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Abstract—Deep learning-based video compression is a chal-
lenging task, and many previous state-of-the-art learning-based
video codecs use optical flows to exploit the temporal correlation
between successive frames and then compress the residual error.
Although these two-stage models are end-to-end optimized, the
epistemic uncertainty in the motion estimation and the aleatoric
uncertainty from the quantization operation lead to errors in
the intermediate representations and introduce artifacts in the
reconstructed frames. This inherent flaw limits the potential for
higher bit rate savings. To address this issue, we propose an
uncertainty-aware video compression model that can effectively
capture the predictive uncertainty with deep ensembles. Addi-
tionally, we introduce an ensemble-aware loss to encourage the
diversity among ensemble members and investigate the benefits
of incorporating adversarial training in the video compression
task. Experimental results on 1080p sequences show that our
model can effectively save bits by more than 20% compared to
DVC Pro.

Index Terms—Deep video compression, uncertainty, prediction,
motion estimation

I. INTRODUCTION

Video contents are reported to account for 82% percent of
all consumer Internet traffic by 2021, and they are proliferating
with an increasing demand for high-resolution videos (e.g.,
4K movies) and live streaming services [1]. Therefore, we
must improve the video compression performance to transmit
video with a higher quality given limited Internet bandwidth.
In recent years, there has been a surge of deep learning-based
video compression models [2]–[5] and some of them have
achieved comparable or even better performance than previous
traditional video codecs, such as x264 and x265 [6].

Although previous deep learning-based video codecs have
achieved improved performance on many challenging datasets,
most state-of-the-art models estimate deterministic predic-
tions for intermediate representations, such as optical flows
and residuals. These models fail to represent the aleatoric
uncertainty inherent in the model inputs or the epistemic
uncertainty in the model parameters and would blindly assume
the predictions to be accurate, which is not always the case
[7], [8]. In terms of video compression, such models produce
deterministic motion vectors (or optical flows) and residuals
for each pixel location, ignoring the fact that optical flows may
not be estimated accurately in occluded regions and around
object boundaries, and the quantization operation before loss-
less entropy coding also introduces additional noises to the
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inputs of the decoders. Underlying errors in such overconfident
intermediate predictions are propagated to later stages of the
P-frame model and even to subsequent frames for models built
on temporal correlation, leading to suboptimal performance of
the compression system.

Predictive uncertainty is crucial for us to understand how
confident the model is about the predictions, especially for
out-of-distribution data. However, most neural networks do
not offer such information and tend to produce overconfident
predictions [9], [10]. Bayesian neural networks [11], [12]
are widely used to quantify predictive uncertainty but lack
practicality due to significantly increased computation com-
plexity and do not scale well to high-dimensional data. [13]
proposed Monte Carlo dropout that performs test-time dropout.
It is simple to implement but unsuitable for deep learning-
based compression, since it requires multiple decoding-time
inferences and yields nondeterministic outputs.

In terms of deep learning-based video compression, two
non-Bayesian approaches are considered to represent the pre-
dictive uncertainty: (1) modeling the uncertainty explicitly by
regressing the empirical variance of the model outputs [14];
and (2) using ensembles for predictive uncertainty estimation
[10]. Scale-space flow [4] took the first approach and proposed
to regress a scale field besides the standard 2D flow field,
representing the variance associated with each predicted MV
(motion vector). Gaussian blurring is then applied to the
reference frame, and the scale parameter is used to control the
size of the Gaussian kernel. Although this approach has been
shown to be effective, regressed scales are unreliable for out-
of-distribution data and are often misinterpreted as predictive
uncertainty [9].

In this work, we consider the second approach and repre-
sent the underlying uncertainty with deep ensembles. Instead
of producing a deterministic prediction, ensemble methods
perform model combination and reflect the uncertainty of
out-of-distribution data. Our ensemble-based decoding module
generates an ensemble of intermediate outputs, such as motion
vectors and residuals, and implicitly represents the predictive
uncertainty with the variance of the Gaussian mixture pre-
diction. This uncertainty is then propagated to later stages,
and all modules in our framework are optimized in an end-
to-end fashion. Moreover, unlike previous works on whole
model-level ensembles, our approach ensembles the partial
intermediate layers of the decoding module and achieves
improved performance with limited overhead.

To further improve the performance of our uncertainty-
aware video compression model, we propose an ensemble-
aware loss to encourage diversity between different branches
and incorporate an adversarial training strategy, fast gradient
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sign method (FGSM) [15], to effectively learn a smooth latent
representation. Our experiments show that our model can
achieve a bitrate saving of more than 20% on 1080p sequences
compared to DVC Pro [3]. Visualizations of the predictive
uncertainty captured by our model support our claims and
demonstrate the effectiveness of our approach.

The contributions of this work are summarized as follows:
• We identify the underlying uncertainty of intermediate

representations as a key limitation of residual-based video
compression models and propose an ensemble-based de-
coder to effectively capture the predictive uncertainty.

• We design a novel ensemble-aware loss to encourage
the diversity between ensemble members and better cap-
ture the predictive uncertainty. We also show that fast
gradient sign method can benefit deep learning-based
video compression by learning a smooth intermediate
representation.

• Experiments show that our model outperforms previous
state-of-the-art models such as DVC Pro [3] and scale-
space flow [4], and our approach can be widely applied
to optical flow-based video codecs with negligible com-
plexity increase.

II. RELATED WORK

Video compression. Previous learning-based video com-
pression methods can be categorized into two groups: (i) one-
stage models, such as methods based on 3D autoencoders
[16], [17]; and (ii) two-stage models, which are adopted by
most previous state-of-the-art methods, consist of predicted
frame generation and residual coding. [18] proposed an end-
to-end trainable video codec, DVC, that utilizes an optical-flow
network [19] for motion compensation and then compresses
the residuals. DVC Pro [3] improves the compression perfor-
mance by introducing refinement modules and auto-regressive
entropy models. [20] proposed to learn robust spatio-temporal
representations from coding information and to reveal double
compression. In order to obtain better motion vectors for
motion compensation, [21] proposed GPU-based hierarchical
motion estimation and [4] proposed scale-space flow to blur
intermediate reconstructions when motion vectors are not
estimated well. [22] designed a cross-resolution synthesis
module to pursue better compression efficiency. Moreover,
[23] exploited the temporal masking effect for better visual
qualities.

Model uncertainty. Predictive uncertainty can be grouped
into aleatoric uncertainty and epistemic uncertainty [7].
Aleatoric uncertainty captures the noises inherent in the ob-
servations and cannot be explained away with more data,
while epistemic uncertainty accounts for uncertainty in the
model structure or parameters and can be reduced with more
training data. Bayesian neural networks [11], [12] is a widely
used approach for modeling predictive uncertainty that ex-
tends the traditional neural networks by learning a posterior
distribution of model parameters from the observed data.
Various non-Bayesian approaches have also been proposed,
such as utilizing the probabilities of softmax distributions [24]
and Specialists+1 Ensemble for representing the predictive

uncertainty for adversarial samples [25]. [13] proposed Monte
Carlo dropout by performing multiple inferences with dropout
at test time. [10] proposed to use an ensemble of neural
networks for quantifying predictive uncertainty.

Deep Ensembles. The neural networks community has
been investigating ensembles of deep networks since the
early 1990s [26]–[28]. [29] proved the bias-variance trade-
off for ensemble models, which suggested the importance
of the diversity among ensemble members. [30] investigated
several training strategies to train an ensemble and proposed
ensemble-aware oracle loss to encourage diversity. GoogLeNet
[31], one of the best-performing models on ILSVRC 2014, is
an ensemble of CNNs. [10] proposed to estimate predictive
uncertainty by training multiple stand-alone neural networks.
[32], [33] showed that deep ensembles could learn different
modes of function with ensemble members that only differ in
initialization weights.

III. UNCERTAINTY-AWARE DEEP VIDEO COMPRESSION

This section presents our main contributions. First, we
introduce the theoretical background and the motivation of our
proposed approach in Section III-A. Then we introduce the
ensemble-based decoding module to decode multiple candi-
dates of motion vectors and residuals in Section III-B. In order
to encourage diversity among the ensemble members and to
improve the overall performance, we propose an ensemble-
aware loss for ensemble-based decoders in Section III-C.
Finally, we introduce an adversarial training strategy that we
find beneficial for the learning-based video compression task
in Section III-D.

A. Uncertainties in Deep Video Compression

The predictive coding-based model is a popular framework
for video compression and is widely used by most previous
state-of-the-art models [3], [34], [35]. Let the current frame
be xt and the reconstructed previous frame from the buffer
be x̂t−1. We estimate a motion vector (MV) map ft with a
motion estimation network. The optical flow is then sent to a
motion auto-encoder for transform coding, yielding quantized
bits ât and the reconstructed optical flow f̂t. Bilinear warping
is used for motion compensation (MC) and an MC prediction
x̃t with residual rt = xt − x̃t is obtained. The residual
rt is then compressed with a residual encoder and decoder,
outputting quantized residual bitstream b̂t and the decoded
residual r̂t. The reconstructed current frame is the sum of the
MC prediction and the decoded residual written as

x̂t = BilinearWarp(x̂t−1, f̂t) + r̂t. (1)

Aleatoric uncertainty. Although at encoding time we have
complete information necessary to decode f̂t, for lossy com-
pression at certain bit rates, we quantize the bitstream that
is passed to the decoder and inevitably introduces aleatoric
uncertainty at decoding time. Since the aleatoric uncertainty
cannot be reduced with more training data, a well-trained
codec cannot mitigate the quantization noise or fully recover
the estimated MV ft.
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(a)

(b)
Fig. 1. (a) A low latency predictive coding-based video compression
framework. (b) We follow the predictive coding-based video compression and
propose ensemble-based decoders.

Consider the MV auto-encoder in the predictive coding-
based framework above. The lossy compression of the motion
vectors can be summarized as

at = MVEncoder(ft)
ât = q(at) = at + η

f̂t = MVDecoder(ât). (2)

If the MV decoder is implemented with a linear model
parameterized by w, the impact of the quantization noise η
on the decoded MV is given by

w⊤ât = w⊤(at + η) = w⊤at + w⊤η. (3)

Since η is introduced by the quantization operation, we have
∥η∥∞ ≤ 1/2 = ε and it follows that the upper bound of the
effects from the quantization operation is given by

∥w⊤η∥1 ≤ ε

∥∥∥∥w⊤sign
(
∂w⊤at
∂at

)∥∥∥∥
1

=
1

2
∥w⊤sign(w)∥1.

(4)

While in practice, the MV decoder is usually implemented
with a stack of convolution layers and nonlinear activation

(a) (b)

(c) (d)

(e) (f)
Fig. 2. A preliminary experiment on the underlying uncertainty of the optical
flows. (a) The current frame xt to be compressed. (b) The estimated MV
ft. (c) The decoded MV f̂t. (d) Aleatoric uncertainty measured as the L2
distance between two optical flows with and without a small perturbation
on the bitstream. (e) Epistemic uncertainty measured by motion vectors that
cannot be estimated well. (f) The predictive uncertainty represented by the
ensemble-based decoder.

layers, such as leaky ReLUs, the transformation of the MV
decoder may be too linear to reject the quantization noise [15].

We conduct preliminary experiments to visualize the
aleatoric uncertainty introduced by the quantization operation.
We add a small perturbation η0 to the quantized bitstream
and obtain â′t = ât + η0. The perturbation η0 is only added
to positions where the quantization gap is at least 0.1 and
corresponds to only 20% of the size of the perturbation
gap. We model the aleatoric uncertainty with the L1 norm
between two optical flows decoded from bitstreams that differs
in a small perturbation. Results on the first two frames of
the BasketballDrill sequence are shown in Fig. 2(d). As we
can see, the aleatoric uncertainty is not uniform across the
whole image. Instead, there is more aleatoric uncertainty
around the object boundaries and regions where the motion is
large. While, by definition, such aleatoric uncertainty cannot
be reduced away, blindly assuming the optical flows to be
accurate would lead to larger intermediate residual errors and
cost more bits in the residual coding.

Epistemic uncertainty. Due to limited observed data during
training, epistemic uncertainty accounts for the uncertainty in
the model parameters as well as the estimated motion vectors
we use to exploit temporal correlation. Motion vectors near
the object boundaries and occluded regions tend not to be
estimated well, and warping erroneous motion vectors would
propagate errors to the residual coding. We may roughly
visualize such uncertainty by optimizing a motion estimation
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network with regards to the mean squared errors (MSE)
between the current frame xt and the warped frame

L = MSE(xt,BilinearWarp(x̂t−1, ft)) (5)

We depict the results in Fig. 2(e). Since the motion estimation
is optimized to minimize the MSE, regions where the MSE is
large are likely to have a larger epistemic uncertainty and the
corresponding motion vectors cannot be estimated well given
the limited training data.

Ideally, we could save MV bits by not encoding MVs that
are not estimated well and save residual bits by not warping
MVs which would not help to reduce residuals. Unfortunately,
this is often difficult to implement as an end-to-end optimized
deep neural network. In the next section, we will show that
with the help of ensemble-based decoders, the model could
learn to exploit available information in the bitstream and
handle those predictions with larger uncertainty.

B. Ensemble-Based Decoder
Our proposed ensemble-based decoder decodes multiple

groups of motion vectors (MV) for motion compensation and
multiple groups of residuals for the final reconstruction. The
ensemble-based MV decoder and residual decoder are depicted
in Fig. 1. Take the ensemble-based MV decoder as an example.
The MV decoder backbone first decodes a high-dimensional
MV feature representation from the quantized MV bitstream
ât. Then h groups of MVs, denoted by {f̂m

t | m = 1, . . . , h},
are decoded from the MV feature with respective MV decoder
branches. We obtain h warped frames {x̃m

t | m = 1, . . . , h} by
bilinearly warping each f̂m

t on the reference frame x̂t−1. The h
warped frames are then concatenated for motion compensation
and retained for the final reconstruction.

Many previous ensemble-based models train an ensemble of
stand-alone neural networks [25], [31], [36]. While they can
outperform the model without ensemble-based decoders by a
wide margin, the number of parameters is greatly increased,
as well as the inference complexity. [30] proposed to share
backbone parameters with TreeNets, but the models achieve
the best performance when very few layers are shared. In our
ensemble-based decoder structure, each decoder branch shares
most of the convolution layers, making each decoder branch
lightweight. This design effectively improves the overall per-
formance with negligible complexity increase (see Section
IV-D).

The ensemble of decoded MVs can be represented by an
equally weighted Gaussian mixture model given by

f̂t ∼
1

h

h∑
m=1

N (f | f̂m
t ,Σm

t ), Σm
t =

[
σm
t,x 0
0 σm

t,y

]
(6)

where σm
t,x and σm

t,y are the variance in x and y directions
respectively. The mean and variance of the Gaussian mixture
model are respectively

E[f̂t] = µf̂t
=

1

h

h∑
m=1

f̂m
t (7)

σ2
f̂t,x

=
1

h

h∑
m=1

((
σm
t,x

)2
+
(
f̂m
t,x

)2)
− µ2

f̂t
. (8)

How can ensemble-based decoders capture predictive
uncertainty? Our uncertainty-aware model is end-to-end op-
timized with the rate-distortion loss, but each branch in the
ensemble-based decoder is initialized with random weights.
With the help of the ensemble-aware loss (Section III-C),
the functions learned by the decoder branches are diverse in
the parameter space but similar in the function space for the
training samples. Importantly, for out-of-distribution data in
the testing samples, different decoder branches would yield
highly varied predictions. We represent this predictive uncer-
tainty as the variance between an ensemble of intermediate
representations, and such uncertainty can be propagated be-
tween modules (see Fig. 1). After being end-to-end optimized
with rate-distortion optimization, each module in our model
“sees” the predictive uncertainty and learns to process the
representation accordingly.

Why is predictive uncertainty crucial for learning-based
video compression? Models designed for other vision tasks,
such as image recognition or segmentation, often consist of a
stack of convolution layers with nonlinear activation functions.
Uncertainty in such high-dimensional representations can be
easily coded in the magnitude of the values, and noises can be
corrected by high-dimensional nonlinear mappings. However,
in learning-based video compression, the models are built
on 2D optical flows and quantized bitstream. Errors in the
optical flows and the quantization noises in the bitstream lead
to artifacts in the reconstructed frames. Although we cannot
ignore “bad” MVs, we can alleviate the influence of such MVs
by refining the warped frames with the learned uncertainty
information. Similarly, we could relieve the artifacts intro-
duced by the quantization noise by processing an ensemble
of decoded residuals from the parallel decoder branches.

Visualization of the predictive uncertainty. In order to
investigate the predictive uncertainty learned by the ensemble-
based decoders and to confirm that the benefit of ensemble-
based decoders is not due to extra model complexity or
additional non-linearity (from bilinear warping), we conduct
preliminary experiments. Empirically, we visualize the predic-
tive uncertainty represented by this ensemble model with the
variance of the Gaussian mixture model by setting (σm

t,x)
2 =

(σm
t,y)

2 = 1, which gives

σ2
f̂t,x

=
1

h

h∑
m=1

(
f̂m
t,x

)2
−

(
1

h

h∑
m=1

f̂m
t,x

)2

+ 1. (9)

The predictive uncertainty for the first two frames in the
BasketballDrill sequence is depicted in Fig. 2. Results from
more video sequences are shown in Fig. 5. We can see that
the predictive uncertainty estimated by the ensemble-based
decoders can properly capture both the aleatoric uncertainty
and the epistemic uncertainty shown in Fig. 2 — the basketball
and human body parts have large aleatoric uncertainty due to
rapid motion and the object boundaries have large epistemic
uncertainty.

Relation to scale-space flow. [4] estimated a scale field
σ̂t besides the 2-dimensional optical flow (f̂t,x, f̂t,y). We
may represent the decoded MV with a multivariate Gaussian
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distribution given by

f̂t ∼ N ((f̂t,x, f̂t,y)
⊤,Σ), Σ =

[
σ̂t 0
0 σ̂t

]
(10)

and the scale-space warp gives a weighted mean of the
warped value obtained from f̂t. As we can see, the MV
prediction from our proposed ensemble-based decoder (Eq. 6)
can represent a more diverse distribution than the multivariate
Gaussian distribution from the scale-space flow (Eq. 10). On
the other hand, the regressed variance σ̂t can be unreliable
for out-of-distribution data and is often mis-interpreted as the
predictive uncertainty [9]. Instead, ensemble models produce
diverse results by learning different modes of the function,
rather than interpolating around a given mean in the output
space [32], [37]. Given out-of-distribution inputs, each decoder
branch would perform very differently and our ensemble-
based decoder can capture the predictive uncertainty from the
Gaussian mixture representation.

C. Ensemble-Aware Training

Intuitively, diversity is a key factor for ensemble models.
Ensemble members similar in the parameter space are un-
likely to provide any more useful information than their non-
ensemble counterparts. [29] proved the bias-variance trade-off
in ensemble, E = Ē − Ā, which suggested that the inherent
variance is the key for the ensemble models to be effective
and we should encourage the diversity among the ensemble
members.

In the previous literature, multiple approaches are consid-
ered, including random initialization, bagging, and boosting.
Randomly initializing the model parameters is a simple but
effective approach to induce randomness and is quite suitable
for deep ensembles [30]. Bagging trains ensemble members
on independently drawn examples with bootstrap sampling but
could harm the model performance since each model may see
only 63% of the available data [30] and would perform poorly
when there is a high correlation inherent in the data [38].
Boosting generates the ensemble models sequentially and can
be very time consuming for training deep ensembles.

To induce diversity in different branches of our ensemble-
based decoding module, we choose to randomly initialize the
network parameters, and initial experiments show the efficacy
of our approach. To further encourage the diversity among
the ensemble members, we propose an ensemble-aware loss
that can be applied to any deep ensemble model and induce
additional randomness.

Consider a deep ensemble model with h ensemble members
and the task is to regress an image x. Let the h predictions
from the h ensemble members be x̂m for m = 1, . . . , h. For
each 2D location (i, j), let p be the decoder with the k-th
smallest loss. The ensemble-aware loss is given by

Lensemble-aware(x, x̂
1, . . . , x̂h) = (11)

h∑
m=1

1

H ×W

∑
1≤i,j≤H,W

min(∥x̂m
i,j − xi,j∥22, ∥x̂

p
i,j − xi,j∥22)

Algorithm 1 Training with ensemble-aware loss.
1: Given reconstructed frame x̂1, . . . , x̂h.
2: Compute MSE loss for each reconstruction Lm

MSE ∈
RH×W for m = 1 . . . h.

3: Concatenate Lm
MSE for m = 1 . . . h and obtain a loss matrix

LMSE ∈ RH×W×h.
4: for position (i, j) in 2D lattice do
5: Let p (1 ≤ p ≤ h) be the decoder with the k-th

smallest loss in Lm
MSE(i, j) for m = 1 . . . h.

6: for m = 1 . . . h do
7: Lm

MSE(i, j) := min(Lm
MSE(i, j),L

p
MSE(i, j)).

8: end for
9: end for

10: By back propagating Lm
MSE, the gradients w.r.t. each en-

semble decoder is properly clipped.

where i, j traverses all locations in the 2D lattice. For each
2D location (i, j), the gradient derived from the ensemble-
aware loss with respect to the m-th ensemble decoder is
equivalent to the ensemble member with the k-th smallest
MSE. As demonstrated in Algorithm 1, this loss function can
be implemented by clipping the gradients with respect to each
ensemble member.

The advantage of our ensemble-aware loss is two-fold.
On the one hand, this ensemble-aware loss can effectively
encourage diversity among the ensemble members. With the
standard loss, each decoder is forced to perfectly reconstruct
every frame regardless of the outputs from other decoders. This
would push all decoders to a comparable representation space
and perform similarly. Instead, with the ensemble-aware loss,
we clip the gradients with respect to decoders with large MSE
losses, allowing disagreement between ensemble members.
Hence each decoder only aims to perfectly reconstruct a
subset of frames, allowing them to explore a more diverse
parameter space and as a whole, better capture the predictive
uncertainty. On the other hand, each ensemble member is
supervised by all the training samples. The oracle set loss
proposed in [30] assigned exclusive training samples to each
ensemble member and significantly harmed the performance
of individual ensemble members since each branch only sees
a small portion of all training data. Instead, our ensemble-
aware loss can effectively encourage diversity among ensemble
members, and at the same time, guarantee reliable performance
for each ensemble member.

D. Adversarial Training with FGSM

Adversarial examples [39] are training samples with small
but non-random perturbations that are misclassified by neural
networks with high confidence. [15] proposed the fast gradient
sign method (FGSM) that applies linear but intentionally
worst-case perturbation to the training samples, as given by

η = ϵ · sign(∇xJ(θ, x, y)) (12)

where J(θ, x, y) is the cost function, and ϵ controls the
norm of the perturbation. This adversarial training strategy
has been shown to boost the image classification performance
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Algorithm 2 Overview of our training pipeline.
1: Compute LMSE given reconstructed frame x̂1, . . . , x̂h and

the ground truth frame x.
2: Compute FGSM perturbations η based on the gradients

w.r.t. x: η = ϵ× sign(∇xLMSE).
3: Add FGSM perturbations to the ground truth frame x :=

x+η, and train network with the ensemble-aware training
in Algorithm 1.

and improve the model’s robustness to adversarial examples.
[10] interpreted FGSM as an efficient solution to smooth
the predictive distributions by increasing the likelihood of
the target around an ϵ-neighborhood of the observed training
samples.

We find adversarial training with FGSM closely related
to learned lossy compression and an effective approach to
improve the performance of learned video codecs. In transform
coding, we want the latent representation to be as smooth as
possible, since after quantization, all latent representations in
the ϵ-neighborhood, {â + η | ∥η∥∞ < ϵ}, correspond to the
same decoded output. Learning a smooth latent representation
would help to make the output more robust to quantization
noise. Although this could be a natural result of an end-to-
end optimized video codec, the experimental results show that
FGSM can effectively improve the rate-distortion performance.
Algorithm 2 summarizes our training pipeline with ensemble-
aware training and FGSM.

IV. EXPERIMENTS

A. Experimental Setup

Model architecture. Our base model architecture follows
the design in [3], and we use auto-regressive and hierarchical
priors for both the motion vector and residual compression.
In order to optimize the model in an end-to-end manner, we
need to relax the bits estimation since quantizing the latent bits
would make the gradients zero almost everywhere. Following
[40], we substitute the quantization operation with additive
uniform noise during training and perform actual quantization
during inference.

Training datasets. Our model is trained on 64,612 video se-
quences from the training part in Vimeo-90K settuplet dataset
[41]. Each video clip has seven frames with a resolution
of 448 × 256. We randomly crop the video sequences into
256×256 pixels during training. Given two successive frames
from a random sequence, we treat the first frame as the
reference frame, and our model is trained to minimize the rate-
distortion cost of encoding and decoding the second frame.

Implementation of ensemble-based Decoders. As de-
picted in Fig. 1, ensemble-based decoders consist of a shared
feature backbone and multiple parallel decoder branches. The
decoder branches are lightweight and include two convolution
layers with one leaky ReLU in between. For the ensemble-
based MV decoder, the decoder backbone first decodes MV
feature representation from the MV bitstream ât, and then h
MVs are decoded with respective MV decoder branches. From
the h decoded MVs and the previous decoded frame, we obtain

h motion compensation (MC) predictions with bilinear warp-
ing. The h MC predictions are concatenated with the previous
decoded frame and sent to the Prediction Refine Net, from
which we get h refined MC predictions. For the ensemble-
based residual decoder, the decoder backbone first decodes the
residual feature representation from the residual bitstream b̂t,
and then h residuals are decoded with the respective residual
decoder branches. From the h decoded residuals and the h
refined MC predictions, we obtain h reconstructions. Finally,
the h reconstructions are concatenated with h refined MC
predictions and sent to the Reconstruction Refine Net, from
which we get one refined reconstruction as the final decoded
frame. All modules in our model, including decoder backbone,
decoder branch, and refine nets, are implemented with neural
networks and optimized in an end-to-end manner.

Training details. In our experiments, we adopt the progres-
sive training strategy and warm up the inter-coding module for
150,000 steps with the ensemble-aware motion compensation
loss in Eq. 11. Then the model is end-to-end optimized with
the rate-distortion loss given by

LRD =
(
Rmv(ât) +Rres(b̂t)

)
+ λ ·D(xt, x̂t) (13)

where Rmv(ât) and Rres(b̂t) represent the numbers of bits
used to encode the motion vectors and the residual, D(Ft, F̂t)
measures the distortion in mean squared error or multi-scale
structural similarity [42], and λ is the hyperparameter con-
trolling the trade-off. Four models are trained with different
quality rates by setting λ = 256, 512, 1024, 2048. We use
the AdamW optimizer [43] with an initial learning rate of
1×10−4, which is then decreased to 1×10−5 after 1.2×106

steps. Each model is trained on one NVIDIA V100 GPU. For
the main results reported in Section IV-B and Section IV-D, we
used h = 4 ensemble decoders, with k = 1 in ensemble-aware
loss and ϵ = 4/255 in FGSM.

B. Quantitative Results

Testing datasets. To show the effectiveness of our proposed
uncertainty-aware model, we test our model on the first 100
frames from video sequences in HEVC [44] with GoP size
10, and the first 120 frames from sequences in UVG [45],
MCL-JCV [46] with GoP size 12. To balance the trade-off
between complexity and performance, we use ensemble-based
decoders with h = 4 members.

Baseline models. DVC [18] is the pioneer model in deep
video compression area. It adopts the residual coding-based
framework which is the most common framework in tradi-
tional coding standards. DVC Pro [3] is the enhanced model
of DVC and was also the state-of-the-art model when we
developed our algorithm. Thus, considering the significant
influence of DVC and DVC Pro, we chose these two models
as the benchmarks and tested our algorithms based on DVC
Pro. In order to build the best learning-based video codec,
we adopt the state-of-the-art image compression model [47]
for intra-frame coding. To fairly compare performance and to
demonstrate the effectiveness of our approach, we test DVC
[18] and DVC Pro [3] trained with identical experimental
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TABLE I
COMPARISONS BETWEEN DIFFERENT LEARNING-BASED VIDEO COMPRESSION MODELS MEASURED IN BD RATE. THE ANCHOR MODEL IS X265. veryslow

PRESET IS USED FOR BOTH X264 AND X265. A NEGATIVE NUMBER MEANS BITRATE SAVING, AND A POSITIVE NUMBER MEANS BITRATE INCREASE.

MODEL HEVC B HEVC C HEVC D HEVC E UVG MCL-JCV

x264 35.0% 19.9% 15.5% 50.0% 32.7% 30.3%
x265 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
DVC (public) 26.7% 41.5% 31.1% 17.8% 21.9% 16.0%
DVC Pro (public) -0.4% 11.5% 4.5% -3.8% -12.6% -5.3%
DVC (cheng2020) 7.9% 15.1% 7.2% 21.1% 17.2% 13.3%
DVC Pro (cheng2020) -9.0% 7.2% -6.9% 17.2% -7.9% -4.1%
HU ECCV20 2.4% 13.0% 10.8% -8.6% -5.4% -12.6%
LU ECCV20 5.0% 8.4% 3.6% 11.7% 8.8% 8.4%
Agustsson CVPR20 -14.3% -16.9%
NeRV NeurIPS21 -19.1% -2.7%
Ours -22.3% -6.0% -19.0% -24.3% -25.5% -18.2%

settings and the same intra-frame model, denoted as DVC
(cheng2020) and DVC Pro (cheng2020).

Moreover, we also compare our methods with other state-of-
the-art methods in Table I to further exhibit the advantage of
our approach. HU ECCV20 [35] and LU ECCV20 [34] were
parallel works based on DVC and addressed the resolution
issues and content domains. NeRV NeurIPS21 [5] proposed
a general neural representation for videos and achieved good
performance for video compression by transmitting the model
weights for each video.

We calculate the BD-rate [48] of different learning-based
video compression models using x.265 as the anchor model,
and the results on HEVC, UVG, MCL-JCV are reported in
Table I. We also plot the RD curves of different codec models
in Fig. 3.

Quantiative results. From the results reported in Table
I and Fig. 3, we could see that our proposed model can
effectively save bits compared to our strong baseline and out-
perform previous state-of-the-art learning-based video codecs
by a wide margin in all testing datasets.

C. Qualitative Results

In Fig. 2, we visualize the aleatoric and epistemic un-
certainty in the first two frames of the BasketballDrill se-
quence, as well as the predictive uncertainty represented by
the ensemble-based MV decoder. As we can see, the predictive
uncertainty is more significant in regions where the motion
cannot be accurately estimated or is too complicated to encode.
Our uncertainty-aware model learns to effectively represent the
underlying uncertainty with an ensemble of decoded MVs, and
this uncertainty is retained until the final reconstruction.

Predictive uncertainty. To demonstrate that the decoded
representation from each member is indeed diversified to
effectively capture the underlying uncertainty, we visualize the
predictive uncertainty by modeling the ensemble predictions
with a Gaussian mixture model and representing the predictive
uncertainty with the variance term (see Eq. 9). For each
2D location, the variance would be larger if the predictions
from the ensemble-based decoder are quite diversified, and the
variance would be smaller if the predictions are consistent. We
visualize the predictive uncertainty on three video sequences,
BasketballDrive, RaceHorses, and Kimono1 in Fig. 5. As we

could see, the decoded representations from ensemble mem-
bers are indeed diversified and larger predictive uncertainty
corresponds to locations with large aleatoric uncertainty due
to rapid motion and large epistemic uncertainty near object
boundaries.

D. Ablation Study

Effectiveness of various proposed modules. We evaluate
the effectiveness of ensemble-based decoders, ensemble-aware
loss, and adversarial training with FGSM by running ablation
experiments on the first 30 frames of all sequences in the
HEVC dataset. We adopt the short training strategy for fast
experimentation. The RD curves are presented in Fig. 4(a)
and the BD-rates are reported in Table II. “ED-MV” and “ED-
Res” represent ensemble-based decoders for MV and residual,
and “EA-L” refers to training with ensemble-aware loss.
Specifically, “Ours” is the baseline model augmented with
ED-MV, ED-Res, and EA-L. The results show the efficacy
of various proposed modules.

Ablation study on the number of ensemble members.
We investigate the model’s performance with different num-
bers of members in the ensemble-based decoders on HEVC
sequences. As shown in Fig. 4(b), we train eight models with
h = 1, . . . , 8 members where h = 1 is the baseline without
ensembling. We see that the ensemble-based decoder module
is effective even with only two ensemble members, and
the performance is improved with more ensemble members.
Quantitative results are reported in Table III.

Ablation study on the ensemble-aware loss. We intro-
duced a novel ensemble-aware loss Eq. 11 in Section III-C
with a hyperparameter k, where the k ensemble members with
the smallest MSE are untouched, and the gradients of the other
members are clipped. Following the same experimental setting
in the ablation study, we experiment with our model with
h = 8 ensemble members in the decoder for k = 2, 4, 6, 8.
The bits savings on HEVC B compared to the model without
ensemble-based decoders are −8.7% −10.4%, −7.5%, and
−4.2%, respectively.

Complexity analysis. Most previous deep ensembles train
multiple stand-alone models [25], [31], [36] or share very few
shallow layers [30] for the model to be effective. With an en-
semble of 6 models, the inference complexity (in MACs) and
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(a) (b) (c)

(d) (e) (f)
Fig. 3. Rate-distortion comparisons between our model and x264, x265, DVC [18] , DVC Pro [3], Hu ECCV20 [35], LU ECCV20 [34], Agustsson CVPR20
[4], and NeRV [5] on different datasets. veryslow preset is used for both x264 and x265. Best viewed in color.

TABLE II
ABLATION STUDY ON THE EFFECTIVENESS OF EACH MODULE. THE PERFORMANCE IS MEASURED IN BD RATES USING OUR BASELINE MODEL AS THE

ANCHOR. ED-MV: ENSEMBLE-BASED MV DECODER, ED-RES: ENSEMBLE-BASED RESIDUAL DECODER, EA-L: ENSEMBLE-AWARE LOSS, FGSM:
ADVERSARIAL TRAINING WITH FGSM. SPECIFICALLY, “OURS” IS THE BASELINE MODEL AUGMENTED WITH ED-MV, ED-RES, AND EA-L. ALL

MODELS HAVE h = 4 CONSIDERING THE TRADE-OFF BETWEEN PERFORMANCE AND COMPLEXITY.

Setting HEVC B HEVC C HEVC D HEVC E

Ours - ED-MV - ED-Res - EA-L 0.0 0.0 0.0 0.0
Ours - ED-Res - EA-L -5.8 -3.1 -4.0 -3.7
Ours - ED-Res -7.0 -4.0 -6.7 -4.8
Ours -8.7 -6.4 -8.5 -6.7
Ours + FGSM -12.7 -7.9 -11.2 -11.4

model size (in the number of parameters) easily increase by
500%. In our ensemble-based decoder, the ensemble members
share the backbone features, and we achieve superior results
with a limited complexity increase. For one extra ensemble
member in the MV and residual decoders, the complexity
increases by 6% and only 1% in the model size. For our largest
model with h = 8, there is only a 48% increase in complexity
and 10% in model size.

Choice of model designs. Considering the trade-off be-
tween model performance and computational complexity, we
chose h = 4 and k = 1 in our main experiments for an
desirable performance with negligible complexity costs. For
the implementation of FGSM, we followed a previous imple-

mentation of FGSM on ImageNet [49] and chose ε = 4/255.

V. DISCUSSION

In this paper, we studied the aleatoric and epistemic uncer-
tainty in deep learning-based video compression and proposed
to utilize an ensemble of intermediate predictions to represent
the predictive uncertainty at decoding time. With ensemble-
based decoders, our model can adequately model the uncer-
tainties in the decoded MVs or residuals and effectively refine
the motion compensation predictions and the reconstructed
frames with the predictive uncertainty.

We investigated the performance of our uncertainty-aware
decoding module and proposed a novel ensemble-aware loss
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TABLE III
ABLATION STUDY ON THE NUMBER OF ENSEMBLE MEMBERS IN THE
ENSEMBLE-BASED DECODERS. PERFORMANCE IS MEASURED IN BD

RATES USING OUR BASELINE MODEL AS THE ANCHOR. WE TRAIN EIGHT
MODELS WITH h = 1, . . . , 8 USING THE FAST TRAINING STRATEGY.

Setting HEVC B HEVC C HEVC D HEVC E

h = 1 0.0 0.0 0.0 0.0
h = 2 -7.8 -4.8 -8.3 -5.7
h = 3 -8.2 -5.0 -8.2 -6.1
h = 4 -8.7 -6.4 -8.5 -6.7
h = 5 -8.9 -6.1 -9.5 -7.6
h = 6 -9.4 -6.9 -9.7 -8.2
h = 7 -10.5 -7.2 -9.9 -8.7
h = 8 -10.4 -6.8 -9.8 -8.2

(a) (b)
Fig. 4. (a) Effectiveness of various proposed modules. (b) Ablation study on
the number of members in ensemble-based decoders.

(a) (b)

(c) (d)

(e) (f)
Fig. 5. Visualization of the predictive uncertainty represented by our proposed
ensemble-based decoder on the first two frames in the BasketballDrive,
RaceHorses, and Kimono1 sequence. The detailed calculations are presented
in Eq. 9.

to boost the diversity among the parallel ensemble branches
in a single model. We also proposed to incorporate adversarial
training for learning-based video codecs. Experimental results
show the effectiveness of our approach.

Compared with one-stage learning-based video compression
models, such as those based on 3D autoencoders [16], [17],
two-stage motion compensation-based models can decode
high-quality frames with low latency. However, intermedi-
ate predictions in these two-stage pipelines are not always
accurate, and erroneous predictions could severely harm the
performance of later stages, especially for out-of-distribution
data. Therefore, it is critical to represent the predictive uncer-
tainty, and our proposed ensemble-based decoder is a simple
but very effective approach to capture such uncertainty. Future
directions could involve modules on the encoder side to model
and propagate the uncertainty to the decoders for an end-to-
end uncertainty awareness.
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