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Abstract

Exploiting the explicit bijection between the density of singular values and the
density of eigenvalues for bi-unitarily invariant complex random matrix ensembles
of finite matrix size we aim at finding the induced probability measure on j
eigenvalues and k singular values that we coin j, k-point correlation measure. We
fully derive all j, k-point correlation measures in the simplest cases for matrices
of size n = 1 and n = 2. For n > 2, we find a general formula for the
1, 1-point correlation measure. This formula reduces drastically when assuming
the singular values are drawn from a polynomial ensemble, yielding an explicit
formula in terms of the kernel corresponding to the singular value statistics.
These expressions simplify even further when the singular values are drawn from
a Pólya ensemble and extend known results between the eigenvalue and singular
value statistics of the corresponding bi-unitarily invariant ensemble.
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1 Introduction

1.1 State of the art

For general complex square matrices, there exist various different decompositions. We
are interested in two in particular, namely the singular value decomposition (SVD)
and the Schur decomposition with which we can obtain the eigenvalues of a matrix.
Those explicitly read

(i) Singular Value Decomposition (SVD):

∀X ∈ Cn×n, ∃Σ ∈ Rn
+,0, U, V ∈ U(n), s.t. X = UΣV (1.1)

with U(n) the group of unitary matrices and R+,0 the positive real line including
0. With the notation R+ we denote the case when we exclude 0. The matrix Σ is
non-negative and diagonal, and its entries are the singular values of the matrix X.

(ii) Schur Decomposition:

∀X ∈ Cn×n, ∃ z ∈ Cn, t ∈ T(n), U ∈ U(n), s.t. X = UztU†, (1.2)

where † denotes the Hermitian conjugation and T(n) the group of upper unitri-
angular matrices. The matrix z is complex and diagonal, and its entries are the
eigenvalues of the matrix X.
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Note that the eigenvalue decomposition in the form X = UDU−1, with D a
diagonal matrix and U ∈ U(n) is not possible for every complex matrix, hence the
Schur decomposition. Every linear transformation, represented by a complex matrix
X ∈ G = GL(n,C) can be almost entirely characterised by its non isometric part
i.e. by the matrices Σ and zt, and more particularly, by Σ = diag(σ1, . . . , σn) and
z = diag(z1, . . . , zn).

Both decompositions enjoy a multitude of applications, usually either only the
eigenvalues or only the singular values. However, in some situations such as in Time
Series Analysis of time-lagged matrices [15, 41, 43, 45, 49, 51], in Quantum Chromo-
dynamics [37, 38] as well as topological statistics of Hamiltonians [14, 26, 27] both
spectral quantities are useful. Born out of these motivations, we would like to address
the question about the relation between the statistics of the eigenvalues and those of
the singular values of a random matrix. A few results are known, such as the Haagerup-
Larson theorem [28] relating the limiting probability density of the eigenvalues with
those of the singular values with the help of free probability techniques. A require-
ment of this relation has been the bi-unitary invariance of the random matrix under
consideration; more details are given in the next subsection. A related result is the
single ring theorem [23, 25, 46]. Our aim is to explore more such relations for finite
matrix size and higher k-point correlation functions.

Many standard results about the statistics of singular values and eigenvalues can
be found in [2, 5, 10, 11, 16, 21]. Recent works have looked at the resulting probability
density of eigenvalues of products of random matrices e.g. [1, 3, 6–8, 19, 30, 33–
35, 39], sum of random matrices e.g. [36, 44] and also investigated what happens
to the distribution of eigenvalues when one would delete columns and rows of the
matrix [4, 34].

Despite this broad variety of literature on the subject, singular values and eigen-
values are seldom studied together. From a random matrix perspective and at finite
matrix size n, the result in [32] provides a bijection between the joint probability
density function of the eigenvalues and the one of the singular values, under some
assumptions. The related works [31, 34, 40] bring some tools to exploit this bijection
when the singular values are drawn from particular kind of ensembles, such as poly-
nomial ensembles [33, 35, 39] and, more particularly, for Pólya ensembles, which were
formerly coined polynomial ensembles of derivative type [20].

Let us recall that the Schur and SVD decompositions are in general not unique.
The singular values {σ1, . . . , σn} and the moduli of the eigenvalues {z1, . . . , zn}, which
will be called eigenradii {|z1|, . . . , |zn|}, must be ordered, and the matrices U and V
in (1.1) and (1.2) need to be drawn from cosets to render the two decompositions
unique.

In general, there exists only one equality between singular values and eigenvalues
of a matrix X ∈ Cn×n, which is given by the modulus of the determinant

|det(X)| = |det(Z)| =
n∏

k=1

|zk| =
√

det(X†X) = det(Σ) =

n∏
k=1

σk. (1.3)
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However, there exist various inequalities such as Weyl’s inequalities [50]. After ordering
the eigenvalues and singular values like |z1| ≥ |z2| ≥ . . . ≥ |zn| and σ1 ≥ σ2 ≥ . . . ≥ σn,
the first Weyl inequality reads

m∏
k=1

|zk| ≤
m∏

k=1

σk for any m ≤ n, (1.4)

which implies a second one

m∑
k=1

|zk| ≤
m∑

k=1

σk for any m ≤ n. (1.5)

Two immediate consequences follow from those two inequalities. Firstly, the largest
singular value bounds the largest eigenradius from above, which is just the case m =
1 of (1.4). Secondly, the smallest eigenradius is bound from below by the smallest
singular value as we can apply (1.4) for m = 1 for the inverse matrix X−1 if existent,
otherwise there is no non-zero bound. Summarising, it is always

σ1 ≥ |z1| and σn ≤ |zn|. (1.6)

As these relations hold for deterministic matrices, they must also hold for random
matrices. Therefore, these bounds might be the source of non-trivial correlations
between eigenvalues and singular values which may even survive in the limit of large
matrix size.

1.2 Main results

Assuming the probability distribution of a complex square random matrix has a den-
sity with respect to the Haar measure on Cn×n, denoted by fG, which does not depend
on its singular vectors (right as well as left ones), then it was shown in [32] that the
distributions of eigenvalues and singular values also have densities and there exists a
linear bijection between the two densities. The property that the distribution of the
random matrix does not depend on its singular vectors is encoded by a bi-unitary
invariance of fG, i.e.,

fG(U1XU2) = fG(X) for all U1, U2 ∈ U(n) and X ∈ GL(n,C). (1.7)

Two random matrices X,Y ∈ GL(n,C) are therefore equal in distribution, if they are
related by Y = U1XU2 with U1, U2 ∈ U(n) independent of X and Y . We resort to the
general linear group GL(n,C) instead of Cn×n as it is sometimes useful to guarantee
the existence of an inverse X−1. It is not problematic as GL(n,C) is dense in Cn×n

and we consider only densities so that the set of non-invertible matrices is only of
measure zero.

This impact of the bi-unitarily invariance of random matrices should be seen in
contrast to when there is no such invariance. Then, there is not much information
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about the relation between the two kinds of spectral statistics as the bijection between
the probability distributions is lost.

The question is then: Keeping the bi-unitary invariance on fG, can we find an
explicit formula for the joint probability density function of the singular values and
the eigenvalues together? This turns out to be a difficult question. Especially, that
the underlying probability measure will not be a density function despite that fG is a
density, due to (1.3). Nonetheless, we will prove that the marginal probability measure
between one singular value and one eigenvalue is still a density function for a matrix
size n > 1. We will call this density the 1, 1-point correlation function whose name
is reminiscent to the k-point correlation functions of either only eigenvalues or only
singular values; see Sec. 2.3 for a general definition. The derivation of explicit formulas
for the 1, 1-point correlation function is one of the main goals of the present work. Due
to the invertibility of X ∈ GL(n,C), the eigenradii and singular values are strictly
positive. Actually, we will work with squared singular values and squared eigenradii
to simplify the notation.

Starting from the bijective map between the probability densities of the eigenvalues
and singular values for bi-unitarily invariant random matrix ensembles on GL(n,C),
see [32], we can derive a general expression for the 1, 1-point correlation function for
n > 2 which is summarised in the following theorem.
Theorem 1.1. Choosing an integer n ∈ N with n > 2, contours Cj = j + iR and
(n − 1)-dimensional vectors τ(j) = (1, . . . , j − 1, j + 1, . . . , n) with j = 1, . . . , n. Let
fSV be the joint probability density of the squared singular values of a random matrix
X ∈ GL(n,C) drawn from bi-unitarily invariant ensemble of probability density fG ∈
L1(GL(n,C)) with fSV ∈ L1(Rn

+). Then, the 1, 1-point correlation function f1,1 :
R2

+ → [0,∞) for a squared eigenradius r and one squared singular value a1 is

f1,1(r; a1) =
1

n

(
n−1∏
k=0

k!

)
n∑

j=1

ˆ
Cj

ds

2πi
rj−1−s

ˆ
Rn−1

+

n∏
b=2

dab fSV(a)

det

[
as−1
b

a
τc(j)−1
b

]
∆n(s, τ(j))∆n(a)

,

(1.8)
where the determinant in the denominator should be read as follows: the first row is
given by as−1

b with b = 1, . . . , n as the column index and the last n − 1 rows are

a
τc(l)
b with c = 1, . . . , n − 1 as the row index. Here, the n-dimensional Vandermonde

determinant of an n-dimensional vector x ∈ Cn is denoted by

∆n(x) = det
[
xk−1
j

]n
j,k=1

=
∏

1≤j<k≤n

(xk − xj). (1.9)

The n-dimensional vector (s, τ(j)) has s as first component and the components of
τ(j) has n− 1 last components.

The strategy to get to the 1, 1-point function is to fix one of the squared singular
values in fSV, and then use the bijection of [32] to get to the eigenvalues. After inte-
grating over all eigenangles, i.e., the angles of the complex phase of the eigenvalues,
and all but one eigenradii we arrive at Theorem 1.1. This theorem is proven in Sec. 4.1.
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For the case n = 1, the induced 1, 1-point measure does not have a density, cf.
Proposition 2.6. The case n = 2 is given explicitly in Proposition 2.7, in particu-
lar (2.26). The proving techniques of these two results are very different than those
for Theorem 1.1 and are based on direct integration while for Theorem 1.1 one needs
to take special care of the various integrations involved.

One result we have derived from Theorem 1.1 is the 1-point correlation function
of the squared eigenradii ρEV and of the squared singular values ρSV. They are, by
definition, the marginal densities when integrating over a1 or r in (1.8), respectively.
For this purpose, we introduce the Mellin transform M on R+,

Mf(s) =

ˆ ∞

0

dx xs−1f(x) (1.10)

for an L1(R+)-function f and s ∈ C such that the integral converges absolutely, and
the spherical transform S on Rn

+,

Sf(s) =
ˆ
A

n∏
j=1

daj f(a)
det
[
asc−1
b

]n
b,c=1

∆n(s)∆n(a)
(1.11)

for an L1(Rn
+)-function g and s ∈ Cn for which the integrand is Lebesgue integrable.

Then, the 1-point function of the squared eigenradii ρEV is given by the following
theorem, which is proven in Sec. 3.
Theorem 1.2. Consider the setting of Theorem 1.1 apart from n ∈ N which is not
necessarily larger than 2. The 1-point correlation function of the squared eigenradii is
given by

ρEV(r) =
1

n

(
n−1∏
k=0

k!

)
n∑

j=1

rj−1M−1 [SfSV(., τ(j))] (r). (1.12)

The transformation M−1 is the inverse Mellin transform (2.1) on R+, acting on the
function s 7→ SfSV(s, τ(j)), where (s, τ(j)) is the same n-dimensional vector as in
Theorem 1.1.

For n = 1, (1.12) simplifies to ρEV = ρSV = fSV, because the one-dimensional
spherical transform reduces to the Mellin transform, i.e., S = M for n = 1. This is
consistent with the fact the eigenradius is equal to the singular value, in this case,
by (1.3).

The results (1.12) and (1.8) are not very explicit and enlightening due to their
generality. However, when the singular values are drawn from a polynomial ensem-
ble [20, 35, 36, 39], we were able to derive insightful compact formulas. The probability
density of such an ensemble has the form

fSV(x) =
∆n(x) det [wk−1(xj)]

n
j,k=1

n! det [Mwk−1(j)]
n
j,k=1

, (1.13)

where w1, . . . , wk are weight functions on R+ such that fSV is a probability density
on Rn

+.
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Remark 1.3. As the set of bi-unitarily invariant densities on GL(n,C) is in bijec-
tion with the set of symmetric densities on Rn

+, bi-unitarily invariant ensembles are
identified with the underlying ensembles of their singular values; see (2.10) and [33,
Eq.(2.22)]. The context will therefore determined whether we refer directly to the
ensemble of the singular values or the corresponding bi-unitarily invariant ensemble.

Note that an explicit expression of ρEV existed before [32, Eq.(4.7)] but only for
a certain type of polynomial ensemble, namely the Pólya ensembles [20, 31, 32, 34]
(cf.(2.48)). A polynomial ensemble is a Pólya ensemble if there exists w such that

wk(x) = (−x∂x)kw(x) ∈ L1(R+) ∀k ∈ J0, n− 1K, (1.14)

where J, K denotes integer intervals. To guarantee that we deal with probability
measures it has been shown in [20] that w is then related to Pólya frequency functions.

An advantageous property of polynomial ensembles stems from their belonging to
a much larger class of ensembles called determinantal point processes; see [2, 5, 16, 21].
This means that the joint probability distribution fSV can be written in the form

fSV(x) =
1

n!
det [K(xj , xk)]

n
j,k=1 , (1.15)

where K is the kernel function, and all the k-point correlation functions have a similar
form where only the size of the determinant changes. In general, K is not uniquely
given. Indeed, due to elementary properties of the determinant, for a non-vanishing
function g, the kernel [g(x1)/g(x2)]K(x1, x2) is also a correlation kernel for the same
point process. However we will requireK to be polynomial of degree n−1 in the second
entry, which thus makes its choice unique for polynomial ensembles. Interestingly, the
kernel K plays a crucial role in the correlations between the singular values and the
eigenradii for polynomial ensembles, as it can be seen in our following main result
Theorem 1.4, proven in Sec. 4.2, and, in particular, in the structure of the cross-
covariance density function; simply defined as the difference between the 1, 1-point
correlation function and the product of the respective 1-point functions, cf. Def.2.9.
Theorem 1.4. Let n ∈ N, n > 2 and consider a random matrix that is drawn from a
bi-unitarily invariant ensemble on GL(n,C) having a polynomial ensemble with joint
probability density (1.15) for the squared singular values. The 1, 1-point correlation
function between one squared eigenradius and one squared singular value is given by

f1,1(r; a) = ρSV(a)ρEV(r) + cov(r; a), (1.16)

with the cross-covariance density given by

cov(r; a) = T (r, a, a)−
ˆ ∞

0

dv T (r, v, a)K(v, a), (1.17)

where

h(x, t) := Θ(1− x)
n

x

(
1

x
− 1

)n−2 [
n

x
− 1− (n+ 1)t

(
1

x
− 1

)]
(t− 1)n−1 (1.18)
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with Θ the Heaviside step function and

T (r, v, a) :=
1

n2

ˆ 1

0

dt
1

v
h
( r
v
, t
)
K

(
a,

rt

t− 1

)
, (1.19)

with K, the correlation kernel of the polynomial ensemble, chosen to be a polynomial
of degree n − 1 in its second argument. The 1-point functions, respectively on one
squared eigenradius and one squared singular value, are given by

ρEV(r) =
1

n

ˆ 1

0

dt

ˆ ∞

0

dv

v
h
( r
v
, t
)
K

(
v,

rt

t− 1

)
and ρSV(a) =

1

n
K(a, a).

(1.20)
The formula for the 1-point function ρEV (1.20) is new for a general polynomial

ensemble. The expression of ρEV involves h, a function which is independent of the
chosen polynomial ensemble. However, an interpretation of its particular structure is
yet to be found. Another formulation of Theorem 1.4 is given in 4.3. Equations (1.20)
simplify drastically for Pólya ensembles, cf. [32, Eq.(4.7)]. The expression (1.16) for
the 1, 1-point correlation function f1,1 simplifies as well, as shown in the following
proposition, proven in Sec. 5.1.
Proposition 1.5. Let n ∈ N, n > 2. With the same assumptions and notations as in
Theorem 1.4, we assume that fSV is the joint probability density of the squared singular
values of a Pólya ensemble associated to an n-times differentiable weight function
w ∈ Cn(R+). Then, the cross-covariance density can be recast into the form

cov(r; a) =
∑
γ=0,1

Hγ(r, a)

[
Θ(r − a)

1

a
Ψγ

(a
r

)
− Vγ(r, a)

]
(1.21)

with Θ the Heaviside step function and for γ = 0, 1,

Ψγ(x) :=

(
1− x

nx− 1

)γ

x(1− x)n−2 (nx− 1) , (1.22)

Hγ(x, y) :=

ˆ 1

0

du qn(yu)∂
γ
u

[
uγ
ρEV(xu)

w(xu)

]
, (1.23)

Vγ(x, y) =

ˆ 1

0

du pn−1 (yu) (u∂u)
1−γ

w(xu), (1.24)

where pn−1 and qn are the bi-orthonormal pair of functions composing the kernel of
fSV (2.48) which can be expressed according to [32, Lemma 4.2]

pn−1(x) =

n−1∑
c=0

(
n− 1

c

)
(−x)c

Mw(c+ 1)
and qn(x) =

1

n!
∂nx [x

nw(x)]. (1.25)

One can go even further and carry out the remaining integral to get a computa-
tionally efficient formula in order to create plots. Especially, for the classical Pólya
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ensembles like Jacobi, Laguerre or Cauchy-Lorentz ensembles this is manageable. The
formulation of Proposition 1.5 might be useful for the asymptotic study n→ ∞, which
we, however, do not address in the current work.

When fSV is a Pólya ensemble, the additional structure we have from a general
polynomial ensemble imposes differentiability conditions on the kernel K and, as a
consequence, imposes continuity and differentiability conditions on the 1, 1-point cor-
relation function f1,1. We have analysed the analytical behaviour and proved the
following conclusion in Sec. 5.2.
Corollary 1.6. Let n ∈ N, n > 1. With the same assumptions and notations as in
Theorem 1.4, if fSV is a Pólya ensemble with a weight function w ∈ C∞(σ) which is
smooth on the support σ ⊂ R+ of the 1-point function ρSV, then, for n = 2, f1,1 is
discontinuous. For n ≥ 3, it is f1,1 ∈ Cn−3(σ2) while it is not (n−2)-times continuous
differentiable along the line a = r.

The present work is organized as follows. In Sec. 2, we present the different nota-
tions that will be used and introduce various integral transformations. Additionally,
we define the j, k-point correlation measures and prove general expressions for the
matrix sizes n = 1 and n = 2. We also introduce and briefly discuss polynomial and
Pólya ensembles. The proofs of the main theorems are given in Secs. 3 and 4. As an
application and to make our results more transparent, we study the case of Pólya
ensembles, in Sec. 5. We especially give very explicit results for the Laguerre and the
Jacobi ensembles. We discuss the implications of our results in Sec. 6.

2 Preliminaries

2.1 Notations

For the present work, we will borrow most of the notations from [32]. The different
matrix spaces and the corresponding measures used on them are presented in Table 1.
First, let us recall that given a measure on G = GL(n,C) with a density, each of
the two induced measures of the singular values and of the eigenvalues have densities,
too, by Tonneli’s Theorem. We will denote fEV : Z → R the density function of the
eigenvalues and fSV : A→ R the density function of the squared singular values.

Matrix Space Description Reference Measure

G = GL(n,C) General linear group
∏

j,k dxjk

A = [GL(1,C)/U(1)]n ∼= Rn
+ Group of positive definite diagonal matrices da =

∏n
k=1 dak

Z = GL(1,C)n ∼= Cn\{0} Group of invertible complex diagonal matrices dz =
∏n

k=1 dzk

U(n) Group of unitary matrices dµH(u) = normalized Haar measure

T(n) Group of upper unitriangular matrices dt =
∏

j>k dtjk

Table 1: Matrix Spaces and Reference Measures (notation adapted from [32,
Table 1]). Here, dx denotes the Lebesgue measure on R if x is a real variable and the
Lebesgue measure dx = dRe{x}d Im{x} on C if x is a complex variable.
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By abuse of notation, we will identify vectors of eigenvalues, squared eigenradii
and squared singular values with diagonal matrices out of convenience. The squared
singular values a = diag(a1, . . . , an) and the eigenvalues z = diag(z1, . . . , zn) will be
unordered.

2.2 Harmonic Analysis

Our methods are based on harmonic analysis tools and the bijection proven in [32,
Theorem 3.1], see Theorem 2.1. Thus, we will briefly recall the corresponding
transforms and introduce our notation for those.

We start with the Mellin transform for a measurable function f on R+, which
is defined in (1.10). When f is a probability density, the normalisation is given by
Mf(1) = 1. The Mellin transform is only defined for those s ∈ C such that the integral
exists (in the Lebesgue sense). In particular, if f ∈ L1(R+), the Mellin transform
is defined at least on the line C1 := 1 + iR. Let L1(R+) be the space of Lebesgue
integrable functions on R+. By the Mellin inversion theorem, e.g., see [32, Lemma
2.6], M : L1(R+) → L1(C1) is bijective and the Mellin inversion formula can be given
by the limit

M−1[Mf ](x) := lim
ε→0

ˆ
C1

ds

2πi
ζ(ε Im{s})x−sMf(s) = f(x), (2.1)

with the regularisation ζ defined as in [32, Eq.(2.40)], where it is denoted ζ1; in
particular it is

ζ(s) :=
cos(s)

1− 4s2/π2
. (2.2)

The function ζ guarantees the absolute integrability and makes the Mellin transfor-
mation bijective.

We also need the multivariate version of the Mellin transform, which can be defined
using the tensor product ⊗,

M⊗nf(s) =

ˆ
A

da

n∏
k=1

ask−1
k f(a). (2.3)

As we are working with densities symmetric under permutation of their arguments,
we need transformations that preserve the symmetry. Particularly, we assume f ∈
L1,SV(A) where L1,SV(A) is the space of symmetric Lebesgue integrable functions on
A in which also the joint probability densities for the squared singular values can be
found, thus, the chosen notation. Therefore, we can go over to the symmetrized version
of the multivariate Mellin transform, given by

MSf(s) =
1

n!

∑
σ∈Sn

M⊗nf(σ(s)) =
1

n!

ˆ
A

da Perm[ask−1
j ]nj,k=1f(a), (2.4)
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with Sn the finite symmetric group of permutations of n elements, σ(s) =
(σ(s1), . . . , σ(sn)) and the permanent

Perm[xjk]
n
j,k=1 =

∑
σ∈Sn

n∏
j=1

xjσ(j). (2.5)

The symmetrized inverse Mellin transform [32, Eq.(2.39)] is, then, given by

M−1
S [MSf ](x) =

1

n!
lim
ε→0

ˆ
C(n)

[
n∏

k=1

dsk
2πi

ζ(ε Im{sk})

]
Perm[x−sk

j ]nj,k=1MSf(s), (2.6)

with C(n) =×n

k=1
Ck, the Cartesian product of elementary contours Ck = k+iR which

are straight lines parallel to the imaginary axis going from k − i∞ to k + i∞.
Another important multivariate integral transformation is the spherical transform

S : L1,SV(A) → SL1,SV(A) defined in (1.11). We use the notation SL1,SV(A) to
emphasize that it is the image space of S with respect to the domain L1,SV(A). Note
that S preserves the permutation symmetry of f in its arguments.

These Mellin and spherical transforms are the building blocks for the singular
value–eigenvalue transformation, coined SEV transform R, defined in [32, Theorem
3.1]. It is a bijective map between the set of symmetric densities on the squared singular
values, L1,SV(A), and the set of induced densities of eigenvalues of bi-unitarily invariant
matrix ensembles denoted by L1,EV(Z). We recall the theorem here for convenience.
Theorem 2.1. (See [32, Theorem 3.1]). Let C(n) be the n-dimensional contour
in (2.6). The map R : L1,SV(A) → L1,EV(Z) from the joint densities of the squared
singular values to the joint densities of the eigenvalues induced by the bi-unitarily
invariant signed densities is bijective and has the explicit integral representation

fEV(z) = RfSV(z) =
∏n−1

j=0 j!

(n!)2πn
|∆n(z)|2M−1

S SfSV(|z|2)

=

∏n−1
j=0 j!

(n!)2πn
|∆n(z)|2 lim

ε→0

ˆ
C(n)

[
n∏

k=1

dsk
2πi

ζ(ε Im{sk})

]
Perm[|zb|−2sc ]nb,c=1

×
ˆ
A

n∏
j=1

daj
aj

fSV(a)
det[ascb ]

n
b,c=1

∆n(s)∆n(a)
,

(2.7)

where |z|2 = diag(|z1|2, . . . , |zn|2). Especially, L1,EV(Z) = RL1,SV(A).
The explicit integral representation of the inverse map R−1 can be found

in [Eq.(3.4)][32]. Let us underline that the eigenangles only appear in the factor
|∆n(z)|2. The bi-unitary invariance of the random matrix X ∈ G implies that its
spectrum is isotropic which, in turn, implies that the arithmetic mean of the eige-
nangles should be uniformly distributed on the interval [0, 2π]. The differences of the
eigenangles are, however, not uniformly distributed.

The linear integral transformations linking the different function spaces involved
in Theorem 2.1 can be represented in the following commutative diagram which is a
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reduced version of [32, Eq.(3.1)],

L1,BU(G) L1,SV(A)

L1,EV(Z) SL1,SV(A)

ISV

IEV R S

Z

(2.8)

where
L1,BU(G) := { fG ∈ L1(G) | fG is bi-unitarily invariant on G }. (2.9)

The transformation Z : SL1,SV(A) → L1,EV(Z) is defined as

Z f̂(z) =
∏n−1

j=0 j!

(n!)2πn
|∆n(z)|2M−1

S f̂(z) = fEV(z), (2.10)

while ISV : L1,BU(G) → L1,SV(A) consists of a singular value decomposition (1.1) and
integrating out the unitary matrices U and V with respect to the corresponding Haar
measure. Explicitly, it is

ISVfG(a) =

 πn2

n!
(∏n−1

k=0 k!
)2
∆n(a)

2fG(
√
a) = fSV(a) (2.11)

and one can thus identify the bi-unitarily ensemble with the corresponding ensemble of
its singular values via the relation fG = I−1

SVfSV; cf. [33, Eq.(2.22)]. The transformation
IEV : L1,BU(G) → L1,EV(Z) consists of the Schur decomposition (1.2) and integrating
out the Haar distributed unitary matrix U as well as the upper triangular matrix, i.e.,

IEVfG(z) =

(
1

n!

n−1∏
k=0

πk

k!

)
|∆n(z)|2

(
n∏

k=1

|zk|2(n−k)

)ˆ
T(n)

dt fG(zt) = fEV(z).

(2.12)
This latter transformation is surprisingly invertible, despite the integral over t, as
shown in [32].

It is worthwhile to stress that any symmetric probability density function on A can
be always traced back uniquely to a probability density of a given bi-unitarily invariant
ensemble on G. The simplest way is to build a corresponding bi-unitarily invariant
matrix multiplying the matrix a = diag(a1, . . . , an) on the right and on the left by two
independent Haar distributed unitary matrices. Unfortunately, not every symmetric
probability density function on Z, can be seen as the marginal distribution of bi-
unitarily invariant random matrix ensemble after employing Schur decomposition.
Applying R−1 on an arbitrary symmetric probability density on Z can give a signed
density on A. This is why L1,EV(Z) is strictly a subset of all symmetric densities on
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Z when n > 1 and, hence, why we identify the bi-unitarily invariant ensemble with
the ensemble of its singular values and not the one of its eigenvalues.

Our goal is to exploit Theorem 2.1 to explore the relationship between squared
singular values and squared eigenradii. We would like to find the joint probability
measure on both the squared eigenradii and squared singular values along with the
induced marginal measures. Those are not necessarily densities as, in the case of the
joint measure, equation (1.3) imposes a strong constraint which might give the induced
measure a component of a Dirac delta measure.

2.3 Correlation functions

We denote the expected value of a measurable function ϕ : G→ C on G by

E[ϕ] :=
ˆ
G

dX ϕ(X)fG(X). (2.13)

With the help of this notation we define the j, k-point correlation measures in a weak
topological sense.
Definition 2.2 (j, k-point correlation measure/function). Let n ∈ N, j, k ∈ J0, nK.
Let fG be the probability density function of the random matrix X ∈ G = GL(n,C).
Denoting the squared eigenradii of X by {rl(X)}nl=1 and its squared singular values
by {al(X)}nl=1, then the j, k-point correlation measure µj,k is defined weakly by the
relation

E
[
(n− j)!(n− k)!

(n!)2

∑
1≤l1,...,lj ,p1,...,pk≤n

lα
α̸=β

̸= lβ , pα

α ̸=β

̸= pβ

ϕ(rl1(X), . . . , rlj (X); ap1(X), . . . , apk
(X))

]

=

ˆ
Rj+k

+

dµj,k(r1, . . . , rj ; a1, . . . , ak)ϕ(r1, . . . , rj ; a1, . . . , ak)

(2.14)

for any continuous bounded function ϕ ∈ Cb

(
Rj+k

+

)
. The induced probability measures

µj,k, on j squared eigenradii and k squared singular values of the random matrix X
are called j, k-point correlation measures. If the j, k-point correlation measure µj,k has
a density with respect to the Lebesgue measure, the density will be denoted fj,k and
will be called the j, k-point correlation function.
Remark 2.3. If j = 0 or k = 0, we get the marginal probability measure of only
k squared singular values or j squared eigenradii, respectively. By definition we set
µ0,0 = 1 so that it is consistent with

´
R+
dµ0,1(a) =

´
R+
dµ1,0(r) = µ0,0 = 1.

The following Lemma is rather helpful in relating the definition above with the
SEV transform (2.7).
Lemma 2.4. Let z(X) be the diagonal matrix of eigenvalues and a(X) comprises of
the squared singular values of X ∈ G. Additionally, let f : Z × A → C such that
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g ∈ L1(G) with g(X) = f(z(X), a(X)). Then, it is

ˆ
G

dX f(z(X), a(X)) =
πn(n−1)

(n!)3
∏n−1

j=0 j!

ˆ
Z

dz|∆n(z)|2 lim
ε→0

ˆ
C(n)

[
n∏

k=1

dsk
2πi

ζ(ε Im{sk})

]

× Perm[|zb|−2sc ]nb,c=1

ˆ
A

n∏
j=1

daj
aj

f(z, a)
∆n(a) det[a

sc
b ]

n
b,c=1

∆n(s)
.

(2.15)

We underline that f is not the joint probability density of the eigenvalues and the
squared singular values but some general integrable function. It actually depends on
fSV and some test-function; see Remark 2.5.

Proof. The main idea is to first decouple the integral over the first n arguments of
f from the integral over the triangular matrix which appears when performing a
Schur decomposition (1.2). Then, we can make use of the commutative diagram (2.8),
essentially only of the triangle with the corners L1,BU(G), L1,SV(A) and L1,EV(Z). The
advantage is that the complex eigenvalues z are fixed in this part of the diagram.

In the first step, we perform the Schur decomposition (1.2), i.e., X = UztU†. As
the squared singular values are bi-unitarily invariant functions one can perform the
integration over the unitary group and gets

ˆ
G

dX f(z(X), a(X)) =

ˆ
Z

dz

(
1

n!

n−1∏
k=0

πk

k!

)
|∆n(z)|2

(
n∏

k=1

|zk|2(n−k)

)

×
ˆ
T(n)

dtf(z, a(zt)),

(2.16)

cf. Eq. (2.12). When considering the integral over t with fixed z, we notice that this is
the operator IEV, which is, on the other hand, equal to R◦ISV, see the commutative
diagram 2.8. We underline that the SEV transform R also applies for general Lebesgue
integrable functions and not only probability densities due to its linear nature as
an operator. As required, we assumed that g ∈ L1(G) with g(X) = f(z(X), a(X))
implying that f is Lebesgue integrable in the last n entries for almost all z ∈ Z with
respect to the reference measure |∆n(z)|2dz. Plugging in (2.10) and (2.7) we arrive at
the assertion.

Remark 2.5. Considering Definition 2.2 and the joint probability density of the
squared singular values fSV ∈ L1,SV(A), especially Eq. (2.10), we can identify

f(z, a) =
(n− j)!(n− k)!

(∏n−1
l=0 l!

)2
πn2n!

fSV(a)

∆n(a)2

×
∑

1≤l1,...,lj ,p1,...,pk≤n

lα
α ̸=β

̸= lβ , pα

α ̸=β

̸= pβ

ϕ(|zl1 |2, . . . , |zlj |2; ap1 , . . . , apk
).

(2.17)
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In the case j = k = 1 with n > 1, it will be shown that µ1,1 admits a density
f1,1 ∈ L1(R2

+), that will therefore be called the 1, 1-point correlation function between
one squared eigenradius and one squared singular value.

To illustrate the definition of j, k-point correlation measures, we consider the sim-
plest cases of n = 1, 2 where we concentrate only on mixed correlation measures,
meaning j, k > 0. For this purpose let us introduce the Dirac distribution δ, see [47],
which acts on any function ϕ ∈ L1(R) as

ˆ
R
ϕ(x)δ(x− x0)dx = ϕ(x0) for almost all x0 ∈ R. (2.18)

Then, we have the following trivial result for n = 1.
Proposition 2.6 (The case n = 1). Let fG ∈ L1,BU(G) be a probability density for
n = 1. Then, the induced probability measure µ1,1 on the squared singular value and
the squared eigenradius is given by

dµ1,1(r1; a1) = πfG(
√
r1)δ(r1 − a1)dr1da1. (2.19)

Proof. Taking ϕ ∈ Cb

(
R2

+

)
,

E
[
ϕ(r1(X); a1(X))

]
=

ˆ
G

dX ϕ(r1(X); a1(X))fG(X). (2.20)

We proceed with a Schur decomposition (1.2), which is the change to polar coordinates
X =

√
r1e

iθ1 for n = 1. The measure becomes dX =
√
r1d

√
r1dθ1 = 1

2dr1dθ1. We use
the fact that r1 = a1 by (1.3), and integrate out θ1 which is uniformly distributed by
the bi-unitary invariance of X. One then gets,

E
[
ϕ(r1(X); a1(X))

]
= π

ˆ
R+

dr1 ϕ(r1; r1)fG(
√
r1). (2.21)

On the other hand, (2.14) for µ1,1 reads

E
[
ϕ(r1(X); a1(X))

]
=

ˆ
R2

+

dµ1,1(r1; a1) ϕ(r1; a1). (2.22)

Identification yields the claim.

The case n = 2 is richer with j, k-point correlation measures as we have now four
measures with mixed statistics in the squared eigenradii and squared singular values
compared to a single one for n = 1.
Proposition 2.7 (The case n = 2). Let fSV ∈ L1,SV(A) be the joint probability density
of the squared singular values for n = 2. Then, the 2, 2-point correlation measure is,
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for almost all r1, r2, a1, a2 > 0,

dµ2,2(r1, r2; a1, a2) =Θ (max{a1, a2} −max{r1, r2})Θ (min{r1, r2} −min{a1, a2})

× fSV(a1, a2)

2|a1 − a2|
(r1 + r2) δ(r1r2 − a1a2)dr1dr2da1da2,

(2.23)
where Θ is the Heaviside step function. The 2, 1-point correlation function is given by

f2,1(r1, r2; a1) = [Θ (a1 −max{r1, r2}) + Θ (min{r1, r2} − a1)]
fSV

(
a1,

r1r2
a1

)
2|a21 − r1r2|

(r1 + r2),

(2.24)
for almost all r1, r2, a1 > 0 and the 1, 2-point correlation function by

f1,2(r1; a1, a2) = Θ (max{a1, a2} − r1)Θ (r1 −min{a1, a2})
fSV(a1, a2)

2|a1 − a2|

(
1 +

a1a2
r21

)
(2.25)

for almost all r1, a1, a2 > 0. The 1, 1-point correlation function is then

f1,1(r1; a1) =

ˆ ∞

0

da2f1,2(r1; a1, a2) =

ˆ ∞

0

dr2f2,1(r1, r2; a1). (2.26)

Unfortunately, the marginal density f1,1 cannot be simplified much further unless
one resorts to subclasses of ensembles. For instance, polynomial ensembles have the
joint probability density of the squared singular values

fSV(a1, a2) =
(a2 − a1)[w0(a1)w1(a2)− w1(a1)w0(a2)]

2[Mw0(1)Mw1(2)−Mw0(2)Mw1(1)]
, (2.27)

which implies the 1, 1-point correlation function

f1,1(r1; a1)

=
Θ (r1 − a1)

4

ˆ ∞

r1

da2
w0(a1)w1(a2)− w1(a1)w0(a2)

Mw0(1)Mw1(2)−Mw0(2)Mw1(1)

(
1 +

a1a2
r21

)
− Θ(a1 − r1)

4

ˆ r1

0

w0(a1)w1(a2)− w1(a1)w0(a2)

Mw0(1)Mw1(2)−Mw0(2)Mw1(1)

(
1 +

a1a2
r21

)
=
Θ(r1 − a1)

4

w0(a1)[Mw1(1) + a1Mw1(2)/r
2
1]− w1(a1)[Mw0(1) + a1Mw0(2)/r

2
1]

Mw0(1)Mw1(2)−Mw0(2)Mw1(1)

− 1

4

w0(a1)[w̃1,r1(1) + a1w̃1,r1(2)/r
2
1]− w1(a1)[w̃0,r1(1) + a1w̃0,r1(2)/r

2
1]

Mw0(1)Mw1(2)−Mw0(2)Mw1(1)
,

(2.28)

where w̃j,r1 is the incomplete Mellin transform of wj , see (5.2).

Proof. We start from (2.16) with the identification (2.17). Without loss of generality
we can assume that the test function ϕ is symmetric in its first two arguments as well
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as its last two ones so that the sum becomes trivial and yields a factor of 4 cancelling
with the combinatorial factor in front of the sum. For n = 2, we use the following
relation

a1 + a2 = tr
(
zt(zt)†

)
= r1(1 + |t̃|2) + r2, (2.29)

where t̃ is the complex number in the off-diagonal of t. Plugging in a2 = r1r2/a1
originating from the identity (1.3), we have

|t̃|2 =
a1
r1

+
r2
a1

− 1− r2
r1

(2.30)

which has either two or no solutions in a1. The situation of no solution corresponds to
a1 ∈ (min{r1, r2},max{r1, r2}) as, then, the right hand side is negative while the left
hand side is non-negative. The case a1 ≤ min{r1, r2} corresponds to the solution with
the ordering a1 < a2 while a1 ≥ max{r1, r2} relates to a1 > a2. Both branches map
to the very same |t̃|2 ≥ 0 so that the substitution is not bijective. Since the situation
must be invariant under swapping a1 and a2 the two contributions yield the very same
weight meaning it yields a factor of 1/2.

Returning to (2.16), we perform a polar decomposition of t̃ and substitute |t̃| by a1.
Afterwards, we integrate over the complex phases of t̃, z1 and z2. Then, we arrive at

E
[
ϕ(r1(X), r2(X); a1(X), a2(X))

]
=
π4

4

ˆ
R2

+

dr1dr2(r1 + r2)r1

[ˆ min{r1,r2}

0

+

ˆ ∞

max{r1,r2}

]
da1

∣∣∣∣ 1r1 − r2
a21

∣∣∣∣
× 2

π4

fSV (a1, r1r2/a1)

(a1 − r1r2/a1)2
ϕ

(
r1, r2; a1,

r1r2
a1

)
.

(2.31)

The third line is Eq. (2.17) when plugging in the considered setting. From this equation
and Definition (2.2) we can read off

dµ2,2(r1, r2; a1, a2)

=

(
r1 + r2
a1

δ

(
r1r2
a1

− a2

)
[Θ (a1 −max{r1, r2}) + Θ (min{r1, r2} − a1)]

+
r1 + r2
a2

δ

(
r1r2
a2

− a1

)
[Θ (a2 −max{r1, r2}) + Θ (min{r1, r2} − a2)]

)
× fSV(a1, a2)

4|a1 − a2|
dr1dr2da1da2,

(2.32)

where we have symmetrised in a1 and a2 as we consider unordered squared singu-
lar values. After applying the standard rules of the Dirac delta distribution and the
Heaviside step function we find (2.23).

Claims (2.24), (2.25), and (2.26) can be readily obtained by setting
ϕ(r1, r2; a1, a2) = [ϕ̃(r1, r2; a1) + ϕ̃(r1, r2; a2)]/2, ϕ(r1, r2; a1, a2) = [ϕ̃(r1; a1, a2) +
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ϕ̃(r2; a1, a2)]/2 or ϕ(r1, r2; a1, a2) = [ϕ̃(r1; a1) + ϕ̃(r2; a1) + ϕ̃(r1; a2) + ϕ̃(r2; a2)]/4,
respectively.

We would like to turn to the k-point correlation function. When one is interested
in marginal densities, it is suitable to consider

fk(x1, . . . , xk) := f0,k(x1, . . . , xk) =

ˆ
Rn−k

+

f(x1, . . . , xn)dxk+1 . . . dxn (2.33)

with k ∈ J1, nK and f ∈ L1(A). This differs from the k-point correlation function
Rk, used to study determinantal point processes, by a combinatorial factor [2, 21]
reminiscent of the argument symmetry of the density,

Rk(x1, . . . , xk) :=
n!

(n− k)!
fk(x1, . . . , xk). (2.34)

While fk is a probability density, Rk is not. We underline that the 0, k-point and the
k, 0-point correlation functions exist, as we are considering densities on the squared
eigenradii and densities on the singular values, and those functions are k-point correla-
tion functions (2.33). To avoid confusion we will refer to k-point correlation functions
by 0, k-point or k, 0-point correlation functions or state clearly whether it refers to k
squared singular values or k squared eigenradii.
Notation 2.8 (probability densities). We will denote

ρEV :R+ −→ R+, r 7→ ρEV(r) = f1,0(r) (2.35)

the 1-point correlation function for one squared eigenradius, and

ρSV :R+ −→ R+, a 7→ ρSV(a) = f0,1(a) (2.36)

the 1-point correlation function for one squared singular value.
When studying the interaction between singular values and eigenradii, and more

generally between two sets of random variables, one also wishes to know and mea-
sure how much correlated those random variables are. When the random variables are
independent, the 1, 1-point correlation function is simply the product of the respective
1-point correlation functions. Therefore, the difference between the 1, 1-point correla-
tion function and the product of the respective 1-point correlation functions quantifies
their dependence in the general case. We coin this measure cross-covariance density.
Definition 2.9 (Cross-covariance density function). The cross-covariance density
function between one squared eigenradius and one squared singular value is defined as
the function cov : R2

+ → R given by

cov(x; y) := f1,1(x, y)− f1,0(x)f0,1(y), (2.37)

where the f1,1, f1,0 and f0,1 are respectively the 1, 1-point, 1, 0-point and 0, 1-point
functions as defined in (2.14).
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Remark 2.10. The definition of the cross-covariance is natural. Indeed, when taking
two continuous bounded functions ψ,φ ∈ Cb (R+), we have

ˆ
R2

+

(f1,1(r, a)− f1,0(r)f0,1(a))ψ(r)φ(a)drda =
1

n2

n∑
j,k=1

Cov(ψ(rj), φ(ak)), (2.38)

with
Cov(ψ(rj), φ(ak)) := E[ψ(rj)φ(ak)]− E[ψ(rj)]E[φ(ak)]. (2.39)

In particular, when all first and second moments of rj and ak exist, it is

ˆ
R2

+

(f1,1(r, a)− f1,0(r)f0,1(a))ra drda =
1

n2

n∑
j,k=1

Cov(rj , ak). (2.40)

Hence, f1,1 − f1,0f0,1 is the average cross-covariance density between one squared sin-
gular value and one squared eigenradius. For convenience we will simply refer to it as
the cross-covariance density.

Moreover, when the variables are of the same kind we get the simple covariance
density function

cov(x1, x2) = f2(x1, x2)− f1(x1)f1(x2) (2.41)

involving the 2-point and 1-point correlation functions. In this case, the covariance
density is the negative of the 2-level cluster function [18], which is often used in the
physics literature.

2.4 Polynomial and Pólya Ensembles

In order to find an explicit formula for the 1, 1-point correlation function f1,1, one has
to use an explicit expression for the density function on the squared singular values fSV.
A suitable and rather broad class of ensembles are polynomial ensembles [20, 35, 36, 39]
on Rn

+ which is a probability density function of the form

fSV(x1, . . . , xn) = CSV(w)∆n(x) det [wk−1(xj)]
n
j,k=1 ≥ 0 (2.42)

with
1

CSV(w)
= n! det

[ˆ ∞

0

xj−1wk−1(x)dx

]n
j,k=1

∈ R \ {0} (2.43)

and {wb}n−1
b=0 , wb ∈ L1(R+) whose first n− 1 moments exist, cf. Eq. (1.13).

A polynomial ensemble is a determinantal point process and its correlation kernel
K can be written

K(x, y) =

n−1∑
b=0

Wb(x)pb(y), (2.44)

with, for all c, b ∈ J0, n−1K, pc ∈ Rn−1[X], Wb ∈ Span{w0, . . . , wn−1}. Rn−1[X] being
the set of polynomial of degree at most n−1 with real coefficients and Span being the
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linear span. Wb and pb can be found such that

ˆ ∞

0

Wb(x)pc(x)dx = δc,b, (2.45)

where δc,b is the Kronecker delta function. The 1-point function for a polynomial
ensemble, and more generally for any determinantal point process, reduces then to

f1(x) =
1

n
K(x, x). (2.46)

There exists polynomial ensemble with extra structure, for which, when dealing
with the Mellin transform (1.10), one can use the following property of the Mellin
transform, when this has a sense,

M[(−x∂x)nf(x)](s) = snMf(s), n ∈ N. (2.47)

This is very appealing computationally as the Mellin transform arises naturally when
integrating out one of the variable of the ensemble.

A Pólya ensemble [20, 31, 32, 34] is a polynomial ensemble for which there
exists w such that for all k ∈ J1, nK, x 7→ (−x∂x)k−1w(x) ∈ L1(R+) and that
Span{wk−1}nk=1 = Span{x 7→ (−x∂x)k−1w(x)}nk=1 for which we need an (n − 1)-
times continuous differentiable weight function w. The probability density function
can therefore be written

f(x1, . . . , xn) = CSV(w)∆n(x) det
[
(−xj∂xj

)k−1w(xj)
]n
j,k=1

. (2.48)

The kernel then admits an integral representation [32, Eq.(4.22)]

K(x, y) =

n−1∑
j=0

qj(x)pj(y) = n

ˆ 1

0

dtqn(xt)pn−1(yt), (2.49)

with the bi-orthonormal sets of functions {qj}n−1
j=0 , {pj}

n−1
j=0 given by

pj(x) =

j∑
c=0

(
j

c

)
(−x)c

Mw(c+ 1)
, qj(x) =

1

j!
∂jx[x

jw(x)]. (2.50)

For this result we actually need the n-times differentiability of w, i.e., w ∈ Cn(R),
to get the extra qn involved in the integral representation.

An orthogonal ensemble [2, 5, 16, 21] is a polynomial ensemble for which there
exists ω such that for all k ∈ J0, n − 1K, x 7→ xkω(x) ∈ L1(R+) and that
Span{wk−1}nk=1 = Span{x 7→ xk−1ω(x)}nk=1. The probability density function can
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therefore be written

f(x1, . . . , xn) = CSV(w)∆n(x) det
[
xk−1
j ω(xj)

]n
j,k=1

= CSV(w)∆n(x)
2

n∏
j=1

ω(xj).

(2.51)
The orthogonal ensemble is then usually named after the kind of polynomial on which
its kernel is built.

3 Proof of Theorem 1.2

Let us start with fSV the joint probability density of the squared singular values of
a random matrix X from a bi-unitarily invariant ensemble with density fG on G.
Then, Theorem 2.1 gives us the corresponding induced joint probability density fEV

of the complex eigenvalues of X. Going over to polar coordinates zj =
√
rje

iθj with
θj the eigenangles and rj the squared eigenradii, we need to change the measure like
d2zj = drjdθj/2 for each eigenvalue zj . Integrating over all the eigenangles and all but
one eigenradius we obtain the 1-point correlation function of the squared eigenradii
denoted by ρEV = f1,0. Since fEV is invariant under permutation of zj , we can choose
z1 to be the fixed variable. To be consistent with our choice of notation we will not
drop the index. Using (2.7) we get

ρEV(r1) :=
1

2

ˆ
Rn−1

+ ×[0,2π]n
dθ1

n∏
j=2

drjdθj
2

fEV(
√
reiθ)

=
C

(1)
n

2

ˆ
Rn−1

+

n∏
j=2

drj
2

(ˆ
[0,2π]n

|∆n(
√
reiθ)|2dθ

)
M−1

S SfSV(r)

∣∣∣∣∣
|z1|=

√
r1

(3.1)

with, C
(1)
n = (

∏n−1
j=0 j!)/(n!π

n). In the next step, we use the following lemma to com-
pute the n-fold integral on the eigenangles. This result can be found in [32], where
only the idea of the proof is given.
Lemma 3.1. Let n ∈ N, n ≥ 1. r = (r1, . . . , rn) ∈ Rn

+, θ = (θ1, . . . , θn) ∈ [0, 2π]n.

ˆ
[0,2π]n

dθ |∆n(
√
reiθ)|2 = (2π)nPerm[rk−1

j ]nj,k=1 (3.2)

Proof of Lemma 3.1. At the heart of the proof lies the integral
´
[0,2π]

dϑ eiϑ(j−k) =

2πδj,k for all j, k ∈ Z, with δj,k the Kronecker symbol. Expanding both Vandermonde
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determinants via the Leibniz formula, we find

ˆ
[0,2π]n

|∆n(
√
reiθ)|2dθ =

ˆ
[0,2π]n

dθ
∑

σ1,σ2∈Sn

sign(σ1σ2)

n∏
j=1

r
(σ1(j)+σ2(j)−2)/2
j eiθj(σ1(j)−σ2(j))

= (2π)n
∑

σ1∈Sn

n∏
j=1

r
σ1(j)−1
j = (2π)nPerm[rk−1

j ]nj,k=1,

(3.3)
where Sn is the symmetric group permuting n elements and sign is the signum function
which is +1 for an even permutation and −1 for an odd one. This is the claim.

With the help of this lemma we arrive at

ρEV(r1) = 2−n

ˆ
Rn−1

+

ˆ
[0,2π]n

n∏
j=2

drjdθj fEV(
√
reiθ) (3.4)

=C(1)
n πn

ˆ
Rn−1

+

n∏
j=2

drj Perm[rj−1
k ]nj,k=1M−1

S SfSV(r).

The goal is now to simplify the permanent by exploiting symmetries. The integrand
being invariant under permutations of the rk, integrating over n− 1 of these variables
will yield (n− 1)! times the same contribution. Defining

τ(j) := (1, . . . , j − 1, j + 1, . . . , n), (3.5)

one can replace the permanent Perm[rj−1
k ]nj,k=1 by (n−1)!

∑n
j=1 r

j−1
1

∏n
k=2 r

τk−1(j)−1
k .

Thus, it is

ρEV(r1) =C(2)
n

n∑
j=1

rj−1
1

ˆ
Rn−1

+

(
n∏

k=2

drk r
τk−1(j)−1
k

)
M−1

S SfSV(r), (3.6)

with C
(2)
n = (n−1)!C

(1)
n πn. Now, the integral is an (n−1)-dimensional Mellin transform

acting on the n-dimensional inverse Mellin transform of SfSV. After having replaced
the permanent, this inverse Mellin transform is not symmetric in its arguments any-
more. Yet, one can write it as a tensor product of one-dimensional transforms; the
tensor product being non-symmetric

ρEV(r1) =C(2)
n

n∑
j=1

rj−1
1

(
id⊗M⊗n−1

) [
M−1

S SfSV
]
(r1, τ(j))

=C(2)
n

n∑
j=1

rj−1
1

(
M−1 ⊗ id⊗n−1

)
[SfSV] (r1, τ(j)),

(3.7)
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where we employed the inverse of (2.4) which has also a permanental form. This is
the claim (1.12).

4 The 1,1-point Correlation Function

4.1 Proof of Theorem 1.1

We will assume n > 2 in the present section as some steps require this condition to
be eligible. Moreover we assume fSV ∈ L1,SV(A) is a probability density function.

The most important statement of Theorem 1.1 is that f1,1 is indeed a function and
not only a measure. For this purpose we choose a continuous and bounded test-function
ϕ ∈ Cb(R1+1

+ ) and make use of (2.15) in combination with the identification (2.17) for
j = k = 1, meaning we have

E[ϕ(r(X); a(X))] =

∏n−1
l=0 l!

πnn2(n!)2

ˆ
Z

dz|∆n(z)|2 lim
ε→0

ˆ
C(n)

[
n∏

k=1

dsk
2πi

ζ(ε Im{sk})

]
(4.1)

× Perm[|zb|−2sc ]nb,c=1

ˆ
A

n∏
j=1

daj
aj

fSV(a)

n∑
l,p=1

ϕ(|zl|2, ap)
det[ascb ]

n
b,c=1

∆n(a)∆n(s)
.

After applying Lemma 3.1, we can integrate over the eigenangles. Additionally, we can
use the permutation symmetry in rj to replace the sum over ϕ(rl, ap) by nϕ(r1, ap).
We are left with

E[ϕ(r(X); a(X))] =

∏n−1
l=0 l!

n (n!)2

ˆ
A

drPerm[rc−1
b ]nb,c=1 lim

ε→0

ˆ
C(n)

[
n∏

k=1

dsk
2πi

ζ(ε Im{sk})

]

× Perm[r−sc
b ]nb,c=1

ˆ
A

n∏
j=1

daj
aj

fSV(a)

n∑
p=1

ϕ(r1, ap)
det[ascb ]

n
b,c=1

∆n(a)∆n(s)
.

(4.2)

We expand the first permanent in the first column and integrate first of r2, . . . , rn and
then over r1. Particularly the permutation invariance of the remaining integrand in
r2, . . . , rn tells us that each integral has (n− 1)! identical contributions so that

E[ϕ(r(X); a(X))] =

∏n−1
l=0 l!

n2 n!

n−1∑
l=1

ˆ ∞

0

dr1 r
l−1
1

[
n∏

j=2

drjr
τj(l)−1
j

]

× lim
ε→0

ˆ
C(n)

[
n∏

k=1

dsk
2πi

ζ(ε Im{sk})

]
Perm[r−sc

b ]nb,c=1

×
ˆ
A

n∏
j=1

daj
aj

fSV(a)

n∑
p=1

ϕ(r1, ap)
det[ascb ]

n
b,c=1

∆n(a)∆n(s)

(4.3)

with the (n− 1)-dim vector τ(l) = (1, . . . , l − 1, l + 1, . . . , n).
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We define the function

g(a;x) :=
1

n
fSV(a)

n∑
p=1

ϕ(x, ap) (4.4)

which is in L1,SV(A) in a for any fixed x > 0 while it is a bounded continuous function
in x. Therefore, we are in the same position as for Theorem 1.2, where the integral
over a can be identified with the spherical transform (1.11) of g(.;x), the integral over
s and the limit ε → 0 with the multivariate inverse Mellin transform (2.6) and the
integral over r2, . . . , rn as the Mellin transform id⊗Mn−1 in the last n−1 entries, i.e.,

E[ϕ(r(X); a(X))] =

∏n−1
l=0 l!

n

n−1∑
l=1

ˆ ∞

0

dr1 r
l−1
1 (id⊗Mn−1)M−1

S S[g(.;x)](r1, τ(l))|x=r1

=

∏n−1
l=0 l!

n

n−1∑
l=1

ˆ ∞

0

dr1 r
l−1
1 (M−1 ⊗ id⊗n−1)S[g(.;x)](r1, τ(l))|x=r1 .

(4.5)

When writing this integral explicitly we arrive at

E[ϕ(r(X); a(X))] =

∏n−1
l=0 l!

n2

n−1∑
l=1

ˆ ∞

0

dr1 r
l−1
1 lim

ε→0

ˆ l+i∞

l−i∞

ds

2πi
ζ(ε Im{s1})r−s1

1

×
ˆ
A

n∏
j=1

daj
aj

fSV(a)

n∑
p=1

ϕ(r1, ap)

det
[
as1b , a

τc(l)
b

]
b=1,...,n

c=1,...,n−1

∆n(a)∆n−1(τ(l))
∏n−1

j=1 (τj(l)− s1)
.

(4.6)

The determinant in the denominator should be read as follows: the first column is
given by as1b with b as the row index and the last n− 1 are a

τc(l)
b with c as the column

index.
Next, we will argue that limit ε → 0 can be performed with the help

Lebesgue’s dominated convergence theorem. Obviously, the modulus of the regularisa-
tion ζ(ε Im{s1}) is bounded from above by 1 due to (2.2) and the asymptotic behaviour
of the term ∣∣∣∣∣∣∣∣

det
[
as1−1
b , a

τc(l)−1
b

]
b=1,...,n

c=1,...,n−1

∆n(a)∆n−1(τ(l))
∏n−1

j=1 (τj(l)− s1)

∣∣∣∣∣∣∣∣ = O

(
1

|s1|n−1

)
(4.7)

for Im(s1) → ∞ with Re(s1) = l fixed guarantees the integrability in s1 at infinity.
There is no singularity as |Re(τj(l) − s1)| ≥ 1. Actually, even the apparent poles of
order 1 at s1 = τj(l) are removable as the numerator has a zero there. Similar things
can be said about the dependence of this term on a. It is bounded on A like the test
function

∑n
p=1 ϕ(r1, ap) with fixed r1 > 0. Collecting everything, we find the uniform
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bound of the integrand∣∣∣∣∣∣∣∣ζ(ε Im{s1})r−s1
1 fSV(a)

n∑
p=1

ϕ(r1, ap)

det
[
as1−1
b , a

τc(l)−1
b

]
b=1,...,n

c=1,...,n−1

∆n(a)∆n−1(τ(l))
∏n−1

j=1 (τj(l)− s1)

∣∣∣∣∣∣∣∣
≤C fSV(a)

(1 + |s1|)n−1

(4.8)

for some constant C > 0 which holds for every (a, s1) ∈ A× (l+ iR) and for arbitrary
ε > 0. For n > 2 this is absolutely integrable. As the pointwise limit of the integrand
ε → 0 exists for almost all (a, s1) ∈ A× (l + iR) we can apply Lebesgue’s dominated
convergence theorem and have

E[ϕ(r(X); a(X))] =

∏n−1
l=0 l!

n2

n−1∑
l=1

ˆ ∞

0

dr1 r
l−1
1

ˆ l+i∞

l−i∞

ds

2πi
r−s1
1

ˆ
A

n∏
j=1

daj
aj

× fSV(a)

n∑
p=1

ϕ(r1, ap)

det
[
as1b , a

τc(l)
b

]
b=1,...,n

c=1,...,n−1

∆n(a)∆n−1(τ(l))
∏n−1

j=1 (τj(l)− s1)
.

(4.9)

The absolute integrability over a and s1 allows us to apply Fubini’s theorem. Actu-
ally, we make use of the permutation invariance of the integrand in a1, . . . , an to
simplify the sum

∑n
p=1 ϕ(r1, ap) to nϕ(r1, a1) as all n terms yield the same contribu-

tion. The absolute integrability also allows us to split the integral over a into one over
a1 and an (n− 1)-fold integral over a2, . . . , an as well as to interchange the a1 and s1
integral. This means the expectation value is

E[ϕ(r(X); a(X))] =

∏n−1
l=0 l!

n

n−1∑
l=1

ˆ ∞

0

dr1 r
l−1
1

ˆ ∞

0

da1ϕ(r1, a1)

×
ˆ l+i∞

l−i∞

ds

2πi
r−s1
1

[
n∏

j=2

ˆ ∞

0

daj
aj

]
fSV(a)

det
[
as1b , a

τc(l)
b

]
b=1,...,n

c=1,...,n−1

∆n(a)∆n−1(τ(l))
∏n−1

j=1 (τj(l)− s1)
.

(4.10)

Taking the finite sum over l inside the r1 and a1 integral as well as the combinatorial
factors we can identify the expression with the definition (2.14) to get the 1, 1-point
measure.

What remains to be shown is that this measure has indeed a density, especially
that

f̃(r, a) =

n∑
j=1

ˆ
Cj

ds

2πi
rj−1−s

ˆ
Rn−1

+

n∏
b=2

dab fSV(a)

det
[
as1b , a

τc(l)
b

]
b=1,...,n

c=1,...,n−1

∆n(s, τ(j))∆n(a)
(4.11)
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is a function for a, r > 0. This is, however, guaranteed by the absolute integrability of
the integrand, especially |f̃(r, a)| <∞ for all fixed a, r > 0, which finishes the proof.

4.2 Proof of Theorem 1.4

To prove Theorem 1.4, we first show the following assertion.
Proposition 4.1. With the same assumptions and notations as in Theorem 1.4 the
1,1-point correlation function admits the two representations

f1,1(r; a) =
1

n2

‰
|u|=1

du

2πiu
det

K(a, a)

ˆ ∞

0

dv

v
g
( r
v
,
r

u

)
K(v, a)− 1

a
g
( r
a
,
r

u

)
K(a, u)

ˆ ∞

0

dv

v
g
( r
v
,
r

u

)
K(v, u)



=
1

n2

ˆ 1

0

dτ det

 K(a, a)

ˆ ∞

0

dv

v
h
( r
v
, τ
)
K(v, a)− 1

a
h
( r
a
, τ
)

K

(
a,

rτ

τ − 1

) ˆ ∞

0

dv

v
h
( r
v
, τ
)
K

(
v,

rτ

τ − 1

)

(4.12)

with

g(x, y) =Θ(1− x)

n∑
j=1

(−1)n−j(j − 1)!(n− j)!

(n− 1)!
yj−1

(
j − 1

x
+
n− j

x2

)
(x−1 − 1)n−2

(4.13)

and h as defined in (1.18). The contour integral is integrated counter-clockwise.
This second expression has the advantage that it comprises only real integrals,

instead of a contour integral, albeit the first one is more efficient to use numerically
as, in general, computing residues is easier than computing a real integral.

To prove this proposition we need the following lemma.
Lemma 4.2. Let K be the kernel (2.44) of a polynomial ensemble. Then,

ˆ ∞

0

K(x, y)xkdx = yk for all k = 0, . . . , n− 1. (4.14)

Proof of Lemma 4.2. Let, {pb}n−1
b=0 , with pb a polynomial of degree b, and {Wb}n−1

b=0 be
the bi-orthonormal system given by the polynomial ensemble where , i.e.,

ˆ ∞

0

dx Wb(x)pc(x) = δc,b. (4.15)
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Any polynomial q of degree less than n has a unique decomposition in the basis
{pb}n−1

b=0 , namely by

q(x) =

n−1∑
b=0

(ˆ ∞

0

dtWb(t)q(t)

)
pb(x). (4.16)

Taking q(y) = yk, k ∈ J0, n− 1K the result follows.

Let us underline that this lemma is reminiscent of the self-reproducing property of
the kernel ˆ ∞

0

K(x, y)K(y, z)dy = K(x, z) (4.17)

which is well-known [42, Theorem 5.1.4] for determinantal processes with particle
number preservation.

Proof of Proposition 4.1. Let us consider the case where the induced density on the
squared singular values is a polynomial ensemble, i.e., the probability density fSV is
given by Eq. (2.42). Here, we are requiring that the Mellin transform of wb exists at
all the integers from 1 to n, or equivalently, the weights wb are Lebesgue integrable
against polynomials up to degree n− 1.

The goal is to get a closed form for the 1, 1-point correlation function in the case of
polynomial ensembles. We start from Theorem 1.1 for which we have to plug in (2.42).
The first integrals to be computed will be those over a’s in (1.8). For this purpose we
define

T (j) := (1, . . . , j − 1, s, j + 1, . . . , n) (4.18)

and employ the generalised Andréief identity [9, 16] to get the integral

Z :=

ˆ
Rn−1

+

da fSV(λ, a2, . . . , an)

det

[
λs−1 as−1

b

λτc(j)−1 a
τc(j)−1
b

]
b=2,...,n

c=1,...,n−1

∆n(s, τ(j))∆n(λ, a2, . . . , an)

=CSV(w)

ˆ
A

da

∆n(T (j))
det

[
wc(λ)
wc(ab)

]
b=2,...,n

c=0,...,n−1

det

[
λTc(j)−1

a
Tc(j)−1
b

]
b=2,...,n
c=1,...,n

=
−(n− 1)!CSV(w)

∆n(T (j))
det

[
0 wb(λ)

λTc(j)−1
´∞
0
dx xTc(j)−1wb(x)

]
b=0,...,n−1
c=1,...,n

.

(4.19)

To highlight the squared singular value which is not integrated over we have set λ = a1.
To construct the bi-orthonormal functions {Pc}n−1

c=0 , and {Wb}n−1
b=0 for this polyno-

mial ensemble we lack the monomial xj−1. Thus, we introduce a dummy variable u
with which we can delete the corresponding row with the help of the Laplace expansion
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and the residue theorem, i.e.,

Z =
(−1)j−1(n− 1)!CSV(w)

∆n(s, τ(j))

‰
|u|=1

du

2πiuj
det

 0 0 wb(λ)

λs−1 0
´∞
0
dx xsj−1wb(x)

λc uc
´∞
0
dx xcwb(x)

n−1

b,c=0

=
(−1)j−1

n∆n(s, τ(j))

‰
|u|=1

du

2πiuj
det

 0 0 Wb(λ)

λs−1 0
´∞
0
dx xs−1Wb(x)

Pc(λ) Pc(u)
´∞
0
dx Pc(x)Wb(x)

n−1

b,c=0

.

(4.20)

In the second line, we went over to the bi-orthonormal functions for which we
have used that their proper normalisation is encoded in CSV(w). Exploiting the
bi-orthonormality

´∞
0
dx Pc(x)Wb(x) = δbc, the standard identity

det

(
A B
C D

)
= det(D) det

(
A−BD−1C

)
, (4.21)

as well as the definition of the kernel (2.44), we arrive at

Z =
(−1)j−1

n∆n(s, τ(j))

‰
|u|=1

du

2πiuj

× det

[
K(λ, λ) K(λ, u)´∞

0
dx xs−1K(x, λ)− λs−1

´∞
0
dx xs−1K(x, u)

]n−1

b,c=0

.

(4.22)

Let us denote

K̃(s, λ) :=

ˆ ∞

0

dx xs−1K(x, λ) = (M⊗ id)K(s, λ), (4.23)

the Mellin transform in the first argument of the kernel. The Vandermonde determi-
nant can be split as follows

∆n(s, τ(j)) = (−1)n−1∆n−1(τ(j))

n−1∏
c=1

(s− τc(j)). (4.24)

while the remaining Vandermonde is simply

∆n−1(τ(j)) =

∏n−1
l=1 l!

(j − 1)! (n− j)!
. (4.25)
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Collecting everything for the 1, 1-point correlation function (1.8) we have

f1,1(r;λ) =
1

n2

n∑
j=1

(−1)n−j(j − 1)!(n− j)! rj−1

ˆ j+i∞

j−i∞

ds

2πi

r−s∏n−1
c=1 (s− τc(j))

×
‰
|u|=1

du

2πiuj
det

(
K(λ, λ) K̃(s, λ)− λs−1

K(λ, u) K̃(s, u)

)
.

(4.26)

Considering this integral over s there seems to be poles when s = l for l = 1, . . . , j −
1, j + 1, . . . , n. Those are, however, removable singularities. For instance Lemma 4.2
implies for any c ∈ J1, nK,

K̃(c, λ) =

n−1∑
b=0

(ˆ ∞

0

xc−1Wb(x)dx

)
pb(λ) = λc−1, (4.27)

so that K̃(s, λ)− λs−1 vanishes at s = 1, . . . , n. Furthermore,

‰
|u|=1

du

2πiuj
K̃(c, u) =

‰
|u|=1

du

2πiuj
uc−1 = 0 (4.28)

for any c = 1, . . . , j − 1, j + 1, . . . , n. This means, in conclusion, that the integration
contour of s can still be shifted wherever we want on the interval [1, n], as we were
allowed to do so before introducing the u integral. We will then chose to replace j+ iR
by n − 1/2 + iR, and hence independent of j. This allows us to interchange the sum
with this integral. To guarantee the absolute integrability of the u and s integral, we
have shifted by −1/2 so that we do not run through s = n. This is, however, only
a technical detail without any impact on the final result. If the n-th moments of the
weight functions existed we could have put the integration of s through n which would
have simplified the discussion below.

We interchange the u and s integral and get

f1,1(r;λ) =
1

n2

‰
|u|=1

du

2πiu
det

(
K(λ, λ) M(λ)− M̃(λ)
K(λ, u) M(u)

)
, (4.29)

with

M(λ) :=

ˆ n−1/2+i∞

n−1/2−i∞

ds

2πi

n∑
j=1

(−1)n−j(j − 1)!(n− j)!(r/u)j−1r−s∏n−1
c=1 (s− τc(j))

K̃(s, λ)

=

ˆ n−1/2+i∞

n−1/2−i∞

ds

2πi

n∑
j=1

(−1)n−j(j − 1)!(n− j)!(r/u)j−1

r
∏n−1

c=1 (s− τc(j))

ˆ ∞

0

dx
(x
r

)s−1

K(x, λ)

(4.30)
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and

M̃(λ) :=

ˆ n−1/2+i∞

n−1/2−i∞

ds

2πi

n∑
j=1

(−1)n−j(j − 1)!(n− j)!(r/u)j−1

r
∏n−1

c=1 (s− τc(j))

(
λ

r

)s−1

. (4.31)

Due to the upper bound∣∣∣∣∣ (−1)n−j(j − 1)!(n− j)!(r/u)j−1

r
∏n−1

c=1 (s− τc(j))

(x
r

)s−1

K(x, λ)

∣∣∣∣∣ ≤ C
xn−1/2|K(x, λ)|
(1 + |s|)n−1

(4.32)

for some constant C > 0 and for all x > 0 and s ∈ n + iR, we know that the two
integrals in M(λ) are absolutely integrable and can be interchanged, too. Thence,
M(λ) can be cast into the simpler form

M(λ) =

ˆ ∞

0

dx M̃(x)K(x, λ). (4.33)

Therefore, we concentrate ourselves, first on computing M̃(x) for x > 0.
The integral M̃(x) can be computed via residue theorem. We recall that |u| = 1.

Hence, when x ≤ r we can close the contour around a semi-circle in the positive
half-plane which encloses only a simple pole at s = n, yielding

M̃(x) =−
n−1∑
j=1

(−1)n−j(j − 1)!(n− j)!(r/u)j−1

r
∏n−2

c=1 (n− τc(j))

(x
r

)n−1

(4.34)

=−
n−1∑
j=1

(−1)n−j(n− j) (j − 1)!(n− j)!(r/u)j−1

r(n− 1)!

(x
r

)n−1

.

The term for j = n vanishes as there is no pole then.
When x > r, we need to close the contour in the negative half plane enclosing the

poles at s = 1, . . . , n− 1 and leading to

M̃(x) =

n−1∑
l=1

n∑
j=1

(−1)n−j(j − 1)!(n− j)!(r/u)j−1

r
∏

1≤c≤n−1
τc(j)̸=l

(l − τc(j))

(x
r

)l−1

=

n−1∑
l=1

n∑
j=1

(−1)l−j(l − j) (j − 1)!(n− j)!(r/u)j−1

r(l − 1)!(n− l)!

(x
r

)l−1

.

(4.35)

For this case we can sum over l, employing the binomial sum,

n−1∑
l=1

(l − j)(n− 1)!

(l − 1)!(n− l)!

(
−x
r

)l−1

=
[
1− j − (n− j)

x

r

] (
1− x

r

)n−2

− (n− j)
(
−x
r

)n−1

.

(4.36)
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This means

M̃(x) =

n∑
j=1

(−1)1−j(j − 1)!(n− j)!(r/u)j−1

r(n− 1)!

[
1− j − (n− j)

x

r

] (
1− x

r

)n−2

−
n−1∑
j=1

(−1)n−j(n− j) (j − 1)!(n− j)!(r/u)j−1

r(n− 1)!

(x
r

)n−1

.

(4.37)

We notice that the second term is the very same one as for the case x ≤ r. Employing
the Heaviside step function Θ we can write the results for both case in a combined way

M̃(x) =Θ(x− r)

n∑
j=1

(−1)1−j(j − 1)!(n− j)!(r/u)j−1

r(n− 1)!

[
1− j − (n− j)

x

r

] (
1− x

r

)n−2

−
n−1∑
j=1

(−1)n−j(n− j) (j − 1)!(n− j)!(r/u)j−1

r(n− 1)!

(x
r

)n−1

=
1

x
g
( r
x
,
r

u

)
−

n−1∑
j=1

(−1)n−j(n− j) (j − 1)!(n− j)!(r/u)j−1

r(n− 1)!

(x
r

)n−1

. (4.38)

We have employed the function g defined in (4.13).
The second term in M̃ vanishes in the 1, 1-point correlation function because of

ˆ ∞

0

dx

n−1∑
j=1

(−1)n−j(n− j) (j − 1)!(n− j)!(r/u)j−1

r(n− 1)!

(x
r

)n−1

K(x, λ)

=

n−1∑
j=1

(−1)n−j(n− j) (j − 1)!(n− j)!(r/u)j−1

r(n− 1)!

(
λ

r

)n−1

,

(4.39)

which follows from Lemma 4.2. Therefore, we get

M(λ)− M̃(λ) =

ˆ ∞

0

dx

x
g
( r
x
,
r

x

)
K(x, λ)− 1

λ
g
( r
λ
,
r

u

)
(4.40)

as well as

‰
|u|=1

du

2πiu
M(u) =

‰
|u|=1

du

2πiu

ˆ ∞

0

dx

x
g
( r
x
,
r

x

)
K(x, u). (4.41)

For the latter, we have noticed that the second term in M(u) is a polynomial
in u having no constant term. Therefore, we have shown the first expression in
Proposition 4.1.
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To show the second expression, we consider the following integration against g,

‰
|u|=1

du

2πiu
g
(
x,
y

u

)
ub = cn,b(x)y

b for all b = 0, . . . , n− 1 (4.42)

with

cn,b(x) = Θ(1− x)
(−1)n−b−1b!(n− b− 1)!

(n− 1)!

(
b

x
+
n− b− 1

x2

)
(x−1 − 1)n−2 (4.43)

The aim is to express this coefficient in terms of a real integral. The beta function

B(z1, z2) =

ˆ 1

0

τz1−1(1− τ)z2−1 dτ =
Γ(z1)Γ(z2)

Γ(z1 + z2)
(4.44)

is a helpful starting point. With a slight modification we notice that

cn,b(x) =

ˆ 1

0

dτΘ(1−x)n
x
(x−1−1)n−2

[
n− (n+ 1)τ

x
+ (n+ 1)τ − 1

]
(τ−1)n−1

(
τ

τ − 1

)b

.

(4.45)
Identifying the function h in this integral and noticing that it holds true for any
b = 0, . . . , n− 1, we have for an arbitrary polynomial p up to order n− 1,

‰
|u|=1

du

2πiu
g
(
x,
y

u

)
p(u) =

ˆ 1

0

dτ h(x, τ)p

(
yτ

τ − 1

)
. (4.46)

This proves the second expression in Proposition 4.1.

Starting from Proposition 4.1 we are in a good position to prove our third main
result Theorem 1.4. What we have to show however is that the 1-point correlation
function of the squared eigenradii is the one we claim in (1.20).

Proof of Theorem 1.4. For a determinantal point process, as it is for the singular
values of a polynomial ensemble, the 1-point correlation function is given by

ρSV(λ) =
1

n
K(λ, λ). (4.47)

We note that it is properly normalised, i.e.,
´∞
0
dλ ρSV(λ) = 1, due to the

bi-orthonormality of the polynomials and functions in the kernel.
The 1-point function ρEV of the squared eigenradii is obtained when integrat-

ing over a in the second expression of (4.12). The integrals over a, v and τ can be
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interchanged as∣∣∣∣1vh( rv , τ)K(v, a)K

(
a,

rτ

τ − 1

)∣∣∣∣ ≤C1Θ(v − r)(v + 1)n−1 max
j=0,...,n−1

{|Wj(v)|}

× (a+ 1)n−1 max
j=0,...,n−1

{|Wj(a)|},∣∣∣∣1ah( ra , τ)K
(
a,

rτ

τ − 1

)∣∣∣∣ ≤C2Θ(a− r)(a+ 1)n−1 max
j=0,...,n−1

{|Wj(a)|}

(4.48)

for all a, v > 0 and τ ∈ [0, 1] with some constants C1, C2 > 0. Thus, we compute

ˆ ∞

0

da

[ˆ ∞

0

dv

v
h
( r
v
, τ
)
K(v, a)− 1

a
h
( r
a
, τ
)]
K

(
a,

rτ

τ − 1

)
=

ˆ ∞

0

dv

v
h
( r
v
, τ
)
K

(
v,

rτ

τ − 1

)
−
ˆ ∞

0

da
1

a
h
( r
a
, τ
)
K

(
a,

rτ

τ − 1

)
= 0,

(4.49)

where we have used the reproducing property (4.17). Combining this with the
normalisation of ρSV(λ) we have

ρEV(r) =

ˆ ∞

0

dλf1,1(r;λ) =
1

n

ˆ 1

0

dτ

ˆ ∞

0

dv

v
h
( r
v
, τ
)
K

(
v,

rτ

τ − 1

)
. (4.50)

The expansion of the 2× 2 determinant yields the remaining claims in the theorem.

4.3 Alternative expression for the cross-covariance density

Corollary 4.3. With the same assumptions as in Theorem 1.4, the cross-covariance
density can be rewritten as follows

cov(r; a) = Θ(r − a)T (r, a, a)−
ˆ r

0

T (r, v, a)K(v, a)dv (4.51)

with Θ the Heaviside step function,

φ(x, t) := x(1− x)n−2(1 + t)−(n+2)
[
(1− x

n )(1 + t)− (1− x)(1 + 1
n )
]

(4.52)

and

T (r, v, a) :=

ˆ ∞

0

dt 1vφ(
v
r , t)K (a,−rt) , (4.53)

with K, the correlation kernel of the polynomial ensemble, chosen to be a polynomial
of degree n− 1 in its second argument.

The 1-point correlation function on the squared eigenradii has then the form

ρEV (r) = n

ˆ ∞

0

dt

ˆ r

0

φ( vr , t)K (v,−rt) dv
v . (4.54)

33



Proof of Corollary 4.3. The functions h defined in (1.18) and φ, given by (4.52), are
related by

h(x, τ) = −n2Θ(1− x)φ
(

1
x ,

τ
1−τ

)
(1− τ)2. (4.55)

Doing a change of variables t = τ
1−τ in (1.19) yields

cov(r; a) =

(ˆ r

0

−
ˆ ∞

0

)
dv
v

ˆ ∞

0

dt φ( vr , t)K (a,−rt) [δ(v − a)−K(v, a)] , (4.56)

where δ is the Dirac delta distribution (2.18). Noticing that x 7→ x−1φ(x, t) is a
polynomial of degree n − 1 and using the reproducing property of the kernel (4.17),
one has ˆ ∞

0

dv
v

ˆ ∞

0

dt φ( vr , t)K (a,−rt) [δ(v − a)−K(v, a)] = 0, (4.57)

yielding (4.51). Using the same arguments, (4.54) follows.

5 Application to Pólya Ensembles

To make notation lighter and to give more insight we will adopt the following notation
for the Mellin transform throughout this section,

f̃(s) := Mf(s) =

ˆ ∞

0

us−1f(u)du (5.1)

and its incomplete Mellin transform

f̃x(s) :=

ˆ x

0

us−1f(u)du, x ≥ 0. (5.2)

For instance, for the Laguerre and Jacobi ensemble the incomplete w̃x take the form

w̃Lag,x(c+ 1) =

ˆ x

0

wLag(u)u
cdu =

ˆ x

0

uc+αe−udu = γ(c+ α+ 1, x) (5.3)

and

w̃Jac,x(c+ 1) =

ˆ x

0

wJac(u)u
cdu =

ˆ x

0

uc+α(1− u)β+n−1du

=B(x, c+ α+ 1, β + n),

(5.4)

respectively. We have employed the lower incomplete Gamma function γ and the
incomplete Beta function B. The weight function for the Laguerre ensemble is given by

wLag(x) := xαe−x, α > −1 (5.5)
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while it is for the Jacobi ensemble

wJac(x) := xα(1− x)β+n−1Θ(1− x), α, β > −1. (5.6)

If one wants to have an existing qn, cf. Proposition 1.5, for this ensemble, one has to
assume β > 0 otherwise the n-th derivative of the weight function is not integrable at
x = 1.

5.1 Proof of Proposition 1.5

Proof of Proposition 1.5. We first recall the definition of the functions Ψ0 and Ψ1

in (1.22).The function h, defined in (1.18), can thus be written in two terms

h(x, τ) = −n
[
Ψ0(x

−1)(1− τ)n−1 + (n+ 1)Ψ1(x
−1)τ(1− τ)n−1

]
Θ(1− x), (5.7)

which factorise in functions of x and τ , only.
Using the integral representation of the kernel (2.49) in (1.19), we obtain

T (r, v, a) =
1

n

ˆ 1

0

dτ

v
h
( r
v
, τ
)ˆ 1

0

dtqn(at)pn−1

(
rtτ

τ − 1

)
. (5.8)

The absolute integrability in t is given by t 7→ qn(at) while the one in τ follows from
(1− τ)n−1|pn−1(rtτ/(τ − 1))| <∞ for all τ ∈ [0, 1]. Thus, we can interchange the two
integrals and find

T (r, v, a) =− 1

v
Θ(v − r)

[
Ψ0

(v
r

)ˆ 1

0

dtqn(at)

ˆ 1

0

dτpn−1

(
rtτ

τ − 1

)
(1− τ)n−1

+ (n+ 1)Ψ1

(v
r

)ˆ 1

0

dtqn(at)

ˆ 1

0

dτpn−1

(
rtτ

τ − 1

)
τ(1− τ)n−1

]
.

(5.9)

To shorten the notation we define

Pγ(x) := (n+ 1)γ
ˆ 1

0

dτpn−1

(
xτ

τ − 1

)
τγ(1− τ)n−1, Hγ(x, y) :=

ˆ 1

0

dtPγ(xt)qn(yt)

(5.10)
for γ = 0, 1. In terms of these functions, we have

T (r, v, a) = −1

v
Θ(v − r)

∑
γ=0,1

Ψγ

(v
r

)
Hγ(r, a) (5.11)

and

ˆ ∞

0

T (r, v, a)K(v, a)dv = −n
ˆ ∞

1

du

u

ˆ 1

0

dt
∑
γ=0,1

Ψγ(u)Hγ(r, a)qn(rut)pn−1(at),

(5.12)
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where we substituted v = ru.
To interchange the integrals in (5.12), we need to be more careful as the integra-

tion is not absolutely convergent when combined in u and t as the weight function qn,
which usually guarantees the convergence, depends on the product ut which is trou-
blesome when t becomes small while u is large. The idea is to go back to the sum
expression (2.44) of the kernel and use the bi-orthonormality relations between pk and
Wj . We note that the function u 7→ u−1Ψγ(u) is a polynomial in u of degree n− 1 for
both γ = 0, 1. Thence, it can be decomposed in terms of the polynomials u 7→ pj(xu)
with an arbitrary x > 0, i.e.,

u−1Ψγ(u) =

n−1∑
k=0

ak(x)pk(xu). (5.13)

The auxiliary variable x is important since the kernel comes with x = r. We can
combine this with

ˆ ∞

1

du

u
Ψγ(u)K(xu, y) =

ˆ ∞

0

du

u
Ψγ(u)K(xu, y)−

ˆ 1

0

du

u
Ψγ(u)K(xu, y). (5.14)

Due to Lemma 4.2 we have then

ˆ ∞

0

du

u
Ψγ(u)K(xu, y) =

n−1∑
k=0

ak(x)

ˆ ∞

0

du pk(xu)K(xu, y)

=

n−1∑
k=0

ak(x)
pk(y)

x
=

1

y
Ψγ

(y
x

)
.

(5.15)

The integrals in the remaining integration over u, t ∈ [0, 1] can be interchanged
now, leading to

ˆ 1

0

du

u
Ψγ(u)K(xu, y) = n

ˆ 1

0

dtpn−1(yt)

ˆ 1

0

du

u
Ψγ(u)qn(xut). (5.16)

We combine these considerations with

ˆ ∞

0

du

u
Ψγ(u)qn(xut) = 0 (5.17)

and plug them into (5.12) to arrive at

ˆ ∞

0

T (r, v, a)K(v, a)dv =−
∑
γ=0,1

1

a
Ψγ

(a
r

)
Hγ(r, a)

− n

ˆ 1

0

dt
∑
γ=0,1

Hγ(r, a)pn−1(at)

ˆ ∞

1

du

u
Ψγ(u)qn(rut).

(5.18)
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We define for γ = 0, 1 the functions

Qγ(x) := −n
ˆ ∞

1

du

u
Ψγ(u)qn(xu), Vγ(x, y) :=

ˆ 1

0

dtQγ(xt)pn−1(yt), (5.19)

so that the covariance density (1.17) takes the desired form (1.21).
What is left is to compute Qγ and Pγ using the explicit expressions (2.50) for pn−1

and qn. For the function Pγ we start from its definition (5.10) and compute

Pγ(x) =(n+ 1)γ
n−1∑
c=0

(
n− 1

c

)
xc

w̃(c+ 1)

ˆ 1

0

dττγ+c(1− τ)n−1−c. (5.20)

Using the formula for the Beta function, we get

Pγ(x) =
1

n

n−1∑
c=0

xc

w̃(c+ 1)
(c+ 1)

γ (5.21)

which is, however, only valid for γ = 0, 1. The resulting sum can be identified with the
1-point function of the squared eigenradii for Pólya ensembles, see [32, Lemma 4.1].
Thence, it is

P0(x) =
ρEV(x)

w(x)
and P1(x) = ∂x

[
x
ρEV(x)

w(x)

]
. (5.22)

For the function Qγ , we use the derivative formula (2.50) for qn and plug it into
the definition (5.19). For this aim, we consider the integral

Q̂γ(x) :=

ˆ ∞

1

duqn(xu)(u− 1)n−2+γ . (5.23)

Changing the integration variable v = xu, we need to compute

Q̂γ(x) =
x−(n−1+γ)

n!

ˆ ∞

x

dv ∂nv [v
nw(v)](v − x)n−2+γ . (5.24)

We can now integrate by parts n− 2+ γ times. As the boundary terms are vanishing,
this yields

Q̂0(x) =
(−1)n−1

n(n− 1)
[nw(x) + x∂xw(x)], Q̂1(x) =

(−1)n

n
w(x). (5.25)

The functions Qγ expressed in terms of Q̂γ are

Q0(x) =(−1)n−1n[nQ̂1(x) + (n− 1)Q̂0(x)] = x∂xw(x),

Q1(x) =(−1)n−2nQ̂1(x) = w(x).
(5.26)
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Plugging this into (5.19) concludes the proof.

Almost all the integrals involved in the formulation of Theorem 1.4 can be carried
out, yielding an expression of the cross-covariance density very efficient for numer-
ical evaluations. The only remaining integration is hidden in the incomplete Mellin
transform of w. We will use Proposition 1.5 to prove the following corollary.
Corollary 5.1. Let n ∈ N, n > 2. With the same assumptions and notations as in
Theorem 1.4 and choosing a Pólya ensemble associated to the weight function w, the
cross-covariance density can be cast into the form

cov(r; a) =
Θ(r − a)

nar

n−1∑
c=0

(r/a)c

w̃(c+ 1)
q̃n,a(c+ 1)

(
1− a

r

)n−2 [
(n− c− 1)

a

r
+ c
]

− 1

na

n−1∑
c=0

(r/a)c

w̃(c+ 1)
q̃n,a(c+ 1)

[
w(r)pn−1(a) +

n−1∑
j=0

(
n− 1

j

)
(c− j)

w̃r(j + 1)

w̃(j + 1)

(−a)j

rj+1

]
.

(5.27)

We recall the definitions and notations of the Mellin transform (5.1) and the
incomplete Mellin transform (5.2).

Proof of Corollary 5.1. Considering the proof of Proposition 1.5, we still need to
compute Vγ and Hγ . Using the sum expression (1.25) of pn−1 and the explicit
expression (5.26) of Qγ with the change of variables u = xt, one gets

V1(x, y) =

n−1∑
j=0

(
n− 1

j

)
(−y/x)j

w̃(j + 1)

w̃x(j + 1)

x
, (5.28)

while for W0 it is

V0(x, y) =

n−1∑
j=0

(
n− 1

j

)
(−y/x)j

w̃(j + 1)

1

x

ˆ x

0

du uj+1∂uw(u). (5.29)

One can proceed with integration by parts to arrive at

V0(x, y) = w(x)pn−1(y)− ∂y [yV1(x, y)] . (5.30)

Similarly to Vγ , one can also compute Hγ by exploiting (5.22) for Pγ and the
derivative expression (1.25) of qn. Then, we obtain for γ = 0, 1

Hγ(x, y) =
1

n!

ˆ 1

0

dt

n−1∑
c=0

(xt)c

w̃(c+ 1)
(c+ 1)

γ
∂n(yt)[(yt)

nw(yt)]. (5.31)
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Changing to u = yt, it is

Hγ(x, y) =
1

n!

n−1∑
c=0

(x/y)c

w̃(c+ 1)
(c+ 1)

γ 1

y

=n! q̃n,y(c+1)︷ ︸︸ ︷ˆ y

0

du uc∂nu [u
nw(u)] .

(5.32)

When plugging these explicit expressions for Hγ and Vγ into (1.21) one gets the claim
of Corollary 5.1.

We would like to point out that the remaining integral is nothing else than the
incomplete Mellin transform of qn which we can express in terms of a sum after
integrating by parts and collecting all boundary terms,

n! q̃n,y(c+ 1) =

ˆ y

0

uc∂nu [u
nw(u)]du =

c∑
p=0

(
c

p

)
p!(−1)pyc−p∂n−1−p

y [ynw(y)]. (5.33)

Remark 5.2. The equation (5.27) can also be put in the more insightful factorized
form

cov(x; y) =
1

nxy

n−1∑
c,j=0

(
n− 1

j

)
(−1)j

(y
x

)j−c q̃n,y(c+ 1)

w̃(c+ 1)

[
(c+ 1)

(
Θ(x− y)− w̃x(j + 1)

w̃(j + 1)

)

−Θ(x− y)

(
x− ny

x− y

)
+

(j + 1)w̃x(j + 1)− xj+1w(x)

w̃(j + 1)

]
,

(5.34)
using the Newton binomial formula for the term (1−y/x)n−2 and plugging the identity

ˆ x

0

uj+1∂uw(u)du = xj+1w(x)− (j + 1)w̃x(j + 1) (5.35)

in (5.29).

5.2 Proof of Corollary 1.6

For n = 2, the explicit formula given by Proposition 2.7, clearly shows the 1,1-point
function (r, a) 7→ f1,1(r; a) is discontinuous along the line r = a which is reflected in
the Heaviside step functions.

For n > 2, we consider the expression of the 1, 1-point function given in
Theorem 1.4. It is clear that ρSV and ρEV are continuous and smooth on the support
σ for a Pólya ensemble because of their dependence on the smooth weight function
w ∈ C∞(σ), see (2.49) and (5.22). The smoothness of the kernelK in its first argument
is due to the compactness of the second integral expression in (2.49) and integrability
of qn on the support σ so that Leibniz integral rule applies.
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Therefore, the restricted differentiability of f1,1 must be inherited from the function

T (r, v, a) =
Θ(v − r)

nr

(v
r
− 1
)n−2

ˆ 1

0

dt

[
nv

r
− 1− (n+ 1)t

(v
r
− 1
)]

(t− 1)n−1

×K

(
a,

rt

t− 1

)
,

(5.36)

see (1.19). Since K is a polynomial of degree n − 1 in its second entry the integral
over t gives a smooth function on the support σ in all three variables r, v and t.
Furthermore, this integral does not vanish at almost all v = r = a because of

lim
v,r→a

1

n

ˆ 1

0

dt

[
nv

r
− 1− (n+ 1)t

(v
r
− 1
)]

(t− 1)n−1K

(
a,

rt

t− 1

)
=

ˆ 1

0

dt(n− 1)(t− 1)n−1

ˆ 1

0

ds qn(as)pn−1

(
ast

t− 1

)
=(n− 1)

ˆ 1

0

ds qn(as)P0(as)

=
n− 1

an

ˆ a

0

ds qn(s)
ρEV(s)

w(s)
.

(5.37)

In the first equality we have exploited the integral representation (2.49) of the kernel,
and in the second equality we could interchange the two integrals as they are absolutely
integrable due to the polynomial nature of pn−1. Additionally, we have employed
Eqs. (5.10) and (5.22). As can be readily check the derivative in a of a times this
integral is equal to (n− 1)qn(a)ρEV(a)/w(a) which is evidently non-linear implying a
non-constant behaviour of this integral when a ∈ σ.

In conclusion of this discussion, the function T (r, a, a) is (n− 3)-times continuous
differentiable at r = a and its (n − 2)-th derivative is discontinuous along this line
because of the factor Θ(a− r) (a/r − 1)

n−2
.

The question is whether the integral

ˆ ∞

0

dv T (r, v, a)K(v, a) =

ˆ ∞

0

dv

ˆ 1

0

dτ

n2v
h
( r
v
, τ
)
K

(
a,

rτ

τ − 1

)
K(v, a)

=

ˆ ∞

r

dv
(v
r
− 1
)n−2

ˆ 1

0

dτ

nr

[
nv

r
− 1− (n+ 1)τ

(v
r
− 1
)]

× (τ − 1)n−1K

(
a,

rτ

τ − 1

)
K(v, a).

(5.38)

may change this differentiability. The point is that the integrand is smooth in (r, a) ∈
σ2 and (v, τ) ∈ (0, r)× (0, 1) and absolutely integrable in v and τ . Thus, the Leibniz
integral rule tells us that after integrating v and τ it remains smooth in r and a. In

40



summary, this tells us that the covariance density (1.17) is a sum of a smooth function
and an (n − 3)-times continuous differentiable function on σ2 which has been the
statement of the corollary.

5.3 Examples: Laguerre and Jacobi Ensembles

There are prominent classical random matrix ensembles which are Pólya ensembles.
For instance, the Laguerre ensemble is one, see [32, Examples 3.4]. The weight function
w = wLag is given by (5.5) which corresponds to the joint probability function of the
squared singular values

fSV(a) =
1

n!

(
n−1∏
j=0

1

j! Γ(α+ j + 1)

)
∆2

n(a)

n∏
j=1

aαj e
−aj . (5.39)

Employing the Laguerre polynomials

L
(α)
j (x) :=

j∑
k=0

(
j + α

j − k

)
(−x)k

k!
, (5.40)

we have explicit expressions for the bi-orthonormal set of functions composing the
kernel of the determinantal point process,

pj(x) =
j!

Γ(j + α+ 1)
L
(α)
j (x) and qj(x) = L

(α)
j (x)xαe−x. (5.41)

It is well-known [39, Corollary 5.2] that the kernel can be expressed in terms of the
one-fold integral

K(x, y) =
n!

Γ(n+ α)

ˆ 1

0

dt L
(α)
n−1(yt)L

(α)
n (xt)(xt)αe−xt. (5.42)

What is new is the covariance density of one squared singular value a and one squared
eigenradius r. We make use of Corollary 5.1 and need to plug in the Mellin transform
and incomplete Mellin transform of w = wLag

w̃Lag(c+ 1) = Γ(c+ α+ 1) and w̃Lag,x(c+ 1) = γ(c+ α+ 1, x), (5.43)
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see (5.3), as well as the incomplete Mellin transform of the weight qn which is
essentially an hypergeometric function

q̃n,x(c+ 1) =
1

n!

ˆ x

0

duuc∂nu [u
n+αe−u]

=
xα+c+1

n!

∞∑
j=0

Γ(n+ α+ j + 1)

Γ(α+ j + 1)(α+ c+ j + 1)

(−x)j

j!

=
Γ(n+ α+ 1)

n! (α+ c+ 1)Γ(α+ 1)
xα+c+1

× 2F2(α+ c+ 1, n+ α+ 1;α+ 1, α+ c+ 2;−x).

(5.44)

Unfortunately, we were unable to simplify the expression further for this case.
Another classical ensemble falling in the class of Pólya ensembles is the Jacobi

ensemble. Using the weight function w = wJac in (5.6), one can find the joint
probability function of the squared singular values [32, Examples 3.4]

fSV(a) =
1

n!

(
n−1∏
j=0

Γ(n+ α+ β + j + 1)

j! Γ(α+ j + 1)Γ(n+ β)

)
∆2

n(a)

n∏
j=1

aαj (1− aj)
βΘ(1− aj). (5.45)

The Jacobi polynomials are involved this time,

P
(α,β)
j (x) :=

1

2jj! (1− x)α(1 + x)β
(−∂x)j [(1− x)j+α(1 + x)j+β ]

=
Γ(j + α+ 1)

j! Γ(j + α+ β + 1)

j∑
k=0

(
j

k

)
Γ(j + α+ β + k + 1)

Γ(α+ k + 1)

(
x− 1

2

)k

.

(5.46)

It can be shown that

pj(x) =
j! Γ(n+ α+ β + 1)

Γ(j + α+ 1)Γ(n+ β − j)
P

(α,β+n−j)
j (1− 2x),

qj(x) =P
(α,β+n−j−1)
j (1− 2x)xα(1− x)β+n−j−1,

(5.47)

because of the Mellin transform of w = wJac

w̃Jac(c+ 1) =
Γ(c+ α+ 1)Γ(n+ β)

Γ(n+ α+ β + c+ 1)
. (5.48)

We note that the resulting Jacobi polynomials are not the standard ones when
approaching this ensemble with orthogonal polynomials. The reason is that we con-
structed those via bi-orthonormality which is certainly also allowed. The kernel, thus,
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takes the form

K(x, y) =
n! Γ(n+ α+ β + 1)

Γ(n+ α)Γ(β − 1)

ˆ 1

0

dt P
(α,β+1)
n−1 (1−2yt)P (α,β−1)

n (1−2xt) (xt)α(1−xt)β−1.

(5.49)
see also [34, Proposition 2.7] for r = 1.

The incomplete Mellin transforms needed for Corollary 5.1 are the incomplete Beta
function (5.4) and, anew, an hypergeometric function

q̃n,x(c+ 1) =
1

n!

ˆ x

0

duuc∂nu [u
n+α(1− u)β+n−1]

=
xα+c+1

n!

∞∑
j=0

(
n+ β − 1

j

)
Γ(n+ α+ j + 1)

Γ(α+ j + 1)(α+ c+ j + 1)
(−x)j

=
Γ(n+ α+ 1)

n! Γ(α+ 1)(α+ c+ 1)
xα+c+1

× 3F2(α+ c+ 1, n+ α+ 1, 1− n− β;α+ 1, α+ c+ 2;x).

(5.50)

In this calculation we have used x ∈ [0, 1] as this is the support of the squared eigenradii
and squared singular values.

6 Discussion

We studied cross correlation functions between the singular values and eigenvalues
of arbitrary bi-invariant complex square matrices and found results for the 1, 1-
point correlation function f1,1, see Theorem 1.1, and for the 1-point function ρEV of
the eigenradii, see Theorem 1.2. Due to their generality, these formulas look rather
involved. Yet, they drastically simplify in the case the bi-unitarily ensemble is a poly-
nomial ensemble, see Remark 1.3, Theorem 1.4 and Corollary 4.3. The simplification
goes even further for the Pólya ensembles subclass [32]; see Proposition 1.5. Although
the proof for n = 2 is very different, one can check that Theorem 1.4 agrees with
Proposition 2.7 for polynomial ensembles, especially Eq. (2.28).

Let us underline that the only known formula for ρEV for bi-unitarily ensembles in
terms of quantities of the squared singular values fSV was, so far, only for Pólya ensem-
bles; see [32, Eq.(4.4)]. We found the generalisation (1.20) to polynomial ensembles
which is a much larger class than Pólya ensembles.

The formulas (1.16) and (1.21) for the 1, 1-point correlation function were not
known even for Pólya ensembles. They involve the cross-covariance density (1.17), for
which another interpretation can be given. For this purpose, we define the empirical
densities for the squared singular values and squared eigenradii,

℘EV =
1

n

n∑
k=1

δrk , ℘SV =
1

n

n∑
k=1

δak
, (6.1)
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with δx the Dirac delta measure [5, 17, 47] and {ak}nk=1 and {rk}nk=1 as implicit
functions of the random matrix X ∈ G. The probability densities ρEV and ρSV are the
corresponding averaged densities, see [5]. In particular, for any continuous bounded
function φ ∈ Cb (R+) it is

⟨ρEV|φ⟩ = E[⟨℘EV|φ⟩], ⟨ρSV|φ⟩ = E[⟨℘SV|φ⟩], (6.2)

where ⟨.|.⟩ is the standard bilinear form on the R-module Cb

(
R2

+

)
and its dual and E

is the expected value on G defined as in (2.13). According to the definition of the 1, 1-
point correlation density function (2.14) we have that, for any continuous bounded
function ϕ ∈ Cb

(
R2

+

)
⟨f1,1|ϕ⟩ = E[⟨℘EV℘SV|ϕ⟩]. (6.3)

On the other hand, one can define the cross-covariance function between the two
empirical distribution by the relation

⟨Cov(℘EV, ℘SV)|ϕ⟩ := E[⟨(℘EV − ρEV)(℘SV − ρSV)|ϕ⟩], (6.4)

for all ϕ ∈ Cb

(
R2

+

)
. Using the linearity in the first entry of this bilinear form one gets

E[⟨(℘EV − ρEV)(℘SV − ρSV)|ϕ⟩] =E[⟨℘EV℘SV|ϕ⟩]− E[⟨ρEV℘SV|ϕ⟩]
− E[⟨℘EVρSV|ϕ⟩] + E[⟨ρEVρSV|ϕ⟩].

(6.5)

Then, by Stone–Weierstrass Theorem, one has E[⟨℘EVρSV|ϕ⟩] = ⟨ρEVρSV|ϕ⟩, so we
get a generalization of the König-Huygens formula

⟨Cov(℘EV, ℘SV)|ϕ⟩ = E[⟨℘EV℘SV|ϕ⟩]− ⟨ρEVρSV|ϕ⟩. (6.6)

As a consequence,

⟨Cov(℘EV, ℘SV)|ϕ⟩ = ⟨f1,1|ϕ⟩ − ⟨ρEVρSV|ϕ⟩ = ⟨cov|ϕ⟩. (6.7)

This means Cov(℘EV, ℘SV) = cov almost everywhere. Thus, the cross-covariance
density can also be thought as the cross-covariance function between the empirical
distribution of squared singular values and the empirical distribution of squared eigen-
radii. This perspective enables to generalize naturally the notion of cross-covariance
density to the notion of cross-covariance measure, when the 1, 1-point measure does
not have a density.
Remark 6.1. If one takes a separable test function ϕ(x, y) = ψ(x)φ(y) with ψ,φ ∈
Cb (R+) we recover Remark 2.10

One can also notice that, when taking two functions ψ,φ ∈ Cb (R+), one has

Cov(⟨℘SV|ψ⟩, ⟨℘SV|φ⟩) =
1

n2

ˆ
R2

+

da1da2 ψ(a1)φ(a2)

×K(a2, a1) [δ(a2 − a1)−K(a1, a2)]

(6.8)
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for a polynomial ensemble with kernel K. This quantity can also be found in the
fluctuations of linear spectral statistics as they have been employed in [48, Eq. (5)], [24,
Proposition 4.1], [13, Eq. (22)], [12, Proposition 1]. Indeed for a function s (suitably
integrable), one has

Var(⟨℘SV|s⟩) =
1

n2

ˆ
R2

+

da1da2 s(a1)s(a2)K(a1, a2) [δ(a2 − a1)−K(a1, a2)] . (6.9)

One can readily see that the cross-covariance density for polynomial ensembles,

cov(r; a) =
1

n2

ˆ ∞

0

ˆ 1

0

1

v
h
( r
v
, t
)
K

(
a,

rt

t− 1

)
[δ(v − a)−K(v, a)] dt dv, (6.10)

has a similar flavour. Whether there is something deeper behind it, probabilistic as
well as algebraic, is yet unknown.

A generalisation of our results for f1,1 to an arbitrary j, k-point correlation function
fj,k for j squared eigenradii and k squared singular values is certainly desirable but
it will be challenging to obtain explicit results due to the Vandermonde determinant
∆n(s) in the SEV transform (2.7). Actually one goal of our study has been to find
the conditional marginal measures of the eigenvalues when fixing the singular values.
Indeed, the result for n = 2, Proposition 2.7 implies the following corollary.
Corollary 6.2. For n = 2, the conditional probability measure of the squared
eigenradii r under the condition of the squared singular values a is given by

dµ2,2(r1, r2|a1, a2) =Θ (max{a1, a2} −max{r1, r2})Θ (min{r1, r2} −min{a1, a2})

× r1 + r2
2|a1 − a2|

δ(r1r2 − a1a2)dr1dr2.

(6.11)
We recall that the Dirac distribution δ(r1r2 − a1a2) reflects the identity (1.3).

considering the SEV transform (2.7) one can conjecture that the conditional joint
probability density of the eigenvalues is given in a distributional way by

dµn,n(z|a) =
∏n−1

j=0 j!

(n!)2πn
|∆n(z)|2dz lim

ε→0

ˆ
C(n)

[
n∏

k=1

dsk
2πi

ζ(ε Im{sk})

]

× Perm[|zb|−2sc ]nb,c=1

det
[
asc−1
b

]n
b,c=1

∆n(s)∆n(a)
.

(6.12)

The condition (1.3) is then still encoded in the integral over s and the limit ε→ 0. At
the moment, a rigorous mathematical proof is missing for this conjecture because the
limit ε→ 0 cannot exist point-wise but has to be understood in a distributional way.

Reversing the conditional probability measure, meaning finding the measure for the
squared singular by conditioning the eigenvalues, is expected to be more challenging
when considering the inverse SEV transform, see [32, Eq. (3.4)].

Our results for polynomial ensembles and especially for Pólya ensembles allow
to study the large n limit for cross-correlations of eigenvalues and singular values.
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(a) Plots of (r, λ) 7→ (n)3/2 2λcov(r;λ2) for the Laguerre ensemble: α = 1/2. (Left): n = 3,
(Right): n = 25.

(b) Plots of (r, λ) 7→ 2λcov(r;λ2) for the Jacobi ensemble: α = 1/2, β = 1/2. (Left): n = 3,
(Right): n = 25.

Fig. 1: Contour plots of the covariance density for a Laguerre (fig.1a) and a Jacobi
(fig.1b) ensemble for the two matrix sizes n = 3 and n = 25. See Eqs. (5.5) and (5.6)
for the corresponding weight functions and their parameters α and β, respectively. We
zoomed into the scale of the local mean level spacing for the singular values λ and
squared eigenradii r. The impact of the line λ =

√
r, where the covariance density is

not smooth, is still visible for n = 3 but becomes hard to detect for larger matrix size.

For instance, it allows to analyse finite n corrections of Feinberg-Zee’s Single Ring
Theorem [22], rigorously proven in [25], for which some hard-to-check condition has
then been lifted by [46]. The same holds for the Haagerup-Larsen Theorem [28] which
relates the probability density of the eigenradii with those of the singular values. The

46



finite n analogue is encoded in Theorem 1.2. In particular, the explicit formula (1.20)
will enable us to understand how the asymptotics described by these theorems are
approached.

Recently, a deformed Single Ring Theorem has been proven in [29]. It arises when
the bi-unitary invariance is perturbed. Some kind of such perturbations might be also
possible to study with our methods, as already pointed out in [32, Sec. 3.3].

There will also be interesting local spectral statistics of the cross-correlations
between the complex eigenvalues and singular value. For instance the condition (1.6),
implies non-trivial correlations around common edges. In the case of the common hard
edge at the origin, it can already be seen in Fig. 1, where we show contour plots of the
covariance density 2λcov(r;λ2) for a Laguerre and a Jacobi ensemble with the same
parameter α, see Eqs. (5.5) and (5.6), for which we know they share the same hard
edge statistics of the singular values. We have chosen the singular values λ instead of
the squared singular values a = λ2 as then the scaling in n of the mean level spacing
agrees with the one of the squared eigenradii.

The probabilistic interpretation of the covariance density, shown in Fig. 1, is as
follows. Negative regions translate a repulsion between the eigenradius and the singular
value. It is less likely to find the correlated pair of variables in this region, compared
to the case where they would be independent. Similarly, positive regions translate an
attraction between the eigenradius and the singular value. Null regions are simply
neutral, the variables are almost statistically independent. It is, however, important
to stress that, like every covariance, the cross-covariance density is weighted with the
likeliness of having at all a squared singular value or a squared eigenradius in the
respective intervals. The less likely it is to find one of the variables in a specific interval,
the smaller the cross-covariances becomes.

The contour plots for the matrix size n = 25 show two things: Firstly, non-trivial
(non-factorising) spectral statistics seem to emerge in the hard edge limit. Secondly,
these statistics seem to be universal as they appear to match for the two ensembles
apart from a scaling. We will investigate this in a follow-up work.
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