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THE CARTAN-HELGASON THEOREM FOR SUPERSYMMETRIC

SPACES: SPHERICAL WEIGHTS FOR KAC-MOODY SUPERALGEBRAS

ALEXANDER SHERMAN

Abstract. Let (g, k) be a supersymmetric pair arising from a finite-dimensional, symmetriz-
able Kac-Moody superalgebra g. An important branching problem is to determine the finite-
dimensional highest-weight g-modules which admit a k-coinvariant, and thus appear as func-
tions in a corresponding supersymmetric space G/K. This is the super-analogue of the Cartan-
Helgason theorem. We solve this problem via a rank one reduction and an understanding of
reflections in singular roots, which generalize odd reflections in the theory of Kac-Moody su-
peralgebras. An explicit presentation of spherical weights is provided for every pair when g

is indecomposable.

1. Introduction

Let g be a simple complex Lie algebra, and let k ⊆ g be a symmetric subalgebra, i.e. k is
the fixed points of an involution on g. The Cartan-Helgason theorem (see [3]) describes which
irreducible g-modules admit a k-invariant vector, and thus define functions on a corresponding
symmetric space G/K. As a generalization of the Peter-Weyl theorem, this allows one to
describe the space of polynomial functions on G/K, and similarly to describe the L2 functions
on Gc/Kc, where Gc and Kc are compact real forms of G and K, respectively.

1.1. Questions in the super-setting. We are interested in the analogous question in the su-
per setting. Let g be a symmetrizable Kac-Moody superalgebra, e.g. g = gl(m|n), osp(m|2n), . . .
(We work with gl(m|n) instead of sl(m|n) for simplicity.) Let θ be an involution on g pre-
serving an invariant form, and giving fixed points k and (−1)-eigenspace p. We call (g, k) a
supersymmetric pair. Broadly speaking, we are interested in the following very important
branching problem:

Question A: For which finite-dimensional, indecomposable g-modules V do we have
(V ∗)k 6= 0?

Note that by Frobenius reciprocity, this question is directly related to when we can realize
V inside C[G/K] (the algebra of polynomial functions on G/K), where G,K are global forms
of g and k. We immediately see a difference between the super setting and the classical
setting in that representations need not be semisimple, forcing us to consider indecomposable
representations.

It is generally thought that a full answer to question A is extremely challenging, if not
hopeless. However, in this text we make progress in answering question A in the case when
V is simple, and more generally when it is a highest-weight module. We write these questions
more explicitly for later reference.
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Cartan-Helgason theorem for supersymmetric spaces

Question B: For which finite-dimensional highest-weight g-modules V do we have
(V ∗)k 6= 0?

Question C: For which finite-dimensional simple g-modules V do we have (V ∗)k 6= 0?

Questions B and C are of considerable importance in representation theory, and a full
understanding of their answer would yield great insight into the structure of C[G/K].

As already stated, the answer to these questions in the classical situation is given by the
Cartan-Helgason theorem, see [3]. In that case, representations are completely reducible, and
thus one only needs to look at simple modules, making questions A, B, and C equivalent.

1.2. Previously known results. Let a ⊆ p0 be a maximal abelian subspace (a Cartan
subspace). Then we obtain a restricted root system ∆ ⊆ a∗, and the choices of positive
systems for ∆ are equivalent to choices of simple roots Σ ⊆ ∆, which we also refer to as a
base.

Given a base Σ ⊆ ∆, let nΣ be the corresponding nilpotent subalgebra, which is generated
by gα for α ∈ Σ. Then we assume the Iwasawa decomposition holds, i.e. that g = k⊕ a⊕ nΣ.
Let b be any Borel subalgebra of g containing a⊕ n; we call b an Iwasawa Borel subalgebra of
g. Let pΣ = c(a) ⊕ nΣ, a parabolic subalgebra which contains any Iwasawa Borel subalgebra
that contains a⊕ nΣ. (Here c(a) denotes the centralizer of a in g.)

In [1] it was shown that if V is a b-highest weight module of highest weight λ with respect to
an Iwasawa Borel b such that (V ∗)k 6= 0, then in fact λ ∈ a∗, and the b-highest weight vector
is actually a pΣ-eigenvector. Further, dim(V ∗)k ≤ 1. The proof of this result works just like in
the classical setting of the Cartan-Helgason theorem. Since the parabolic pΣ is determined by
our base Σ, we define P+

Σ ⊆ a∗ to be the Σ-spherical weights, i.e. those λ ∈ a∗ for which there
exists a highest weight, finite-dimensional g-module V of highest weight λ with respect to pΣ
such that (V ∗)k 6= 0.

In [1] they use a super-generalization of the Harish-Chandra c-function to prove a partial
converse: if λ ∈ a∗ is integral and ‘high enough’ with respect to Σ, in a sense we do not discuss
here, then in fact λ ∈ P+

Σ .

1.3. Main (new) results. We improve on the work in [1] by computing entirely the Σ-
spherical weights P+

Σ with respect to particular bases Σ for every supersymmetric pair. We
state this more precisely below:

Theorem 1.1. For the following supersymmetic pairs, we determine P+
Σ for every base Σ ⊆ ∆,

thus giving a full answer to question B:

(gl(m|n), gl(r|s) × gl(m− r|n− s)), (osp(m|2n), osp(r|2n) × osp(m− r|2n)),

(osp(m|2n), osp(m|2s) × osp(m|2n − 2s)), (d(2, 1 : a), osp(2|2) × so(2)),

(ab(1|3), gosp(2|4)) (ag(1|2), d(2, 1; a)), (ab(1|3), d(2, 1; 2) × sl(2)).

For the remaining supersymmetric pairs, which are

(osp(2m|2n), gl(m|n)), (gl(m|2n), osp(m|2n)),

(osp(m|2n), osp(m − r|2n− 2s)× osp(r|2s)), (ab(1|3), sl(1|4)),

we compute the spherical weights with respect to certain positive systems. Thus we obtain the
answer to question B for certain positive systems.
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See Section 4.1 for tables describing the sets P+
Σ explicitly for each pair (g, k).

1.4. Method of computation. Our method of computation is directly inspired by the ideas
of Serganova used in [13] to compute the dominant weights of a Kac-Moody superalgebra g.
Indeed, her result is a special case of the arguments we give in the case of the diagonal pair
(g× g, g).

The idea is that for any base Σ ⊆ ∆ and any λ ∈ a∗, we may define a g-module VΣ(λ) which is
of highest weight λ with respect to Σ and admits a k-coinvariant (i.e. (VΣ(λ)

∗)k 6= 0). Further,
we have that λ ∈ P+

Σ if and only if VΣ(λ) is finite-dimensional, i.e. integrable. Checking
integrability must be done on all so-called ‘principal roots’ Π ⊆ ∆, which are those that
generate the even part ∆0 of the root system ∆. If Π ⊆ Σ, which happens in certain cases
(e.g. for the ‘standard’ choice of Σ when (g, k) = (gl(m|2n), osp(m|2n))), then integrability
becomes easy to check, giving a straightforward description of P+

Σ .

1.4.1. Singular reflections. In most cases we have Π 6⊆ Σ, and thus we must reflect Σ in so-
called singular roots to deal with principal roots not lying in Σ. We say α ∈ ∆ is a singular
root if both α and 2α are not restrictions of even roots of g. Singular roots come in 2 flavours:
isotropic, meaning that (α,α) = 0, and non-isotropic, so that (α,α) 6= 0. If α ∈ Σ is singular,
we define rαΣ to be the base associated to the positive system (∆ \ {α}) ⊔ {−α}. See Lemma
2.20 for an explicit description of rαΣ.

As we show, if α is singular isotropic, then the reflection in α, which we write as rα, is well
behaved on representations. Namely, we have VΣ(λ) ∼= VrαΣ(rαλ), where rαλ = λ if (λ, α) = 0,
and rαλ = λ− 2α if (λ, α) 6= 0.

However, trouble occurs if α is singular non-isotropic. In this case gα will be of dimension
(0|2n) for some n ∈ Z≥0. Write hα ∈ a∗ for the coroot of α. Then if λ(hα)/2 /∈ {n+1, . . . , 2n},
we have that VΣ(λ) ∼= VrαΣ(rαλ), where the formula for rαλ is given in Lemma 3.17.

However if λ(hα)/2 = n + k ∈ {n + 1, . . . , 2n}, then VΣ(λ) must contain VΣ(λ − 2kα),
implying that it is never simple, and further it is not highest weight with respect to rαΣ. In
this case we say that λ is an α-critical weight. Reflecting α-critical weights to other simple roots
systems becomes a tricky business. Nevertheless, if one performs only one simple reflection in
a singular root, we do have control over what happens: see Lemma 3.20. This allows us to
compute P+

Σ in cases where non-isotropic singular roots appear.

1.5. Consequences for simple spherical modules. As explained, our work has an ad-hoc
element to it when reflecting α-critical weights. This prevents us from computing spherical
weights with respect to arbitrary positive systems in every case. However, if we are interested
in Question C, such issues don’t arise, because if λ is α-critical then necessarily VΣ(λ) is not
simple. Hence, if VΣ(λ) is finite-dimensional and simple, we must have VΣ(λ) ∼= VrαΣ(rαλ) for
any α ∈ Σ.

If Σ is a base, we call λ ∈ P+
Σ fully reflectable if for any base Σ′ ⊆ ∆, we have VΣ(λ) ∼=

VΣ′(λΣ′) for some λΣ′ ∈ P+
Σ′ .

Conjecture 1.2. Let Σ ⊆ ∆ be a base, and let λ ∈ P+
Σ be fully reflectable. Then VΣ(λ)

is simple if and only if for any base Σ′ ⊆ ∆ and any non-isotropic β ∈ Σ′ with m(β) :=
− sdim(gβ)/2− sdim g2β > 0, we have

λΣ′(hβ)/2 /∈ {m(β) + 1, . . . , 2m(β)}.
3
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The numerical conditions in the above conjecture arise from considering the rank one cases,
and studying when two dominant weights will have the same eigenvalue for the Casimir.
We do not prove the necessity of these conditions in the article. The proof for the case of
(osp(m|2n), osp(m − 1|2n)) is written in [17]. We note that Conjecture 1.2 was shown to hold
under an extra genericity hypothesis on λ in Sec. 6.4 of [18].

1.6. Supersymmetric spaces. Our work is part of an ongoing project to improve under-
standing of supersymmetric spaces and their connections to representation theory. Supersym-
metric spaces are homogeneous superspaces of the form G/K, where K is a symmetric subgroup
of the supergroup G. Such spaces are natural in the study of super harmonic analysis, see for
instance [2] and [5]. They also have important connections to interpolation polynomials (see
[8], [9], and [10]), integrable systems (see [12]), and physics (see [22] and [11]).

1.7. Outlook for the queer Kac-Moody setting. We expect our techniques to gener-
alize to the queer Kac-Moody setting (see [20]), which includes the supersymmetric pairs
(q(n), q(r) × q(n− r)). This will be the subject of future work.

1.8. Outline. In Section 2 we develop the necessary facts about restricted root systems we
will use, including about singular reflections. Section 3 studies the modules VΣ(λ) and the tools
for checking integrability. Section 4 explicitly describes the sets P+

Σ for each supersymmetric
pair and a choice of base Σ.

1.9. Acknowledgements. We would like to thank Vera Serganova for providing feedback on
an initial version of this article, and for many stimulating discussions. We also thank Shifra
Reif, Siddhartha Sahi, and Hadi Salmasian for many helpful discussions about supersymmetric
pairs and restricted root systems. This project was partially made possible by a SQuaRE
at the American Institute for Mathematics, and we thank AIM for providing a supportive
and mathematically rich environment. The author was partially supported by ARC grant
DP210100251.

2. Restricted root systems

In what follows, for a super vector space V we write V = V0⊕V1 for its parity decomposition.
We always work over an algebraically closed field k of characteristic 0.

2.1. Supersymmetric pairs. Let g be a finite-dimensional, symmetrizable Kac-Moody Lie
superalgebra (see [13]). Let θ be an involution of g which preserves a nondegenerate, invariant
bilinear form (−,−) on g. Write the eigenspace decomposition for θ as g = k⊕p, where k = gθ.
Then k is naturally a subalgebra, and p is a k-module. We call (g, k) a supersymmetric pair.

Set a ⊆ p0 to be a Cartan subspace, meaning a maximal abelian subspace. It is known
that a is unique to conjugacy by the action of exp(k0) ⊆ GL(p0) (see Sec. 26 of [21]). Set
m = k ∩ c(a) to be the centralizer of a in k.

Assumption (⋆): We assume that c(a) = a ⊕ m. By the classical picture (see Sec. 26 of
[21]), we have c(a)0 = a⊕m0. Thus our assumption is equivalent to c(a)1 = m1, i.e. c(a)1 ⊆ k.
By [16], if g is indecomposable then either c(a)1 ⊆ k or c(a)1 ⊆ p.

If h is a Cartan subalgebra of g containing a, then by Cor. 26.13 of [21], h is θ-stable. We
fix a choice of such a Cartan subalgebra h throughout.
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2.2. Restricted root system. We may consider the action of a on g by the adjoint action.
Writing ∆ ⊆ a∗ \ {0} for the non-zero weights of this action, we have

g = c(a) ⊕
⊕

α∈∆

gα = m⊕ a⊕
⊕

α∈∆

gα,

where we have used out assumption (⋆) for the last equality. We refer to elements of ∆ as
restricted roots, or just roots when the context is clear.

Remark 2.1. Let ∆̃ ⊆ h∗ denote the root system of g. Then another description of ∆ may be
given as

∆ = {α|a : α ∈ ∆̃} \ {0}.

The following definition is from Sec. 5 of [16]; we write Z∆ for the abelian subgroup of a∗

generated by ∆.

Definition 2.2. Let φ : Z∆ → R be a group homomorphism such that φ(α) 6= 0 for all α ∈ ∆.
Then we write ∆+ := {α ∈ ∆|φ(α) > 0}, and call ∆+ ⊆ ∆ a choice of positive system of
∆ ⊆ a∗.

Definition 2.3. We call a base Σ ⊆ ∆ a linearly independent set in a∗ such that

∆ ⊆ NΣ ⊔ (−NΣ).

In other words, every α ∈ ∆ is either a non-negative or non-positive integral linear combination
of elements of Σ. We call elements of a base simple (restricted) roots.

Definition 2.4. We call the rank of a supersymmetric pair (g, k) the size of any base Σ ⊆ ∆
of the restricted root system.

Given a base Σ ⊆ ∆, set ∆+
Σ := NΣ.

Lemma 2.5. The set ∆+
Σ is a positive system. Further, the correspondence Σ 7→ ∆+

Σ is
bijective.

Proof. For Σ ⊆ ∆ a base, define φΣ : Z∆ → R by φ(α) = 1 for α ∈ Σ, and extend linearly.
Then it is clear that for φΣ the corresponding positive system is ∆+

Σ . The injectivity of the

correspondence Σ 7→ ∆+
Σ follows from the definition of a base.

For surjectivity, Sec. 5 of [16] explains that we may extend any positive system ∆+ ⊆ ∆ to

a choice of positive system for all g with simple roots Σ̃ ⊆ h∗. Let us call Σ the projection

of Σ̃ to a∗. Then Σ will be a base by Prop. 5.7 and Lem. 5.10 of [16], and it is clear that
∆+ = ∆+

Σ . �

2.3. Nilpotent subalgebra nΣ and Iwasawa decomposition. Given a base Σ, we obtain
a nilpotent subalgebra nΣ, which by definition is

n+Σ =
⊕

α∈∆+

Σ

gα.

Lemma 2.6. For any choice of Σ we have the Iwasawa decomposition g = k⊕ a⊕ n+Σ.

Proof. This follows from our assumption that c(a)1 ⊆ k and a standard argument (see Thm. 5.3
of [16]). �

Lemma 2.7. The subalgebra n+Σ is generated by the subspaces gα for α ∈ Σ.
5
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Proof. Extending a to a Cartan subalgebra h of g, by Sec. 5 of [16] we may lift Σ to a base

Σ̃ ⊆ h∗ such that every element α ∈ Σ̃ is either fixed by θ, and thus gα ⊆ m, or θα 6= α in
which case α|a ∈ Σ.

It is clear that the subalgebra generated by gα for α ∈ Σ is c(a) = m ⊕ a-stable. From the
decomposition

g = n−Σ ⊕ c(a)⊕ n+Σ ,

the result is now clear. �

Remark 2.8. We have shown that for a base Σ = {α1, . . . , αk} ⊆ ∆, we obtain a presentation
of g such that it is generated by c(a) = a ⊕ m, gα1

, . . . , gαk
, g−α1

, . . . , g−αk
, subject to the

relations that each gαi
is a c(a)-module, and

[gαi
, g−αj

] = 0 for i 6= j.

Of course there are more relations, but we don’t concern ourselves with this here. We only
mention that g does not contain any ideals which do not intersect h because it is Kac-Moody;
in particular it does not have any ideals contained in n+Σ .

Corollary 2.9. Let α ∈ Σ. Then [gα, gα] = g2α.

Proof. This follows from Lemma 2.7. �

Corollary 2.10. A set Σ ⊆ ∆ is a base if and only if the following conditions hold:

(1) Σ is linearly independent;
(2) [gα, g−β] = 0 for distinct α, β ∈ Σ;
(3) g is generated by c(a) along with the root spaces gα, g−α where α runs over the elements

of Σ.

Proof. Indeed, under the conditions we have ∆ ⊆ (NΣ ⊔ (−NΣ)), as required. �

2.4. Principal roots. Observe that the involution θ defines a symmetric pair (g0, k0) with
the same Cartan subspace a, and along with it a restricted root system ∆0 ⊆ ∆ ⊆ a∗. This
will be a (potentially non-reduced) root system with possibly several irreducible components
(Lem. 26.16, [21]). Suppose that we have a positive system ∆+

Σ for (g, k). Then this induces a

positive system ∆0 = ∆+
0 ⊔∆−

0 , and along with it a base Π ⊆ ∆0.

Definition 2.11. Given a base Σ of ∆, we call the base Π ⊆ ∆+
0 determined by Σ the principal

roots (of Σ). We note that while Π depends on Σ, we will surpress this dependence in writing
for reasons that will become clear.

Corollary 2.12. The Lie algebra g0 is generated by m0, a, and (gα)0, (g−α)0, where α runs
over all principal roots.

Proof. This follows from Corollary 2.10 applied to the pair (g0, k0). �

2.5. Properties of restricted roots.

Definition 2.13. For a root α ∈ ∆, write mα = (mα,0|mα,1), where mα,0 := dim(gα)0,

mα,1 = dim(gα)1.

Lemma 2.14. If α ∈ ∆, then if kα ∈ ∆ we must have k ∈ {±1,±2,±1/2}. Further, if 2α is
a root, then m2α,1 = 0.

6
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Proof. This follows from the classification presented in Section 3.6. �

Definition 2.15. We say a root α is real if the subalgebra generated by gα, g−α contains sl(2).
We say a root is singular if it is not real. Note that if a root α is real then (α,α) 6= 0, but
the converse need not hold. If α is real, set ε(α) to be 0 if 2α is not a root, and otherwise set
ε(α) = 1.

We clearly have a decomposition ∆ = ∆re ⊔∆sing of roots into real and singular roots.

Definition 2.16. For a nonisotropic root α ∈ ∆, set hα := 2(α,−)
(α,α) ∈ a.

Lemma 2.17. Let α be a real root, and suppose that β ∈ ∆. Then β(hα) ∈ 2ε(α)Z.

Proof. If ε(α) = 0, then the statement follows from the representation theory of sl(2). If ε(α) =
1, we see that g−2α, g2α will generate a copy of sl(2) by Lemma 2.14, so that
β(h2α) =

1
2β(hα) ∈ Z. This forces β(hα) ∈ 2Z. �

2.6. Rank one sub-pairs. For α ∈ ∆, set

g〈α〉 := c(a) +
⊕

n∈Q 6=0

gnα

Then θ stabilizes g〈α〉, and we write k〈α〉 for the fixed subalgebra. This will be a supersym-
metric pair of rank 1.

2.7. Reflections in simple roots. Let Σ be a base, and for a simple root α ∈ Σ, define rαΣ
to be the base of the positive system (∆+

Σ \ {α}) ⊔ {−α}. Note that the latter is indeed a
positive system, as we may define

(2.1) φΣ,α(α) = ǫ, φΣ,α(β) = 1 for β ∈ Σ \ {α}

where ǫ is a small negative number. Then the positive system obtained from φΣ,α will be
(∆+

Σ \ {α}) ⊔ {−α}.

Definition 2.18. We call a reflection rα a singular reflection if α is singular.

The following is clear:

Lemma 2.19. Any two bases obtained from one another by a sequence of singular reflections
have the same principal roots.

If α is real, then rα is simply the usual reflection coming from the babyWeyl group. However,
if α is singular then we show that we can view it as a bijection rα : Σ → rαΣ, which works as
follows:

Lemma 2.20. Suppose that α ∈ Σ simple root (singular or real). Then rαΣ consists of the
roots rαα = −α along with rαβ for β ∈ Σ \ {α}, with rαβ = β + kαβα, where kαβ is the
maximal non-negative integer k such that β + kα ∈ ∆.

Proof. Indeed, it is clear that with φΣ,α as defined in 2.1, the roots −α along with β + kαβα
for β ∈ Σ \ {α} will be both linearly independent and will take the minimum positive values
under φΣ,α as required. �

Remark 2.21. If α ∈ Σ is singular and β ∈ Σ, then rαβ = β + kαβα for kαβ ∈ {0, 1, 2}.
7
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Lemma 2.22. Any two bases Σ,Σ′ may be obtained from one another by a sequence of simple
reflections.

Proof. If Σ 6= Σ′, then there exists α ∈ Σ ∩ ∆−
Σ′ . Thus we have |∆+

rαΣ
∩∆+

Σ′ | < |∆+
Σ ∩∆+

Σ′ |,
and we may conclude by induction. �

2.8. Equivalent positive systems. We partition the collection of bases into equivalence
classes, declaring that Σ ∼ Σ′ if there exists a sequence of singular reflections rα1

, . . . , rαk
such

that Σ′ = rαk
· · · rα1

Σ. Note that a given equivalence class S of bases has a well-defined set Π
of principal roots by Lemma 2.19.

Lemma 2.23. For all γ ∈ Π, there exists some base Σ for which Π ⊆ ∆+
Σ and either γ ∈ Σ

or γ/2 ∈ Σ.

Proof. We may write Z∆ = Q ⊕ P , Q,P are free Z-modules and ZΠ ⊆ Q is finite index.
Let ψ : ZΠ → R be such that ψ(γ) = ǫ > 0 is very small and positive, and ψ(γ′) ≫ 0 for
γ′ ∈ Π \ {γ}. Define φ : Z∆ → R by extending ψ to Q via the injectivity of R, and letting φ
be very large in absolute value on all non-zero projections of elements of ∆ to P . Then base
obtained from φ will have the desired properties. �

The following is entirely analogous to Cor. 4.5 of [13], and follows from the same proof as
Lemma 2.22

Lemma 2.24. If Σ,Σ′ are bases with the same principal roots, then they are equivalent.

Corollary 2.25. Let S be an equivalence class of bases with principal roots Π. Then for every
γ ∈ Π, there exists some base Σ ∈ S for which either γ or γ/2 is simple.

Proof. This follows immediately from Lemmas 2.23 and 2.24. �

3. Spherical weights

In this section, we introduce spherical weights and study their behavior under singular
reflections. At this point we chose to abuse the classification of supersymmetric pairs for g

indecomposable and Kac-Moody, as avoiding it seems rather difficult and lacking sufficient
payoff.

3.1. Σ-spherical weights. Let Σ ⊆ ∆ be a choice of simple roots, and consider the parabolic
subalgebra:

pΣ = c(a)⊕ nΣ = m⊕ a⊕
⊕

α∈∆+

Σ

gα.

Definition 3.1. Define P+
Σ ⊆ a∗ to be the those weights λ ∈ a∗ for which there exists a

highest weight (with respect to pΣ), finite-dimensional g-module V of highest weight λ, such
that (V ∗)k 6= 0. We call elements λ ∈ P+

Σ the Σ-spherical weights. Note that P+
Σ is a submonoid

of a∗ by Cor. 5.10 of [19].
8
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3.2. Parabolic Verma module. For λ ∈ a∗, consider the one dimensional, purely even c(a)-
module
kλ = k〈vλ〉 on which a acts via λ and m acts by 0. Inflate kλ to a module over pΣ, and
set

MΣ(λ) := IndgpΣ kλ.

The following lemma is standard, and follows from Prop. 5.5.4 and Prop. 5.5.8 of Diximier.

Lemma 3.2. There exists a one-dimensional space of k-coinvariants on MΣ(λ). In partic-
ular, there exists a minimal quotient VΣ(λ) of MΣ(λ) which continues to admit a nonzero
k-coinvariant.

Caution: VΣ(λ) need not be irreducible!

Remark 3.3. Note that if V is a finite-dimensional, indecomposable highest weight g-module
such that (V ∗)k 6= 0, then there exists λ ∈ a∗ such that VΣ(λ) is a quotient of V . Indeed this
follows from the classical situation, and is shown in [1].

Remark 3.4. Let G be a quasireductive supergroup which is a global form of g and is such
that θ lifts to an involution of G. Let K ⊆ G be a subgroup satisfying (Gθ)◦ ⊆ K ⊆ Gθ,
where (Gθ)◦ denotes the connected component of the identity of Gθ. Notice that K will also
be quasireductive.

Then we call G/K a supersymmetric space (see [7] for the construction of homogeneous
spaces). Given an Iwasawa Borel subalgebra b, that is, a Borel subalgebra containing a ⊕ n,
we may consider the b-eigenfunctions in k[G/K]. This set will exactly be those λ ∈ P+

Σ for
which VΣ(λ) integrates to a representation of the group G and for which K0 acts trivially on the
k-coinvariant on VΣ(λ). Further, for exactly such λ we will have an embedding VΣ(λ) ⊆ k[G/K].

3.3. Properties of the k-coinvariant.

Lemma 3.5. Let vλ denote the highest weight vector ofMΣ(λ). Then we have Uk·vλ =MΣ(λ).
Thus:

MΣ(λ) = k〈vλ〉 ⊕ kUk · vλ.

In particular, if ϕ : MΣ(λ) → k is a nontrivial k-coinvariant, then ϕ(v) = 0 if and only if
v ∈ kUkvλ.

Proof. This follows from the Iwasawa decomposition g = k⊕a⊕nΣ, and the fact that a⊕nΣ ⊆
pΣ. �

Lemma 3.6. If α ∈ ∆, then Ug〈α〉 · vλ ∼= M{α}(λ) as g〈α〉-modules. Thus the following are
equivalent for a vector v ∈ Ug〈α〉 · vλ:

(1) v ∈ k〈α〉Uk〈α〉vλ;
(2) v ∈ kUkvλ;
(3) the nontrivial k-coinvariant on MΣ(λ) vanishes on v.

Proof. This follows from Lemma 3.5 applied to both pairs (g, k) and (g〈α〉, k〈α〉). �

3.4. Integrability.

Definition 3.7. For α ∈ ∆, we say that a g-module V is α-integrable if both gα and g−α act
locally nilpotently on V , i.e. if for each v ∈ V there exists N > 0 such that ad(gα)

Nv = 0 and
ad(g−α)

Nv = 0.
9
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Lemma 3.8. For λ ∈ a∗, the following are equivalent:

(1) λ ∈ P+
Σ ;

(2) VΣ(λ) is finite-dimensional;
(3) for every real root α ∈ ∆, there exists an N > 0 such that ad(gα)

Nvλ = 0;
(4) for every α ∈ Π, there exists an N > 0 such that ad(g−α)

Nvλ = 0.

Proof. Here we use that Ug is a α-integrable for all α ∈ ∆. For the last equivalence, we use
Corollary 2.12. �

3.5. Detecting singular subspaces. Recall that for two distinct simple roots α, β ∈ Σ, we
have

[gα, g−β] = 0.

Thus, ifW ⊆ Ug〈α〉·vλ is a c(a)-stable subspace annihilated by gα, then we will have nΣW = 0
and pΣW ⊆W , i.e. we obtain a singular subspace with respect to pΣ.

If further we have that the k-coinvariant ϕ on MΣ(λ) vanishes on W , then the quotient map
MΣ(λ) → VΣ(λ) will necessarily vanish on W , and thus on Ug ·W = Uk ·W , again using the
Iwasawa decomposition.

3.6. Classification of rank one supersymmetric pairs. For the following classification
result, we simply refer to the classification of supersymmetric pairs, which is described in
Sec. 5.2 of [16], and is based off [15].

Lemma 3.9. Suppose that (g, k) is rank one, so that Σ = {α}. Then up to split factors fixed
by θ, we have the following possibilites for (g, k). In the following, a′ denotes a complimentary
abelian subalgebra on which θ acts by (−1):

(1) α is singular:
(i) (α,α) 6= 0, mα = (0|2n) for n ≥ 1, and m2α = (0|0):

g = osp(2|2n) × a′, k = osp(1|2n);

(ii) (α,α) = 0, mα = (0|2), and m2α = (0|0):

g = gl(1|1) × gl(1|1) × a′, k = gl(1|1);

(2) α is real:
(i) mα = (m− 2|2n) for m ≥ 3, n ≥ 1, and m2α = (0|0):

g = osp(m|2n) × a′, k = osp(m − 1|2n);

(ii) mα = (4(n − 2)|2m) for m ≥ 1, n ≥ 2, and m2α = (3|0), for n ≥ 2:

g = osp(m|2n) × a′, k = osp(m|2n − 2)× sp(2);

(iii) mα = (2(m − 2)|2n) for m ≥ 2, n ≥ 1, and m2α = (1|0):

g = gl(m|n)× a′, k = gl(m− 1|n)× gl(1);

(iv) mα = (2|0) and m2α = (0|0):

g = sl(2) × sl(2) × a′, k = sl(2);

(v) mα = (0|2) and m2α = (2|0):

g = osp(1|2) × osp(1|2) × a′, k = osp(1|2).

Corollary 3.10. If (g, k) is any supersymmetric pair, and α ∈ ∆, then (g〈α〉, k〈α〉) is isomor-
phic to one of the pairs above after quotienting by split, θ-fixed ideals.

10
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3.7. Rank one integrability conditions.

Lemma 3.11. If Σ is a base and α ∈ Σ is a real root, then VΣ(λ) is α-integrable if and only
if λ ∈ P+

{α} with respect to the rank one root system determined by (g〈α〉, k〈α〉).

Proof. This follows immediately from Remark 3.5 and Lemma 3.6. �

Theorem 3.12. Let α ∈ Σ be a real, simple root. Then a weight λ ∈ a∗ is α-integrable if and
only if λ(hα) ∈ 2ε(α) · 2Z≥0

Proof. Suppose that λ is α-integrable, so that V{α}(λ) is a finite-dimensional g〈α〉-module.
Then λ will be a spherical weight for the underlying even symmetric pair of rank one, which
by Thm. 3.12 of [6] implies that λ(hα) ∈ 2ε(α) · 2Z≥0.

For the converse, we use the classification given in Section 3.6 to construct explicit highest
weight representations VΣ(λ) satisfying λ(hα) = 2ε(α) · 2, which is enough because P+

Σ is a
monoid.

(1) For (osp(m|2n), osp(m − 1|2n)) we use the standard representation km|2n.

(2) For (osp(m|2n), osp(m|2n − 2)× sp(2)) we use (S2km|2n)/k.
(3) For (gl(m|n), gl(m − 1|n)) we use the adjoint representation.
(4) The diagonal cases (g× g, g) are easy.

�

3.8. Spherical weights for ∆ = ∆re or Π ⊆ Σ. In the case ∆ = ∆re, we have that for all
α ∈ Π, either α ∈ Σ or α/2 ∈ Σ. Thus in this case we obtain:

Theorem 3.13. Suppose that ∆re = ∆. Then for a base Σ, we have λ ∈ a∗ is Σ-spherical if
and only if for all α ∈ Σ we have λ(hα) ∈ 2ε(α) · 2Z.

Theorem 3.13 applies to the following pairs:

(gl(m|n), gl(r) × gl(m− r|n)), r ≤ m/2, (osp(m|2n), osp(r|2n) × so(r)), r < m/2,

(osp(m|2n), osp(m|2n − 2s)× sp(2s)), s ≤ n/2, (ag(1|2), d(2, 1; 3)).

The following is also clear.

Proposition 3.14. Suppose that Σ is a set of simple roots such that Π ⊆ Σ. Then a weight
λ ∈ a∗ is Σ-spherical if and only if for all α ∈ Π we have λ(hα) ∈ 2ε(α) · 2Z≥0.

Proposition 3.14 applies to the following pairs for particular choices of base Σ:

(gl(m|2n), osp(m|2n)), (osp(2|2n), osp(1|2r) × osp(1|2n − 2r)).

3.9. Singular reflections of highest weights.

Lemma 3.15. Let α ∈ Σ be a singular root with (α,α) = 0, and let λ ∈ a∗. Then
VΣ(λ) ∼= VrαΣ(rαλ), where rαλ ∈ a∗ is given by the following formula:

rαλ =

{
λ− 2α if (λ, α) 6= 0

λ if (λ, α) = 0.
11
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Proof. Recall that g〈α〉 = gl(1|1)×gl(1|1)×a′ , up to split factors fixed by θ, and the involution
swaps the two factors of gl(1|1), and is (−1) on a′,. Thus we may write λ = (λ0,−λ0, λ

′), where
λ0 is a weight of gl(1|1) and λ′ is a weight of a′. We may similarly write α = (α′,−α′, 0)/2,
where α′ is a root of gl(1|1) with coroot hα′ . Now we see that

(λ, α) = λ0(hα′).

First suppose that (λ, α) = 0, which is equivalent to λ0(hα′) = 0. Let e1, e2 be the raising
operators and f1, f2 the lowering operators of the two copies of gl(1|1). Thus g−α = k〈f1, e2〉.
Then if we set W := k〈f1vλ, e2vλ〉, we see that it is m-stable and gαW = 0. Further, W
is purely odd so that the k-coinvariant vanishes on it. Thus Section 3.5 implies that the
map MΣ(λ) → VΣ(λ) factors through the quotient by Ug ·W . In particular, g〈α〉 stabilizes
vλ ∈ VΣ(λ). From this we see that VΣ(λ) is a quotient of MrαΣ(λ), and so by universality we
have VΣ(λ) ∼= VrαΣ(λ).

On the other hand, (λ, α) 6= 0 is equivalent to λ0(h
′
α) 6= 0. In this case we see that

f1e2vλ ∈MΣ(λ) will be of weight λ− 2α with respect to a, and will be a prαΣ-singular vector.
Thus we obtain a map MrαΣ(λ−2α) →Mα(λ). Surjectivity is easy to check, and so we get an
isomorphism MrαΣ(λ− 2α) ∼=Mα(λ). From this we easily obtain VΣ(λ) ∼= VrαΣ(λ− 2α). �

We now state what happens in our ‘best-behaved’ case. Note the following proposition is
effectively a generalization of Thm. 10.5 of [13].

Proposition 3.16. Suppose that every singular root α ∈ ∆sing is isotropic. Let Π ⊆ ∆+
Σ be

the set of principal roots and let λ ∈ a∗. Then λ ∈ P+
Σ if and only if for each γ ∈ Π there

exists some base Σ′ ∼ Σ such that γ ∈ Σ′ and the corresponding reflected weight λΣ′ satisfies
λΣ′(hγ) ∈ 2ε(γ) · 2Z≥0.

Proof. This follows from Corollary 2.25 and 3.15. �

Proposition 3.16 applies to the following pairs:

(g× g, g), (gl(m|n), gl(r|s)× gl(m− r|n− s))

3.10. Reflections in nonisotropic, singular roots.

Lemma 3.17. Suppose that α ∈ Σ is a singular, nonisotropic root of multiplicity (0|2n), and
λ ∈ a∗.

(1) If λ(hα)/2 /∈ {0, 1, . . . , n − 1, n+ 1, . . . , 2n}, then VΣ(λ) ∼= VrαΣ(λ− 2nα);
(2) if k := λ(hα)/2 ∈ {0, 1, . . . , n− 1} then

VΣ(λ) ∼= VrαΣ(λ− 2kα);

(3) if λ(hα)/2 = n + k ∈ {n + 1, n + 2, . . . , 2n}, then VΣ(λ) contains VΣ(λ − 2kα) as a
submodule. In particular, if λ ∈ P+

Σ then λ− 2kα ∈ P+
Σ .

Proof. Observe that gα will be an irreducible, purely odd, m-module with a symplectic form
ω ∈ Λ2g−α. Thus ω

n ∈ Λ2ng−α = Λtopg−α is non-zero.
In case (1), λ will be a typical weight for osp(2|2n) ⊆ g〈α〉. Thus ωnvλ will generate

MΣ(λ), is of weight λ − 2nα, and is annihilated by m and g−α. Hence we obtain a map
MrαΣ(λ − 2nα) → MΣ(λ), and it is easy to see it is an isomorphism. In this way, we obtain
an isomorphism VΣ(λ) ∼= VrαΣ(λ− 2nα), as desired.

In case (2), we use the computations in Sec. 10 of [17] to see that Ug〈α〉vλ contains a pΣ-
stable subspace W on which the k-coinvariant vanishes. Taking the quotient of MΣ(λ) by the

12
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submodule generated by W , we obtain a module M ′ for which Ug〈α〉vλ is irreducible, with
lowest weight vector ωkvλ (again applying computations in [17]). Thus we obtain a surjective
map MrαΣ(λ− 2kα) →M ′, from which it easily follows that VΣ(λ) ∼= VrαΣ(λ− 2kα).

Finally, for case (3), the computations of Sec. 10 in [17] once again show that ωkvλ is an
m-fixed, p-singular vector on which the k-coinvariant does not vanish. Therefore we get a map
VΣ(λ− kα) → VΣ(λ), and injectivity is by definition. �

Definition 3.18. Let λ ∈ a∗ and let α ∈ Σ be a singular, nonisotropic root. Then we say
that λ is an α-critical weight if λ(hα)/2 ∈ {n+ 1, . . . , 2n}.

Definition 3.19. Let λ ∈ a∗, and let α ∈ Σ be a simple, singular, non-isotropic root. If λ is
not α-critical, then set:

rαλ :=

{
λ− λ(hα)α if λ(hα)/2 ∈ {0, . . . , n− 1};

λ− 2nα otherwise.

In particular, VΣ(λ) ∼= VrαΣ(rαλ).

Using singular reflections, it is clear that we can understand when a weight λ ∈ a∗ lies in
P+
Σ if no reflection of λ is critical for simple, singular, non-isotropic root. For weights that

are critical for some singular, nonisotropic α ∈ Σ, we may use the following to understand
something.

Lemma 3.20. Let α ∈ Σ be a nonisotropic, singular root, and let β be a simple real root of
rαΣ. Then for an α-critical weight λ ∈ a∗, VΣ(λ) is β-integrable if and only if both VrαΣ(λ)
and VrαΣ(λ− 2nα) are.

Caution: we do not have an isomorphism VΣ(λ) ∼= VrαΣ(λ).

Proof. Let pα,Σ be the parabolic subalgebra of g containing both pΣ and g−α. Let Vλ,α be
the finite-dimensional Kac-module over g〈α〉 ∼= osp(2|2n)× a′ × (...) of highest weight λ. Note
that Vλ,α is indecomposable with composition series 0 → Lλ−2k,α → Vλ,α → Lλ,α → 0, where
L(−),α is the corresponding simple module over g〈α〉.

Then we may inflate Vλ,α to pα,Σ. Observe that VΣ(λ) is a quotient of Indgpα,Σ
Vλ,α. As a

module over prαΣ, it is generated by V m
λ,α = k〈vλ, ωvλ, · · · , ω

2nvλ〉. Thus VΣ(λ) is β-integrable

if and only if each vector ωjvλ is β-integrable, i.e. (g−β)
Nωjvλ for N ≫ 0.

However, by Lemma 3.12, this is in turn is equivalent to:

(λ− 2jα)(hβ) ∈ 2ε(β) · 2Z≥0 for all j = 0, . . . , 2n.

Since evaluation at hβ is a linear function in j, the result is now clear from Lemma 2.17. �

We note that in principal one could use the idea of Lemma 3.20 to try and understand what
happens after performing multiple reflections. However, we don’t see at this moment how to
understand this picture in a simple way in any generality.

4. Explicit computations of spherical weights

In the final section, we explicitly describe the sets P+
Σ for convenient choices of Σ when (g, k)

is a supersymmetric pair with g indecomposable. In the problematic cases, i.e. those for which
nonisotropic singular roots are present, we choose Σ so that all but the last singular reflection
will have critical weights, allowing us to rely on Lemma 3.20.

13
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We stress that we have made choices of seemingly convenient bases Σ. However the tech-
niques we employ have the potential to work for other bases as well. If one is interested in
a description of P+

Σ for a Σ not used here, one may attempt to apply our techniques in their
case. In particular, our technique will work when Σ has the property that every principal root
either lies in Σ or lies in rαΣ for some singular root α ∈ Σ. Such Σ can often be constructed
by making them consists of as many singular roots as possible.

We begin by working abstractly with restricted root systems, for simplicity.

Example 4.1. Let r, s ∈ Z≥0, k ∈ k×, and define BCk(r, s) to be the weak generalized root

system with two real components ∆re = BCr⊔BCs and singular roots ∆sing =W (ω
(1)
1 +ω

(2)
1 ).

Here ω
(j)
i denotes the ith fundamental weight of the jth irreducible component of ∆re, as in

[14]. The bilinear form is normalized such that (ω
(1)
1 , ω

(1)
1 ) = 1 and (ω

(2)
1 , ω

(2)
1 ) = k. Define

Ck(r, s) ⊆ BCk(r, s) to be the same as BCk(r, s) but without the short roots.
Let us write γ1, . . . , γr, ν1, . . . , νs for a basis of the underlying vector space given by mutually

orthogonal short roots, where γ1, . . . , γr ∈ BCr and ν1, . . . , νs ∈ BCs. Then one base Σ for
BCk(r, s) is given by:

γ1 − γ2, . . . , γr−1 − γr, γr − ν1, . . . , νs−1 − νs, νs.

A set of principal roots is given by Π = {γ1 − γ2, . . . , γr−1 − γr, γr, ν1 − ν2, . . . , νs−1 − νs, νs}.
Therefore we have that {γr} = Π \ (Π ∩Σ).

For Ck(r, s), we may take the same base and principal roots, only we need to multiply νs
and γr by 2. However this minor difference does not affect any of the computations of P+

Σ
below.

Let λ =
∑
i
aiγi+

∑
j
bjνj . Then a necessary condition for λ ∈ P+

Σ is that λ(hα) ∈ 2ε(α) ·2Z≥0

for all α ∈ Π, i.e.

ai − ai+1, ar, bi − bi+1, bs ∈ 2Z≥0.

To obtain γr as a simple root, we must apply the simple reflections rγr−ν1 , . . . , rγr−νs . We see
that for k 6= −1:

λ(hγr−ν1)/2 =
ar − kb1
1 + k

.

Case I, k = −1: In this case all singular roots are isotropic, so in fact Proposition 3.16
applies. We see that (λ, γr − ν1) = ar + b1, which is non-negative, and zero if and only if
ar = b1 = 0. Thus either bi = 0 for all i and λ ∈ P+

Σ , or rγr−ν1λ = λ− 2γr + 2ν1, meaning we

must have ar ≥ 2. If b2 = 0 then again it is clear that λ ∈ P+
Σ , and otherwise we need ar ≥ 4.

Continuing like this, we learn that

λ ∈ P+
Σ ⇐⇒ ar/2 ≥ |{i : bi 6= 0}|.

Case II, k = −1/2, mγr−ν1 = (0|2): We have γi − νj is a non-isotropic singular root.
Observe that λ(hγr−ν1)/2 = 2ar + b1 which is an even, non-negative integer. If this quantity
is 0, then bi = 0 for all i and ar = 0, so that λ ∈ P+

Σ .

If ar = 0 and b1 > 0 then by Lemma 3.17, λ ∈ P+
Σ only if λ− 2γr + 2ν1 is integrable. But

it is clearly not since the coefficient of γr would become negative. Thus ar = 0 ⇒ b1 = 0, and
for all other values of (ar, b1) we have 2ar + b1 > 2. Hence there are no critical weights for
γr − ν1. Because mγr−ν1 = (0|2), in these cases we will have rγr−ν1λ = λ− 2γr +2ν1, meaning
we must have ar ≥ 2.

14
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Using inductive reasoning as in the first case, we once again find that:

λ ∈ P+
Σ ⇐⇒ ar/2 ≥ |{i : bi 6= 0}|.

Case III: r = s = 1, mγ1−ν1 = (0|2), k 6= −1
Recall that

λ(hγ1−ν1)/2 =
a1 − kb1
1 + k

.

If the above quantity is equal to 0, then we must have a1 = kb1, implying that either a1 = b1 = 0
or a1, b1 > 0. If the above quantity is equal to 2, then we must have a1 6= 2. However if a1 = 0
then λ− 2γ1 + 2ν1 is not dominant, so λ can’t be either by Lemma 3.17.

In all other cases, rαλ = λ− 2γ1 + 2ν1 must be integrable, meaning that a1 ≥ 2. Therefore
we obtain that:

λ = a1γ1 + b1ν1 ∈ P
+
Σ ⇐⇒ a1 = 0 ⇒ b1 = 0.

4.1. Tables with P+
Σ . In Table 1, we describe ∆ and make a choice of base Σ for each pair.

In Tables 2 and 3 which follow, we explicitly describe P+
Σ for the given choice of Σ. We use

the presentations of generalized root systems given in Sec. 5.2 of [16].
In the next section we will justify our computations.
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Table 1.

(g, k) ∆

Σ

(gl(m|2n), osp(m|2n)) A(m− 1, n − 1)

ǫ1 − ǫ2, . . . , ǫm − ν1, ν1 − ν2, . . . , νn−1 − νn

νi := (δ2i−1 + δ2i)/2

(gl(m|n), gl(r|s) × gl(m− r|n− s)) (B)C−1/2(r, s)

r ≤ m/2, s ≤ n/2 γ1 − γ2, . . . , γr − ν1, ν1 − ν2, . . . , νs−1 − νs, (2)νs

γi := (ǫi − ǫm−i+1)/2, νi := (δi − δn−i+1)/2

(osp(2m|2n), gl(m|n)) (B)C−1/2(n,m)

δ1 − δ2, . . . , δn − γ1, γ1 − γ2, . . . , γm−1 − γm, (2)γm

γi = (ǫ2i−1 + ǫ2i)/2

(osp(m|2n), osp(r|2s) × osp(m− r|2n− 2s)) BC−1/2(r, s)

r < m/2, s ≤ n/2 ǫ1 − ǫ2, . . . , ǫr − ν1, ν1 − ν2, . . . , νs−1 − νs, νs

νi = (δ2i−1 + δ2i)/2

(osp(2r|2n), osp(r|2s) × osp(r|2n − 2s)) ∆re = Dr ⊔ Cs, ∆sing =W (ω
(1)
1 + ω

(2)
2 ) ⊔Wω

(1)
1

0 < s < n/2 ǫr + νs,−ǫr + νs,−νs + ǫr−1,−ǫr−1 + νs−1, . . .

νi = (δ2i−1 + δ2i)/2

(osp(2r|4s), osp(r|2s) × osp(r|2s)) D(r, s)

ν1 − ν2, . . . , νs − ǫ1, ǫ1 − ǫ2, . . . , ǫr−1 − ǫr, ǫr−1 + ǫr

νi = (δ2i−1 + δ2i)/2

(osp(2r|2n), osp(r|2n) × so(r)) ∆re = Dr, ∆sing =Wω1

ǫ1 − ǫ2, . . . , ǫr−1 − ǫr, ǫr

(d(2, 1; a), osp(2|2) × so(2)) Ca(1, 1)

α− β, 2β

(ab(1|3), gosp(2|4)) C−3(1, 1)

ǫ/2− δ/2, δ

(ab(1|3), sl(1|4)) ∆re = B2 ⊔ C1, ∆sing =W (ω
(1)
2 + ω

(2)
1 )

ǫ2, (ǫ1 − ǫ2 − δ)/2, δ

(ab(1|3), d(2, 1; 2) × sl(2)) ∆re = B3, ∆sing =Wω3

ǫ2 − ǫ3, ǫ1 − ǫ2, (−ǫ1 + ǫ2 + ǫ3)/2

(ag(1|2), d(2, 1; 3)) G2

any base
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Table 2.

(g, k) P+
Σ

(gl(m|2n), osp(m|2n)) a1ǫ1 + · · ·+ amǫm + b1ν1 + · · ·+ bnνn

ai − ai+1, bi − bi+1 ∈ 2Z≥0

(gl(m|n), a1γ1 + · · · + arγr + b1ν1 + · · ·+ bsγs

gl(r|s)× gl(m− r|n− s)) ai − ai+1, ar, bi − bi+1, bs ∈ 2Z≥0, ar/2 ≥ |{i : bi 6= 0}|

r ≤ m/2, s ≤ n/2

(osp(2m|2n), gl(m|n)) a1γ1 + · · ·+ amγm + b1δ1 + · · ·+ bnδn

ai − ai+1, am, bi − bi+1, bn ∈ 2Z≥0, bn/2 ≥ |{i : ai 6= 0}|

(osp(m|2n), a1ǫ1 + · · · + arǫr + b1ν1 + · · ·+ bsνs

osp(r|2s) × osp(m− r|2n− 2s)) ai − ai+1, ar, bi − bi+1, bs ∈ 2Z≥0, ar/2 ≥ |{i : bi 6= 0}|

r < m/2, s ≤ n/2

(osp(2r|2n), a1ǫ1 + · · · + arǫr + b1ν1 + · · ·+ bsνs

osp(r|2s)× osp(r|2n − 2s)) ai − ai+1, ar−1 + ar, bi − bi+1, bs ∈ 2Z≥0.

0 < s < n/2 If s < r then either there exists i = 0, . . . , s such that

a1 ≥ a2 ≥ · · · ≥ ar−s > ar−s+1 > · · · > ar−s+i = 0

and b1 > b2 > · · · > bi ≥ bi+1 = 0,

otherwise a1 ≥ a2 ≥ · · · ≥ ar−s > ar−s+1 > · · · > |ar|

and b1 > b2 > · · · > bs−1 > bs ≥ 0.

If s ≥ r then either there exists i = 0, . . . , r such that

a1 > a2 > · · · > ai = 0

and b1 ≥ · · · ≥ bs−r+1 > bs−r+2 > · · · > bs−r+i ≥ bs−r+i+1 = 0,

otherwise a1 > a2 > · · · > ar−1 > |ar|

and b1 ≥ · · · ≥ bs−r+1 > bs−r+2 > · · · > bs ≥ 0

(osp(2r|4s), a1ǫ1 + · · · + arǫr + b1ν1 + · · ·+ bsνs

osp(r|2s) × osp(r|2s)) ai − ai+1, bi − bi+1, bs ∈ 2Z≥0,

ar−1 ≥ |ar|, bs/2 ≥ |{i : ai 6= 0}|

(osp(2r|2n), osp(r|2n) × so(r)) a1ǫ1 + · · · + arǫr

ai − ai+1 ∈ 2Z≥0, and either ar ≥ 0 or ar−1 ≥ |ar − 2n|
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Table 3. Continuation of Table 2

(g, k) P+
Σ

(d(2, 1; a), osp(2|2) × so(2)) aα+ bβ

a, b ∈ 2Z≥0, b = 0 ⇒ a = 0

(ab(1|3), gosp(2|4)) aǫ+ bδ

a, b ∈ Z≥0 and either a = b = 0 or a ≥ 2

(ab(1|3), sl(1|4)) a1ǫ1 + a2ǫ2 + bδ

a1 − a2 ∈ 2Z≥0, a2, b ∈ Z≥0

either a1 = a2 = b = 0 or a1 ≥ 0

(ab(1|3), d(2, 1; 2) × sl(2)) a1ǫ1 + a2ǫ2 + a3ǫ3

ai − ai+1 ∈ 2Z≥0, a3 ∈ Z≥0

and either a3 = 0 or a1 > a2

(ag(1|2), d(2, 1; 3)) a1ω1 + a2ω2

a1, a2 ∈ 2Z≥0,

ω1, ω2 the fundamental dominant weights.

4.2. Computations of P+
Σ for supersymmetric pairs. We now justify the computations

presented in the tables above by going through the pairs case by case. We once again remind
that we use the presentations of generalized root systems given in Sec. 5.2 of [16].

(1) (gl(m|2n), osp(m|2n)): For the choice of Σ given we have Π ⊆ Σ, so we may apply
Proposition 3.14 to obtain our description.

(2) (gl(m|n), gl(r|s) × gl(m − r|n − s)), r ≤ m/2, s ≤ n/2: In this case we obtain the
restricted root system BC−1(r, s) if r < n/2 or s < m/2, and otherwise we get
C−1(m/2, n/2). Thus we may apply Case I of Example 4.1 to obtain our description.

(3) (osp(2m|2n), gl(m|n)): After renormalizing the form, we obtain C−1/2(n,m) if m is
even and BC−1/2(n,m) otherwise. Thus we may apply Case II of Example 4.1 to
obtain our description.

(4) (osp(m|2n), osp(m − r|2n − 2s)× osp(r|2s)), r < m/2, s ≤ n/2: We obtain restricted
root system BC−1/2(r, s), so we may apply Case II of Example 4.1.

(5) (osp(2r|2n), osp(r|2s) × osp(r|2n − 2s)), 0 < s < n/2: let us be more explicit about
the base we choose. If s < r, we take the base to be

ǫ1 − ǫ2, . . . , ǫr−s − ν1, ν1 − ǫr−s+1, . . . , ǫr−1 − νs, νs ± ǫr.

Thus we would like to independently apply the singular reflections
rǫr−s−ν1 , rǫr−s+1−ν2 , . . . , rǫr−1−νs , rǫr+νs in order to obtain the remaining real roots.

In this case, this tells us that for i = 0, . . . , s − 1 either ar−s+i = bi+1 = 0 or
ar−s+i > |ar−s+i+1| and bi > bi+1, where if i = 0 the condition bi > bi+1 is empty.
Further, either 2ar = bs or ar−1 > |ar − 2| and bs−1 > bs. In other words, either for
some i = 0, . . . , s we have

a1 ≥ a2 ≥ · · · ≥ ar−s > ar−s+1 > · · · > ar−s+i = 0
18
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and

b1 > b2 > · · · > bi ≥ bi+1 = 0.

or

a1 ≥ a2 ≥ · · · ≥ ar−s > ar−s+1 > · · · > |ar|

and

b1 > b2 > · · · > bs−1 > bs ≥ 0.

If, on the other hand, s ≥ r, we have base:

ν1 − ν2, . . . , νs−r+1 − ǫ1, ǫ1 − νs−r+2, . . . , ǫr−1 − νs, νs ± ǫr.

Thus we would like to independently apply the singular reflections
rǫ1−νs−r+2

, rǫ2−νs−r+3
, . . . , rǫr−1−νs , rǫr+νs . This forces either ai = bs−r+i+1 = 0 or

ai > |ai+1| and bs−r+i > bs−r+i+1. Further, either 2ar = bs or ar−1 ≥ |ar − 2|
and bs−1 > bs. Stated more succinctly, we have that either for some i = 1, . . . , r:

a1 > a2 > · · · > ai = 0

and

b1 ≥ b2 ≥ · · · ≥ bs−r+1 > bs−r+2 > · · · > bs−r+i ≥ bs−r+i+1 = 0.

or

a1 > a2 > · · · > ar−1 > |ar|

and

b1 ≥ b2 ≥ · · · ≥ bs−r+1 > bs−r+2 > · · · > bs−1 > bs ≥ 0.

(6) (osp(2r|4s), osp(r|2s)×osp(r|2s)): take base γ1−γ2, . . . , γs−1−γs, γs−ǫ1, . . . , ǫr−1±ǫr.
Then we want to apply simple reflections rγs−ǫ1 , rγs−ǫ2 , . . . , rγs−ǫr . Let λ =

∑
j
bjγj +

∑
i
aiǫi. Then if bs = 2k with k < r − 1, we are forced to have ak+1 = · · · = ar = 0,

and we will have λ ∈ P+
Σ .

Suppose instead that bs = 2k with k ≥ r − 1. Then

λ′ := rγs−ǫr−1
. . . rγs−ǫ1λ = b1γ1+· · ·+bs−1γs−1+(bs−2(r−1))γs+(a1+2)ǫ1+· · ·+(ar−1+2)ǫr−1+arǫr.

We see that

λ′(hγs−ǫr) = −(bs − 2(r − 1))− 2ar.

If this quantity is 0, then λ ∈ P+
Σ . Otherwise, the following weight must be integrable:

b1γ1 + · · · + bs−1γs−1 + (bs − 2r)γs + (a1 + 2)ǫ1 + · · ·+ (ar−1 + 2)ǫr−1 + (ar + 2)ǫr,

meaning we need bs ≥ 2r.
(7) (osp(2r|2n), osp(r|2n)× so(r)) with n > 0: in this case we have base ǫ1− ǫ2, . . . , ǫr−1−

ǫr, ǫr. So we are missing the principal root ǫr−1 + ǫr, which is obtained by rǫr . Notice

that mǫr = (0|2n). If λ =
r∑

i=1
aiǫi, then λ ∈ P+

Σ if and only if ai − ai+1 ∈ 2Z≥0,

ar−1 ≥ |ar|, and either ar ≥ 0 or ar−1 ≥ |ar − 2n|.
(8) (d(2, 1; a), osp(2|2)× so(2)): Here we obtain restricted root system Ca(1, 1) where non-

isotropic singular roots have mulitplicity (0|2). Thus we may apply Case III of Example
4.1.
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(9) (ab(1|3), gosp(2|4)): C(1, 1) deformed: a∗ has basis ǫ, δ where (ǫ, ǫ) = 1/3, (δ, ǫ) = 0,
(δ, δ) = −1. Then Σ can be taken as (ǫ − δ)/2, δ and Π = {ǫ, δ}. We have rǫ−δΣ =
{(δ − ǫ)/2, ǫ}. Then for λ = aǫ+ bδ, we have λ ∈ P+

Σ if and only if a, b ∈ Z and either
a = b = 0 or a ≥ 2.

(10) (ab(1|3), sl(1|4)): B2⊔C1, deformed: a∗ has basis ǫ1, ǫ2, δ where (ǫi, ǫj) = δij/3, (ǫi, δ) =
0, and (δ, δ) = −1. Then we may take Σ to be ǫ2, (ǫ1 − ǫ2 − δ)/2, δ, and we have
Π = {ǫ1 − ǫ2, ǫ2, δ}. Then r(ǫ1−ǫ2−δ)/2Σ is (ǫ1 + ǫ2 − δ)/2, (−ǫ1 + ǫ2 + δ)/2, ǫ1 − ǫ2.

Now if λ = a1ǫ1 + a2ǫ2 + bδ then λ ∈ P+
Σ if and only if a2, b ∈ Z≥0, a1 − a2 ∈ 2Z≥0,

and either a1 = a2 = b = 0 or a1 ≥ 1.
(11) (ab(1|3), d(2, 1; 2)): B3 with small orbit: a∗ has basis ǫ1, ǫ2, ǫ3, where (ǫi, ǫj) = δij/3.

Then for Σ we may take ǫ2− ǫ3, ǫ1− ǫ2, (−ǫ1+ ǫ2+ ǫ3)/2, and Π = {ǫ1− ǫ2, ǫ2− ǫ3, ǫ3}.
Then we have r(−ǫ1+ǫ2+ǫ3)/2Σ is given by ǫ2 − ǫ3, ǫ3, (ǫ1 − ǫ2 − ǫ3)/2.

Let λ = a1ǫ1 + a2ǫ2 + a3ǫ3 ∈ a∗. Then a necessary condition that λ ∈ P+
Σ is that

a1 − a2, a2 − a3 ∈ 2Z≥0, a3 ∈ Z≥0. We see that

λ(h(−ǫ1+ǫ2+ǫ3)/2)/2 =
2

3
(−a1 + a2 + a3).

Thus any weight λ = (a + b)ǫ1 + aǫ2 + bǫ3 such that a, b, a − b ∈ 2Z≥0 will lie in P+
Σ .

Otherwise, we need that a1 > a2.
(12) (ag(1|2), d(2, 1; 3)): G2: In this case the restricted root system is just G2, and all simple

roots are real. We present a∗ with basis ν1, ν2, the fundamental weights for G2. Then
for λ = a1ν1 + a2ν2 ∈ a∗, we have λ ∈ P+

Σ if and only if a1 − a2, a2 ∈ 2Z≥0.
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