
Mining Bug Repositories for Multi-Fault Programs
Dylan Callaghan

Stellenbosch University
Stellenbosch, South Africa

21831599@sun.ac.za

Bernd Fischer
Stellenbosch University

Stellenbosch, South Africa
bfischer@sun.ac.za

ABSTRACT
Datasets such as Defects4J and BugsInPy that contain bugs from
real-world software projects are necessary for a realistic evalua-
tion of automated debugging tools. However these datasets largely
identify only a single bug in each entry, while real-world software
projects (including those used in Defects4J and BugsInPy) typically
contain multiple bugs at the same time. We lift this limitation and
describe an extension to these datasets in which multiple bugs are
identified in individual entries. We use test case transplantation and
fault location translation, in order to expose and locate the bugs,
respectively. We thus provide datasets of true multi-fault versions
within real-world software projects, which maintain the properties
and usability of the original datasets.

1 INTRODUCTION
Fault localization and program repair tools are typically evaluated
over bug repositories such as Defects4J [30] or BugsInPy [46]. These
repositories contain faulty program versions and their correspond-
ing fixes and regression test suites, which have been mined from
the full version history of multiple open-source Java and Python
projects, respectively. However, both Defects4J and BugsInPy over-
whelmingly only identify a single fault in each faulty program
version: the textual difference between faulty and fixed versions is
small and focused (typically only on a single line), and the fixed
versions pass all tests in the regression test suites.

This single-fault nature limits the usefulness of these bug repos-
itories as evaluation and training data sets. Real-world projects
(including, in fact, even those used in Defects4J and BugsInPy) of-
ten contain multiple faults that can interact with and mask each
other and thus make fault localization and repair harder; the use of
single-fault evaluation datasets thus introduces a substantial threat
to the validity of the evaluation itself. Similarly, using these bug
repositories as training data can introduce bias into learning-based
tools such as GRACE [35].

In this paper, we describe the construction of true multi-fault
variants of Defects4J and BugsInPy. More specifically, we describe
how we identify additional, already existing faults in the program
versions, through amining process based on test case transplantation
and fault location translation.

Test case transplantation copies tests from the regression test
suite of a given bug repository entry to an earlier entry, and checks
whether they fail there; if so, this is taken as evidence that the fault
fixed in the later program version is already present in its earlier
version. Test case transplantation was introduced by An et al. [7] for
the Java-based Defects4J bug repository. We demonstrate here that
it can also be applied to the Python-based BugsInPy; however, the
“Pythonic” programming style used in the underlying projects (e.g.,
the lack of explicit export interfaces and the corresponding structure

of the import clauses) requires a substantially more complex test
case extraction step to allow a successful transplantation.

Test case transplantation only indicates that multiple faults may
be present but gives no indication where exactly they are located in
the different program versions. Since this information is required
for the evaluation of tasks such as fault localization, we complement
the test case transplantation step by a fault location translation step.
This traces the identified fault locations through the versions in
the underlying project respository back to the version in the bug
repository identfied through the test case transplantation.

We applied our technique to Defects4J v1.0.1, and to the current
version of BugsInPy. On average, we identified 9.2 faults in each of
the 311 versions of the 5 projects in Defects4J also used by An et.
al. [7], and 18.6 faults in 501 versions of the 17 projects in BugsInPy.
The identification of these faults requires one to two test cases on
average to be transplanted per fault.

2 BACKGROUND
2.1 Original datasets
Our datasets are based on the original Defects4J [30] and BugsInPy
[46] datasets, which contain collections of versions extracted or re-
constructed from the original repositories of different open-source
Java and Python projects, respectively. Figure 1 shows the common
structure of all of these datasets.

Each underlying project version 𝑣𝑖 = (𝑝𝑖 ,𝑇𝑖 ) consists of the
source code 𝑝𝑖 and test suite 𝑇𝑖 1○. Between any two consecutive
versions 𝑣𝑖−1 and 𝑣𝑖 in the project history, there exists a set of
changes or diff Δ𝑖 2○ for both the source code and the test suite
such that applying the diff to the older version 𝑣𝑖−1 will produce
exactly the newer version 𝑣𝑖 , i.e., Δ𝑖 (𝑣𝑖−1) = 𝑣𝑖 .

Each bug repository entry 𝑒 3○ references two consecutive project
versions (𝑣𝑏 , 𝑣 𝑓 ). The “buggy” version 𝑣𝑏 contains a single fault
exposed by at least one failing test 𝑡 ∈ 𝑇𝑓 from the “fixed” version
𝑣 𝑓 ; this fault is repaired in 𝑣 𝑓 and all tests in 𝑇𝑓 = Δ𝑓 (𝑇𝑏 ) pass.

The original datasets guarantee three properties that are impor-
tant for their use as fault localization and program repair bench-
marks. First, each fault is exposed by a failing test in the buggy
version’s test suite. Second, each fault is repaired in the fixed ver-
sion, and all tests in the corresponding test suite pass. Third, each
diff is minimal, i.e., any smaller change is not a repair.

Exposure through failing tests is the only indication of program
failure; it is necessary for spectrum-based fault localization tools,
which cannot predict faulty source code locations without failing
tests. The fixed versions’ test suites serve as specifications for pro-
gram repair tools, and the locations affected by the minimal repairs
are taken as fault locations 4○, and used to determine the perfor-
mance of any debugging tool in either locating or fixing the faults.
However, the diff only approximates the fault location; this may be

ar
X

iv
:2

40
3.

19
17

1v
2 

 [
cs

.S
E

] 
 1

0 
A

pr
 2

02
4



Dylan Callaghan and Bernd Fischer

Tests

✘ ✔

Code

Buggy

Tests

✔

Code

9c3f4ca

Fixed

✔

>
---
<

diff

projn

✔✔

c293be4

>
---
<

diff

>
---
<

diff
✔✔

61648a9

>
---
<

diff …
>
---
<

diff

Tests

✘ ✔

Code

Buggy 

Tests

✔

Code

97d9a17

Fixed 

✔

>
---
<

diff

projn -1

faultlocationsfaultlocations

f72cce3

88 888
5

4

66

7
33

aa1d340

1 1

2

1 1

2 2 22 2

Figure 1: Project layout in original Defects4J [30] and BugsInPy [46] datasets, and construction of multi-fault variants.

improved by manually constructing the fault location oracle from
inspection of the source code and bug fixing diff 5○ [42].

2.2 Original dataset construction
BugsInPy identifies the project versions (𝑣𝑏 , 𝑣 𝑓 ) referenced in an
entry 𝑒 by first inspecting the commit message related to the diff
Δ𝑓 for bugfix-related terms such as “fix”. It then checks for tests
𝑡 𝑗 ∈ 𝑇𝑓 that pass in the fixed version 𝑣 𝑓 but fail if they are added
to the buggy version 𝑣𝑏 (by applying the diff Δ𝑓 to the 𝑣𝑏 ’s test
suite), to ensure exposure of the bug. The addition of these test
cases 6○ to the buggy version changes its test suite𝑇𝑏 , but the tests
are already part of the project history, and the code 𝑝𝑏 is identical
to the repository version. We align the version numbering in our
multi-fault variant with the commit dates, and re-label if necessary.

Defects4J also inspects the commit messages of Δ𝑓 for bugfix-
related terms to identify the versions (𝑣𝑏 , 𝑣 𝑓 ). However, while
BugsInPy only considers bug fixes that are already minimal, De-
fects4J also selects bug fixes that contain feature additions. It sepa-
rates the minimal bug fix Δ′

𝑓 from Δ𝑓 to ensure minimality, and
applies the inverse Δ′

𝑓
−1 to the fixed version 𝑣 𝑓 to reconstruct the

“clean” buggy version 𝑣𝑏 . The test suite 𝑇𝑓 is then added to the
buggy version 𝑣𝑏 using Δ′

𝑓 , similar to BugsInPy. Hence, the buggy
version 𝑣𝑏 contained in Defects4J can differ from the referenced
project version contained in the project history, however these
differences are only in the feature additions contained within Δ𝑓 .

2.3 Related datasets
Most fault identification datasets such as Defects4J and BugsInPy
contain program versions with only a single fault each. The Soft-
ware Infrastructure Repository (SIR) [21] contains a variety of faulty
programs written in multiple programming languages; of these,
space [45], an interpreter for an array definition language which
contains 33 real-world single fault versions, and the Siemens set of
small programs written in C which have been seeded with single
faults, are widely used for evaluation.More recent work includes the
HasBugs [10] dataset of 25 single-fault Haskell program versions.
Note that these datasets are are sometimes (incorrectly) considered
to be multi-fault datasets, due to the existence of multi-hunk faults.
Our datasets are, in contrast, proper multi-fault datasets.

True multi-fault datasets are limited, and usually either con-
tain synthetic or transplanted faults. Högerle et. al. [25] construct
a dataset of 75000 Test Coverage Matrices (TCMs) from 15 open
source Java projects. Each project version initially contained a
passing test suite, and between 1 and 32 synthetic faults were au-
tomatically injected, causing at least one test case to fail. An et
al. partially construct a multi-fault dataset with 311 versions from
the Defects4J dataset, where the faults are exposed through the
transplantation of a failing test case, but are not all identified (i.e.
indication of source code in the version responsible for the fault).
We build upon the work of An et al. in this paper to construct a full
multi-fault dataset from Defects4J. Zheng et al. also constructed
multi-fault datasets with 46 versions from the Defects4J dataset
and 217 versions from the programs contained in the SIR [47], by
manually transplanting faults from older versions to newer versions
in the dataset. Their technique therefore alters the source code of
underlying versions in the project history.

3 DATASET DESCRIPTION AND STATISTICS
This paper describes two separate datasets, Defects4J-mf [4] and
BugsInPy-mf [3], which we created using the same techniques
and for the same purposes. Both are multi-fault extensions to the
original, underlying datasets Defects4J and BugsInPy, respectively.

Similar to the original datasets (see Section 2.1), the dataset ex-
tensions created in this paper consist of pre-existing, unaltered
versions from underlying open-source repositories maintained us-
ing version control software. In addition to this, we too identify
existing bugs in the versions by means of test case failures. How-
ever we differ from the original datasets by identifying multiple
faults in each version. We do so by exposing additional faults in each
version by transplanting test cases committed in future versions
(see Section 5.1), and by identifying the faulty code locations by
translating the fault locations identified by the original datasets
for the previous versions (see Section 5.2). In order to ensure cor-
rectness, we only consider a bug as existing in a version if the test
case transplantation and fault location translation processes both
succeed; That is, if the bug is both exposed in the version by a failing
test case, and identifiable by at least one line of code.



Mining Bug Repositories for Multi-Fault Programs

Program size (loc) Existing tests Added Drop
�𝐵𝑃𝑉Project N Min Mean Max Min Mean Max tests rate (%)

Chart [22] 20 203303 208700.9 232364 1584 1752.9 2183 11.9 0.0 4.3
Lang [8] 61 48029 53116.4 61093 1605 1872.7 2670 10.1 0.0 7.6
Math [9] 104 30521 121701.8 185273 880 2856.6 5187 7.7 0.0 5.7
Time [18] 23 70198 77992.2 99183 3787 3913.8 4002 24.0 0.0 9.2
Closure [17] 103 99385 208393.9 269152 1629 6699.1 7588 28.9 1.4 14.9
Total 311 30521 133981.0 269152 880 3419.0 7588 16.5 0.3 8.3
PySnooper [36] 3 335 560.3 673 5 17.0 29 0.0 0.0 1.0
ansible [20] 18 101706 1124664.3 1590076 3101 7984.1 11020 5.0 0.0 5.5
black [33] 23 5241 66510.7 96049 18 81.0 129 5.1 0.7 5.9
cookiecutter [23] 4 1258 1828.8 2049 156 251.5 298 1.8 0.3 2.0
fastapi [37] 16 2839 4172.4 4954 179 572.0 793 3.8 9.8 3.2
httpie [38] 5 775 3106.2 3911 17 146.4 232 1.8 27.3 2.2
keras [16] 45 36600 39474.9 42438 158 24817.2 45484 5.6 4.3 5.2
luigi [11] 33 14185 20071.3 28751 549 973.9 1581 5.0 26.9 4.4
matplotlib [28] 30 118312 120706.2 123290 7542 7814.3 8191 5.6 8.2 6.1
pandas [43] 169 159369 161675.2 164785 50989 63559.8 88768 59.0 6.0 45.3
sanic [40] 5 5506 7121.2 7604 638 641.3 644 1.0 0.0 2.0
scrapy [41] 40 15636 20352.8 22631 923 1377.0 2050 16.0 52.6 8.3
spacy [26] 10 94575 97907.0 104284 1647 2398.4 2617 1.1 0.0 2.1
thefuck [29] 32 1636 3679.5 6248 283 1087.5 1716 7.1 64.6 4.1
tornado [44] 16 21167 22957.9 24422 16 19.6 23 1.8 5.0 2.5
tqdm [19] 9 655 2348.0 3229 14 61 91 0.9 21.4 1.6
youtube-dl [12] 43 20515 82597.7 137957 324 1530.2 2365 6.3 16.2 6.0
Total 501 335 104690.3 1590076 5 6666.6 88768 7.5 14.3 6.3

Table 1: Dataset statistics. 𝑁 is the number of versions in the project, program and test suite sizes are averaged over all project
versions, �𝐵𝑃𝑉 is the average number of bugs available in the multi-fault versions of the project.

We successfully identify 9.2 respectively 18.6 faults in each ver-
sion from the Defecst4J respectively BugsInPy datasets. Table 1
gives the overall dataset statistics, while Figure 2 gives a more de-
tailed look at the bug distributions. We see from this figure that
the Defects4J versions have on average substantially fewer bugs
(normalized by program size) identified in our datasets than the
BugsInPy versions, and that particular projects within BugsInPy
have substantially higher bug densities in their versions than the
rest. For each of these versions, we transplant on average 16.5 and
6.3 test cases for Defects4J and BugsInPy respectively, which are
necessary to expose the additional bugs in these versions. Figure 3
shows the number of tests transplanted per bug in each version.
We also report in Table 1 the number of times a fault was excluded
from a version (drop rate), with the test case transplantation pro-
cess succeeding, but the fault location translation process failing.
This indicates the number of times a fault is exposed, but cannot
be automatically identified in the version. On average, this occurs
0.3% and 14.3% for Defects4J and BugsInPy respectively, with the
anomaly occurring more frequently on certain projects.

The datasets created in this paper also enable detailed perspec-
tives on the underlying software projects and versions themselves.
Figure 4 gives one such insight, showing the average number of
versions in which a particular bug is available from each of the
projects. Combining this information with the information from
each projects’ git history, we are able to estimate the amount of
time a particular bug is active for, which is given in Figure 5. These

figures give an estimate of the average lifespan of a bug in a partic-
ular program. We note, however, that this is a lower estimate on
the lifespan of the bugs, as these bugs could be available in more
versions that are not identified by our techniques. As we can see
from Figure 4, bugs from the Java-based Defects4J projects last
on average 6.9 Defects4J versions, whereas bugs from the Python-
based BugsInPy projects last only 4.1 BugsInPy versions on average
(excluding the project pandas). Despite this, there are particular
bugs and whole projects (such as pandas) where the average ver-
sion lifespan is much greater. For example, most projects have at
least one bug that has a lifespan of on average 35 versions. Figure 5
indicates that the average lifespan of a bug is usually quite small
(around one to two weeks), however we also see here that bug
lifetimes vary widely, and that most projects again have at least one
bug that lasts more than 100 to 200 days). These statistics indicate
that although it is uncommon for bugs to last more than a week or
two, there are usually individual bugs whose lifespan spans a larger
portion of the project history. These findings are corroborated in
current literature on the topic of bug lifetimes [15, 32, 39], which
indicates both the veracity of the data, and the accuracy of our
datasets in identifying faults within versions.

4 DATASET USAGE
As described in Section 2, Defects4J and BugsInPy consist of ver-
sions from popular open source projects written in Java and Python,



Dylan Callaghan and Bernd Fischer

Cha
rt

Clos
ure Lan

g
Math Tim

e

PyS
no

op
er

an
sib

le
bla

ck

coo
kie

cut
ter

fas
tap

i
htt

pie ker
as luig

i

matp
lot

lib

pa
nd

as
san

ic
scr

ap
y

spa
cy

the
fuc

k

tor
na

do
tqd

m

yo
utu

be
-dl

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Figure 2: Average number of bugs per version, normalized by the program size of the version.

Cha
rt

Clos
ure Lan

g
Math Tim

e

PyS
no

op
er

an
sib

le
bla

ck

coo
kie

cut
ter

fas
tap

i
htt

pie ker
as luig

i

matp
lot

lib

pa
nd

as
san

ic
scr

ap
y

spa
cy

the
fuc

k

tor
na

do
tqd

m

yo
utu

be
-dl

2

4

6

8

10

12

Figure 3: Number of tests transplanted per bug, averaged by version.

however the datasets themselves do not store each version for the
projects, but rather provide the facilities to easily clone the versions

tracked by the dataset from the original project repositories. We
maintain the functionality and setup of the original datasets in our



Mining Bug Repositories for Multi-Fault Programs

Cha
rt

Clos
ure Lan

g
Math Tim

e

PyS
no

op
er

an
sib

le
bla

ck

coo
kie

cut
ter

fas
tap

i
htt

pie ker
as luig

i

matp
lot

lib

pa
nd

as
san

ic
scr

ap
y

spa
cy

the
fuc

k

tor
na

do
tqd

m

yo
utu

be
-dl

1

10

100

2

4

6
8

20

40

60
80

200

Figure 4: Average number of versions a particular bug is available in (y-axis in log scale).

Cha
rt

Clos
ure Lan

g
Math Tim

e

PyS
no

op
er

an
sib

le
bla

ck

coo
kie

cut
ter

fas
tap

i
htt

pie ker
as luig

i

matp
lot

lib

pa
nd

as
san

ic
scr

ap
y

spa
cy

the
fuc

k

tor
na

do
tqd

m

yo
utu

be
-dl

0

250

500

750

1000

1250

1500

1750

Figure 5: Average number of days between the oldest version a bug is available in and the version in which the bug is fixed (bug
lifetime).



Dylan Callaghan and Bernd Fischer

Command Description
info Get the information of a specific project or bug
checkout Checkout a buggy or a fixed project version

(use multi-checkout for BugsInPy multi-fault)
compile Compile sources and developer-written tests of

a buggy or a fixed project version
test Run a single test method or a test suite on a

buggy or a fixed project version
coverage Run code coverage analysis on a buggy or a

fixed project version
to-tcm Output coverage in TCM format (BugsInPy only)
mutation Run mutation analysis on a buggy or a fixed

project version
fuzz Run a test input generation from specific bug

(BugsInPy only)
identify Add fault location information to elements

Table 2: Defects4J and BugsInPy commands; multi-fault mod-
ifications and extensions in bold.

extension, and only add functionality to allow each version to be
identified as containing multiple faults.

4.1 Usage description of the original datasets
For completeness, we describe the usage of the original Defects4J
and BugsInPy datasets. Both allow interaction with the underly-
ing project versions through the use of a list of specialized CLI
commands. Table 2 lists the commands supported by both De-
fects4J and BugsInPy. They are run as defects4j <command> and
bugsinpy-<command>, respectively. Note that any of the provided
tools can be run on the multi-fault datasets described in this paper.

4.2 Usage description of the multi-fault datasets
The main addition with our multi-fault datasets is the ability to
identify versions in the underlying datasets that contain multi-
ple faults. As such, the main difference in the commands is the
addition of a multi-fault checkout command. These can be run
as defects4j_multi checkout and bugsinpy-multi-checkout,
respectively. These commands use the underlying Defects4j and
BugsInPy datasets’ checkout commands to clone the version from
the project repository; however, they also add for each of the faults
identified in the version the fault-exposing tests and the fault lo-
cations. In both multi-fault datasets, the transplanted test cases
are added to the existing test suite by a process of test case source
code alteration (“splicing”). After the multi-fault checkout process
is complete, these test cases are accessible in the test suite, and
for any test suite related commands in the underlying dataset. The
fault locations are available in bug.locations.<bugId> files for
each bug, in both datasets.

In addition to the checkout command, the our datasets also
provide useful commands for evaluation purposes. In particular,
the coverage commands provided by the original Defects4J and
BugsInPy datasets do not collect code coverage per test case which

is needed for techniques such as spectrum-based fault localiza-
tion [24]. We thus additionally provide commands for this pur-
pose. For Defects4J, we alter the original coverage command to
collect code coverage using Gzoltar [14] instead of Jacoco [2]. For
BugsInPy, we change the settings of the coverage command (which
uses Python’s coverage.py coverage library) to extract coverage
per test, and provide the to-tcm command, which converts the
collected coverage into TCM [1] format. We then also provide com-
mands in both datasets for identifying each of the faults, based on
the fault identification information, within the collected coverage
format, using the identify command. For both datasets, this com-
mand adds the fault as a part of the element (i.e., source code line)
name, in the respective format.

5 DATASET CREATION
Like the original datasets, our multi-fault versions guarantee fault
exposure and fault location identification. The former is achieved
by test case transplantation, the latter by fault location translation.
We describe each step in turn.

5.1 Test case transplantation
Test case transplantation copies fault-revealing test cases from the
test suite of one bug repository entry to that of an earlier entry. This
process does not alter the source code of the project’s versions, and
all test case logic is extracted from an existing projcet version, and
not created. The top of Figure 1 shows the test case transplantation
process 7○: test cases which expose the fault in the buggy version
of an entry are extracted, and then copied to a previous entry. The
test cases are then compiled and run, and their output is compared
with their output from their original version. If the outputs are
similar enough according to the Hunt-Szymanski algorithm [27]
for longest common subsequence (LCS), the fault is considered
exposed also in the target entry. Each set of fault-exposing test
cases is transplanted as far as possible, i.e., until the fault is no
longer exposed.

For the Defects4J, we reused the the test case transplantation
by An et. al. [7]. They provide tools for extracting and copying the
test cases from one version to another, and identify many Defects4J
versions in which test cases can be transplanted to expose multiple
faults. Their tools and results have been included in the defects4j-mf
dataset created in this paper. We note that An et. al. were only able
to identify 311 multi-fault versions out of the 396 available bugs
in Defects4j v1.0.1. We thus only include these 311 versions in our
defects4j-mf dataset.

For BugsInPy, we carried out a similar process in order to achieve
the same results. In particular, we provide the tools for extracting
and copying test cases from one version to another, and identify the
BugsInPy versions in which test cases can be transplanted for the
exposure of multiple faults. This process was considerably more
complex for the Python project versions in BugsInPy, due to cer-
tain Python coding conventions, which encourage test fragment
reuse, and specialized imports. We developed a source code depen-
dency aware test extraction and copying tool, which allows both the
test cases and their respective source code dependencies (e.g. test
fixtures, imports, etc.) to be extracted and copied between versions.



Mining Bug Repositories for Multi-Fault Programs

5.2 Fault location translation
In the original Defects4J and BugsInPy datasets, the fault identifi-
cation used for the location oracle for each buggy version 𝑏 either
uses the lines changed in the diff Δ𝑓 as an approximation 4○, or
relies on a more precise manual identification 5○. We use either
of these methods as a starting point for fault identification in the
multi-fault versions. However, these identified locations cannot be
used directly to identify the fault locations in prior versions as the
changes during the development may have caused the source code
locations to shift. We therefore backtrack [5] the starting locations
through all versions in the complete project repository, until we
reach the buggy target version 𝑏′ of each test case transplantation
step; for each version 𝑖 , we consider the operations in the diff Δ𝑖
and update the fault locations as follows 8○. (1) If a source file
containing a tracked location is renamed, the tracking respects this
renaming. (2) If source code in the same file as a tracked location is
altered above this location, then the tracked location is adjusted to
reflect the changes. (3) If a tracked location is modified or added
in a particular diff, then tracking for this location is stopped; this
ensures that the tracked source lines remain unmodified, and are
thus identical to the location in the version in which the bug was
originally identified. We consider a particular fault identified in
a target version if at least one identified fault location is tracked
successfully back into that version.

5.3 Limitations and threats to validity
The identification of buggy versions from the underlying real-world,
open-source projects used in the Defects4J and BugsInPy datasets
was done manually. This manual identification of buggy versions
is occasionally incorrect and can lead to incorrect results in the
multi-fault versions of the datasets.

Due to the extensive manual effort we did not manually identify
the location of each fault in each multi-fault version. Where avail-
able, we used existing manual fault identification [42] for each bug
in the version where it was discovered by Defects4J or BugsInPy;
otherwise, we used the diff Δ𝑓 between the buggy and fixed ver-
sions as an approximation. We then extended this to the multi-fault
versions using the automated fault location translation process.
The approximate fault identification using source code diffs and the
automated fault location translation are both susceptible to errors;
in particular the location translation may be unable to trace any
faulty lines to an earlier version and thus fail to identify all faults.
We automatically verified that lines were properly translated, and
manually corrected lines incorrectly translated.

The test case transplantation process may also not always work
correctly. In order to prevent this from interfering with the qual-
ity of the dataset, we tested each transplanted test case, and only
accepted transplanted test cases that compiled (i.e., did not pro-
duce any compile-time or runtime errors) and produced the same
result (i.e., expected output or error) as in the original Defects4J or
BugsInPy version, and whose fault location could be fully trans-
lated. This ensures a conservative approach; only bugs that are
truly exposed in a version are identified, but some bugs that may
actually be active in a version may be missed.

As noted in [31], the underlying datasets used in this paper may
have the limitation that their test cases are usually only available

in the project version which contains the corresponding bug, and
thus could be contaminated by the knowledge of the bug-fix. This
limitation may also therefore have an impact on the datasets created
in this paper. In addition, this limitation may be compounded by
the fact that the test case transplantation process used in this paper
modifies the test suite of a version by including test cases that were
only available in subsequent versions, and thus could contaminate
previous versions with the knowledge of fixes from later versions.
This limitation may have an adverse effect, mainly on automated
program repair techniques, as discussed in [31], but may also have
a minor effect on localization techniques. However based on a
sample of bugs from each underlying dataset, we notice that the
test cases can be reasonably constructed from the corresponding
bug report without the knowledge of the bug-fix, indicating a lack
of dependence of the test cases on the future knowledge. This
suggests that this limitation may be mitigated by further study on
the composition of the underlying datasets’ test suites. We leave
such study as future work.

The fault location translation process used in this paper to
identify the faulty locations does not allow the inclusion of the
developer-written bug patches in the multi-fault versions. This
presents a limitation for techniques such as automated program
repair (APR), which often require these patches for evaluation of
the techniques.

6 FUTURE DATASET USAGE
6.1 Multi-fault localization
Multi-fault localization [6] and program repair are open problems;
multi-fault datasets mined from real-world software projects such
as these described here will therefore be useful for training and
evaluation of multi-fault debugging tools. More specifically, we al-
ready used our multi-fault version of Defects4J for the evaluation of
our spectrum-based fault localization tool FLITSR [13], and showed
that it can localize multiple faults at the same time.

Automated debugging techniques that rely on machine learning
also require large datasets of bugs as training data. Previously, these
techniques have used datasets of synthetic (injected) faults, and
single fault datasets such as Defects4J [34, 35]. However, this leads
to bias in the machine learning model [13]. Our multi-fault datasets
can be used asmore realistic training data for suchmachine learning
models to improve real-world applicability.

We also see qualitative uses of our datasets. In particular, the
identification of software project versions with multiple bugs ex-
isting simultaneously may be used in an analysis of the presence
of multiple bugs in software systems. In addition, the fact that test
cases could be transplanted from newer versions to expose bugs in
previous versions may also provide insight into research questions
such as “can better test suites expose more bugs?”. This has appli-
cations in software fuzzing and automated test case generation.

6.2 Future work
Due to automated data construction, any improvements of the un-
derlying Defects4J and BugsInPy datasets will improve the quality
of our multi-fault versions as well. This leads to many avenues for
further improvement of this dataset by improving: (1) the fault iden-
tification for each bug through manual fault identification as in [42]



Dylan Callaghan and Bernd Fischer

for other projects, (2) the bug isolation and reproducibility by better
automation of the set-up for each version, and (3) the size of the
datasets by adding more versions exposing more bugs. Each of the
above changes will result in improvements in the multi-fault coun-
terparts as well, allowing for better identification, reproducibility,
and more bugs in each multi-fault version.

The fault location translation process does not yet fully support
complex branching in the git history. We leave it as future work
to add this functionality. The ideas used to extend the Defects4J
and BugsInPy datasets in this paper can be generalized to other
datasets involving many other languages. An example of such a
dataset to which these techniques can be applied is the HasBugs
dataset [10]. We leave the extension of such datasets using the
techniques provided as future work. As mentioned in Section 5.3,
bug patches for all faults are not included in the multi-fault versions.
We identify the addition of these patches as future work.

7 CONCLUSION
In this paper we present extensions to the Defects4J and BugsInPy
datasets of bugs in real-world software projects which expose the
existence of multiple bugs in each of the versions. We find on av-
erage 9.2 and 18.6 bugs in the Defects4J and BugsInPy versions,
respectively. The extension uses test case transplantation and fault
location translation to identify these multi-fault versions. In do-
ing so, we do not create or modify any of the existing real-world
software project’s code, and only use test cases produced by the
developers of the corresponding software project.

We have made the creation of the multi-fault extension of the
datasets mostly automatic, simplifying reproducibility and future
verification. In addition, the process requires only minimal man-
ual efforts when run on new projects or versions added to the
underlying Defects4J and BugsInPy datasets.

We maintain the existing frameworks’ extensibility and ease
of use by allowing all existing functionality to be used in the ex-
tensions. We additionally add useful functionality for coverage
collection for use in fault localization and program repair.

REFERENCES
[1] 2014. “More Debugging in Parallel” Resource Page. https://www.fernuni-hagen.

de/ps/prjs/PD/.
[2] 2017. JaCoCo Java Code Coverage Library. https://www.eclemma.org/jacoco/.
[3] 2023. BugsInPymulti-fault repository. https://github.com/DCallaz/bugsinpy-mf.
[4] 2023. Defects4J multi-fault repository. https://github.com/DCallaz/defects4j-mf.
[5] 2023. Fault location translation (backtracking) tool. https://github.com/DCallaz/

bug-backtracker.
[6] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-Based

Multiple Fault Localization. In ASE 2009, 24th IEEE/ACM International Conference
on Automated Software Engineering, Auckland, New Zealand, November 16-20,
2009. IEEE Computer Society, 88–99. https://doi.org/10.1109/ASE.2009.25

[7] Gabin An, Juyeon Yoon, and Shin Yoo. 2021. Searching for Multi-fault Programs
in Defects4J. In Search-Based Software Engineering - 13th International Symposium,
SSBSE 2021, Bari, Italy, October 11-12, 2021, Proceedings (Lecture Notes in Computer
Science), Vol. 12914. Springer, 153–158. https://doi.org/10.1007/978-3-030-88106-
1_11

[8] Apache Software Foundation. 2002. Commons Lang. https://commons.apache.
org/proper/commons-lang/

[9] Apache Software Foundation. 2007. Apache Commons Math. https://commons.
apache.org/proper/commons-math/

[10] Leonhard Applis and Annibale Panichella. 2023. HasBugs - Handpicked Haskell
Bugs. In 20th IEEE/ACM International Conference on Mining Software Repositories,
MSR 2023, Melbourne, Australia, May 15-16, 2023. IEEE, 223–227. https://doi.org/
10.1109/MSR59073.2023.00040

[11] Erik Bernhardsson, Elias Freider, and contributors to Luigi. 2012. Luigi. https:
//github.com/spotify/luigi

[12] Daniel Bolton and contributors to Youtube-dl. 2011. Youtube-dl. https://github.
com/ytdl-org/youtube-dl

[13] Dylan Callaghan and Bernd Fischer. 2023. Improving Spectrum-Based Localiza-
tion of Multiple Faults by Iterative Test Suite Reduction. In Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.).
ACM, 1445–1457. https://doi.org/10.1145/3597926.3598148

[14] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. 2012. GZoltar: an
eclipse plug-in for testing and debugging. In IEEE/ACM International Conference
on Automated Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012.
ACM, 378–381. https://doi.org/10.1145/2351676.2351752

[15] Gerardo Canfora, Michele Ceccarelli, Luigi Cerulo, and Massimiliano Di Penta.
2011. How Long Does a Bug Survive? An Empirical Study. In 18th Working
Conference on Reverse Engineering, WCRE 2011, Limerick, Ireland, October 17-20,
2011, Martin Pinzger, Denys Poshyvanyk, and Jim Buckley (Eds.). IEEE Computer
Society, 191–200. https://doi.org/10.1109/WCRE.2011.31

[16] François Chollet et al. 2015. Keras. https://keras.io.
[17] Closure Compiler Authors. 2009. Closure Compiler. https://developers.google.

com/closure/compiler/
[18] Stephen Colebourne and contributors to Joda-Time. 2014. Joda-Time. https:

//www.joda.org/joda-time/
[19] Casper O da Costa-Luis. 2019. tqdm: A fast, extensible progress meter for python

and cli. Journal of Open Source Software 4, 37 (2019), 1277.
[20] Michael DeHaan and contributors to Ansible. 2013. Ansible. https://github.

com/ansible/ansible
[21] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting

Controlled Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empir. Softw. Eng. 10, 4 (2005), 405–435. https://doi.org/10.
1007/S10664-005-3861-2

[22] David Gilbert and contributors to JFreeChart. 2000. JFreeChart. https://www.
jfree.org/jfreechart

[23] Audrey Roy Greenfeld and contributors to Cookiecutter. 2014. Cookiecutter.
https://github.com/cookiecutter/cookiecutter

[24] Simon Heiden, Lars Grunske, Timo Kehrer, Fabian Keller, André van Hoorn,
Antonio Filieri, and David Lo. 2019. An evaluation of pure spectrum-based fault
localization techniques for large-scale software systems. Softw. Pract. Exp. 49, 8
(2019), 1197–1224. https://doi.org/10.1002/spe.2703

[25] Wolfgang Hogerle, Friedrich Steimann, and Marcus Frenkel. 2014. More Debug-
ging in Parallel. In 25th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2014, Naples, Italy, November 3-6, 2014. IEEE Computer Society,
133–143. https://doi.org/10.1109/ISSRE.2014.29

[26] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
2020. spaCy: Industrial-strength Natural Language Processing in Python. (2020).
https://doi.org/10.5281/zenodo.1212303

[27] JamesW. Hunt and Thomas G. Szymanski. 1977. A Fast Algorithm for Computing
Longest Common Subsequences. Commun. ACM 20, 5 (may 1977), 350–353.
https://doi.org/10.1145/359581.359603

[28] John D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in
Science and Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55

[29] Vladimir Iakovlev and contributors to The Fuck. 2015. The Fuck. https:
//github.com/nvbn/thefuck

[30] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database
of existing faults to enable controlled testing studies for Java programs. In
International Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA,
USA - July 21-26, 2014. ACM, 437–440. https://doi.org/10.1145/2610384.2628055

[31] Vinay Kabadi, Dezhen Kong, Siyu Xie, Lingfeng Bao, Gede Artha Azriadi Prana,
Tien-Duy B. Le, Xuan-Bach Dinh Le, and David Lo. 2023. The Future Can’t
Help Fix The Past: Assessing Program Repair In The Wild. In IEEE International
Conference on Software Maintenance and Evolution, ICSME 2023, Bogotá, Colombia,
October 1-6, 2023. IEEE, 50–61. https://doi.org/10.1109/ICSME58846.2023.00017

[32] Sunghun Kim and E. James Whitehead Jr. 2006. How long did it take to fix bugs?.
In Proceedings of the 2006 International Workshop on Mining Software Repositories,
MSR 2006, Shanghai, China, May 22-23, 2006, Stephan Diehl, Harald C. Gall, and
Ahmed E. Hassan (Eds.). ACM, 173–174. https://doi.org/10.1145/1137983.1138027

[33] Łukasz Langa and contributors to Black. 2018. Black: The uncompromising Python
code formatter. https://github.com/psf/black

[34] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019. ACM, 169–180. https://doi.org/10.
1145/3293882.3330574

[35] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang,
and Lingming Zhang. 2021. Boosting coverage-based fault localization via
graph-based representation learning. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021. ACM, 664–676. https://doi.org/

https://www.fernuni-hagen.de/ps/prjs/PD/
https://www.fernuni-hagen.de/ps/prjs/PD/
https://www.eclemma.org/jacoco/
https://github.com/DCallaz/bugsinpy-mf
https://github.com/DCallaz/defects4j-mf
https://github.com/DCallaz/bug-backtracker
https://github.com/DCallaz/bug-backtracker
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1007/978-3-030-88106-1_11
https://doi.org/10.1007/978-3-030-88106-1_11
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
https://doi.org/10.1109/MSR59073.2023.00040
https://doi.org/10.1109/MSR59073.2023.00040
https://github.com/spotify/luigi
https://github.com/spotify/luigi
https://github.com/ytdl-org/youtube-dl
https://github.com/ytdl-org/youtube-dl
https://doi.org/10.1145/3597926.3598148
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1109/WCRE.2011.31
https://keras.io
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://www.joda.org/joda-time/
https://www.joda.org/joda-time/
https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://doi.org/10.1007/S10664-005-3861-2
https://doi.org/10.1007/S10664-005-3861-2
https://www.jfree.org/jfreechart
https://www.jfree.org/jfreechart
https://github.com/cookiecutter/cookiecutter
https://doi.org/10.1002/spe.2703
https://doi.org/10.1109/ISSRE.2014.29
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1145/359581.359603
https://doi.org/10.1109/MCSE.2007.55
https://github.com/nvbn/thefuck
https://github.com/nvbn/thefuck
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSME58846.2023.00017
https://doi.org/10.1145/1137983.1138027
https://github.com/psf/black
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/3468264.3468580


Mining Bug Repositories for Multi-Fault Programs

10.1145/3468264.3468580
[36] Ram Rachum, Alex Hall, Iori Yanokura, et al. 2019. PySnooper: Never use print for

debugging again. https://doi.org/10.5281/zenodo.10462459
[37] Sebastián Ramírez. 2018. FastAPI. https://github.com/tiangolo/fastapi
[38] Jakub Roztocil and contributors to Httpie. 2012. Httpie. https://github.com/

jakubroztocil/httpie
[39] Ripon K. Saha, Sarfraz Khurshid, and Dewayne E. Perry. 2014. An empirical study

of long lived bugs. In 2014 Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering, CSMR-WCRE 2014, Antwerp,
Belgium, February 3-6, 2014, Serge Demeyer, Dave W. Binkley, and Filippo Ricca
(Eds.). IEEE Computer Society, 144–153. https://doi.org/10.1109/CSMR-WCRE.
2014.6747164

[40] Sanic Community Organization. 2017. Sanic. https://github.com/sanic-org/sanic
[41] Scrapy Developers. 2012. Scrapy. https://github.com/scrapy/scrapy
[42] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and

Marcelo de Almeida Maia. 2018. Dissection of a bug dataset: Anatomy of 395
patches from Defects4J. In 25th International Conference on Software Analysis,
Evolution and Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018,
Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd (Eds.). IEEE Com-
puter Society, 130–140. https://doi.org/10.1109/SANER.2018.8330203

[43] The pandas development team. 2010. pandas-dev/pandas: Pandas. https://doi.
org/10.5281/zenodo.3509134

[44] Tornado Developers. 2013. TornadoWeb Server. https://github.com/tornadoweb/
tornado

[45] Filippos I. Vokolos and Phyllis G. Frankl. 1998. Empirical Evaluation of the Textual
Differencing Regression Testing Technique. In 1998 International Conference on
Software Maintenance, ICSM 1998, Bethesda, Maryland, USA, November 16-19,
1998. IEEE Computer Society, 44–53. https://doi.org/10.1109/ICSM.1998.738488

[46] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin
Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng Yieh, Brian Goh,
Ferdian Thung, Hong Jin Kang, Thong Hoang, David Lo, and Eng Lieh Ouh.
2020. BugsInPy: a database of existing bugs in Python programs to enable
controlled testing and debugging studies. In ESEC/FSE ’20: 28th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem De-
vanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 1556–1560.
https://doi.org/10.1145/3368089.3417943

[47] Yan Zheng, Zan Wang, Xiangyu Fan, Xiang Chen, and Zijiang Yang. 2018. Local-
izing multiple software faults based on evolution algorithm. J. Syst. Softw. 139
(2018), 107–123. https://doi.org/10.1016/j.jss.2018.02.001

https://doi.org/10.1145/3468264.3468580
https://doi.org/10.5281/zenodo.10462459
https://github.com/tiangolo/fastapi
https://github.com/jakubroztocil/httpie
https://github.com/jakubroztocil/httpie
https://doi.org/10.1109/CSMR-WCRE.2014.6747164
https://doi.org/10.1109/CSMR-WCRE.2014.6747164
https://github.com/sanic-org/sanic
https://github.com/scrapy/scrapy
https://doi.org/10.1109/SANER.2018.8330203
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://github.com/tornadoweb/tornado
https://github.com/tornadoweb/tornado
https://doi.org/10.1109/ICSM.1998.738488
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1016/j.jss.2018.02.001

	Abstract
	1 Introduction
	2 Background
	2.1 Original datasets
	2.2 Original dataset construction
	2.3 Related datasets

	3 Dataset description and statistics
	4 Dataset usage
	4.1 Usage description of the original datasets
	4.2 Usage description of the multi-fault datasets

	5 Dataset creation
	5.1 Test case transplantation
	5.2 Fault location translation
	5.3 Limitations and threats to validity

	6 Future Dataset Usage
	6.1 Multi-fault localization
	6.2 Future work

	7 Conclusion
	References

