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Abstract. Deep implicit functions have been found to be an effective
tool for efficiently encoding all manner of natural signals. Their attrac-
tiveness stems from their ability to compactly represent signals with
little to no off-line training data. Instead, they leverage the implicit bias
of deep networks to decouple hidden redundancies within the signal. In
this paper, we explore the hypothesis that additional compression can
be achieved by leveraging the redundancies that exist between layers.
We propose to use a novel run-time decoder-only hypernetwork – that
uses no offline training data – to better model this cross-layer parameter
redundancy. Previous applications of hyper-networks with deep implicit
functions have applied feed-forward encoder/decoder frameworks that
rely on large offline datasets that do not generalize beyond the signals
they were trained on. We instead present a strategy for the initialization
of run-time deep implicit functions for single-instance signals through
a Decoder-Only randomly projected Hypernetwork (D’OH). By directly
changing the dimension of a latent code to approximate a target im-
plicit neural architecture, we provide a natural way to vary the memory
footprint of neural representations without the costly need for neural
architecture search on a space of alternative low-rate structures.

Keywords: Implicit Neural Representations · Compression · Hypernet-
works

1 Introduction

Implicit neural representations, also known as coordinate networks, have received
attention for their ability to represent signals from different domains – including
sound, images, video, sign distance fields, and neural radiance fields – all within
a single generalized framework [16,22,56,57,74,87]. When combined with quan-
tization strategies, they act as a neural signal compressor which can be applied
generally across different modalities; most notably in Compressed Implicit Neu-
ral Representations (COIN) of Dupont et al [22]. Combining this with lossless
entropy compressors can lead to further memory reductions [19,22,33,68,76]
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Fig. 1: We propose a decoder-only hypernetwork that optimises a low-dimensional la-
tent code to directly generate the weights of a target implicit neural representation.
This framework is data modality agnostic and requires no offline training data. Instead
only the target network architecture and target data instance are needed. We use ran-
dom projections as a network decoder enabling a highly compact code representation.

Neural networks are believed to contain significant redundancy in param-
eterization, motivating interest in the use of more compact architectures [?,
21, 32, 34, 36, 38]. A prominent example is hypernetworks - a metanetwork that
generates the weights of a target network [14, 34]. As generating functions can
contain fewer parameters than a target network, hypernetwork can be a compact
way of approximating the performance of a more expressive architecture [26,34].
Frequently, hypernetworks are task-conditioned on a target signal class or appli-
cation offline - for example, in compression, super-resolution, inpainting, or style
transfer [5, 14, 43, 58]. These generating functions are regularly more complex
than the target architecture - and may include mixtures of convolutional layers,
transformers, graph neural networks, and so on [14]. By conditioning on train-
ing data, these hypernetworks are able to generate new networks for a target
class of signals. However, this is at the cost of compactness and generalisation to
out-of-distribution data instances – two of the primary motivations for the use
of implicit neural representations.

To now the use of hypernetworks in implicit neural representations has ex-
clusively focused on the task-conditioned encoder-decoder type (in which data
instances are inputs to a hypernetwork outputting an implicit neural representa-
tion). In contrast, we suggest that a decode-only form of hypernetwork is possible
in which the data instance appears only as a target output. Rather than requir-
ing offline training on the target signal class this decode-only architecture is
optimised directly to predict a given data instance by projecting to a target
implicit neural network structure. Similar to the training of standard implicit
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neural representations this requires no offline datasets and can be optimised
at runtime [22, 48, 62]. By design, we set the latent parameters of this hyper-
network to be fewer than the target network architecture, enabling a highly
compact representation. We explore a special decode-only structure, which in-
volves a low-dimensional parameter vector projected by a fixed linear random
mapping to construct the target network. In contrast to existing implicit neural
representation methods such as COIN [22,76], which require neural architecture
search on low-rate architectures to achieve superior performance, we show that
we can control bit-rate by directly changing the latent code dimension.
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Fig. 2: A conventional Encoder-Decoder Hypernetwork is pre-trained on a class of
signals to predict the weights of an implicit neural representation when fed a target
signal at runtime. This is advantageous to condition on a target signal class or task,
but comes at the cost of generality to out-of-distribution signals. In contrast, in this
paper we propose the use Decoder-Only Hypernetworks (see: Figure 1) which can be
trained at runtime using only the target signal and are free of external data.

We make the following contributions in this paper:

– We introduce a novel hypernetwork framework (D’OH - Decoder-Only ran-
dom Hypernetworks) for runtime optimization of implicit neural representa-
tions which requires only the target signal instance, with no need for offline
preconditioning on a training set of the target signal class.

– We provide an example decoder-only hypernetwork architecture based on a
trainable latent code vector and fixed random projection decoder weights.
As only the latent code, biases, and an integer seed need to be communicated
we show this is applicable to data compression.

– We derive a novel initialization for this hypernetwork to match the layer
weight variances of SIREN networks, that modifies the distribution of the
non-trainable random weights rather than the learned parameters.
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2 Background and Motivation

2.1 Implicit Neural Representation Compression

An implicit neural representation (INR) is a parameterised function fψ(x) → y
mapping coordinates x to features y, trained to closely approximate a target
signal g such that ∥fψ(x)−g(x)∥ ≤ ϵ. INRs have been widely applied to represent
signal types including images, sound, neural radiance fields, and sign distance
fields [23, 52, 56, 57, 74, 76, 87]. Implicit representations have garnered significant
interest for their potential in compressing signals. This involves a neural network
trained to implicitly predict a single signal instance, such as an image, video,
or sound wave. Applying a forward pass of the training network produces a
lossy reconstruction of the original signal [19, 22, 23, 76]. Further compression
can be achieved by exploiting the high-degree of redundancy known to exist in
neural network weights [21,34,36,54]. For example, quantizing network weights
[18, 19, 22, 23, 52, 73, 76], pruning [18, 47], inducing sparse network structures
[67,89], neural architecture search, variational methods [68], hash-tables [78,79],
latent transformations [42,46,91] and entropy compression [23,33,42,46,76].

2.2 Hypernetworks

Hypernetworks are a type of meta-network that generates the parameters for
another network, typically referred to as the target network [14]. As proposed by
Ha et al. [34] is often achieved by approximating the target network’s architecture
with a low-dimensional latent code. Hypernetworks take the form of a generating
function:

Hθ(z) = ψ (1)

where z is a latent code and ψ refers to the generated parameters of a target
network function fψ. For notational simplicity, we use Wl to refer to weights of
the lth layer of a L-layer multi-layer perceptron, and ψ to refer to the parameters
involved in a more generic mapping. Hypernetworks have been applied to various
use-cases [14], including compression [27,41,58], neural architecture search [90],
image super-resolution [43, 82] and sound generation [77]. There is no single
dominant architecture used to generate hypernetworks and a wide number of
architectures have been used in practice, including transformers; convolutional,
recurrent, residual, and convolutional networks; generative adversarial networks,
graph networks, and kernel networks [14,17,27,34,70,71,90]. Hypernetworks have
recently been explored for use within implicit neural representations, with many
works using the network to precondition on a task or domain for use on new data
instances or for downstream tasks [14]. This includes volume rendering [85],
super-resolution of images [43, 85] and hyperspectral images [92], sound [77],
novel view synthesis [15,69,85], and partial-differential equations [10,53].

2.3 Encoder-Decoder Hypernetworks

Hypernetworks as currently applied to implicit neural representations have been
of an encoder-decoder type, where a training set drawn from the target signal
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class is used to train a hypernetwork before being evaluated on the target signal
instance. Given a class C of a signal type, a training set C ∈ C with samples
c ∈ C is used to train a hypernetwork H(c; θe, θd) to generate the weights ψ
of the implicit neural function fψ(x) where x is the input coordinate. The net-
work is optimized offline to minimise the loss

∑
x ∥fψ(x) − c(x)∥22 across the

training set, thereby learning implicit regularities of the signal class. At runtime
the hypernetwork is used to generate the weights for an unseen data instance
in the target class c ∈ C, c /∈ C which may be used for a downstream task.
Note that we are being general with hypernetwork architecture, and have used
θe, θd to collectively define the parameters of the encoding (learning from data
instance) and decoding (generating parameters to the target architecture) func-
tions of the hypernetwork. In practice, these are often intermingled, as in a MLP
where the output layer directly generates network weights and is itself involved
in learning the encoding; however, in complicated architectures or multi-step
processes the two parameter sets may be more distinctly separated [14]. For
example, a hypernetwork applied to image super-resolution may be trained on
an image dataset such as the DIV2K before being evaluated on other datasets,
as in [43]. In [74], the authors use a hypernetwork to produce a SIREN MLP
for image inpainting, in which the hypernetwork is conditioned on a subset of
the CelebA database [28, 50]. [92] condition on a set of hyperspectral images to
generate a target MLP. HyperSound conditions on the VCTK dataset for gener-
ating audio INRs [77]. While not directly using a hypernetwork, several related
works have sought to condition a base network on target class data through met-
alearning techniques such as MAML [25], before using this as an initialization
for fine-tuning, autoencoding, or learning a set of modulations for a novel data
instance [23,61,68,76,80].

2.4 Decoder-Only Hypernetworks

Optimized 
Parameters

Random
Projections

Fig. 3: Weight generation in a decoder-only hypernetwork. Latent code z and decoding
parameters θd are used to construct a vectorized version of the hypernetwork output
H(z; θd). For our purposes we investigate on the special case where H(z; θd) = Blz
where Bl is a fixed and untrained per-layer random weight matrix.
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While in Encoder-Decoder Hypernetworks the goal is to learn a domain-
conditioned hypernetwork mapping to the target network, we instead propose to
learn a latent code at runtime directly from the target data itself. As this process
does not involve a separate encoding step of domain information to the latent
space, we describe this as a ‘decoder-only hypernetwork’ in which the latent
code is optimized runtime by projecting to the target network. The decoder-
only hypernetwork is denoted as H(z; θd) → ψ. For our purposes we restrict
ourselves to the situation in which the decoder parameters θd are fixed and only
the latent code z is learned. As a specific example, we focus on a L-layer multi-
layer perceptron target network and set the decoding weights to simply be linear
maps θd := {Bl}Ll=1 defined by a family of fixed random matrices Bl: one for
each layer. The target network weights Wl for the lth layer are then defined to
be the image of the latent vector z ∈ Rn under the linear map Bl. We maintain
a separate trainable bias term hl for each layer in the target network. Denoting
W̄l as the generated vectorized form of Wl Equation (1) reduces to:

Hθ(z) = {W̄l}Ll=1 = {Blz}Ll=1. (2)

This minimal architecture ensures maximal compression through the use of
depth-wise redundancy in a target use-case of signal compression, however more
general decoder-only architectures could include more expressive latent vari-
ables (for example per-layer latent variables zl) or different decoding functions.
The auto-decoder approach of [60] can be considered one such example using
a fully-parameterised decoder. The linear random projection approach we have
described induces parameter sharing [14, 59, 66, 81], in which learned param-
eters are tied by arbitrary sampled random matrices. The choice of random
embeddings is motivated by the effective use of random matrices in the low-
rank matrix decompositions described by Denil et al. [21], classical results in
the use of random projections for dimension reduction [12, 20, 35, 40, 86], and
recent works exploring the compressibility of neural architectures using random
projections [3, 6, 44,55,63].

2.5 Hypernetwork Training and Initialization

Initializing hypernetworks is non-trivial, as standard schemes such as those by
Glorot [31] and He [37] do not directly apply due to the unique challenges posed
by potential exploding or vanishing gradients when target network weights are
generated by a hypernetwork [13]. Even with infinite-width hypernetworks, one
cannot guarantee convergence when approximating a modestly-sized target net-
work [49]. Chang et al. explore initialization strategies for hypernetworks to
maintain layer variances in tanh and ReLU target networks by modifying the
variance of parameters in the generating network [13]. However, implicit neu-
ral representations, which more frequently involve the use of alternative non-
linearities such as the sine activation function [74], require a different approach
While [74] explore a one-layer ReLU MLP for as an encoder-decoder hypernet-
work to generate weights for SIREN, this does not translate to the architecture
described in Equation (2), necessitating a modified initialization scheme.
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D’OH Equivalent Initialization We control the initialization of the projected
weight matrices by changing the variance of the random matrices {Bl}Ll=1 used
to map the generating latent vector to the target network weights. It can be
shown3 that where entries of z are drawn from a distribution Var(z) that the
variance of each Bl:

Var(Bl) =
Var(W̄l)

nVar(z)
. (3)

We initialize the matrices {Bl}Ll=1 such that the projected weight matrices
will have have identically distributed entries of the same variance as in the origi-
nal SIREN implementation [74]. We initialise the latent code uniformly between
[−1/n, 1/n]. Biases are not tied to the generating vector and are separately ini-
tialized to zero, with the exception of the output bias which is set to 0.5 as the
middle of the tested signals output range [0, 1].

Neural Architecture Search One of the difficulties of using implicit neural
representations for compression is the need to search across different architec-
tures to achieve changes in bit-rates. In the COIN this is handled by perform-
ing Neural Architecture Search [22, 24, 84]. MLP architectures (width, hidden)
that satisfy a bits-per-pixel (BPP) target (e.g. 0.3) on the Kodak dataset [2]
are searched over with the best performing models at each bit-rate selected for
further experiments. Figure 4 shows that this is useful, as architectures show
variability in performance. However this search is potentially costly, due to the
time needed to train each model and the large number of satisfying architec-
tures. This extends considerably if considering different quantization levels (e.g.
for quantization aware training) as in [19, 33, 76]. In contrast, by working with
a fixed target architecture generated by a decoder-only hypernetwork we can
control the desired bit-rate by directly varying a latent code dimension. This
avoids the need to search across alternative networks to achieve lower bit-rates.

3 Method

3.1 Training Configurations and Metrics

We test the performance of D’OH on two implicit neural compression tasks:
image regression and occupancy field representation. We choose as a target net-
work of 9 hidden layers and width 40, corresponding to the 0.6 BPP model
for KODAK in [22]. We test latent code dimensions calculated to represent ap-
proximately 100%, 60%, and 30% of the parameters of the target MLP model
as calculated without positional encoding. Note that the number of parameters
increases for MLP models with positional encoding, but not with D’OH (see:
Section 5 for discussion). For baselines we train MLP models using the MLP
3 A full derivation and SIREN equivalent initilization is provided in Supplementary

Materials 1.1
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Fig. 4: Left: COIN architectures show variability in outcome necessitating a costly
Neural Architecture Search to achieve maximal performance as in [22]. Right: Archi-
tectures that satisfy a bits-per-pixel constraint for COIN (Kodak index 2) using 16-bit
quantization. Extending the quantization range (to apply quantization-aware training,
for example) multiplicatively increases the feasible architecture set.

configurations in COIN corresponding to 0.07, 0.15, 0.3 BPP [22]. Table 1 out-
lines the full set of configurations used for training. We experiment both with
and without positional encoding (10 Fourier frequencies [57]). Following train-
ing we apply post-training quantization to model weights at the best performing
epoch and calculate the perceptual metrics at each quantization level. Compres-
sion metrics are reported using the estimated memory footprint (parameters ×
bits-per-parameter) and the bits-per-pixel (memory/pixels). We find this to be
a close proxy to the performance of an entropy compressor (BZIP2 [72]), with
some variation due to file overhead. See Supplementary Materials 2 for technical
details of the applied post-training quantization strategy and compression.

4 Results

Image Compression - KODAK Image regression is a R2 : R3 coordinate
function used to implicitly represent 2D images by predicting RGB values at
sampled coordinates. We conduct image compression experiments on the Ko-
dak dataset [2]. The Kodak dataset consists of natural images with dimen-
sions (768, 512) and is a common test for implicit neural image compression
(e.g. [19, 22, 23, 76]. We test across the 24 image Kodak dataset and report
rate-distortion performance for the 100%, 60%, and 30% latent code dimen-
sions, using 8-bit post-training quantization. Figure 5 shows the performance of
D’OH relative to other algorithms, with comparison algorithms as reported by
CompressAI [9]. D’OH shows improved performance relative to JPEG, COIN,
and COIN++. We select these three benchmarks to highlight as a signal spe-
cific code (JPEG), data-agnostic and data-less codec (COIN) [22], and a meta-
learned data-agnostic codec (COIN++) [23]; however, our most direct point
of comparison is the original COIN as it relies on no external data or signal
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Table 1: Training configurations for image and occupancy field experiments.

Dataset KODAK Thai Statue
Dimensions 768× 512 512× 512× 512

Hardware NVIDIA A100 NVIDIA A100
Optimizer Adam β = (0.99, 0.999) Adam β = (0.99, 0.999)

Scheduler (Exponential) γ = 0.999 γ = 0.999

Epochs 2000 250
Batch Size 1024 20000
Loss Mean Square Error Mean Square Error
Perceptual Metrics PSNR, SSIM [83], LPIPS [93] IOU
Compression Metrics Bits-Per-Pixel (BPP) Memory (kB)
Target MLPs: width/hidden 20/4, 30/4, 28/9, 40/9 20/4, 30/4, 28/9, 40/9
Positional Encoding 10 frequencies 10 frequencies
Activation Sine (ω = 30) Sine (ω = 30)
Learning Rates (MLP/DOH) 2e− 4,1e−6 1e− 4, 1e− 6

Quantization levels [4, 5, 6, 8, 16] [4, 5, 6, 8, 16]

specific information. In the Supplementary Materials 3.1 we provide additional
benchmarks showing performance relative to general leading compression meth-
ods, including those incorporating meta-learned quantization aware training [76],
auto-encoders [7], and advanced image codecs [11].

Figure 6 shows an ablation showing the impacts of quantization and varying
latent dimension. For completeness we include a D’OH model with 100% of the
higher parameter count of including positional encoding. We can contrast here
two methods for reducing the rate of a fixed MLP: weight quantization and
varying the generating latent dimension. Quantization of the target MLP has a
sharp drop off in performance below 16-bit precision. Varying the latent code
provides a smoother way to interpolate performance between different bit-rates.

Qualitative results are shown in Figure 7. As COIN is fixed at 16-bits [22],
we use an additional MLP benchmark to show direct comparison to D’OH at
8-bit quantization. We can note that D’OH greatly outperforms the 8-bit MLP
models, potentially due to reduced quantization error when using a single latent
code. This is consistent with the ablation in Figure 6. When compared to COIN
(16-bit), which uses different architectures to vary bit-rate, D’OH out-performs
at all comparable bit-rates while using the same target architecture. Note that
in this experiment we use positional encoding for the D’OH model (which uses
no additional parameters), and no positional encoding for the MLP models.
In the Supplementary Experiments 3.1 we show reduced rate-distortion perfor-
mance for very low-rate MLP models with positional encoding, due to increased
parameters. We discuss this further in Section 5.

Occupancy Field Experiments A binary occupancy Field is a R3 : R1 coor-
dinate function used to implicitly represent 3D shapes through point occupancy,
with the output representing a prediction of voxel occupancy [56]. We test the
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Fig. 5: Rate-Distortion curve on the KODAK dataset. D’OH approximates a single
target architecture (Width 40, Hidden 9) with fixed [post-training quantization (8-
bits). The rate distortion curve is generated by varying the latent code dimension. The
D’OH model exceeds the performance of JPEG, COIN, and COIN++.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bits-Per-Pixel

0

5

10

15

20

25

30

35

40

P
S

N
R

Hidden: 9, Width: 40

D’OH Latent Dim: 4050

D’OH Latent Dim: 8100

D’OH Latent Dim: 14600

D’OH Latent Dim: 16200

MLP PE: True

MLP PE: False

Fig. 6: Comparison of base model (9, 40) and D’OH with varied latent dimension (eval-
uated on Kodak index 12). Rate-distortion curves generated by varying quantization
levels. The D’OH model is more robust to quantization, with little loss of performance
until around 8-bit. Varying the D’OH latent dimension is able to achieve smoother
rate-distortion performance for a target MLP architecture than through quantization.
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ability of DOH to represent occupancy fields by exploring the implementation
provided by [65] using the Thai Statue instance [1]. As noted by this paper, the
occupancy training set is constructed by sampling voxels within a 512×512×512
grid. As in the image experiments, we use a target network of (40, 9), and approx-
imate this with smaller latent codes. We report performance using intersection
over union (IOU). Qualitative results and are generated by applying march-
ing cubes across a thresholded set of sampled coordinates [51], and are shown
in Figure 7. In contrast to the image regression experiments, where a direct
rate-distortion improvement is observed for the D’OH model when compared
to low-rate MLPs, we find that the performance is more similar - this is due
to positional encoding improving the rate distortion performance of the MLP
models (see: Figure 8. In the Supplementary Materials 3.1 we provide additional
qualitative results on occupancy field showing the effect of positional encoding
for MLPs and D’OH. While a rate-distortion improvement is not observed for
occupancy, we note that D’OH is able to smoothly vary the bit-rate of the target
model without the use of alternative network structures.
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Fig. 7: Qualitative image and occupancy field results. Left: Kodak. The top row cor-
responds to D’OH (8-bit quantization) with a target model (40 width, 9 hidden layers)
with varied latent dimension. The second and third rows are MLPs (8-bit and 16-bit
[COIN]) to match approximate bit-rates. Right: Occupancy field. The target model
matches the bit-rate of a MLP (40 width, 9 hidden) without positional encoding. Note
that D’OH models can receive positional encoding without an increase in parameters.
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5 Discussion

In the previous section we demonstrated that a decoder-only hypernetwork is
able to compactly represent a signal using a small latent code and demonstrate
its potential for signal agnostic compression by quantizing in a manner similar to
COIN [22]. Here we outline two interesting aspects of the model that occur from
using a latent code and random projections to approximate a target network.

Positional Encoding The number of parameters used in the decoder-only
hypernetwork model is independent of the dimensions of the target network.
An interesting consequence of this is that while including a positional encoding
component to a multi-layer perceptron increases the number of parameters (due
to the increased input dimension), this is not true for D’OH. As a result the
D’OH model is able to use positional encoding "for free". As Figure 8 shows, for
very low small networks the change in parameters induced by positional encoding
can be significant. We find in Figure 6 that the increase is sufficient to lead to
reduced rate-distortion performance for small MLPs on image regression with
positional encoding. This contrasts [76], who find benefits of positional encoding
within image experiments when combined with quantization aware training. In
contrast, for the occupancy experiments we find that both the MLP and D’OH
models noticeably improve in rate-distortion when applying positional encoding.
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Fig. 8: (a) Positional Encoding increases the parameter count of MLPs but not DOH.
Comparison on target architecture of (4,28): using a 10 frequency positional encoding
increases the number of MLP parameters by 46%. (b) Rate-Distortion on occupancy
fields shows that both MLPs and DOH benefit from the use of positional encoding.
Rate distortion shown for all tested quantization levels, latent codes, and architectures.

Direct MLP to Latent Code Projection By varying the latent code di-
mension of D’OH it is possible to achieve improved rate-distortion performance
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Fig. 9: The blue line represents the evaluated performance immediately following in-
verting for the latent code. The orange line after fine-tuning for 100 epochs. The dotted
red-line shows the target MLP parameters and performance. Performance exceeds or
matches the pre-trained MLP on DIV2K with around half of the trainable parameters.

relative to a target architecture. While we have shown that this can achieve
improved rate-distortion performance, we note that it suffers from a limitation
common to COIN - needing to be trained from scratch for each tested latent
code dimension [22]. However, the linear structure we have investigated raises
the question of whether we can direct distill the parameters of a trained neu-
ral representation into a least-squares optimal latent code. Algorithm 1 outlines
this approach. We take a pre-trained MLP and attempt to directly invert the
system for the latent code z. The least-squares optimal projection is obtained by
z ≈ B†W whereW is the stack of vectorized MLP weights vec(Wl), † denotes the
Moore-Penrose pseudoinverse [75], and B is a stack of arbitrary (Bl) initialised
from Equation (3). For small coordinate networks and latent code dimensions
this is computationally feasible and can be solved in less than a minute. The
biases are copied to the hypernetwork directly. Figure 9 shows the results of this
procedure applied to a 3 hidden layer, 32 width MLP pre-trained on a 512×512
image from the DIV2K dataset [4]; before projecting to hypernetworks at lower
dimension. We find that while direct inversion is not able to achieve satisfac-
tory results immediately following projection, that fine-tuning the hypernetwork
for 100 epochs achieves equivalent or improved performance to the target MLP
with less than 50% of the original parameters. In effect, this suggests an effi-
cient two-stage training method for decoder-only hypernetworks in which the
first stage trains a target MLP and the second stage projects the MLP into a
lower-dimension decoder-only hypernetwork which is a topic for future work.



14 C. Gordon, L. E. MacDonald, H. Saratchandran, S. Lucey

Algorithm 1 Pre-Trained MLP-to-DOH Projection

1: Input: Pretrained MLP weights {Wl}Ll=1

2: Output: Decoder-only hypernetwork parameters
3: Extract W as the stack of vectorized MLP weights vec(Wl) for all layers l
4: Initialize B as a stack of arbitrary random Bl for all layers l as per Eq. (3)
5: Compute z ≈ B†W
6: for each bias term in the MLP do
7: Copy the per-layer MLP bias to DOH
8: end for
9: Fine-tune DOH for N epochs

Optional:
10: Quantize the parameters of the DOH
11: Compress the DOH state dictionary (z, biases, and integer seed) using BZIP2 or

a similar entropy encoder.

6 Conclusions and Future Work

Conclusion In conclusion we have provided a framework for direct optimiza-
tion of a decoder-only hypernetwork for implicit neural representations. Con-
trasting prior work applying hypernetworks to implicit neural representations,
our method does not require offline preconditioning on a target signal class and
is instead able to be trained at runtime only the target data instance. As an ex-
ample of this approach we have outlined a decode-only strategy to approximate a
target architecture through a generating latent code and fixed random projection
matrices. We have shown a number of surprising advantages to this approach,
including: improved rate-distortion performance on image compression; smooth
interpolation of bit-rate for target network architectures without the need for
neural architecture search on low-rate structures or aggressive quantization. We
note the improvement over quantization for reducing the rate of a fixed target
architecture is especially pronounced. Hence, our method is potentially most
applicable as a method to compress target implicit neural representations.

Future Work While our model has been experimentally demonstrated on im-
ages and occupancy fields we believe that it may be applicable to other implicit
neural signal types, such as point clouds, neural radiance fields, sign-distance
functions, and sound files [87]. Our strategy highlights the potential to exploit
neural network redundancy for compression through the precommunication of ar-
bitrary non-trained values to further compress a transmitted learned signal code.
We consider that our approach may be complementary to recent techniques used
in the compression of implicit neural representations, such as quantization aware
training [76], non-uniform adaptive quantization [33], and sparsification [89].
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Supplementary Materials
D’OH: Decoder-Only random Hypernetworks for

Implicit Neural Representations

1 Initialization

In Section 2.5 we noted that we need to apply a modified initialization scheme
under the random matrix hypernetwork structure we examine. Under most in-
tiialization schemes (e.g. He [37], Xavier [31], and SIREN [74]), initialization is
conducted separately for each layer - a property we want to preserve in the target
network. However as we will use the same latent parameter vector to generate
each layer we will instead need to account for this by changing the per-layer
random matrices to match the desired initialization of the target network.

1.1 Derivation

Assume the entries of z are drawn independently and identically distributed from
a distribution of variance Var(z), and that the weights of the lth layer of the
target network are to have variance Var(Wl). We seek a formula for the variance
Var(Bl) of the distribution from which to independently and identically draw
the entries of the random matrix Bl such that the entries of Blz have variance
Var(Wl). We assume that all entries for both z and Bl are drawn independently
of one another, and with zero mean. From Equation 2, we have:

W̄l = Blz. (1)

Recall that n denotes the dimension of z, and use superscripts to denote vector
and matrix indices. Then the above equation can be written entry-wise as:

Var(W̄ i
l ) = Var(

n∑
j=1

Bijl z
j) (2)

Since the entries of Bl and z are all independent, we therefore have:

Var(W̄ i
l ) =

n∑
j=1

Var(Bijl z
j). (3)

Again using independence of the entries of Bl and z, we have:

Var(W̄ i
l ) =

n∑
j=1

Var(Bijl )Var(zj)

+ Var(Bijl )E(z
j)2 + E(Bijl )

2Var(zj),

(4)
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which simplifies to:

Var(W̄ i
l ) =

n∑
j=1

Var(Bijl )Var(zj) (5)

by our zero-mean assumption on the entries of Bl and z. Invoking our identically
distributed assumption finally yields:

Var(W̄l) = nVar(Bl)Var(z), (6)

so that:

Var(Bl) =
Var(W̄l)

nVar(z)
. (7)

We will use this formula to find bounds on a uniform distribution for Bl in order
to achieve the variance Var(Wl) of the weights considered in [74]. To initialize
Bl using a uniform distribution centred at 0, we must determine its bounds ±a.
Taking the variance of a uniform distribution, we have Var(Bl) = 1

12 (2a)
2 = a2

3 .
Substituting into Equation (7), we have:

a2

3
=

Var(W̄l)

nVar(z)
, (8)

so that

a = ±

√
3Var(W̄l)

nVar(z)
. (9)

1.2 SIREN Equivalent Initialization

We can apply Equation (9) to derive an example SIREN initialization [74].

Input Layer1: Assume z is initialized using U ∼ (± 1
n ) and W̄0 by U ∼ (± 1

fanin
)

where fanin represents the input dimension of the target network:

Var(W̄0) =
1

12
(

2

fanin
)2 =

1

3fan2in
(10)

Var(z) =
(2/n)2

12
=

1

3n2
(11)

Var(B0) =
Var(W̄i)

nVar(z)
=

1/(3fan2in)

n/(3n2)
=

n

fan2in
(12)

a0 = ±

√
3n

fan2in
(13)

1 We follow the SIREN initialization scheme provided in the Sitzmann et al. (2020)
codebase, as this has been noted by the authors to have improved performance [74]
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Other Layers: W̄i initialized using U ∼ (± 1
ω
√
h
), where h refers to the number

of hidden units, and ω the SIREN frequency.

Var(W̄i) =
1

12
(

2

ω
√
h
)2 =

1

3ω2h
(14)

Var(Bi) =
Var(W̄i)

nVar(z)
=

1/(3ω2h)

n/(3n2)
=

n

ω2h
(15)

ai = ±
√

3n

ω2h
(16)

Numerical Comparison We initialize target networks with using Equations
(13) and (16) for a range of input and hidden layer dimensions. The D’OH
initialization correctly matches the target SIREN weight variances (Figure 1 ).
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Fig. 1: Numerical comparison of layer variances between SIREN and the weights gen-
erated by D’OH (latent dim: 2000 and ω = 30). Our initialization closely matches the
initialization of SIREN [74].

2 Quantization, Compression, and Transmission

Quantization We outline here the design decisions for our quantization ap-
proach. We employ post-training quantization in our pipeline. While quantization-
aware training (QAT) [64] has been demonstrated to reduce quantization error
in the context of implicit neural representations [19, 23, 33, 76], we note this
has two key disadvantages: each quantization level needs to be trained sepa-
rately, while post-training quantization can evaluate multiple quantization levels
at the same time; and when quantization level is considered as part of the neu-
ral architecture search (see: Figure 4) this expands the search space of satisfying
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models considerably. In addition, we employ a layer-wise range-based integer
quantization scheme between the min and maximum values for each weight and
distribution [30]. We select an integer scheme to reduce the quantization sym-
bol set [29, 30, 39]. We decided on a uniform quantization scheme rather than
a non-linear quantizer such as k-means [36] due to the overhead of code-book
storage, which for small networks can be substantial proportion of compressed
memory [33]. In contrast, we represent each tensor with just three per-tensor
components (integer tensor, minimum value, maximum value). Similar range-
based integer quantization schemes are commonly described [30,39,45], and the
method we use is only a subtle variation avoiding the explicit use of a zero point.

Compression and Transmission In a typical compressed implicit neural net-
work the entire trained and compressed network weights need to be transferred
between parties. This is done by first quantizing the weights followed by a lossless
entropy compressor, such as BZIP2 [72] or arithmetic coding [76]. Our method
generates a target network by a low-dimensional linear code and fixed per-layer
random matrices. As random matrices can be reconstructed by the transfer of an
integer seed, we only quantize and compress the linear code. The recently pro-
posed VeRA incorporates a similar integer seed transmission protocol for random
matrices to improve the parameter efficiency of Low-Rank Adaptive Models [44].
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Fig. 2: Comparison of bits-per-pixel (BPP) for estimated memory footprint (parame-
ters × bits-per-weight) [dotted] and memory after applying BZIP2 [solid] to a Python
pickle of the quantized model. Rate-distortions generated by varying quantization level.
The estimated is a close proxy to an actual entropy coder, but shows some discrepancy
at low-rate and low-quantization levels where file overhead represent a larger propor-
tion of code size. In this paper we typically report for the estimated memory footprint
for both D’OH and MLPs, which can be seen as a theoretical limit for performance.
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3 Additional Results

3.1 Ablations
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Fig. 3: Comparison for four target D’OH architectures (4,20), (4,30), (9,28), (9,40)
with rate-distortion generated by varying quantization levels at [4, 5, 6, 8, 16, 32] bits
per parameter. Top: Kodak (index 12), bottom: Occupancy Field. The D’OH model is
able to achieve improved rate distortion to each of the target architectures by varying
latent dimension. For images D’OH shows less severe quantization error relative to
the MLPs. We note that the MLP models show worse rate-distortion performance
with positional encoding for images, but occupancy fields show an improvement. For
images the impact is most apparent for low-rate MLPs. This is likely due to a higher
proportional increase in parameters for low-rate architectures relative to larger models.
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Fig. 4: Occupancy field ablation showing the relative changes in performance with
different architecture components (quantization level, hidden, and width) for D’OH and
MLP models). Rate-distortions generated by varying the uncompared components. We
observe that changing the target architecture (width, hidden) does not greatly affect
the D’OH memory profile as the latent dimension remains fixed, with only the bias
increasing total parameter count. The D’OH model is relatively more robust to higher
levels of quantization (e.g. 6-bit) compared to the MLP. Higher performance is observed
for the deeper D’OH models, indicating that despite projecting a linear code the model
is able to derive a performance benefit from the deeper target architecture.
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3.2 Further Benchmarks
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Fig. 5: Rate-Distortion on Kodak showing additional benchmarks. Our method out-
performs signal agnostic codecs trained without external datasets (COIN), our method
lags both advanced signal specific codecs (JPEG2000 and BPG [11]), and those that
employ auto-encoding [8], invertible encoding networks [88], and meta-learned initial-
izations [76]. We suspect that the gap with [76] is due to the use of quantization aware
training (QAT). As mentioned in Section 2.5, we avoid QAT as a primary motivation
for our method is to reduce the need for architecture search, including different quan-
tization levels (the post-training quantization strategy we employ avoids this).
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Fig. 6: Ablation running D’OH with alternative COIN target networks. We note that
D’OH is able to achieve a rate-distortion improvement on each of these architectures.
The resulting model overlay shows an indicative Pareto frontier of the method.



8 C. Gordon, L. E. MacDonald, H. Saratchandran, S. Lucey

3.3 Additional Qualitative Results - Kodak

D’OH (40,9) - 100% D’OH (40,9) - 60% D’OH (40,9) - 30% 
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Fig. 7: Additional qualitative results on Kodak showing the comparison between 8-bit
D’OH, 8-bit MLP, and COIN (a MLP quantized to 16-bits). Note that smaller COIN
architectures are required to match the comparison bit-rates. D’OH is more robust to
quantization than the MLP models. D’OH uses positional encoding, while the MLP
models do not (see: Figure 3 - PE is detrimental to low-rate MLP performance).
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3.4 Additional Qualitative Results - Occupancy Field
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Fig. 8: Expanded Qualitative Results from Figure 7, showing the effect of positional
encoding on 8-bit MLPs. Positional encoding is critical for the reconstruction quality of
MLPs, but at the cost of increased memory. By using a latent code independent of the
input dimension, D’OH receives positional encoding without an increase in parameters.
Memory sizes shown following BZIP2.
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