
Topological Cycle Graph Attention Network for
Brain Functional Connectivity

Jinghan Huang1, Nanguang Chen1, and Anqi Qiu1−5

1 Department of Biomedical Engineering, National University of Singapore, Singapore
2 Department of Health Technology and Informatics, The Hong Kong Polytechnic

University, Hong Kong
an-qi.qiu@polyu.edu.hk

3 NUS (Suzhou) Research Institute, National University of Singapore, China
4 The N.1 Institute for Health, National University of Singapore, Singapore

5 Department of Biomedical Engineering, The Johns Hopkins University, USA

Abstract. This study, we introduce a novel Topological Cycle Graph
Attention Network (CycGAT), designed to delineate a functional back-
bone within brain functional graphs—key pathways essential for signal
transmission—from non-essential, redundant connections that form cy-
cles around this core structure. We first introduce a cycle incidence ma-
trix that establishes an independent cycle basis within a graph, mapping
its relationship with edges. We propose a cycle graph convolution that
leverages a cycle adjacency matrix, derived from the cycle incidence ma-
trix, to specifically filter edge signals in a domain of cycles. Additionally,
we strengthen the representation power of the cycle graph convolution by
adding an attention mechanism, which is further augmented by the intro-
duction of edge positional encodings in cycles, to enhance the topological
awareness of CycGAT. We demonstrate CycGAT’s localization through
simulation and its efficacy on an ABCD study’s fMRI data (n=8765),
comparing it with baseline models. CycGAT outperforms these models,
identifying a functional backbone with significantly fewer cycles, crucial
for understanding neural circuits related to general intelligence. Our code
will be released once accepted.

Keywords: Functional connectivity · Topological graph neural network.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive technique cap-
turing brain activity through blood oxygen level dependent (BOLD) signals [2].
It evaluates functional connectivity (FC) by computing Pearson correlation of
time series between brain regions, offering insights into a brain’s functional or-
ganization. FC is commonly modeled as an undirected graph, known as a brain
functional graph [18,20], where nodes represent brain regions and edges denote
functional connections. Contrary to being random, these graphs exhibit small-
world architectures and significant modularities [16,10], suggesting the presence
of a functional backbone essential for the majority of signal transmission within
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the brain [17], with other edges considered redundant, forming cycles around
this core structure [12]. The analysis on this backbone contributes to a wider
examination of brain connectivity. For example, studies have demonstrated that
an increase in signal dispersion across redundant connections correlates with
lower cognitive scores in subjects, highlighting the critical role of the functional
backbone in cognitive performance [12]. Despite these advances in understand-
ing FC, there remains a significant gap in leveraging deep learning to distinguish
the functional backbone from redundant connections. This requires a technique
to filter the FC based on the unique topological structures formed by cycles.

The use of graph neural networks (GNNs) to learn the features of FC relevant
to cognition or mental disorders has seen significant growth [1,3,4]. GNNs ana-
lyze FC as signals on nodes by aggregating connectivities into a vector [21,9,19].
Innovations in GNN applications, such as attention mechanisms [19], clustering-
based embeddings [9], and dynamic network updates [21], have propelled for-
ward the classification of disorders like Autism Spectrum Disorder (ASD) and
Attention Deficit Hyperactivity Disorder (ADHD) [9,21]. Recent advancements
have also explored edge signal smoothing through topological edge connections
[6,5,3], employing strategies like dual graph conversions [5] and spectral graph
convolution with Hodge Laplacian operators [3] to address the challenges of di-
mensionality and spatial localization. These edge-focused GNN approaches have
shown promise in both molecular science and neuroscience. However, there re-
mains a critical gap in modeling higher-order interactions, such as cycles, which
are essential for distinguishing between the functional backbone and redundant
connections.

This study introduces the cycle graph attention network (CycGAT), an inno-
vative approach that incorporates the topological concept of cycles into GNNs to
filter out redundant connections and extract the functional backbone. CycGAT
is designed to refine the analysis of fMRI data for classifying general intelligence
groups by learning from the edges’ features and their neighborhood connections
in a domain of cycles. The effectiveness of CycGAT is highlighted through its
application on the large-scale ABCD dataset, where its performance is bench-
marked against leading GNN methods such as GAT, BrainGNN, dGCN, Hyper-
graph NN, and HL-HGCNN. This research introduces three novel techniques:

1. An efficient algorithm computing a cycle incidence matrix and a cycle adja-
cency matrix characterizing the formation of cycles by edges and the intricate
connections among edges within these cycles. respectively;

2. An attention-based spatial graph convolution operator that smooths edge
signals in a domain of cycles;

3. Topological-aware edge positional encodings that represent the topological
distance between edges in cycles.

2 Methods

This study introduces the Cycle Graph Attention Network (CycGAT), a novel
framework designed for the automatic identification of functional backbones
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Fig. 1: CycGAT framework overview. (a) The input graph displays nodes (cir-
cles), edges (squares), and edge signals (rectangles), with edge decomposition
into a maximum-spanning tree, B(G), and the set of additional edges, D(G). (b)
Detailing the computation of the cycle incidence matrix, iteratively applied to
each edge in D(G). (c) Depiction of cycle graph convolutional layers, with blue
arrows indicating signal propagation within a single cycle and orange arrows
demonstrating inter-cycle signal propagation via shared edges.

within brain functional graphs. In the following, we will detail the computa-
tion processes for the cycle incidence matrix, the cycle adjacency matrix, and
the edge positional encodings in cycles (EPEC) in sequence. Finally, we present
our newly proposed cycle graph convolution operator.

2.1 Cycle Incidence Matrix and Cycle Adjacency Matrix

In this study, the brain functional network is characterized by an undirected
graph, G = (V, E), where brain regions are represented as nodes, V = {vi}Ni=1,
and their connections as edges, E = {ei}Ei=1. Here, N and E represent the number
of nodes and edges. Functional connectivity, defined as the Pearson correlation
between fMRI time-series of two nodes, is represented as a signal on the con-
necting edge. Cycles within G are defined as sets of edges that connect sequences
of nodes in a loop. The cycle incidence matrix T is defined as

[T]qi =

{
1, if edge ei is incident with cycle Cq;
0, otherwise,

(1)

where [T]qi denotes the element of T in the q-th row and i-th column. T char-
acterizes how edges in G participate in forming an independent cycle basis. The
q-th cycle basis Cq can be expressed as Cq =

∑E
i=1[T]qiei, where any cycle in G

can be represented as a linear combination
∑Q

q=1 aqCq. For example, the cycle
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connecting all nodes in Fig. 1(a) can be expressed as C1 − C2. In addition, T
serves as the foundation for defining the cycle adjacency matrix. This adjacency
matrix, in turn, establishes a domain of cycles crucial for the filtering of edge
signals.

To compute T, we first identify an independent cycle basis by dividing the
edge set E into two subsets: B(G), containing edges that form the graph’s max-
imum spanning tree, and D(G), including the remaining edges (Fig. 1(a)). The
number of independent cycles Q equals the number of edges in D(G). Adding
an edge ek ∈ D(G) to B(G) forms a subgraph G′ = (V,B(G) ∪ {ek}) contain-
ing exactly one cycle (Fig. 1(b)). This cycle can be easily found by computing
the eigenvector corresponding to the zero eigenvalues of the first-order Hodge
Laplacian L1 of G′. The value 1 is assigned to particular edges in that cycle, as
is shown in Fig. 1(b).

The cycle adjacency matrix AE , a key element in understanding connections
within the brain functional network, is computed by identifying edges connected
by nodes and ensuring these edges also share the same cycle, as described by the
equation:

[AE ]ij =

{
1, if [L1]ij ̸= 0 and [T⊤T]ij ̸= 0;

0, otherwise.
(2)

⊤ denotes a matrix transpose.

2.2 Edge Positional Encodings in Cycles (EPEC)

We encode positions of edges in cycles with EPEC to represent the distance be-
tween edges through cycles. We adopt the concept of Laplacian Eigen-positional
encodings, prevalent in graph transformers [11,22,7]. Briefly, we calculate the
Laplacian eigenvectors for each cycle on the cycle basis, followed by projecting
these cycle positional encodings onto edges using the proposed cycle incidence

matrix. An adjacency matrix of cycles is computed as
[
AC

]
ij
=

{[
TT⊤]

ij
, if i ̸= j;

0 , otherwise .
The degree matrix of AC , a diagonal matrix, is computed as

[
DC

]
ii
=

∑Q
q=1

[
AC

]
iq

.
Subsequently, the cycle Laplacian operator, LC = DC −AC , is calculated. The
positive-semidefinite nature of LC allows for its eigendecomposition, from which
we select the K smallest non-trivial eigenvectors as cycle positional encodings,
denoted PC . We also normalize the cycle incidence matrix T against the number
of cycles each edge is part of, resulting in HE—a diagonal matrix defined by[
HE

]
ii
=

[
T⊤T

]
ii
. Consequently, the EPEC PE is calculated as:

PE = (TH−1
E )⊤PC , (3)

We use an example to show how EPEC represent the relative positions of
edges through cycles (Fig. 2). The spatial distance between any two edges is de-
termined by the minimum number of cycles they are apart, introducing a natural
coordinate system for graphs that mirrors increasing topological complexity.
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(a) k = 2 (b) k = 4 (c) k = 6 (d) k = 8 (e) k = 10

Fig. 2: Examples of the edge positional encodings in cycles (EPEC)
representing the k-th order of eigenfunction. The frequencies λ =
[0.0148, 0.0296, 0.0581, 0.0799, 0.0977], corresponding to panels (a-e), illustrate
the EPEC’s ability to encode different spatial frequencies. Lower frequencies
highlight global and gradual variations within the graph (e.g., top-down orien-
tations), whereas higher frequencies reveal increasingly intricate and localized
cycle patterns.

2.3 Cycle Graph Convolution

Cycle graph convolution is formulated by infusing positional encodings and the
attention mechanism to the spatial graph convolution in a domain of cycles.
Each edge ei is characterized by its feature xei ∈ Rd×1 and EPEC pei ∈ RK×1.
The convolution operation on edge ei is thus defined as:

x′
ei = η

( ∑
ej∈Ni

αijWxej

)
, (4)

where η signifies a nonlinear activation function, W ∈ Rd′×d is the weight matrix
characterizing the spatial filters, and Ni encompasses the neighboring edges of
ei and ei itself within AE . The attention coefficient αij , dictating the attention
between edges ei and ej , is computed as:

αij =
exp

(
η
(
h⊤(W1xei ∥W2xej ∥W3(pei − pej )

)))
∑

ek∈Ni
exp

(
η
(
h⊤

(
W1xei ∥W2xek ∥W3(pei − pek)

))) , (5)

employing the concatenation operator ∥. Here, W1, W2, W3, and the vector h ∈
R3d′×1 are trainable parameters. To further enhance the convolution’s capability,
a multi-head attention scheme is applied [19].

2.4 Cycle Graph Attention Network (CycGAT)

The CycGAT architecture, designed with cycle graph convolutional layers, aims
to elucidate edge features within FC. Each layer integrates convolution, an acti-
vation function, and batch normalization to optimize learning. The leaky rectified
linear unit (LeakyReLU) is selected as the activation function, η, accommodat-
ing the biological relevance of negative FC. A final graph convolutional layer
applies a sigmoid function as the activation function, transforming edge features
into scalar values. This prepares a vectorized edge representation for the output
layer, which consists of fully-connected layers to enable classification.
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2.5 Implementation

The construction of the brain functional graph commences with transforming
the connectivity matrix with top 25% absolute values into a binary matrix. The
computation of the Hodge Laplacian follows Huang et al. [3]. The framework is
implemented using Python 3.9.13, Pytorch 1.12.1, and the PyTorch Geometric
2.1.0 library, with the CycGAT model comprising 8 cycle graph convolutional
layers, each with 16 filters and 4 heads. Optimization employs the ADAM op-
timizer, leveraging an NVIDIA Tesla V100SXM2 GPU. Model parameters were
optimized using a greedy search approach, with binary cross-entropy as the loss
function, L1 penalization on the functional backbone, and an early stopping
mechanism based on validation set performance.

This study leverages resting-state fMRI (rs-fMRI) images from the Adoles-
cent Brain Cognitive Development (ABCD) study, which includes 8765 youth
aged 9-11 years (https://abcdstudy.org/). Utilizing the dataset and fMRI
preprocessing pipeline as described in Huang et al. [4], we define nodes as one of
268 brain regions of interest (ROIs) [13]. We select subjects with the top and bot-
tom 25% of General intelligence scores as the high and low general intelligence
groups, respectively.

3 Results

This section first demonstrates the spatial localization property of the cycle
graph convolution in relation to the number of layers via simulated data. After-
wards, we demonstrate the use of cycle graph convolution and its use in GNN for
classifying high or low fluid intelligence groups using the ABCD dataset. Finally,
we visualize the reduction of the number of cycles after cycle graph convolution
and the functional backbone.

3.1 Spatial Localization of the Cycle Graph Convolution

We demonstrate the cycle graph convolution’s spatial localization by initiating
a pulse signal at one edge (Fig. 3(a)) and observing its diffusion through cycle
graph convolutional layers. Fig. 3(b-c) illustrate that the signal propagation is
confined within individual cycles, highlighting the convolution’s spatial localiza-
tion capability. Crucially, Fig. 3(d-e) reveal how cycles interact through their
shared edges, enabling the signal to traverse across different cycles. This mech-
anism underscores the potential for modeling complex signal interactions and
propagation patterns within the brain’s functional graph structure.

3.2 Comparisons with existing GNN methods

In this section, we compare our model with existing state-of-the-art methods as
mentioned above, focusing on the classification accuracy of high and low general
intelligence groups using the ABCD dataset. We adopted the architectures of

https://abcdstudy.org/
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(a) Signal (b) 1st Layer (c) 2nd Layer (d) 3rd Layer (e) 4th Layer

Fig. 3: CycGAT’s spatial localization with four convolutional layers. (a) depicts
a pulse signal at a single edge. (b-c) illustrate the signal’s propagation within a
cycle. (d-e) demonstrate inter-cycle signal propagation through shared edges.

BrainGNN, dGCN, and HL-HGCNN from the corresponding papers [9,21,3], as
all methods are applied to fMRI data. The GAT model is designed with two
graph convolutional layers, each consisting of 32 filters and a 2-head attention
mechanism, optimized through a greedy search. The input features are the FC
vectors of each region. The Hypergraph NN includes two graph convolutional
layers with 32 filters and one hypercluster layer added after the first convolutional
layer. Our results, as detailed in Table 1, suggest that CycGAT achieves higher
accuracy and outperforms all baseline models with all p-values < 0.05. To further
highlight the performance enhancement provided by the proposed EPEC, we
removed the EPEC-related term from Eq.4 and constructed a CycGAT variant
without EPEC, maintaining the same layer configuration. Table 1 indicates that
CycGAT with EPEC significantly outperforms its counterpart without EPEC
(p=0.005).

Table 1: General intelligence classification accuracy. p-value is obtained from
two-sample t-tests examining the performance of each method in reference to
the proposed CycGAT.

GNN model Accuracy p-value
GAT [19] 0.651± 0.011 0.001

BrainGNN[9] 0.656± 0.015 0.003
dGCN[21] 0.646± 0.009 0.001

Hypergraph NN[5] 0.665± 0.014 0.009
HL-HGCNN[3] 0.674± 0.011 0.032

CycGAT (without EPEC) 0.661± 0.007 0.005
CycGAT (ours) 0.682±0.006 -

3.3 Understanding of the Functional Backbone

We visualize the saliency map, which is the output of the final cycle convolutional
layer averaging across the test set, as depicted in Fig.4(a). The saliency map
from CycGAT, when compared to the original FC and the saliency map from
HL-HGCNN, illustrated in Fig.4(b-c), exhibits increased sparsity, particularly
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retaining the functional connectivities within the occipital regions, prefrontal
regions, and cerebellum. This observation aligns with established research on
general intelligence [14,8,15].

Furthermore, we quantitatively assess the number of cycles in the saliency
map versus the original FC at the subject level, with the quantification method
detailed in the supplementary materials. The box plot in Fig. 4(d) illustrates that
CycGAT’s saliency map significantly reduces cycles compared to the original FC
and HL-HGCNN, with p < 1× 10−3. HL-HGCNN’s use of isotropic filters leads
to an increase in cycles due to their over-smoothing nature. Since cycles often
imply redundant connections, fewer cycles indicate improved network efficiency,
validating our method’s effectiveness in identifying the biologically meaningful
functional backbone.

(a) CycGAT (b) Original FC

(d) Number of cycles

(c) HL-HGCNN

Fig. 4: Panel (a) and panel (c) show the saliency maps from CycGAT and HL-
HGCNN, respectively. Panel (b) shows the brain functional connectivity. The
box plot in panel (d) illustrates the number of cycles in FC and saliency maps.

4 Conclusion

This study proposes a novel CycGAT on functional connectivity for classifying
cognitive ability groups. Our experiments demonstrate the spatial localization
property of the cycle graph convolution operator. In addition, we illustrate how
edge positional encodings in cycles serves as edge coordinates that represent the
topological relationship between edges. Moreover, our CycGAT performs better
than the existing state-of-art methods for classifying high and low general intel-
ligence groups, indicating the potential of our method for future prediction and
diagnosis based on fMRI. Nevertheless, more experiments on different datasets
are needed to further validate the robustness of the proposed model. CycGAT
enables further analysis by comparing the functional backbone with structural
connectivity, offering insights into structural-functional coupling [16].
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