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Abstract 

With the universal adoption of machine learning in healthcare, the potential for the automation of societal biases to 

further exacerbate health disparities poses a significant risk. We explore algorithmic fairness from the perspective of 

feature selection. Traditional feature selection methods identify features for better decision making by removing 

resource-intensive, correlated, or non-relevant features but overlook how these factors may differ across subgroups. 

To counter these issues, we evaluate a fair feature selection method that considers equal importance to all 

demographic groups. We jointly considered a fairness metric and an error metric within the feature selection process 

to ensure a balance between minimizing both bias and global classification error. We tested our approach on three 

publicly available healthcare datasets. On all three datasets, we observed improvements in fairness metrics coupled 

with a minimal degradation of balanced accuracy. Our approach addresses both distributive and procedural fairness 

within the fair machine learning context. 

 

Introduction 

As machine learning becomes increasingly considered for clinical decision support for a broad spectrum of conditions 

such as cancer1–3, cardiovascular diseases4,5, mental health disorders6–8, and infectious diseases9,10, algorithmic biases 

continue to be observed based on attributes such as skin color and gender11–13. This disparity in performance often 

stems from historical socioeconomic and cultural biases14, raising concerns about the adequacy of machine learning 

models to serve all patient groups. 

 

A growing body of research has been conducted to mitigate bias in machine learning models, particularly through 

optimization and regularization15–17, recalibrating models18,19 and preprocessing of data20–22. However, research into 

fairness during the feature selection process, a common step in the classical machine learning pipeline, is relatively 

sparse by comparison. While prior studies highlight the necessity of fairness-aware frameworks in feature selection, 

they frequently overlook the complexities associated with the subtle interactions among differing definitions of 

fairness23,24. Additionally, investigations into information-theoretic methods and kernel alignment have failed to 

adequately consider the impact of demographic-specific feature dependencies25,26. Although there are proposals to 

assess procedural fairness through societal perceptions and legal standards27–29 and distributive fairness using genetic 

algorithms by aiming to balance fairness and accuracy in machine learning predictions25,26,30–32, a significant gap 

remains in creating an integrated, practical feature selection approach that accommodates varying definitions of 

fairness. 

 

To address these issues, we introduce a generalized method for addressing biases in machine learning datasets and 

corresponding models during the feature selection process. We analyze three different health datasets, stratified by 

gender, to assess and select features separately per gender. By consolidating multiple feature selection methods into a 

unified framework and utilizing a combined metric for final feature selection, our approach addresses distributional 

fairness and offers a sophisticated perspective beyond conventional procedural fairness analyses. This methodological 

approach presents a novel means of achieving machine learning fairness that can be combined with other more well-

known algorithmic fairness procedures to achieve a comprehensive strategy for reducing bias. 

 

Methods 

 

Datasets 

We used three distinct healthcare datasets to evaluate the applicability and functionality of our approach across 

different scenarios (Table 1): 

• Tappy Keystroke Dataset33,34: This dataset comprises keystroke timing information from 103 individuals, of 

which 32 have been diagnosed with mild Parkinson’s Disease (PD) and 71 do not have PD. It is utilized to 

ascertain the presence of PD in subjects based on their keystroke dynamics. 



• Clinical and Molecular Features data for Glioma Grading35: This dataset, derived from The Cancer Genome 

Atlas (TCGA) Project, includes data from 20 genes and 3 clinical attributes across 839 instances. It is used 

to differentiate between Lower-Grade Glioma (LGG) and Glioblastoma Multiforme (GBM). 

• Hospital Admission Data for Coronary Artery Disease36: This is a processed version of the Hospital 

Outcomes dataset37 collected from Hero Dayanand Medical College, Heart Institute Unit of Dayanand 

Medical College and Hospital. The dataset encompasses 53 features covering demographic information, 

admission specifics, laboratory results, and comorbidities, with a total of 6611 data points. 

 

Table 1. Summary of the datasets used for the study.  

Dataset # of Features # of Datapoints Protected Attribute Prediction Task 

Tappy Keystroke Dataset 31 83 Gender Parkinson’s Disease 

Clinical and Molecular 

Features data for Glioma 

Grading 

22 839 Gender Clinical Glioma 

Hospital Admission Data 

for Coronary Artery Disease 

53 6611 Gender Coronary Artery 

Disease 

 

Preprocessing 

Among the three datasets utilized in this study, the Tappy Keystroke dataset was subject to the most extensive 

preprocessing. Erroneous entries were removed from the initial dataset, and metrics such as HoldTime and 

LatencyTime were standardized to ensure consistency. Subsequently, the refined data were categorized based on the 

participant's identity and the hand used for typing. Key statistical metrics—mean, standard deviation, skewness, and 

kurtosis—were then calculated for each user’s keystroke durations and intervals33. This process of refinement and 

transformation resulted in the generation of 31 features for each user, and the cleaning procedure resulted in the 

exclusion of 20 users, leaving 83 instances for analysis. 

In contrast, the Clinical and Molecular Features data for Glioma Grading and the Hospital Admission Data for 

Coronary Artery Disease underwent minimal preprocessing, as they were already in a substantially processed form. 

Enhancements were confined to the label encoding of categorical features to facilitate more effective model training 

and the elimination of features that were not relevant to the objectives of the study. 

 

Feature Ranking 

To assess feature significance in relation to gender discrepancies, we first divided the dataset according to the 'gender' 

attribute, thereby generating distinct subsets for male and female participants. Subsequently, various feature ranking 

techniques were applied independently to each data subset: 

• Forward Feature Selection (FFS) with Random Forest (RF): The incremental contribution of each feature to 

an RF model’s performance is assessed when iterative adding features30.  

• Recursive Feature Elimination (RFE) with RF: In contrast to FFS, RFE removes features iteratively30.  

• Decision Tree (DT) Depth: Features are evaluated based on their position in the DT. Features used at the root 

nodes are deemed more critical than those used at a deeper branch38. 

• Logistic Regression (LR) Weights: The absolute weights in an LR model signify the feature’s effect on the 

outcome. Heavier weights suggest a stronger relationship with the dependent variable, offering a linear 

perspective on feature importance39. 

• Mutual Information (MI): Features with less mutual information suggests a weaker relationship, indicating a 

lower information released to the model about the gender40. 

• Spearman's Rank Correlation: Utilizing non-parametric measures, this method identifies features with lower 

correlation to the gender column, suggesting their diminished significance in gender-specific contexts41. 

 

After the individual ranks of the features were extracted for each demographic-specific dataset using each of these 

methods, the average ranking from these methods yielded the final feature ranking. The mathematical representation 

for each demographic subset (𝑅final, demographic group) combines the individual ranks from each method 

(𝑅method, demographic group), averaged over all utilized methods (N): 

𝑅final,demographic =
1

𝑁
∑ 𝑅method i, demographic

𝑁

𝑖=1

 



An aggregated ranking, reflective of all demographic groups, is computed by averaging these demographic-specific 

ranks, providing a holistic view of feature significance. Here, 'M' represents the number of demographic groups: 

𝑅final,combined =
1

𝑀
∑ 𝑅final,demographic group i

𝑀

𝑖=1

 

By dissecting and synthesizing feature importance through this multifaceted lens, the final ranking is less biased. 

 

Selection From Ranked Features 

We implemented Stratified K-Fold cross-validation with the value of K tailored to each dataset: we used 4-fold cross 

validation for the Tappy Keystroke dataset and 5-fold strategy to the other datasets. This differentiation accommodates 

the particular attributes and distributions of each dataset, ensuring the preservation of class proportions within each 

fold—an essential factor for reducing bias in model performance metrics42. 

 

The final feature selection was conducted iteratively, where the next features in the rank were added progressively 

and the chosen features were used to train a LR model. The efficacy of this model was assessed based on Balanced 

Accuracy (Bacc) and Disparate Impact (DI), with DI used as an indicator of fairness. 

 

The combined metric, aimed at integrating both performance and fairness into a single optimization criterion, was 

computed as follows: 

 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑀𝑒𝑡𝑟𝑖𝑐 = 𝑤𝑎𝑐𝑐 × 𝐵a𝑐𝑐 + 𝑤𝑓𝑎𝑖𝑟 × (1 − |1 − 𝐷𝐼|) 

 

In this equation, 𝑊(𝑎𝑐𝑐) and 𝑊(𝐹𝑎𝑖𝑟) represent the weights assigned to Bacc and fairness, which are set to 0.50. The 

optimal feature set following the ranking was selected based on the optimal value of the combined metric. This 

balanced approach allowed us to identify feature sets that optimize both prediction accuracy and fairness during the 

feature selection process, addressing potential biases and ensuring the model’s decisions are equitable across different 

demographic groups. 

Evaluation Metrics 

We integrate four evaluation metrics to ensure both fairness and overall performance: Equalized Odds (EqO), 

Statistical Parity (SP), DI, and Bacc. EqO ensures that the True Positive Rate (TPR) and False Positive Rate (FPR) 

remain consistent across groups, defined as 𝑃(𝑌̂ = 1|𝑌 = 𝑦, 𝐺 = g) = 𝑃(𝑌̂ = 1|𝑌 = 𝑦, 𝐺 = g′) where 𝑌 represents 

the actual outcome and 𝑌̂ resents the predicted outcome for different demographic groups G. SP aims to achieve equal 

positive prediction rates across different groups g and g′, quantified as 𝑃(𝑌̂ = 1|𝐺 = g) − 𝑃(𝑌̂ = 1|𝐺 = g′) = 0. DI 

assesses fairness through the ratio of positive outcomes, targeting a value of 
𝑃(𝑌̂ = 1|𝐺 = g)

𝑃(𝑌̂ = 1|𝐺 = g′
)

≈ 1. Bacc calculates the 

mean of correct predictions for each class: 𝐵a𝑐𝑐 =
1

2
(𝑇𝑃𝑅 + 𝑇𝑁𝑅). These metrics collectively guide our model 

towards minimizing error while maximizing fairness43–46. 

 

Experimental procedure 

We used correlation-based feature selection across all datasets. This initial step served as a benchmark for subsequent 

analyses. We then aimed to use the optimal subset of features that foster equitable outcomes. Specifically, for the 

Tappy Keystroke dataset, a 4-fold cross-validation approach was adopted, supplemented by 100 iterations of 

bootstrapped sampling within each fold to ensure the robustness and validity of our findings. The Glioma Grading and 

Coronary Artery Disease datasets were analyzed using a 5-fold cross-validation scheme, again with 100 bootstrapped 

samples for each fold. We used an LR model to evaluate the effectiveness of both the baseline and the novel fair 

feature selection methodologies. Figure 1 illustrates a summary of the data processing, feature selection, and 

evaluation strategy.  



  
Figure 1. Overview of the feature selection and evaluation process: (a) Initial dataset preprocessing and stratification 

by gender to ensure equal representation and analysis. (b) Application of multiple feature ranking methodologies 

including FFS, RFE, DT Depth, LR Weights, MI, and Spearman's Rank Correlation to identify the most predictive 

features for each subset. (c) Integration of individual feature rankings into a unified, combined ranking to inform the 

final feature selection. (d) Comprehensive assessment of the resulting model's performance and fairness using 

established metrics, conducted across diverse datasets. 

 

Results 

 

Tappy Keystroke Data 

For the Tappy Keystroke Dataset, fairness-oriented feature selection identified 19 features and we selected top 19 

features from correlation-based feature selection for an equivalent baseline. Through the use of a 4-fold cross-

validation combined with 100 rounds of bootstrapped sampling, we documented a notable improvement in fairness 

metrics: SP was refined to -0.0003 ± 0.0764 (from -0.0095 ± 0.1531), DI was reduced to 0.9822 ± 0.2127 (from 1.1846 

± 0.4026), and EqO saw an increase to 0.0542 ± 0.0638 (from -0.0667 ± 0.2424), indicating an increase in fairness 

across all metrics. We also observed a marginal decline in Bacc from 0.8262 ± 0.0578 to 0.7637 ± 0.0268. This tradeoff 

is depicted in Figure 2. Table 2 summarizes the results and presents the metrics used for comparison. Figure 3 

demonstrates a comparison of fairness metrices and Bacc for standard and fair feature selection methods individually 

and as applied to the Tappy dataset. 

 
Figure 2. Tappy Keystroke dataset analysis: (a) Contrast in fairness metrics (DI, SP and EqO) and Bacc between 

conventional feature selection and fairness-oriented feature selection approaches. (b) The variations in fairness metrics 

and accuracy against the number of top features selected from the ranking. 
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Table 2. Summary of Results from the Tappy Keystroke Dataset. 

Feature 

Selection 

Number of Features 

Selected (*from 

Ranked List) 

SP DI EqO Bacc 

Regular 19 -0.0095 ± 0.1531 1.1846 ± 0.4026 -0.0667 ± 0.2424 0.8262 ± 0.0578 

Fair 19* -0.0003 ± 0.0764 0.9822 ± 0.2127 0.0542 ± 0.0638 0.7637 ± 0.0268 

 
Figure 3. Comparison of fairness metrics (DI, SP and EqO) and Bacc for individual feature selection methods and 

their fair counterparts on the Tappy Keystroke Dataset. 

 

Clinical and Molecular Features data for Glioma Grading  

We selected the top-20 features from correlation based feature selection to align our fair feature selection approach 

for the analysis of the Glioma Grading dataset. Utilizing a 5-fold cross-validation method combined with 100 bootstrap 

sampling, we observed improvements in fairness metrics under the fairness-based feature selection: SP was enhanced 

to 0.0546 ± 0.0329 from its original value, DI was reduced to 1.1691 ± 0.0906, and EqO significantly enhanced to 

0.0224 ± 0.0310, indicating improved fairness across these metrics. Additionally, Bacc experienced a notable increase 

to 0.8751 ± 0.0072. These results are summarized in Table 3 and graphically represented in Figure 4.  A comparison 

of the individual features selection methods and their ‘ air’ counterpart are illustrated in Figure 5.  

 

Figure 4. Clinical and Molecular Features Data for Glioma Grading analysis: (a) Contrast in fairness metrics (DI, SP 

and EqO) and Bacc between conventional feature selection and fairness-oriented feature selection approaches. (b) The 

relationship between the number of top features considered from the ranking and the changes in fairness metrics and 

accuracy. 
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Table 3. Summary of Results from the Clinical and Molecular Features data for Glioma Grading. 

Feature 

Selection 

Number of Features 

Selected (*from 

Ranked List) 

SP DI EqO Bacc 

Regular 20 0.0821 ± 0.0367 1.3119 ± 0.1223 0.1037 ± 0.0611 0.7583 ± 0.0048 

Fair 20* 0.0546 ± 0.0329 1.1691 ± 0.0906 0.0224 ± 0.0310 0.8751 ± 0.0072 

 
Figure 5. Comparison of fairness metrics (DI, SP and EqO) and Bacc for individual feature selection methods and 

their fair counterparts on the Clinical and Molecular Features Data for Glioma Grading. 

 

Hospital Admission Data for Coronary Artery Disease Hospital Admission Data for Coronary Artery Disease  

In the analysis of the Hospital Admission Data for Coronary Artery Disease, we adjusted the top features selected by 

correlation-based approach to match the 25 features selected by fair feature selection method. The correlation-based 

method yielded a Bacc of 0.6955 ± 0.0067. In contrast, the fairness-oriented approach led to an improved Bacc of 

0.7099 ± 0.0078. Moreover, the fairness metrics demonstrated notable improvements: SP was enhanced from -0.1481 

± 0.0060 to -0.1108 ± 0.0109, and DI improved from 0.8180 ± 0.0066 to 0.8606 ± 0.0125. Additionally, EqO was 

notably reduced from -0.0699 ± 0.0115 to -0.0359 ± 0.0142, indicating better fairness. These results are summarized 

in Table 4 and illustrated in Figure 6. Figure 7 illustrates a contrast between the individual feature selection methods 

used in this dataset and their ‘ air’ counterparts. 

 
Figure 6. Hospital Admission Data for Coronary Artery Disease analysis: (a) Contrast in fairness metrics (DI, SP and 

EqO) and Bacc between conventional feature selection and fairness-oriented feature selection approaches. (b) 

Correlation between the number of top features selected based on ranking and the consequent changes in fairness 

metrics and accuracy. 
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Table 4. Summary of Results from the Hospital Admission Data for Coronary Artery Disease. 

Feature 

Selection 

Number of Features 

Selected (*from 

Ranked List) 

SP DI EqO Bacc 

Regular 25 -0.1481 ± 0.0060 0.8180 ± 0.0066 -0.0699 ± 0.0115 0.6955 ± 0.0067 

Fair 25* -0.1108 ± 0.0109 0.8606 ± 0.0125 -0.0359 ± 0.0142 
 

0.7099 ± 0.0078 

 
Figure 7. Comparison of fairness metrics (DI, SP and EqO) and Bacc for individual feature selection methods and 

their fair counterparts on the Clinical and Molecular Features Data for Hospital Admission Data. 

 

Discussion  

We investigated the implementation of a fair feature selection process to reduce biases in machine learning for 

healthcare. We evaluated this technique on gender-related biases within three distinct publicly available healthcare 

datasets: Tappy Keystroke (for Parkinson’s detection , Clinical and Molecular Features data (for Glioma Grading), 

and Hospital Admission Data (for Coronary Artery Disease). The observed enhancements in fairness metrics, notably 

DI and SP, while maintaining Bacc, support the hypothesis that fairness and accuracy can be integrated successfully 

into predictive models through appropriate fair feature selection techniques. 

Our work indicates that a generalized fair feature selection framework, considering both distributive and procedural 

fairness, is achievable. The results from our analysis show that combining multiple feature selection methods 

outperforms single method approaches in terms of fairness and accuracy. Using both supervised and information-

centric measures, our framework offers a balanced improvement in fairness and accuracy for healthcare diagnostic 

models. 

There are several notable limitations to our work that should be addressed in follow-up studies. First and foremost, 

we only evaluated our method on gender biases. We only studied two genders rather than considering a broader 

spectrum of gender identities, primarily due to the lack of this information in the publicly available datasets that we 

evaluated our method on. Our approach requires significant computational resources. Finally, the success of our bias 

mitigation strategy is reliant on the quality and comprehensiveness of the data; substandard data can reduce the 

effectiveness of bias correction via feature selection.  

 

Future endeavors should aim to expand this evaluation to evaluate a wider range of demographic factors. 

Enhancements to the efficiency and fairness-awareness of our feature selection approach can also be made, making 

the technique more universally applicable and effective. 
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Conclusion 

We address bias in machine learning for healthcare by implementing a specialized fair feature selection strategy. By 

partitioning the datasets according to the sensitive attributes and utilizing an array of feature selection techniques 

separately on each partition, we are able to mitigate biases while improving the overall fairness of the models with 

minimal impact on balanced accuracy. This work contributes to the expanding field of ethical artificial intelligence in 

healthcare by presenting a method to ensure equity in predictive modeling—a critical consideration in healthcare 

settings where decision-making profoundly affects outcomes. 
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