 

landscapes with varying roles of entropic and enthalpic stabilization. The product of diffusion 

constant ( )D  and rotational relaxation time ( )2  exhibits a rather sharp peak when plotted 

against temperature, at a given temperature Tcr which is close to TB, enabling us to establish a 

quantitative relation between the two temperatures. Furthermore, we coarse-grain the system 

into cubic boxes to study dynamic properties, revealing abrupt changes in the diffusion 

coefficient and rotational correlation time, which indicate first-order transitions between low 

and high-mobility domains. 

The organization of the rest of the paper is as follows. In Section II, we discuss the 

model and technical details of the simulations. In Section III, we present a detailed discussion 

of the results obtained from our simulations. In this section, we first discuss the thermodynamic 

properties and relaxation dynamics of the model across the glass transition temperature. 

Subsequently, we discuss the bifurcation in the translational as well as rotational relaxation 

spectrum and its potential relationship with existing theoretical frameworks such as the Johari-

Goldstein (JG) α-β bifurcation or that predicted by the Mode-Coupling Theory (MCT). Finally, 

we discuss the jump dynamic transitions in the mosaics. In Section IV, we summarize the 

present study and conclude with a few comments. 
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II. MODEL AND SIMULATION DETAILS 

We have performed extensive molecular dynamics (MD) simulations of the binary 

mixture comprising a total of 4000 particles with 3200 prolates (rod-shaped molecules) and 

800 oblate ellipsoids (disc-shaped molecules) contained in a cubic box having periodic 

boundary conditions using Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) package.85 Our decision to utilize a binary mixture of anisotropic molecules 

stemmed from our previous exploration of the widely studied Kob-Andersen (KA) spherical 

model to incorporate orientation into the model while retaining fundamental parameters for 

comparison. Binary mixtures provide a unique opportunity to examine how diverse particle 

characteristics, such as shape or size, influence overall system behaviour, enabling the 

exploration of complex scenarios beyond the single-particle behaviour seen in monodisperse 

systems.86–89 

In this model system, the interactions between any two ellipsoids with arbitrary 

orientations are governed by a Gay-Berne (GB) potential.90,91 In the Gay-Berne pair potential, 

each ellipsoid of revolution i is represented by the position ir of its centre of mass and a unit 

vector ie  along the principal symmetry axis, as shown in Figure 1(a) for a pair of prolates. 

The Gay-Berne potential for the interaction between two ellipsoids of revolution i and j is given 

by the following expression,90,91 

 ( ) ( )( )12 6ˆ, , 4 , ,GB

ij ij i j ij ij i j ij ijU   − −= −r e e r e e  (1) 

where, 

 
( )ˆ , ,

.
ij ij i j GB

ij

GB

r  




− +
=

r e e
 (2) 
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Here, GB  represents the cross-sectional diameter along the breadth, 
ijr  is the distance between  

the two centres of mass, and ˆ /ij ij ijr=r r  is a unit vector along the intermolecular separation 

vector .ijr  The molecular shape parameter ( )ˆ , ,ij i j r e e is given by the expression,  

 ( )
( )

( )
( )

( )

1/2
2 2

ˆ ˆ ˆ ˆ-
ˆ , , 1

2 1 1

i ij j ij i ij j ij

ij i j GB

i j i j


 

 

−

   +     = − − 
 +  −    

e r e r e r e r
r e e

e e e e
 (3) 

where,
( )
( )

2

2

1
.

1






−
=

+
 Here  denotes the aspect ratio of the ellipsoid of revolution and is given 

by .ee ss  = ee  is the molecular length along the principal symmetry axis and .ss GB =  

The energy parameter ( )ˆ , ,ij i j r e e is given by the expression, 

 ( ) ( ) ( )1 2
ˆ ˆ, , ,ij ij i j GB i j ij i j

 

      =
   

r e e e ,e r e ,e  (4) 

where,  and  are two exponents which are adjustable, and 

 ( ) ( )
1/2

2
2

1 1i j i j 
−

 = −
  

e ,e e .e  (5) 

and, 

 ( )
( )

( )
( )

( )

2 2

2

ˆ ˆ ˆ ˆ. . . .
ˆ , 1 .

2 1 1

i ij j ij i ij j ij

ij i j

i j i j




 

 + −
 = − +
  + −
 

e r e r e r e r
r e ,e

e .e e .e
 (6) 

Here, ( ) ( )1/ 1/1 1     = − +  with .ss ee   =  ( )orss GB   represents the depth of the 

minimum of the potential for a pair of ellipsoids when they are aligned side-by-side, and ee is 

the corresponding depth for end-to-end alignment.  

The Gay-Berne potential defines a family of potential, each member of which is 

characterized by a set of four parameters ( ), , .and      being the aspect ratio, provides a 
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measure of the shape anisotropy while  provides a measure of the anisotropy of the well 

depth, which can also be controlled by the two parameters µ and ν. In our study, the prolate is 

characterized by these parameters as  ( )1.2, 3, 2 1 ,and while the oblate is characterized by 

( )0.8, 3, 2 1 .and   

Furthermore, correspond to the aspect ratio of prolates and oblates (i.e., 1.2 and 0.8, 

respectively), ee and ss are chosen such that the volume of a prolate is equal to the volume 

of an oblate. A schematic representation of the functional form of the Gay-Berne potentials 

characterized by a set of parameters (1.2, 3, 2, 1) is shown in Figure 1(b). 

All the quantities presented in this work are in reduced units and are defined in terms 

of the Gay-Berne potential parameters, GB and GB : for example, length in units of GB ,  

temperature in units of /GB Bk , Bk being the Boltzmann constant, and time in units of 

( )
1/2

2 ,GB GBm   m being the mass of ellipsoids. We set the masses of both prolates and oblates 

equal to unity. The energy parameters of the interaction potential for our study have been 

chosen as: 1.0, 0.5PP OO = = and 1.5.PO = It is to be noted that the choice of the energy 

parameters is inspired by those of the Kob-Andersen binary mixture.39–41 For argon, these units 

correspond to 
103.405 10 m, / 119.8 K and 0.03994 kg / mol.Bk m −=  = =  

The system has been melted from a fcc configuration at a high temperature and low 

density, and then gradually compressed to a volume corresponding to the desired temperature 

and pressure. We have investigated the system for a series of reduced temperatures ranging 

from T = 1.0 to 0.30 upon gradual cooling. The change of temperature has been effected by 

coupling the system to the Nosé–Hoover thermostat92 at the required temperature for a time 

period of teq that has been chosen to be larger than the relaxation time of the system at that 

temperature. The pressure of the system is kept constant, in all cases, at P = 30 using the 
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Parrinello–Rahman barostat.93 Our rationale for selecting high-pressure conditions in our 

simulations is to address challenges arising from the pressure dependence of the glass transition 

temperature. Operating at lower pressures could potentially lead to the glass transition 

occurring at temperatures that are exceedingly difficult to reach within a reasonable simulation 

time frame.94 Therefore, opting for high-pressure conditions ensures the glass transition occurs 

at more feasible temperatures, striking a balance between computational efficiency and 

accurate representation of dynamics and structural properties in the glassy state. 

First of all, we have performed energy minimization using the steepest descent 

algorithm95 followed by initial runs in the isothermal-isobaric (NPT) ensemble for 108 steps. 

The production runs have been performed in the isothermal-isobaric (NPT) ensemble for 5×108 

steps. The equations of motion have been integrated using the velocity-Verlet algorithm with 

integration time steps of dt = 0.001 for higher temperatures (T ≥ 0.6) and dt = 0.002 for lower 

temperatures (T < 0.6). The potential has been cut off and shifted at a distance of 4.0GB. To 

improve the statistics, we have carried out three independent runs corresponding to each 

temperature studied. We report here the results averaged over these runs. 

Besides the usual molecular dynamics (MD) simulations, we have also performed 

simulations in which the system is subjected to cooling (from T = 1.0 to 0.25) and subsequent 

reheating at a constant rate to get insight into the thermodynamic properties of the system 

across glass transition temperature. The system has been subjected to cooling-reheating cycles 

for three different constant cooling/heating rates of 
8 7 72.5 10 , 1.0 10 and 4.0 10 .− − −    
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III.  RESULTS AND DISCUSSION 

A.  Thermodynamic properties 

A glass transition is usually marked by a sharp, although continuous, change in 

thermodynamic properties such as volume (or density) and enthalpy, as the temperature is 

varied across the glass transition region.6,7,24 After the glass transition, the thermodynamic 

quantities attain a value comparable to that of a crystalline solid. In order to explore the 

thermodynamic aspects of the system under study, first of all, we calculate the specific volume 

(defined as the inverse of number density) at different temperatures using molecular dynamics 

(MD) simulation in the isothermal-isobaric (NPT) ensemble. The variation of specific volume 

( )spV  as a function of temperature is shown in the Supplementary Material (Figure S1). The 

temporal evolution of specific volume changes its slope, indicating the system undergoes glass 

transition. The intersection of the curves (when extrapolated) on both sides of the 

transformation range predicts the glass transition temperature 0.43gT = . In the work done by 

Kimura and Yonezawa, a change in the slope of specific volume with respect to temperature 

was observed near the glass transition of spherical molecules.6,96 In Figure 1(c), we plot the 

thermal expansion coefficient, defined as 
1

,
sp

sp P

V

V T


 
=  

 
 as a function of temperature. The 

thermal expansion coefficient ( )  shows a sharp change near the glass transition temperature 

0.43gT = . 

 Besides the specific volume, another important quantity that is widely used to study the 

glass transition is isobaric heat capacity. In calorimetric experiments, a rapid decrease in 

isobaric heat capacity is usually observed when a glass-forming liquid is subjected to isobaric 

cooling. The isobaric heat capacity is defined as97 
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2

2

1
p H

BP

H
C

T k T


  
= = 

 
 (7) 

where, H  is the average enthalpy of the system at temperature T, and ( )22 2 .H H H = −

In Figure 1(d), we show the variation of the isobaric heat capacity as a function of temperature. 

Similar to the thermal expansion coefficient, we also observe a sharp change in the isobaric 

heat capacity, which is again a signature of glass transition.  

 In addition to the usual MD simulations, we have calculated the specific volume, thermal 

expansion coefficient, and isobaric heat capacity via the isobaric cooling at P = 30 (from T = 

1.0 to 0.25) and subsequent reheating of the system at constant rates. In Figures 1(c) and 1(d), 

we also show the variation of the thermal expansion coefficient and isobaric heat capacity upon 

cooling and reheating for three different constant cooling/heating rates 

( )8 7 72.5 10 ,1.0 10 and 4.0 10− − −   . We find that our model system shows hysteresis in the 

isobaric heat capacity and the thermal expansion coefficient during cooling and subsequent 

reheating, as experimentally observed in the glass-forming liquids.98,99 Further, on varying the 

cooling/heating rate, we find that the dependence of Tg on the cooling/heating rate is weak, 

which is consistent with the earlier predictions.100,101 
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Figure 1. (a) Schematic diagram of a pair of ellipsoids defined by Gay-Berne (GB) potential 

parameters, and (b) functional form of the Gay-Berne pair potential characterized by a set of 

parameters (1.2, 3, 2, 1). The ratio of the energy depth of the side-by-side configuration 

(corresponding to the deepest energy depth, blue line) to that of the end-to-end configuration 

(corresponding to the shallowest energy depth, green line) shows the value of  =   The 

temperature dependence of (c) the thermal expansion coefficient and (d) isobaric heat capacity. 

The results are obtained by MD simulations in the NPT ensemble (black spheres with dashed 

line), isobaric cooling (dotted lines), and isobaric reheating (solid lines) of the system for three 

different constant cooling/heating rates. A sharp change in the thermal expansion coefficient and 

isobaric heat capacity shows a signature of glass transition, with the glass transition temperature 

at 0.43gT = (from MD simulation in the NPT ensemble, as indicated by a black dotted line). 

Further, these properties show hysteresis during cooling and subsequent reheating.  

 

 One often uses the Prigogine-Defay ratio (PDR) to characterize the intensity of a glass 

transition. It is a combination of the change in response functions involving specific heat, 

isothermal compressibility, and thermal expansion coefficient during the glass transition. The 

Prigogine-Defay ratio (PDR), usually denoted by Π and given by102,103 
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 2

1

( )
g

P

sp T T

C

V T




=

  
 =  

 
 (8) 

where, PC  is the change in isobaric heat capacity,   is the jump of isothermal 

compressibility, and   is the change in thermal expansion coefficient near the glass 

transition temperature .gT T=  The variation of isothermal compressibility (obtained from MD 

simulations in NPT ensemble) as a function of temperature across the glass transition region is 

given in the Supplementary Material (Figure S2). 

An important aspect of PDR is that all the terms involved are the response functions 

themselves. For the present system, we can calculate the change in response functions and, 

thus, the value of the PDR. For molecular liquids, the value of PDR is typically in the range of 

1-10, with glycerol having a value of 9.4 and propanol 1.9.103 We have obtained a PDR value 

of 2.7 for our model system at the glass transition temperature (from MD simulations in NPT 

ensemble), which appears to be in the correct range.  

In the subsequent sections, we focus on the dynamics of the system. 

B.  Relaxation dynamics 

 In this section, we focus on the translational and rotational dynamics of the glass-forming 

model system of anisotropic molecules. It is to be noted that, at the single particle level, both 

the components of the binary mixture are dealt with individually. 

First, we look into the translational dynamics of the glass-forming model systems by 

evaluating the self-part of the intermediate scattering function. The self-intermediate scattering 

function is given by the expression104 

 ( )( , ) exp . ( ) (0)s j jF k t i t = −
 

k r r  (9) 
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where, ( )j tr is the position of the center of mass of jth particle at time t.  

 The time evolution of ( , )sF k t  at ,maxk k  ( maxk is the position of the dominant peak of 

the static structure factor S(k)) for prolates and oblates at different temperatures is shown in 

Figures 2(a) and 2(b), respectively. At high temperatures, the long time decay of ( , )sF k t is 

essentially exponential in nature; however, as the temperature is lowered, the decay of ( , )sF k t

distinctly involves the separation of timescales with an intervening plateau. We shall come to 

this point later in the text. 

We can get an estimation of the time scale of the structural relaxation from the decay 

of ( , ).sF k t  We determine the -relaxation time   as, 1( , ) .sF k e −=  We fit the - relaxation 

time of ( , )sF k t by using Vogel-Fulcher-Tammann (VFT) equation, which is as follows,105 

 0( ) exp
g

A
T

T T
 

 
=  

−  
 (10) 

Here, 0  is a constant, the parameter A is related to the fragility, / gD A T= and 
gT  is the 

temperature of the “ideal” glass transition, obtained by Vogel-Fulcher-Tammann (VFT) fit. 

Figure 3(a) depicts the variation of - relaxation time ( ) as a function of /gT T  for prolates 

and oblates. It also shows the VFT fit of 
  for prolates and oblates. The VFT fit predicts the 

glass transition temperature, 0.430gT = for prolates and 0.434gT = for oblates. The values of 

gT obtained by VFT fit are in good agreement with that obtained by thermodynamic properties. 
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Figure 2. Temporal evolution of the self-part of the intermediate scattering function 

( )s maxF k k , t  of (a) prolate and (b) oblate ellipsoids of revolution for different temperatures 

investigated. At low temperatures, the decay distinctly involves the separation of time scales with 

an intervening plateau. The time evolution of the single-particle 2nd rank orientational relaxation 

function of (c) prolates and (d) oblates at different temperatures investigated. 

 

The divergence of -relaxation time ( )  near the glass transition is also predicted as 

a power law by the ideal mode-coupling theory (MCT) for a particular range of temperatures. 

The power-law behaviour can be observed by fitting the -relaxation time ( )  using the 

following equation,40,41 

 ( )( ) cT C T T



−

= −  (11) 
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Here, C is a prefactor and   is a constant for a system; cT is the critical temperature predicted 

by ideal MCT at which the system undergoes a transition from an ergodic state to a non-ergodic 

state.  

Figure 3(b) depicts the power-law behaviour of the -relaxation time ( ) . The power 

law fit predicts the critical temperature, 0.546cT = and the exponent 1.96 = for prolates, 

while for oblates, it provides the value of  0.548cT =  and 1.90 = . According to MCT, the 

exponent   and the critical temperature cT  should be independent of particle type. The 

deviation observed here is comparable to that observed before for the Kob-Andersen binary 

mixture and should not be considered as a severe contradiction to the prediction of MCT.40 For 

both prolates and oblates, we observe that 
g cT T , which is in agreement with the previous 

studies.40,41 

As discussed earlier, the decay of ( , )sF k t at lower temperatures involves both fast and 

slow timescales with an intervening plateau. Both the approach to the plateau and the decay 

from the plateau are given by power laws, with exponents a and b, as described below. The 

short-time decay to the plateau is governed by the power law, 

 ( ), a

sF k t f At−+  (12) 

whereas, the decay from the plateau region is governed by another power law (known as the 

von Schweidler law), 

 ( ), b

sF k t f Bt−  (13) 

where,  f is the plateau height, A and B are constants. Near the MCT critical temperature 
cT , 

the exponents ' 'a  and ' 'b are related as, 

 
( ) ( )

2 2

1 1

(1 2 ) (1 2 )

a b

a a

 −  +      =
 −  +

 (14) 
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Figure 3. (a) -relaxation time (  ) of prolates and oblates as a function of /
g

T T , where 
g

T  is 

the glass transition temperature predicted by the Vogel-Fulcher-Tammann (VFT) fit. The blue 

and red dashed lines correspond to the VFT fits of the - relaxation times    of prolates and 

oblates, respectively. Such fits yield 0.430
g

T = , = 0.934 0.967 A =, (for prolates) and 

0.434
g

T = , = 0.912 0.921 , A =  (for oblates). (b) - relaxation time (  ) as a function of 

temperature difference ( )c
−T T , where 

c
T  is the mode coupling critical (or divergence) 

temperature. The blue and red dashed lines represent the power law fits of   with  
c

= 0.546,T  

= 1.96  for prolates and
c

= 0.548,T  = 1.90 for oblates, respectively. (c) The variation of the 

relaxation time   and the exponent   (obtained from Kohlrausch-Williams-Watts stretched 

exponential fit of ( , )k tsF ) as a function of temperature for prolates and oblates. The most striking 

result is the signature of the strong anti-correlation between   and   values. (d) The variation of 

the exponent   with the relaxation time  . The lines are drawn as a guide to the eye.  
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where,   denotes the Gamma function. Further, the power law exponents ' 'a  and ' 'b are 

related to the constant  (described in Eq. 11) by, 

 
1 1

.
2 2a b

 = +  (15) 

In Table 1, we show the value of exponents ' 'a  and ' 'b obtained by fitting of ( , )sF k t

at T = 0.55 (near the critical temperature Tc predicted by MCT). The fittings are shown in the 

Supplementary Material (Figure S3). Here, we note that gamma is indeed quite close to the 

prediction of MCT, as has been observed in other simulations. 

 

Table1: The value of exponents ' 'a  and ' 'b obtained by fitting of ( , )sF k t at T = 0.55 (near 

the critical temperature predicted by MCT). We also provide the value of the exponent 

 obtained by eqn. (15). 

 

 a b   

Prolate 0.37 0.82 1.96 

Oblate 0.39 0.81 1.89 

 

Finally, at sufficiently long times, the fall from the plateau occurs, which is known as  

-relaxation. The final relaxation, i.e., −relaxation regime, is predicted to follow the 

Kohlrausch-Williams-Watts (KWW) stretched exponential form, which is as follows: 

 ( ) ( )
( )

max , exp ( )
T

SF k k t t T


 −
   (16) 

 Figure 3(c) depicts the variation of the exponent ( )T and relaxation time  obtained 

from the stretched exponential fit of max( , )sF k k t , as a function of temperature. For the system 

under study, we observe an anti-correlation between the exponent ( )T and relaxation time 
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.  In Figure 3(c), the relaxation time is seen to grow rapidly as the glass transition 

temperature is approached from above. By fitting the divergence of the relaxation time, we find 

a value of  0.43gT = . The exponent 𝛽, on the other hand, decreases towards 0.6 in the same 

range of temperature. These two variations are in excellent agreement with known results.40,41 

In Figure 3(d), we present the variation of the exponent 𝛽 against the relaxation time 

 ; both have been obtained by fitting our simulation data to the Kohlrausch-Williams-Watts 

(KWW) stretched exponential form, Eq. (16). It is seen that both prolates, and oblates follow 

the same dependence. The decrease in the value of the exponent implies that the relaxation 

becomes increasingly heterogeneous. The increase in the relaxation time indicates the growth 

of slow glassy regions in the system. These features are well-known and relatively easy to 

understand. The main point here is that our new model of glass-forming liquids with molecular 

shapes reproduces most of the known experimental results.  

 Besides the self-intermediate scattering function,  another important property of 

interest is the self-diffusion coefficient, which can capture the slowdown of translational 

dynamics as the temperature falls. The translational self-diffusion coefficient of component A 

(say prolate or oblate) has been obtained from the mean squared displacement (MSD) by the 

use of the Einstein relation, 

 

2 ( )
lim

6

A

A
t

t
D

t→


=

r
 (17) 

where, 
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1

1
( ) ( ) (0)

AN

A i i

iA

t t
N =

 = −r r r  (18) 

( )i tr  being the position of the centre of mass of an ith particle at time t. Here, A can be prolate 

or oblate; accordingly, the sum goes either over the prolates or oblates.  
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 The temporal evolution of mean square displacements (MSD) of prolates and oblates for 

different temperatures investigated is shown in the Supplementary Material (Figure S4). The 

diffusion constants are obtained by the linear fitting of mean square displacement versus time 

curves (by avoiding the initial ballistic region). In Figure 4(a), we plot the variation of the 

calculated self-diffusion coefficient of both the prolate and the oblate particles as we lower the 

temperature towards the glass transition temperature. We observed almost four orders of 

magnitude decrease in the value of the self-diffusion coefficient D. Further, the prolates and the 

oblates both follow a similar temperature dependence. In Figure 4(a), we also show the VFT 

fit of the self-diffusion coefficient (D) for prolates and oblates (shown by dashed lines), using 

the relation, 0( ) exp
g

A
D T D

T T

 
= − 

−  
 . The VFT fit predicts the glass transition temperature,

0.431gT = for prolates and 0.433gT = for oblates. The values of 
gT obtained by VFT fit are in 

good agreement with those obtained by other properties. 

Similar to the -relaxation time ( ) ,  the divergence (or disappearance) of the 

translational diffusion coefficient D, near the glass transition, is also predicted as a power law 

by the ideal mode-coupling theory (MCT) for a particular range of temperature. The power-

law behaviour can be observed by fitting the translational diffusion coefficient D using the 

following equation, 

 ( )( ) cD T C T T


= −  (19) 

 In Figure 4(b), we show the power-law behaviour of the translational diffusion 

coefficient D of prolates and oblates. For each of the components, the translational diffusion is 

found to follow a power law dependence as predicted by the ideal MCT. The power law fit 

predicts the critical temperature, 0.545cT = and the exponent 1.92 = for prolates, while for 

oblates, it provides the value of  0.547cT =  and 1.84 = .  
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Figure 4. (a) Translational diffusion coefficient,  D,  of prolates and oblates as a function of 

/ .
g

T T The blue and red dashed lines correspond to the VFT fits of the translational diffusion 

coefficient of prolates and oblates, respectively. Such fits yield 0.431,
g

T = = 0.038 1.0270 A =D ,

for prolates and  0.433,
g

T =  = 0.035 1.0410 A =D , for oblates. (b) Translational diffusion 

coefficient as a function of temperature difference ( )c
−T T , where 

c
T  is the mode coupling 

critical (or divergence) temperature. The blue and red dashed lines represent the power law fits 

of the translational diffusion coefficient with  
c

= 0.545,T  = 1.92  for prolates and
c

= 0.547,T  

= 1.84 for oblates, respectively. (c) The variation of the second-rank orientational relaxation 

time ( )2 of prolates and oblates with /
g

T T , where 
g

T  is the glass transition temperature 

predicted by the Vogel-Fulcher-Tammann (VFT) fit. The blue and red dashed lines correspond 

to the VFT fits of the translational diffusion coefficient of prolates and oblates, respectively. Such 

fits yield 0.433,
g

T =
2, = 0.062 1.053 A =, for prolates and  0.435,

g
T =

2, = 0.056 1.092 A =,

for oblates. (d) Second rank relaxation time as a function of temperature difference ( )c
−T T , 

where 
c

T  is the mode coupling critical (or divergence) temperature. The blue and red dashed 

lines represent the power law fits 
2 of the with  

c
= 0.545,T  = 1.94  for prolates and

c
= 0.548,T  = 1.89 for oblates, respectively.  
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In order to get an insight into the rotational dynamics of the particles, we calculate the 

second-rank orientational relaxation time, ( )2  which is obtained by the integration of the 

second-rank orientational time correlation function. The second-rank orientational time 

correlation function, 2( )C t , is defined as70 

 

( )

( )

2

1

2

2

1

( ). (0)

( )

(0). (0)

A

A

N

i i

i

N

i i

i

P t

C t

P

=

=

=





e e

e e

 (20) 

where, ie  is a unit vector along the principal symmetry axis of the ellipsoid.  In this context, A 

can be either prolate or oblate; thus, the sum is performed over the number of prolates or 

oblates. 2 ( )P x  is the second-order Legendre polynomial, expressed as 

 ( )2

2

1
( ) 3 1

2
P x x= −  (21) 

The second-rank orientational time correlation function, 2( )C t  is directly accessible to 

experiments (for example, NMR and ESR provide information on 2( )C t ).73 We show the time 

evolution of the second-rank orientational time correlation function of prolates and oblates in 

Figures 2(c) and 2(d).  

The second-rank orientational relaxation time is given by the expression,70  

 2 2

0

( )C t dt


=   (22) 

 The variation of the second-rank orientational relaxation time ( )2 of prolates and 

oblates as a function of /gT T is shown in Figure 4(c). As the temperature is lowered, the decay 

of the orientational time correlation function becomes slower. We also fit the second-rank 
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orientational relaxation time ( )2  of prolates and oblates using the Vogel-Fulcher-Tammann 

(VFT) equation, 2 2,0( ) exp
g

A
T

T T
 

 
=  

−  
. The VFT fit predicts the glass transition 

temperature, 0.431gT = for prolates and 0.433gT = for oblates. Similar to the -relaxation 

time and self-diffusion coefficient, the power-law behaviour of the second-rank orientational 

relaxation time ( )2  can be observed (Figure 4(d)) by fitting to the equation, 

( )2 ( ) .cT C T T



−

= − Such fit yields 0.545,cT =  1.92 = for prolates and 0.548,cT =  

1.89 = for oblates, respectively. 

 

C.  − bifurcation 

 In order to get an insight into the heterogeneous dynamics of the system near the glass 

transition, we have calculated the distribution (or histogram) of the short-to-intermediate time 

diffusion constant of prolates and oblates. The short-to-intermediate time diffusion coefficient 

of each particle is obtained from the linear fit of each MSD curve (from t = 10 to 50). In Figures 

5(a) to 5(f), we show the distribution of the short-to-intermediate time diffusion coefficient, 

( ), ,P D T  of prolates at six different temperatures (T = 1.0, 0.8, 0.7, 0.6, 0.55, and 0.5). At 

high temperatures (T = 1.0 or so), the distribution curve exhibits a single peak.  However, with 

decreasing temperature (from T = 0.8 to 0.7), the peak progressively broadens, eventually 

giving rise to a bimodal distribution at lower temperatures (at T = 0.6 and 0.55). The bimodal 

distribution indicates the presence of a mosaic-like structure in the deeply supercooled liquid 

phase. On further lowering the temperature, a single peak corresponding to a very low diffusion 

coefficient value is observed, indicating that the dynamics of the particle become sluggish. We 
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obtained similar results when the distributions of the short-to-intermediate time diffusion 

coefficient of oblates were plotted, as shown in the Supplementary Material (Figure S5).  

 

Figure 5. The distribution of the short-to-intermediate time diffusion coefficient of prolates at (a) 

T = 1.0, (b) T=0.8, (c) T=0.7, (d) T=0.6, (e) T=0.55, and (f) T=0.5. The distribution of the 

intermediate time orientational relaxation times of prolates at (g) T=1.0, (h) T=0.8, (i) T=0.7, (j) 

T=0.6, (k) T=0.55 and (l) T=0.5. The distribution of 2,i iD  for each prolate particle at (m) T = 

1.0, (n) T=0.8, (o) T=0.7, (p) T=0.6, (q) T=0.55, and (r) T=0.5. In all the cases, at a higher 

temperature, there is only one peak; however, as the temperature is lowered, a bimodal 

distribution is observed. It indicates the presence of a mosaic-like structure in the deeply 

supercooled liquid phase. As the temperature is further lowered, the dynamics of the particle 

become sluggish.  

 

Similar to the distribution of the short-to-intermediate time diffusion coefficient 

( ),P D T , the distribution of the intermediate-time orientational relaxation time ( )2 ,P T  can 

also provide insight into the heterogeneous dynamics of the system. For this purpose, we define 

the intermediate-time orientational relaxation time such that it corresponds to the time at which 

the second-rank orientational time correlation function of particles becomes 1e−  i,e.    

1

2 2( ) .C e −=  In Figures 5(g) to 5(l), we show the distribution of the intermediate-time 

orientational relaxation time ( )2 ,P T of prolates at six different temperatures. It shows similar 

temperature dependence as seen in the distribution of short-to-intermediate time diffusion 

coefficient. Additionally, we have determined ( )2 ,P D T  of 2,i iD   for each particle, as 
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shown in Figures 5(m) to 5(r). Interestingly, similar to ( ),P D T  and ( )2 ,P T , it also exhibits 

a bifurcation as the temperature decreases. 

 What is depicted in Figure 5 is a remarkable appearance of a bifurcation in the 

relaxation spectrum. While this is akin to the bifurcation observed and analyzed by Johari and 

Goldstein, the present bifurcations take place in the ps to ns time scales. This agrees rather well 

with the recent report of such bifurcation by Cicerone et al.38 In the Johari-Goldstein − 

bifurcation phenomenon, the primary branch rapidly disappears in a markedly non-Arrhenius 

fashion when the glass transition is approached from above, leaving the secondary branch that 

exhibits Arrhenius-like temperature dependence.31,32 

 The appearance of the bifurcation seems to suggest the existence of two different basins 

in the energy landscape. We interpret them as a liquid-like basin (giving rise to the fast mode) 

and a solid-like basin (as the slow mode). In order to get insight into the dynamic heterogeneity 

in the two basins, we calculate the non-Gaussian parameter and the four-point dynamical 

susceptibility corresponding to the particles that constitute the slow and fast peaks of spectra 

at T= 0.60 and T=0.55.  

The translational non-Gaussian parameter is defined as,106  

_5__9;:=<>_3?@_A _ 
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5 ( )

t
t

t

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
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r
             (23) 

If ( )tr  is a Gaussian process, 
2( )t  vanishes for all time. 

The four-point dynamic susceptibility is defined as follows,107  

22

4

1
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 
              (24) 

where, 
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The temporal evolution of the translational non-Gaussian parameter 
2( )t  and four-

point dynamic susceptibility 4( )t  for a series of temperatures under study is shown in 

Supplementary Material (Figures S6 and S7). 

In Figure 6, we show the time evolution of 
2( )t  and 4( )t  for the fast and slow modes 

in the bifurcated spectrum at T = 0.6 and 0.55. We find that dynamics is heterogeneous in both 

the domains but much more so in the slow domains. Further, as the temperature is lowered, the 

slow-mode population becomes more dynamically heterogeneous. What is particularly 

remarkable about Figure 6 is the large separation between the time scales of relaxation of the 

fast and slow peaks. While the time scales in the bifurcation differ only by a factor of 3-5, the 

time scales in the non-Gaussian and dynamic heterogeneity parameters differ by almost two 

orders of magnitude. This observation needs further investigation.   
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Figure 6. The temporal evolution of the translational non-Gaussian parameter 
2( )t  of prolates 

corresponding to the population of slow and fast mode of the relaxation spectra at (a) T=0.60 and 

(b) T=0.55. In panels (c) and (d), we show the time evolution of the four-point dynamical 

susceptibility 4( )t for the population corresponding to the slow and fast modes at T=0.60 and 

(b) T=0.55, respectively. It is to be noted that a significantly higher extent of dynamic 

heterogeneity exists in the population of slow mode. 

 

Since there is no phase separation (as verified by radial distribution function, see Figure 

S8), this result seems to suggest the existence of a mosaic-like structure. We point out two 

important points. First, the slow domain is characterized by less entropy but more enthalpic 

stabilization than the fast domain. We reach this conclusion by using the diffusion-entropy 

scaling relation,108 which is semi-quantitatively reliable. Second, at low temperatures, a major 

source of relaxation could be the conversion of the slow domains to fast domains. The pathway 
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of such relaxation is unclear. It is interesting to compare this behaviour with LDL-HDL 

conversion observed in supercooled liquid water.109,110  

Figures 7(a) and 7(b) present the product of translational diffusion constant D and the 

second-rank rotational relaxation time 
2 for prolates and oblates, respectively. The idea to 

plot ( )2 ( )D T is to test the coupling/decoupling between the translational and rotational 

motion of particles, akin to the Debye-Stokes-Einstein relation.73 This approach parallels the 

assessment of coupling/decoupling between viscosity and diffusion in the Stokes-Einstein 

relation, which is a standard practice. In the normal liquid regime, this product is typically 

independent or weakly dependent on temperature. This product is a popular combination often 

employed to understand the emergence of dynamic heterogeneity. The basic idea is as follows. 

As dynamic heterogeneity becomes pronounced, the faster regions determine the average 

diffusion coefficient, while the slower regions determine the rotational correlation time. It has 

been argued that the rotational correlation time scales with viscosity while translational 

diffusion decouples from viscosity. 

 

Figure  7. The plot of 2D   and 2,i iD  as a function of temperature for (a) prolates and 

(b) oblates. The hydrodynamic prediction using slip boundary condition is shown by the dotted 

line. A significant deviation from the hydrodynamic prediction is observed. 

 

As, in general, the product 2D   of the averages D and 
2 is not identical to the 

average 2,i iD  , we further explore the temperature dependence of 2,i iD  . In the present 
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case, both the products exhibit a surprising maximum at a temperature higher than the 

estimated glass transition temperature. For convenience, we term the temperature where the 

maximum is located as a crossover temperature, Tcr. As the temperature T approaches this 

crossover temperature from above, the product first increases. This increase above the 

temperature-independent value at higher temperatures is well-known and often referred to as a 

signature of the emergence of dynamical heterogeneity. Much above Tcr, the product 
2D  

becomes independent of temperature, which is expected in the normal regime of the liquid if it 

obeys the Debye-Stokes-Einstein relation. In the same figure, we showed the prediction of the 

hydrodynamic slip boundary condition for prolate and oblate particles.111 

The rather sharp fall in the product below the crossover temperature Tcr is puzzling and 

may be attributed to the conversion of the liquid-like domains to the solid-like domains, as the 

temperature is lowered below Tcr. As a result, D decreases faster than the increase in 
2 . This 

difference could be facilitated by the fact that rotation is still a local process, and our particles 

are not too different in shape from spheres with aspect ratios of 1.2 (prolate) and 0.8 (oblate). 

Thus, it is the diffusion coefficient, which is non-local, that undergoes sharp change as we 

lower the temperature below T = 0.6, which is close to the MCT critical temperature (from 

power-law fits).  

What is more surprising is the sharpness of the peak in the product, and it is more 

difficult to rationalize. We note that the temperature variation of both D and 
2  can be 

individually fitted to the Vogel-Fulcher-Tammann (VFT) form with the same glass transition 

temperature Tg ~ 0.43, which is substantially below the crossover temperature, Tcr ~ 0.6 (as 

shown in Figure 7). The fitting parameters are sensitive to lower values of temperature.  

In theoretical studies, the existence of such crossover temperature has repeatedly been 

discussed.10,49,67,68,112 The mode coupling theory predicts a divergence of viscosity and 
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relaxation time at a temperature that is substantially above the true glass transition temperature. 

MCT, of course, does not provide a microscopic mechanism except through the growth of 

structural correlations among particles.  

A physical explanation of a crossover temperature is obtained by analysis of the 

inherent structures. By calculating the average energy of the inherent structures obtained from 

molecular dynamics (MD) trajectories and analyzing the dynamics, one can locate a 

temperature where the dynamics change from continuous diffusion to a landscape-dominated 

regime.15 

In an early work, Ediger et al. observed such a crossover in terms of the emergence of 

heterogeneity and provided compelling evidence in terms of the decoupling between translation 

and rotation by the mechanism we already discussed above.81 However, the existence of a sharp 

peak in the product Dτ2 has not been discussed earlier.  

In the present case, we find that the crossover temperature is close to the initial 

appearance of the bifurcation in the relaxation spectrum. To provide a theoretical understanding 

of the observed bifurcation, we present a dynamic exchange model (DEM) discussed in detail 

in the Supplementary Material. 

 

D. Nature of the observed bifurcation: Johari-Goldstein or MCT? 

In this section, we explore the potential relationship of the observed bifurcation with 

existing theoretical frameworks such as the Johari-Goldstein (JG) α-β bifurcation or that 

predicted by the Mode-Coupling Theory (MCT). For this purpose, it is imperative to clarify 

our use of terminology in this context. We called the bifurcation in orientational relaxation as 

Johari-Goldstein because the latter discussed it in the context of dielectric relaxation. Johari 

and Goldstein used aspherical dipolar molecules. The α-β bifurcation in the JG picture was so 
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categorized by borrowing ideas from polymer dynamics where the β-relaxation exhibits 

Arrhenius temperature dependence and is attributed to side-chain motions. This β-relaxation is 

weakly coupled to the main branch of relaxation.  

  Such a picture is not expected to be valid here. We have small molecules with both 

translation and rotational degrees of freedom. Contrastingly, in the MCT framework, the initial 

beta relaxation stems from “local” relaxation occurring over relatively short timescales before 

transitioning into the characteristic staircase behaviour. This can be likened to density 

relaxation within a potential energy well, as envisioned in the inherent structure description. 

Strictly speaking, one can attribute this only to the early stages of a continuous density 

relaxation process that does not involve any barrier-crossing dynamics. 

We have already observed in Eqs. (12-15) and Table 1, a fairly good agreement of our 

results with the important MCT prediction (Eq. 14). This actually provides a striking 

confirmation of the MCT. 

In order to examine further the potential relationship of the observed bifurcation to that 

predicted by MCT, we compute the susceptibility functions from the self-intermediate 

correlators ( )( )max 2, and ( )P O P O

sF k t C t . For this, first of all, we have calculated the derivative 

of ( )( )max 2, and ( )P O P O

sF k t C t , followed by the Fourier transform. Figures 8(a) and 8(b) 

illustrate the imaginary part of the susceptibility functions derived from the Fourier transform 

of the first derivative of the correlators for prolates. We observe that at high temperatures, both 

cases exhibit a single peak; however, as the temperature decreases, we observe a bifurcation 

akin to the behaviour observed for ( ),P D T  and ( )2 ,P T . The observed bifurcation in 

susceptibility functions closely aligns with those reported by Kämmerer et al.,49 further 

bolstering the consistency and reliability of our findings. 
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As discussed, the difference between the Johari-Goldstein and MCT − picture of the 

underlying bifurcation mechanism is indeed significant. However, it is essential to note that 

the properties of the observed α-β bifurcation in our system may differ from both the JG β-peak 

and the MCT β-peak. For instance, the location of the maximum and the critical behaviour of 

the peaks can vary. In addition, in our case, remnants of β-relaxation are observed in the 

extended ripple-like region in the tail of the probability distribution, as evident in both ( )P D  

and ( )2P   at T = 0.5. This is more like the prediction of the JG picture. 

 

Figure. 8. Frequency dependence of the imaginary part of the susceptibility functions derived 

from the Fourier transform of the first derivative of the correlators (a) ( )( )max ,P

sF k t and (b) 

2 ( )PC t . It is to be noted that, in both cases, a single peak is observed at high temperatures; 

however, as the temperature is lowered, a bifurcation of the peak is observed. The colour code is 

same as that of Figure 2. 

 

E.  Jump dynamic transitions in the dynamics of mosaics 

What really drives relaxation in deeply supercooled liquids has remained an open 

question. Inherent structure (IS) formulation advocates transition between different glassy 

minima in the potential energy landscape.15,59 However, in the inherent structure formalism, 

the mechanism of such transitions is not addressed. The random first-order theory assumes that 
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such relaxation occurs between different mobility states via a nucleation process.10 The 

transition is akin to melting-freezing transitions driven by the entropy difference between the 

frozen (the glassy) and the mobile (the liquid) states. Such transitions are predicted to occur in 

regions that may contain a small number of particles ranging from a few tens to a few hundreds. 

In other words, these transitions are collective in nature (not single particle), involving 

mesoscopic regions rather than macroscopic ones. 

In this subsection, we present a few microscopic characterizations that aid in 

understanding certain aspects of the glassy relaxation dynamics observed in this paper. Figures 

S9(a) and S9(b) demonstrate the presence of correlated translational and rotational jump 

motions of tagged single-particle prolate and oblate particles at a low temperature, T=0.6. Such 

single-particle jumps have been observed earlier in supercooled liquids, with varying 

interpretations derived from inherent structure hopping and single-file diffusion.50 In Figure 

S9(c), we show the translational displacement trajectory of a randomly selected tagged prolate 

(say Np=752), illustrating the jump motion at T=0.60. The same figure depicts the trajectories 

of the nearest neighbours of the randomly selected tagged prolate where correlated jump 

motion has been observed. However, it is not clear what role these correlated single-particle 

jump motions play in the overall relaxation dynamics of the system because the influence of 

such jumps appears to be small.  

In the RFOT analysis, on the other hand, relaxation is assumed to occur through 

transitions in a region, accompanied by small length-scale correlated motions of the particles 

involved.10 In this process, each particle moves only about the Lindemann length, typically 

one-tenth of the molecular diameter. The main idea is that to make a transition or significant 

movement in the free energy surface, many particles need to move, but each a small distance, 

as in the liquid-solid transition. It is possible that the above-mentioned large-scale jumps form 

an ensemble of relaxation processes that are too rare to make any significant impact. 



35 
 

To discern the occurrence or absence of such transitions within local regions and gain 

further insight into the heterogeneous dynamics near the glass transition (and to better 

comprehend the observed bifurcation), we carried out the following analysis. We divided our 

entire system into 64 cubic grids, each containing approximately 62-63 particles, and 

monitored the dynamical properties in these cubic boxes as a function of time. In order to 

analyze the evolution of diffusion constants and orientational relaxation times within specific 

spatial regions over time, we divided the trajectory into discrete time intervals, each spanning 

approximately 107 steps. Within each interval, we computed both the diffusion constant and 

the orientational relaxation time. This approach allows us to identify spatial variations in 

dynamics and potential localized phenomena contributing to system behaviour. Such a strategy 

not only offers a comprehensive understanding of the dynamics of the system but also provides 

valuable insights into the role of local environments in governing macroscopic behaviour. 

In Figures 9(a) and 9(b), we show the short-to-intermediate time diffusion of a few 

grids as a function of time at T=0.6. In Figures 9(c) and 9(d), we show the intermediate-time 

orientational relaxation times ( 1

2 2( )C e −= ) of a few grids as a function of time at T=0.6. It is 

to be noted that while in many grids, there is no significant change in the diffusion constant (or 

in the orientational relaxation time), in some of the grids, we observe large-scale sudden 

changes in the diffusion coefficient and rotational correlation time. The jump magnitude in the 

time-averaged properties is large. It appears to signify local first-order transitions between low 

and high-mobility domains. Further, we have also observed a correlated change in the short-to-

intermediate time diffusion coefficient and the orientational relaxation time. Similar results 

have been observed at T=0.55, as shown in the Supplementary Material (Figure S10); however, 

the frequency of these jumps is low.  
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Figure 9. (a)-(b) The variation of the short-to-intermediate time diffusion constant of particles in 

grids as a function of time at T=0.60. (c)-(d)The variation of the intermediate time orientational 

relaxation times (C2(t)) of particles in grids as a function of time at T=0.60. We observe a sharp 

change in the diffusion constant of some grids, indicating liquid-to-solid-like and solid-to-liquid-

like transitions. Further, a correlated change in the short-to-intermediate time diffusion and 

orientational relaxation time has been observed. 

 

Furthermore, we find that the initial values and the magnitude of the change in the 

transport properties due to the jumps depicted in Figure 9 (both in the short-to-intermediate 

time diffusion constant and the rotational relaxation time) correlate well with the values in the 

two peaks of the α-β bifurcation pictures presented above (Figure 5). 

Although we have not been able to construct yet a complete waiting time distribution 

of these large amplitude jumps in the transport properties of our coarse-grained boxes, we have 

enough statistics to establish that these jumps can be considered rare in our simulation time 
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scales, happen at a time scale of the order of hundreds of ns. That is, much longer than 

molecular time scales.  

The next question arises: what prompts such jumps? Our analysis (still going on) points 

to the following picture. An upward jump in mobility, that is, the diffusion constant (and 

simultaneous downward jump in the rotational correlation time), is found to be accompanied 

by a density fluctuation, leading to a small but discernible decrease in its value. The density 

change is small as only one or two molecules are found to leave the box, followed by an 

increase in mobility (Figure S11). The reverse transition, that is, a decrease in mobility, is found 

to be accompanied by a small increase in density. This is similar to the changes observed in the 

HDL-LDL transitions, where a similar coarse-grained analysis was performed.110 Such density 

changes are clearly accompanied by a significant entropy change. We further note that we count 

the inclusion of particles in a box by monitoring its centre. Therefore, the particle can indeed 

move a small distance to be considered out of a given box. We mention this analysis because 

these changes, however small, are observed only during or just before the jumps described in 

Figure 9. A lot more simulations and analyses are required to establish the detailed origin, 

especially correlations between neighbouring boxes. 

A further point that should be made clear about the time scales observed here, because 

all results have been presented in the reduced units. Yet, we sometimes need absolute numbers 

to get additional insight into the relaxation dynamics. We can convert our numbers presented 

here to real argon units easily. In the argon unit, the translational diffusion constant decreases 

from 5 2 110 cm s− −  to about 10 2 110 cm s− − . That is, we observe a five-order-of-magnitude decrease 

from the liquid at T = 1.0 to the glassy liquid at T = 0.5. Similarly, the rotational correlation 

time decreases from ps to us. It is thus clear that the present simulations capture the initial part 

of the slowdown toward glass transition. 
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IV. CONCLUDING REMARKS 

  Unresolved or partly solved questions in the dynamics of supercooled (or glassy) liquids 

pertain to the relationship between the α-β bifurcation temperature TB, popularized by Johari 

and Goldstein in the late 1960s, and the crossover temperature Tcr observed in simulations have 

remained the subject of much interest. Such a relationship has been predicted by all the major 

theories developed after Johari-Goldstein’s observations. MCT, inherent structure analysis, and 

RFOT all predict different signatures for the existence of a crossover temperature above the 

glass transition temperature. We note that the dielectric relaxation measured by Johari and 

Goldstein involved primarily the orientational motion of molecular dipoles. The molecules 

involved were anisotropic. However, most computer simulations and theories employ 

spherical-shaped molecules, like in the popular Kob-Andersen model of glass forming binary 

mixture.6,7 A recent work by Cicerone et al. reports the evidence of such a bifurcation at a much 

shorter ps time scale.38 

  We note that such a bifurcation, as reported in Figure 5, can also be expected in spherical 

models in the short-to-intermediate time diffusion coefficient. Therefore, anisotropy in shape 

might not introduce any substantially new feature, except allow one to address rotational 

relaxation and the translation-rotation coupling. The present model may be considered a 

generalization of the well-known Kob-Andersen binary mixture that consists of spheres of 

unequal size and disparate interaction. The Kob-Andersen model is known to reproduce several 

aspects of glass transition behaviour. It reproduces the divergence of viscosity and captures the 

non-exponential structural relaxation measured by neutron scattering experiments, but having 

no orientation, cannot really address the Johari-Goldstein mode(s).  

 We first demonstrate that the present model with anisotropy in shape reproduces most 

of the experimentally observed thermodynamic changes as the temperature approaches the 

glass transition temperature. For example, we find a sharp rise in the specific heat when a 
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rapidly cooled system is heated again. The thermal expansion coefficient also undergoes a 

sharp change. Transport properties provide a glass transition temperature of around 0.43. Both 

prolates and oblates give the same glass transition temperature. 

 We observed several potentially interesting results in this study. First is the observation 

of − bifurcation in the relaxation of the orientation and density relaxation, as shown in 

Figure 5. What is remarkable is that the appearance of the bifurcation nearly coincides with 

the crossover temperature captured in the product 
2D , also plotted in Figure 7. Thus, we could 

conclude that Tcr ~ TB, a conclusion that agrees with Stevenson-Wolynes’ theory.37 Another 

important result is that the bifurcations take place in the ps to ns time scales. This agrees well 

with the recent report of such bifurcation by Cicerone et al.38 

  Relatively sharp non-Arrhenius rise of viscosity or relaxation time in the Angell fragility 

plot is often attributed to the entropy crisis scenario, as in Adam-Gibbs or RFOT theories. The 

presence of bifurcation in the relaxation spectrum found in the present study suggests that the 

bend in the relaxation time (or viscosity) versus 1/T in the Angell plot arises partly from the 

conversion of the liquid-like domains to solid-like domains. This is also clearly present in the 

mosaic picture, and in that sense, it is not fully surprising. 

 There seems to exist an interesting analogy with the HDL-LDL transition in supercooled 

liquid water.110 As the temperature is lowered below 273K, the fraction of LDL increases. 

Theoretical study again reveals the appearance of a mosaic-like structure that alternates 

between the two states of liquid water. As the temperature is lowered further below 230K, only 

the LDL domains occupy all regions.  

  A particularly important outcome of the present study is that both the non-Gaussian 

order parameter 
2( )t  and the dynamic heterogeneity parameter 4( )t  clearly demonstrate the 

differing dynamic state of the two peaks in the relaxation spectrum. Furthermore, the peak time 

of these quantities differs by 2-3 orders of magnitude. Thus, fluctuations in the liquid-like 
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domains are shorter-lived than those in the solid-like domains. However, what is interesting to 

note is that this difference is much larger than a factor of 3-5 difference we observe in the value 

from the relaxation spectrum itself.  

 Neither the present model nor the Kob-Andersen models admit to a crystalline state, and 

this poses a problem because most experimental results are discussed in terms of the melting 

temperature of the stable crystalline phase, and one often finds that Tg ~ (2/3) Tm, where Tm is 

the melting temperature. In the present case, we again find Tg ~ (2/3) Tcr. A tantalizing 

possibility is that Tcr is still indirectly correlated with Tm, in the case of real liquids that admit 

a crystalline state. This proposition needs to be verified. In the mosaic picture and the RFOT 

theory, the low entropy, slow, solid-like domains are expected to be better packed and more 

ordered if a crystalline state is allowed to exist.  

 To conclude, we have introduced a new class of models of glass-forming liquids. The 

model admits to orientational motion. We find a Johari-Goldstein-type bifurcation in the 

rotational relaxation at a temperature TB. This temperature is close to the crossover temperature 

observed in the product 
2D . While the sharp fall in the product 

2D  below Tcr reflects the 

markedly different dynamics probed by rotation and translation, the low value of the product 

near the glass transition temperature seems to suggest the freezing out of the remaining liquid-

like regions or domains that take place between a reduced temperature of 0.60 and 0.43.  

 

SUPPLEMENTARY MATERIAL 

See Supplementary Material (SM) for the following: (i) temperature dependence of specific 

volume and isothermal compressibility, (ii) fitting of self-intermediate scattering function to a 

power-law form, (iii) temporal evolution of mean-square displacement (MSD) of prolates and 

oblates,  (iv) bifurcation spectrum of oblates, (v) dynamic heterogeneity and non-Gaussian 

parameters. (vi) partial radial distribution functions (RDFs) of prolates and oblates, (vii) 
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dynamic exchange model (DEM) to provide theoretical analysis of bifurcation, (viii) correlated 

translational and rotational jump motions and (ix) jump dynamic transitions in the dynamics of 

mosaics at T =0.55. 
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SUPPLEMENTARY MATERIAL TEXT 

In the following, we present several results that supplement the results discussed in the main 

text. We briefly elaborate on some of the results. 

(i) Thermodynamic properties 

In the main text, we have discussed the temperature variation of the thermal expansion 

coefficient ( )  and the specific heat at constant pressure ( )PC  across the glass transition 

temperature. In Figure S1, we show the variation of the specific volume ( )spV  as a function of 

temperature from molecular dynamics (MD) simulations in the NPT ensemble as well as for 

cooling-reheating cycles (with three different constant cooling/heating rates). Near the glass 

transition,  a change in the slope of specific volume is observed, which is consistent with the 

earlier studies with spherical atom models.1 The glass transition temperature ( )gT  is predicted 

by the intersection of the curves (when extrapolated) on both sides of the transformation range. 

The temperature-dependent variation during the cooling/heating is found to be sensitive to the 

rate of the processes. However, the dependence of 
gT o`n the cooling/heating rate is weak.  

mailto:bbagchi@iisc.ac.in
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Along with the thermal expansion coefficient ( )  and the specific heat at constant 

pressure ( )PC , isothermal compressibility is required for the estimation of the Prigogine-Defay 

Ratio (PDR).2 The isothermal compressibility in the NPT (isothermal-isobaric) ensemble is 

defined by the fluctuation in the specific volume as follows, 3 

21 1
sp

sp

V

sp sp BT

V

V P V k T
 

 
= − = 

 
              (S1) 

Here, ( )2
2 2 .
spV sp spV V = −  

Figure S2 depicts the variation of isothermal compressibility (obtained from MD 

simulations in the NPT ensemble) as a function of temperature across the glass transition 

region. Similar to the thermal expansion coefficient ( ) and heat capacity, it also shows a sharp 

change near the glass transition. 

We obtain a Prigogine ratio of 2.7 for our model system. 

 

Figure S1. The temperature dependence of specific volume. The results are obtained by MD 

simulations in the NPT ensemble (black spheres with dashed line), isobaric cooling (dotted lines), 

and isobaric heating (solid lines) of the system for three different constant cooling/heating rates. 

A change in the slope of the specific volume shows a signature of glass transition. The glass 

transition temperature further depends on the rate of heating/cooling. From MD simulations in 

NPT ensemble, the glass transition temperature obtained is 
gT 0.43 . 
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Figure S2. The variation of isothermal compressibility with temperature across the glass 

transition region. The results are obtained by MD simulations in the isothermal-isobaric (NPT) 

ensemble. A sharp change in the isothermal compressibility shows a signature of glass transition, 

with the glass transition temperature at 
gT 0.43 . The dotted lines are drawn as a guide to the 

eyes. 

 

(ii) Fit of self-intermediate scattering function to power law forms 

               Figure S3 shows the time variation of the self-intermediate scattering function in a 

semi-log plot. This figure shows the three regimes familiar in the glass transition studies: (i) at 

short times ballistic motion of particles, followed by the transient trapping in cages (-

relaxation), (ii) very slow decay (plateau-like behaviour) at intermediate times, and (iii) at 

sufficiently long times, the fall from the plateau which is known as the  -relaxation.4 We also 

find the two power-law decays separated by a plateau. The results here depict the behaviour 

just above the power law prediction of the glass transition temperature, which, as mentioned in 

the main, is found by fitting to be 0.54. 
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Figure S3. Time dependence of self-intermediate scattering function, ( , )sF k t of prolate at T =0.55. 

The decay to the plateau and from the plateau region is governed by a power law. The fittings are 

shown by the dotted lines. 

 

In Table S1. we provide the power law fitting parameters of self-intermediate scattering 

functions at T = 0.55. 

Table S1. Parameters obtained by the power law fitting of decay to the plateau and from the 

plateau region of self-intermediate scattering functions at T=0.55. 

 f A a B b 

Prolate 0.76 0.17 0.37 45.6 10−  0.82 

Oblate 0.79 0.13 0.39 46.2 10−  0.81 

 

 

(iii) Mean-square displacement of prolates and oblates 

In Figure S4, we present the time dependence of the mean square displacements (MSD) 

of prolates and oblates for different temperatures employed in the present study. At short times, 

the motion is ballistic, and at high temperatures, the ballistic motion is rather quickly followed 
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by the diffusive motion. The diffusion constants are obtained by the linear fitting of mean 

square displacement versus time curves (by avoiding the initial ballistic region). The situation 

changes at low temperatures. Figure S4 shows a dramatic slowdown in the mean square 

displacement below temperature 0.6, implying that time scales of relaxation stretch rapidly as 

temperatures fall below 0.6, which is close to our cross-over temperature.  

 

Figure. S4. Time dependence of the mean square displacement (log-log plot) of the (a) prolate and 

(b) oblate for a range of temperatures starting from low (T = 0.50) to high temperature (T = 1.0). 

It is to be noted that at short times, the motion is ballistic; however, in long times, diffusive motion 

is observed. 

 

(iv) Bifurcation of the distribution of diffusion coefficient of oblates 

           In the main text, we discussed the distribution function of the prolates, which is the main 

constituent of the binary mixture. In Figure S5, we plot the distribution of the short-to-

intermediate time diffusion constant of oblates. As expected, oblates also show the appearance 

of the bifurcation above the glass transition temperature. The bifurcation becomes quite 

pronounced near T = 0.6, where the peak of the product between the diffusion constant and 

rotational correlation time is placed. 
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Figure  S5. The distribution of the short-to-intermediate time diffusion coefficient of oblates at 

(a) T = 1.0, (b) T=0.8, (c) T=0.7, (d) T=0.6, (e) T=0.55, and (f) T=0.5. At a higher temperature, 

there is only one peak; however, as the temperature is lowered, a bimodal distribution is observed. 

 

(v) Dynamic heterogeneity and non-Gaussian parameters  

           The emergence of dynamic heterogeneity is a common signature of glassy liquids. This 

is quantified mainly by two functions, the non-Gaussian parameter (NGP), denoted by 
2( )t , 

and a four-point correlation function, 4( )t .  

 

Figure S6 depicts the temporal evolution of the translational non-Gaussian parameter 

(TNGP) for a series of temperatures. It is to be noted that the behaviour looks similar for both 

the components in the binary mixture. As the temperature is lowered, the peak gradually shifts 

to higher times, varying by over four orders of magnitude. 
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Figure S6. Temporal evolution of the translational non-Gaussian parameter (TNGP) of (a) 

prolates and (b) oblates for a series of temperatures investigated.  

 
 
 
 
 
 
 
 

 

 

Figure S7. Time dependence of the four-point dynamic susceptibility 4( )t  (a) prolates and (b) 

oblates for a series of temperatures investigated. The system becomes more heterogenous as we 

move towards the glass transition. 

 

Besides the translational non-Gaussian parameter, the growth of dynamic heterogeneity 

in the supercooled state can be measured by the four-point dynamical susceptibility. In Figure 

S7, we show the time evolution of 4( )t  for a series of temperatures. While both the four-point 

dynamic susceptibility and the translational non-Gaussian parameter signify that the system 
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becomes more heterogeneous as we move toward the glass transition, the dynamic 

heterogeneity parameter exhibits sharper features. 

 

(vi) Partial radial distribution functions of prolates and oblates 

 In Figure S8, we present three partial radial distribution functions: (i) prolate-prolate, 

(ii) oblate-oblate, and (iii) prolate-oblate. These partial radial distribution functions describe 

local arrangements among the particles. Since the density of the respective species has been 

factored out by dividing by densities in the definition of the partial functions, these figures 

indeed represent the relative local preponderance of the two particles. We find that at both 

temperatures, the oblate-prolate order is most pronounced, followed by prolate-prolate and 

oblate-oblate. This arises from two reasons. First, we have introduced a large prolate-oblate 

attractive interaction, as in the Kob-Andersen model potential. Second, a possible better 

packing arrangement between prolate and oblate. This aspect is not too clear and needs further 

investigation. These features are expected to be important because they introduce frustration in 

the system and prevent crystallization, as in the Kob-Andersen model of a glass-forming binary 

mixture where the two spherical species A and B have different sizes and also attract each other 

more strongly than A-A and B-B interactions.  

 Figure S8(b) produces the bifurcation of the second peak, which is familiar in glass-

forming liquids. This bifurcation originates in multiple possibilities of arrangements at the 

second nearest neighbour distance. In the hard sphere liquid, which is a good glass former, the 

split second peak is due to the difference between fcc and hcp lattice arrangements. 
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Figure S8. The plot of the partial radial distribution function of (a) the prolate-oblate binary 

mixture liquid at (a) high-temperature, T = 1.0 and (b) low-temperature, T = 0.6; at reduced 

pressure P = 30. At low temperatures, the characteristic of glass transition is indicated by the 

splitting of the second peaks. 

 

 

(vii) Theoretical analysis of bifurcation: Dynamic exchange model (DEM) 

 

 The observed rotational and translational dynamics are a complex mix of local 

dynamics and the non-equilibrium nature of the system that drives changes on mesoscopic 

length scales, such as the ones envisaged in the random first-order changes assumed in RFOT 

theory. Thus, when the surrounding liquid of a tagged rotating molecule undergoes a change 

to a solid-like domain, then the measured dynamics is a combination of both processes. On the 

other hand, if a solid-like domain undergoes a transition to a liquid-like domain, then a caged 

tagged molecule can start rotating. Thus, the emergence of a bimodal relaxation pattern can be 

thought of as a result of several factors, prominent among them are the liquid-to-solid and solid-

to-liquid transitions. 

 The transitions are rare and can be considered as a Poisson process with different time 

constants for the liquid-like and solid-like domains. As the temperature is lowered, the fraction 

of solid-like domain increases, but as the system is in a non-equilibrium (or quasi-equilibrium) 

state, the use of detailed balance is questionable, and that limits our ability to reduce the 

problem. 
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  Here, we present a simple theoretical analysis to address the dynamical events and the 

time scales involved in the bifurcation of relaxation obtained in Figure 5. We first assume a 

mosaic picture where the system is naturally divided into small liquid-like and solid-like 

domains, as envisaged in the RFOT theory. We next assume a stochastic dynamical exchange 

model where a liquid-like domain gets transformed to a solid-like domain and vice-versa, a 

scenario akin to freezing and melting processes.  

  We next define ( ), ,L LP r t , which denotes the joint probability of a molecule to reside 

at position r  in the liquid-like region and have an orientation, Ω. Similarly, we define 

( ), ,S SP r t  in the same fashion for solid-like domains. The following coupled equations of 

motion then follow, 

 ( ) ( ) ( ) ( )2 2, , ( , , ) , , , , , ,L L

L L T R L L LS L L SL S SP r t D P r t D P r t k P r t k P r t
t




 =   +   −  + 


 (S1) 

 ( ) ( ) ( ) ( )2 2, , ( , , ) , , , , , ,S S

S s T R S S SL S S LS L LP r t D P r t D P r t k P r t k P r t
t




 =   +   −  + 


 (S2) 

where, andi i

T RD D  denotes the translational and rotational diffusion in the ith phase, kLS and kSL 

are the rates of transition from liquid to solid and vice versa. Thus, we have to deal with four 

rate (or time) constants. In the next step, we expand the density in the spherical harmonics, 

 ( , , ) ( , ) ( ),lm lmP r t a r t Y =   (S3) 

to obtain the following two coupled equations, 

 ( ) ( ) ( ) ( )2, [ ( 1) ] . , , ,L L L L S

lm L R lm LS lm SL lma k t D k l l D a k t k a k t k a k t
t


=− + + − +


 (S4) 

 ( ) ( ) ( ) ( )2, [ ( 1) ] . , , .S S S S L

lm S R lm SL lm LS lma k t D k l l D a k t k a k t k a k t
t


=− + + − +


 (S5) 
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We now define two time constants: 

 

2

.

2

1
( 1)

( )

1
( 1)

( )

S S

T R

S

L L

T R

L

D k l l D
k

D k l l D
k





= + +

= + +

 (S6) 

We now make the simplifying assumption that relaxation in the solid state is extremely slow,  

0S

RD =  and DT = 0, so that the equation of motion for density relaxation in the solid state is 

given by the exchange dynamics only ( this simplifying assumption can be relaxed easily). We 

then follow the standard procedure  to obtain, 

 
( ) ( ) ( ) ( )

( ) ( )  

2
2

2
, [ ( 1) ] , , ,

( 1) ( ) ( ) .

L L L L S

lm T R lm LS lm SL lm

L L L S L

R lm LS lm SL SL lm LS lm

a k t D k l l D a k t k a k t k a k t
t

l l D a t k a t k k a t k a t


= − + + − +



= − + − + − +

 (S7) 

In the rest of the analysis, we shall focus on dielectric relaxation only, which means that we 

need only the k = 0 component of  alm (k,t). 

It is now simple and straightforward  by standard procedure to eliminate the solid density term 

to obtain the following quadratic equation,  

 ( ) ( ) ( )
2

2
( 1) ( 1) 0L L L L L

lm R LS SL lm R SL lma t l l D k k a t D l l k a t
t


 + + + + + + = 

 (S8) 

This simple quadratic equation with constant coefficients  is solved to obtain two time scales, 

 
2 4k B B C = −  −  (S9)                                      

where,                                   
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( 1)

( 1)

L

R LS SL

L

R SL

B l l D k k

C l l D k

 = + + + 

= +
 (S10) 

According to this model, the two rate constants would represent the two peaks in the relaxation 

spectrum (Figure 5).  

Next, it may be safe to assume that kLS >> kSL. Thus, the rate constants are given by 

 

2

2

f

s

k B

C
k k

B

k −

+

  −

 −
 (S11) 

 A simple analysis shows that in the limit of extreme slow down, the two rate constants 

are given by l (l+1)DR + kLS, and just kSL. The above simple analysis serves to explain the 

occurrence of the bifurcation in the relaxation spectrum. At high temperatures, there is no 

exchange mechanism, and the dielectric relaxation time shall be given by 1/2DR. 

  One can easily extend the above analysis to include translational diffusion.   The standard 

procedure gives riser to wavenumber dependent dynamical functions alm (k,t), where k is the 

wave number. The resulting constant analysis gives rise to an additive term of the form l 

(l+1)DR +DTk2+ kLS,. The other rate remains invariant. The preceding analysis is, of course, 

valid at a somewhat longer length scale, or the value of the wavenumber is significantly lower 

than the peak value of the structure factor. 

 The above analysis, however, gets modified because of the exchange of a region between 

solid-like and liquid-like domains. Let us consider that we have exchanges that are of time 

scales comparable to rotational relaxation and/or translational motion, measured by dynamic 

structure factor. Then, we may obtain an average over the relaxation in liquid-like and solid-
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like domains. This aspect certainly serves to explain the proximity of the two peaks in the 

relaxation spectrum. At lower temperatures, the contribution of the liquid-like domain 

diminishes rapidly. 

  Another interesting conclusion from the above analysis is that it helps in understanding 

the sharp peak in the product  Dτ2 shown in Figure 7. While the average mean square 

displacement (MSD) of particles is expected to be dominated by the fast liquid-like domains, 

the measured rotational time correlation function is expected to be dominated by the slow 

domains. This explains the perplexing observation: why a probe molecule appears to translate 

further during its correlation time. Actually, in this experimentation, one is led to compare 

between two different molecules – one is translating in the fast domain and the other rotating 

in the slow domain. The appearance of the sharp peak in the product Dτ2 can now be understood 

as the temperature where a large fraction of liquid-like domains transforms to solid-like 

domains, as also seen in Figure 9. Thus, the contribution of the fast-moving particles in liquid-

like domains disappears. Rotational diffusion, already dominated by the solid-like domains, is 

relatively less affected. Also relevant is the fact that our oblates and prolates are not drastically 

different from the spherical shape, so they might not get retarded by a significant degree. 

  The presence of the bifurcation in the relaxation spectrum seems to suggest the absence 

of any large growing correlation length, at least beyond a few molecular diameters. There is an 

interesting analogy with spectroscopy. When we study vibrational relaxation or Raman 

spectrum from a system consisting of two species or two energy levels, we obtain two peaks 

only when the exchange rate is slower than the lifetime of the states. In the presence of fast 

exchange, the two peaks merge to give rise to a single peak. This is called motional narrowing, 

a well-known phenomenon in vibrational and NMR spectroscopy. 
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(viii)  Correlated translational and rotational jump motions 

 Figures S9(a) and S9(b) demonstrate correlated translational and rotational jump 

motions of a tagged prolate and oblate particles at a low temperature of T=0.60. While such 

correlated jump motions are not unexpected and have been reported earlier, a few features stand 

out. The rotational jumps are often in the range of 130-140 degrees. That is, the rotational 

jumps are not the full 180 degrees allowed by symmetry. Second, the translational jumps are 

typically in the range of 0.75-1.0 molecular diameters. Such jumps have been observed by 

many in other systems like the Kob-Andersen model, where, however, rotational jumps could 

not be studied. 

 

Figure S9. The coupled translational and rotational jump from the single particle trajectories for 

selected ellipsoids (a) prolate and (b) oblate over a time window at temperature T=0.60. (c) The 

magnitude of the translational displacement vector of a tagged prolate (Np=752)  and its nearest 

neighbours over a short time window illustrating correlated jump motion at T=0.60. 

 

 In Figure S9(c), we show the translational displacement trajectory of a randomly selected 

tagged prolate (say Np=752), illustrating the jump motion at T=0.60. The same figure depicts 

the trajectories of the nearest neighbours of the randomly selected tagged prolate where 

correlated jump motion has been observed.  
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(ix) Jump dynamic transitions in the dynamics of mosaics 

In Figures S10(a) and S10(b), we show the short-to-intermediate time diffusion of a few grids 

as a function of time at T=0.55. In Figures S10(c) and S10(d), we show the intermediate-time 

orientational relaxation times ( 1

2 2( )C e −= ) of a few grids as a function of time at T=0.55. 

 

Figure S10. (a)-(b) The variation of the short-to-intermediate time diffusion constant of particles 

in grids as a function of time at T=0.55. (c)-(d)The variation of the intermediate time orientational 

relaxation times (C2(t)) of particles in grids as a function of time at T=0.55. We observe a sharp 

change in the diffusion constant of some grids, indicating liquid-to-solid and solid-to-liquid like 

transitions. Further, a correlated change in the short-time diffusion and orientational relaxation 

time has been observed. 

 

Figure S11(a) depicts the short-to-intermediate time diffusion constant of selected grids (say 

G-28) as a function of time at T=0.6. During the large-scale jump in the diffusion constant, two 

molecules are found to leave the box, followed by a small density change in the box, as shown 

in Figure S11(b). 
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Figure S11. The variation of the short-to-intermediate time diffusion constant of particles 

in a particular grid (G_28) as a function of time at T=0.6. (b) The density change in the 

box during the large-scale jump.  
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