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Abstract

Medical image segmentation presents the challenge of segmenting various-size
targets, demanding the model to effectively capture both local and global infor-
mation. Despite recent efforts using CNNs and ViTs to predict annotations of
different scales, these approaches often struggle to effectively balance the detec-
tion of targets across varying sizes. Simply utilizing local information from CNNs
and global relationships from ViTs without considering potential significant diver-
gence in latent feature distributions may result in substantial information loss. To
address this issue, in this paper, we will introduce a novel Stagger Network (SNet)
and argues that a well-designed fusion structure can mitigate the divergence in
latent feature distributions between CNNs and ViTs, thereby reducing informa-
tion loss. Specifically, to emphasize both global dependencies and local focus,
we design a Parallel Module to bridge the semantic gap. Meanwhile, we propose
the Stagger Module, trying to fuse the selected features that are more seman-
tically similar. An Information Recovery Module is further adopted to recover
complementary information back to the network. As a key contribution, we the-
oretically analyze that the proposed parallel and stagger strategies would lead to
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less information loss, thus certifying the SNet’s rationale. Experimental results
clearly proved that the proposed SNet excels comparisons with recent SOTAs in
segmenting on the Synapse dataset where targets are in various sizes. Besides,
it also demonstrates superiority on the ACDC and the MoNuSeg datasets where
targets are with more consistent dimensions.

Keywords: Medical image segmentation, Feature Fusion, Information Loss, CNN,
Transformer

1 Introduction

Medical image segmentation has drawn much attention from deep learning soci-
ety [1–4]. Accurate and generalized segmentation on various-sized targets, requiring
capturing both local and global information for various-sized targets, will greatly assist
radiologists in making treatment planning and post-treatment evaluations.

In the past few years, Convolutional Neural Networks (CNNs) have been widely
used in medical image segmentation tasks. Focusing on local features [5], CNN-based
models such as U-Net [6], nnUNet [7] and Res-UNet [8] are effective for smaller target
predictions such as gallbladders and tissue aortas. Despite successes achieved by CNN
models in segmenting smaller targets, they are still restricted due to limited receptive
fields and inherent inductive bias. With a weak ability to capture long-range depen-
dency, CNNs still suffer from a lack of efficacy in predicting targets with relatively
larger sizes, such as the livers and spleens. Vision Transformers (ViTs), on the other
hand, are capable of learning long-range dependencies and capturing global contexts
by using a multi-head self-attention mechanism. They exhibit high precision in seg-
menting larger targets such as livers and spleens [9, 10]. As for small targets, we
statistically reveal (see Table 7) that although ViTs can segment certain them such
as the kidneys, they fail to predict some other targets such as the gallbladders and
tissue aortas.

The aforementioned findings suggest that CNNs and ViTs offer complementary
segmentation performance across larger and smaller targets. Intuitively, latent features
from both models can be fused to effectively predict targets of various sizes, expect-
ing they can achieve simultaneous advantages. Prior efforts in the literature such as
TransAttUNet [11], Attention Upsample [12], and TransUnet [13] employ fusion mod-
ules to combine extracted features from both CNNs and ViTs. However, these arts
fuse features in the unstagger manner, i.e. features obtained from lower layers of CNNs
and ViTs are fused (the same with higher-layer features, see Figure 1). Our study
reveals that these unstagger approaches overlook different modeling characteristics of
each layer. This oversight can result in sub-optimal performance when segmenting tar-
gets with various sizes due to potential information loss. As shown in the bottom line
in Figure 2 (a), attention maps of features from higher CNN and ViT layers appear
distinctly. Higher CNN layers focus on parts of the image, whereas higher ViT layers
concentrate on more expanded regions. Moreover, most of the input attention focuses
are weakened in the fused features; this suggests that information loss may possibly
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Fig. 1 (Top) Visualization of feature heatmaps and histogram distributions of lower CNNs, higher
CNNs, lower ViTs, and higher ViTs. Higher layers have a darker color than lower layers. (Bottom)
Unstagger fusion fuses lower layers of CNNs with those from lower ViTs, as well as features from
higher layers of CNNs with those from higher ViTs. Stagger fusion fuses features from higher layers of
CNNs and those from lower ViTs. Different colors represent dissimilar distributions of these feature
layers.

occur across two individual features, resulting in degraded segmentation. Similarly,
fusion across features from lower CNN and ViT layers is also not ideal because they
focus on distinct parts.

Drawing inspiration from the above observations, we argue that the information
loss may be induced by large divergence across latent feature distributions. Empiri-
cally, as seen in the attention maps and density histograms in Figure 1, features from
both CNNs and ViTs appear significantly different in the unstagger setting. Theoret-
ically, we analyze that this non-negligible information loss is possibly brought by the
unstagger fusion architecture (see Section 3 for details).

In this paper, we propose a novel model called Stagger Network (SNet) to tackle the
information loss during feature fusion and promote segmentation performance across
targets of various sizes. Specially, it consists of three major modules: the Stagger Mod-
ule, the Parallel Module, and the Information Recovery Module. The Stagger Module
with the feature fusion block achieves the core function to fuse the latent features from
lower ViTs and higher CNNs in the stagger manner. With key theoretical evidence, we
prove that this Stagger Module is more effective in reducing information loss in com-
parison with unstagger approaches. Additionally, we propose the Parallel Module with
the feature enhancement block and the Information Recovery Module with the global
attention block working as assisting components. In the Parallel Module, two series
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Fig. 2 This figure depicts unstagger fusion in (a) and stagger fusion in (b). Heatmaps visualizing
input layers are presented on the first two columns, with the name of each layer located at the bottom
and its corresponding density map situated above the heatmap. The heat maps and density maps
of fusion results are illustrated in the third column. The segmentation results of each fusion method
can be seen in the fourth column, and the input image and its ground-truth label can be seen in the
fifth column.

of consecutive enhanced features are produced by parallel CNN and ViT branches.
The produced results will be sent to the Stagger Module. The Information Recov-
ery Module, regarded as a feature decoder, further enhances fused information from
the Stagger Module. Furthermore, as a unified network, the proposed SNet fuses the
information from the CNN-based and ViT-based encoders and only employs the CNN-
based decoder. It will save computational resources compared to using two distinct
models to segment large and small targets separately.

The major contributions of this paper are summarized as follows:
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• We propose a novel Stagger Network with three modules: Parallel Module, Stagger
Module, and Information Recovery Module. It can successfully segment both small
and large medical imaging targets simultaneously.

• We theoretically show that the proposed Stagger Network combining higher CNNs
and lower ViTs features will be superior to unstagger approaches, as it reduces
information loss and promotes fusion efficacy.

• Extensive experiments demonstrate the effectiveness of our Stagger Network, not
only showcasing significant improvements in predicting small targets but also ensur-
ing high performance for larger targets. Specifically, SNet significantly improves
the prediction score on both small targets by 9% over SOTA on benchmarks
Synapse [14]. It also outperforms over SOTA on ACDC [15] and MoNuSeg
dataset [16].

2 Related Work

2.1 CNNs and ViTs

CNNs in U-Net [17] are particularly efficient in extracting local features in medical
image segmentation. Transformers, on the other hand, excel at capturing long-range
dependencies in sequences, though they are initially designed for language process-
ing tasks [18]. The first attempt to introduce transformers in vision tasks is known
as the Vision Transformer (ViT) [9], achieving the state-of-the-art performance on
the benchmark image classification dataset, the ImageNet [19]. Recent progress has
also demonstrated successes with ViT variants in conventional computer vision (e.g.,
detection and segmentation) tasks, including DERT [20] and SegFormer [21]. Tran-
sUNet [13], a ViT-based model, also shows its outstanding performance in the task of
medical image segmentation.

2.2 Feature Fusion Methods

It is reasonable to combine CNNs with ViTs so that both strengths can be leveraged. In
the following, we will give examples of typical cases that are promising to understand
both local focus and long-range context.

2.2.1 Simple Replacement Methods

One simple way to introduce ViTs in conventional CNNs is to replace some convolu-
tion Layers in a CNN model with some ViT blocks, for example, TransClaw U-Net [5],
Attention Upsample (AU) [12], Swin-Unet [22] and TransAttUNet [11]. Concretely, in
the TransClaw U-Net, ViTs are introduced in the higher encoding layers to replace
CNNs; in the Attention Upsample (AU), window-based ViTs are placed in the decod-
ing path, while the generating features are concatenated with encoding CNN features
by the skip-connections; Swin-Unet replaces all CNNs with ViTs and constructs a
pure ViT-based U-Net in that simple replacement of CNNs with ViTs cannot make
full use of the advantages of CNN and Transformers [23]. The ability of CNN to locate
low-level details may be lost when modeling global contexts.
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2.2.2 Advanced Fusion Methods

There are also fusion proposals to explore the mutual relationship between the features
generated by CNNs and ViTs. Typical examples can be found in Missformer [24] and
Transfuse [23]. In particular, an enhanced Transformer Context Bridge is employed
in the Missformer [24] which introduces depth-wise CNNs in the Transformer blocks
to model remote dependencies and local contexts. Although it fuses features that
suit both CNNs and ViTs and demonstrates excellent performance in large targets,
it does not present superiority in small targets, e.g. aorta, gallbladder, and kidneys,
empirically. Meanwhile, Transfuse [23] features two parallel ViT and CNN branches by
feeding the same size features to the proposed BiFusion module in an unstagger fusion
(see Figure 2) with a self-attention mechanism. However, it combines CNNs and ViTs
unstaggeringly without considering the distinctive feature representation of each other,
resulting in possible semantic gaps. On the contrary, our proposed SNet designs the
stagger fusion strategy, promoting the fusion of features with similar representations,
thus effectively alleviating information loss.

3 Theoretical Motivation of Stagger Fusion

Consider two discrete random variables from distributions fa ∼ P a, f b ∼ P b as the
latent features of CNN and ViT, where a and b denote dimensions, and P a and P b

denote their distributions respectively. The joint entropy is determined by the marginal
distributions of multiple random variables and their joint distribution. Minimizing
joint entropy involves finding a joint distribution that enhances the certainty of rela-
tionships among variables. In this paper, we endeavor to minimize the joint entropy
of CNN and ViT, thereby reducing the uncertainty of these two joint distributions
and mitigating information loss during the fusion process. To achieve better fusion
between fa and f b, we set the optimization objective toward a lower joint entropy
H(fa, f b) between them:

H(fa, f b) = H(fa) + H(f b) − I(fa; f b), (1)

where H(fa) and H(f b) are entropy of fa and f b, and I(fa; f b) is the mutual infor-
mation of fa and f b, given that H(fa) and H(f b) remain relatively stable w.r.t. fa

and f b, the primary objective becomes maximizing I(fa; f b).
However, the blend of latent features from the lower CNN and ViT layers or from

higher CNN and ViT layers may decrease I(fa; f b). As seen from Figure 1 (a), lower
CNN layers pay more attention to local parts, whilst lower ViT layers will focus more
on global representations. Previous work [25] also shows lower CNN (e.g. Resnet) and
ViT (e.g. ViT L/16) features have large feature distribution divergences. As such, com-
bining the lower features of both CNNs and ViTs would magnify H(fa, f b), resulting
in loss of information. So do the feature distributions of higher ViTs and CNNs. We
provide a theoretical analysis as follows.
assumption 1. We denote fn∗ ∼ Pn∗

as an optimal fused feature between fa and f b

with n∗-dimensions, where n∗ ∈ [max(a, b), a + b]; a, b denote respective dimensions
and P a and P b denotes their distributions.
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Assumption 1 holds because n∗ = a + b iff P a and P b are absolutely independent
of each other; n∗ = max(a, b) iff one of P a and P b is fully dependent on the other one.
Consider a fusion operation F that can maintain all information in fa, f b. According
to Jensen’s inequality [26], we have:

H(fn∗
) = H(F(fa, f b)) ≤ H(fa, f b), (2)

where H(fa, f b) can be considered as an upper bound of H(fn∗
).

However, the absolute optimal solution fn∗
is hard to be obtained. In the fusion

model setting, it pursues sub-optimal solutions, generating the fused feature fn ∼ Pn

dimensionalized by n. Be noted that n is pre-defined by the model structure as a
hyper-parameter. In common scenarios, setting n > max(a, b) is necessary to avoid
possible information loss. Setting n < a + b because they are easy to correlate to
some extent since fa and f b are the features extracted from the same input image.
Since Eq. 2 only holds when F bring no information loss, we identify that when the
model structure is fixed, finding a proper latent layer for F that can obtain the lower
H(fa, f b) is crucial for the fusion operation.

Before we propose our main proposition, we first elaborate Han’s inequality :
Theorem 2 (Han’s inequality [27]). The Han’s inequality is presented below: Let Xi

be discrete i-dimensional random variable and denote H̄k
(
Xi

)
= 1

(i
k)

∑
T⊂

(
[i]
k

) H(XT )

as the average entropy of randomly selected k dimensions (k ≤ i). Then 1
k H̄

k is
decreasing in k:

1

i
H̄i ≤ · · · ≤ 1

k
H̄k · · · ≤ H̄1. (3)

Eq. 3 indicates that the mean entropy on each dimension decreases as the number
of k increases. Based on Han’s inequality, we have the Proposition 3:
Proposition 3. When n is fixed, i.e., the fusion model structure is fixed and Assump-
tion 1 holds, the information loss depends on what fa and f b from model latent
layers are selected. Specifically, information can be lost when the divergence between
distributions of fa and f b is large.

Proof. We denote H̄n (fn) , H̄n∗ (
fn∗)

as the average entropy of all dimensions of

fn, fn∗
, respectively. We discuss three situations:

1). If dimensions in P a and P b are most independent, it has n < n∗ ≤ a + b
and n∗ = a + b when P a and P b are fully independent from each other. Under this
circumstance, it has:

1

n∗ H̄
n∗

<
1

n
H̄n, (4)

where information will be likely to be lost.
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2). If proper fa and f b are used and n ≈ n∗, it approaches the optimal fusion
solution without information loss:

1

n∗ H̄
n∗

≈ 1

n
H̄n. (5)

3). If P a, P b largely depend on each other, it has max(a, b) ≤ n∗ < n and
max(a, b) = n∗ iff P a (P b) is fully depends on P b (P a) or vice versa. In this scenario,
following Theorem 2, the following holds:

1

n∗ H̄
n∗

>
1

n
H̄n, (6)

where information will be unlikely to be lost.
Therefore Proposition 3 holds.

Proposition 3 indicates that when the model structure is fixed, finding latent fea-
ture space for conducting fusion methods is critical. Our experiments reveal that using
unstagger fusion proposed in previous methods tends to be under the scenario in Eq. 4
since there are significant differences in distributions, leading to sub-optimal results.
To tackle this problem, we propose Stagger Module (in Sec. 4.3) to ensure that the
fusion meets the scenarios where Eq. 5 and Eq. 6 hold. Furthermore, extensive experi-
ments validate that our Stagger Module performs efficient fusion and outperforms the
previous methods.

4 Methodology

4.1 Overview

In this section, we will introduce the architecture of the proposed SNet with the
Parallel Module in Sec. 4.2, Stagger Module in Sec. 4.3, and Information Recovery
Module in Sec. 4.4. The overall architecture can be seen in Figure 3. In the Parallel
Module, there are two branches with Feature Enhancement Block (FEB), i.e., CNN
and ViT branches. They generate two sets of features, where each set is made up of
features generated by consecutive CNNs or ViTs in distinct branches. As mentioned
in Sec. 3, decreasing the information loss is the main objective. Therefore, the Stagger
Module is the main module. In this module, lower ViTs and higher CNNs will be fused
in the Feature Fusion Block (FFB). The fused information is enhanced in the Global
Attention Block (GAB) in the Information Recovery Module. This module functions
as the decoder, thereby completing the entire U-Net structure.

4.2 Parallel Module

The proposed SNet consists of two parallel branches: a CNN branch and a ViT branch.
It exploits and optimizes inherent advantages from both architectures, as well as
achieving comprehensive feature representations. To be specific, at the start, the input
will be sent to both the CNN and ViT branches. In the CNN branch, features will
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Fig. 4 Feature Enhancement Module (FEB): As seen in Figure 3, the raw image is the input of the
1st ViT layer. After the down-sampling, the output of the 1st ViT layer becomes the input of the
2nd ViT layer. Then the output of the 1st and 2nd ViT layer Fi and Fi+1 will be fused in FEB and

then split back to two features F
′
i and F

′
i+1.

be convoluted and down-sampled serially. Differently, in the ViT branch, features are
extracted by vision transformers, before being down-sampled by patch embedding [9].
In the Parallel Module, we employ the Feature Enhancement Block (FEB) to decrease
entropy of ViT latent features, H(f b). It ensures more concise and information-rich
feature representations and helps decrease the joint entropy H(fa, f b) (Eq. 1).

Feature Enhancement Block (FEB): FEB collects features from two consecu-
tive ViT layers Fi and Fi+1, and they will be flattened to vectors FFlatteni

∈ RN×C ,
where C is the number of channels, Ni = HW

22i , and i denotes the i-th encoding layer.
As shown in Figure 4, FFlatteni and FFlatteni+1 are concatenated before being fed into
the self-attention block to calculate interactions between each other and maximize the
global representation in the FEB. After that, the produced vectors will be unflattened
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Fig. 5 Feature Fusion Block (FFB):
⊕

means concatenation.

back to two feature maps F
′

i and F
′

i+1 with identical dimensions of Fi and Fi+1 before
they are sent to two individual Depth-wise CNNs (DW-Conv) to prevent losing local
relationships. The enhanced Fi and Fi+1 will be fused with features from CNN branch
in the Stagger Module, discussed in Sec. 4.3.

4.3 Stagger Module

As mentioned in Sec. 3, in the Stagger Module, features from lower ViTs and higher
CNNs in the Parallel Module will be fused by using the stagger fusion method to
minimize information loss. Features from lower ViT and higher CNN layers are selected
(FC and FT ) to be fused by calculating when the calculated KL divergence is lower,
indicating they are similar in distributions and less information loss (shown in Figure 1
and discussed in Sec. 3).

Feature Fusion Block (FFB): As seen in Figure 5, the proposed FFB blocks
receive fused features extracted by higher CNN layers represented as FC and lower
ViT layers represented as FT from the Parallel Module. The number of channels of
ViT features sent to the FFB is four times smaller than that of CNN features. If the
fusion is implemented by simple concatenation, contributions of CNN features relative
to ViT features will be improved, potentially resulting in an excessive reliance on
CNN information. The fusion will then tend to favor features from CNNs and neglect
information from ViTs.

To address it, in the proposed FFB, CNN (FC ∈ RHW×4d) and ViT (FT ∈ RHW×d)
features will be firstly concatenated to produce an initial fused feature F1 ∈ RHW×5d,
given that d is the number of channels of input CNN features. After that, a DW-Conv
with batch normalization and GeLU nonlinearity (Conv-BN-GeLU) will be applied to
this concatenated map, producing F2 ∈ RHW×2d. Then, F2 will be concatenated with
FC again before sent to another Conv-BN-GeLU again to produce FFuse ∈ RHW×2d.
In this sense, features from both CNN and ViT will be mostly balanced. At the same
time, the dimension of the fused feature is in the range of d, 5d, as we stated in
Assumption 1. After that, the fused feature will be sent to the information recovery
to be part of the decoder inputs.

4.4 Information Recovery Module

In contrast to the fusion modules used in the Parallel and Stagger Modules, we use
CNN blocks in the Information Recovery Module to up-sample the extracted deep
features. The up-sampling operation similar to the U-Net decoder reshapes the feature
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Fig. 6 Global Attention Block (GAB): The input of GAM is the third ViT layer and the fourth ViT
layer (Fin1 from L1 and Fin2 from L2 respectively) which is simplified in Figure 3.

maps of adjacent dimensions into a higher-resolution feature map and reduces the
feature dimension to half of the original dimension accordingly.

Global Attention Block (GAB): To recover the information from higher ViT
layers that have not been processed before, a novel Global Attention Block (GAB),
based on the idea from [28], will be engaged in the proposed SNet. It is essentially a
two-layer attention mechanism. Queries (Q1 and Q2 respectively for L1 and L2), keys
(K1 and K2), and values (V1 and V2) are obtained by Q1 = V1 = K1 = Fin1 and
Q2 = V2 = K2 = Fin2. Then, a new attention map will be calculated by

Fsum = softmax(
Q1K

T
1√

d
) + softmax(

Q2K
T
2√

d
), (7)

to exaggerate the local importance across features from two layers while modeling the
interaction between them at the same time. After this, values from two layers, namely
V1 and V2, will be swapped to produce two layers via

F1 = Wsum × V1 + V2, (8)

F2 = Wsum × V2 + V1, (9)

to further guide the interaction between them. GAB’s final result will be obtained by
the cross-attention mechanism via

Fout = softmax(
QKT

√
d

)V. (10)
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Here Q = F1Wq, K = F2Wk, and V = F2Wv. Wq, Wk, and Wv are trainable matrices.
It enhances the global relevance from features generated in consecutive ViT layers.

5 Experiments

In this section, the experimental settings are first detailed. Experiment results on
three datasets Synapse, ADCD and MoNuSeg will then be presented to demonstrate
the effectiveness of the SNet. For fair comparisons, we adopt several SOTA models for
better evaluation of the proposed SNet. We also conducted several ablation studies to
verify the necessity of each component mentioned in the model.

5.1 Experimental Setup

5.1.1 Datasets

Synapse [14] consists of 30 3D Computed Tomography (CT) scan subjects to segment
13 abdominal organs. Following SwinUnet [22] and TransUnet [13], we select 8 anno-
tations, i.e., aorta, gallbladder, spleen, left kidney, right kidney, liver, pancreas, and
stomach. It is noted that we regard the spleen, liver, and stomach as larger organs, the
aorta is seen as vascular tissues, and the remaining four organs are shaped relatively
smaller [29]. Splits of training and testing sets are also formed by SwinUnet [22] and
TransUnet [13]. The Average Dice-Similarity Coefficient (dice score) and the Hausdorff
Distance (HD) are employed to evaluate the model performance.

The ACDC dataset consists of 100 3D cardiac Magnetic Resonance Imaging (MRI)
subjects with annotations including the Right Ventricle (RV), Myocardium (Myo), and
Left Ventricle (LV). Splits of training and testing sets are also formed by SwinUnet [22]
and TransUnet [13]. The Average Dice-Similarity coefficient is employed to evaluate
the model performance.

MoNuSeg contains 44 images which are tissue images from different patients and
organs and magnified 40 times. The dataset includes approximately 29,000 nuclear
boundary annotations. According to relevant literature, 30 images in this dataset
were used for training the network, and the remaining 14 were used for testing the
network. Dice score and IoU are used to evaluate the model performance according to
CT-Net [30].

5.1.2 Settings

Our proposed SNet is trained for 300 epochs for the Synapse dataset and 150 epochs
for the ACDC dataset on NVIDIA 3080Ti with 12 GB memory based on Pytorch
1.10. No pre-trained weights are employed. During the training, the batch size is set
to 12, and the SGD optimizer with momentum 0.9 and weight decay 1e-4 is used.
Following [13, 22], we clip the values in the Synapse data to [−125, 275] which are then
normalized to [0, 1]. At this stage, we treat each slice in 3D subjects as one individual
2D image, and they will be spatially resized to 224×224. Common data augmentation
techniques including flips and rotations are used to promote data diversity and model
robustness. No pre-trained model is used for training.
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5.1.3 Training Strategy

As seen from Figure 3, the final segmentation result ŷ will be supervised by optimizing
the binary cross entropy (BCE) and the dice (Dice) losses referring to true annota-
tions. To further guide fused feature representation, we leverage the deep supervision
strategy [31] on the fused features ŷf by both the losses. The final objective to optimize
the proposed SNet is given by: ℓ = 0.6BEC(ŷf , y) + 0.4Dice(ŷf , y) + 0.6BCE(ŷ, y) +
0.4Dice(ŷ, y), where y is the ground-truth.

5.2 Experimental Results

5.2.1 Results on Synapse Dataset

In Table 1, we present the results of the proposed SNet against several state-of-the-
art baselines on the Synapse dataset. The proposed SNet achieves the highest dice
score and lowest HD scores on average segmentation performance across 8 organs
selected. When we look into each of the individual organ predictions, we found that
improvements brought by SNet are more significant on three organ segmentations
including Gallbladder and Kidney (L and R) by 2.13%, 2.42%, and 1.92% dice score
respectively. It also improves the segmentation performance on the Aorta by over
1% in dice score. Meanwhile, when segmenting larger organs such as the liver and
stomach, SNet can still promote the prediction performance by 0.1% and 0.03% in dice
score respectively. SNet and Missformer obtains comparable performance on spleen
segmentation with a 1.93% dice score difference.

From Table 1, it can be seen that the improvement effect of SNet on large object
segmentation is not significant, such as in the Liver and stomach, and even inferior
to SwinUnet, CASTformers, and MISSformer on Spleen. However, the descent on the
large object is relatively subtle, with a more pronounced improvement observed in
smaller objectives. The enhancement of smaller objectives significantly outweighs the
decline of larger objectives. Although SNet only surpasses CASTformers by a mere
0.5% dice scores, it also has improvement on small targets. This is due to a trade-
off between general goals and details within the model. It is reasonable to expect
some decrease in performance on larger objectives while there is an ascent in perfor-
mance on smaller objectives. Nevertheless, the overall effect is positive, indicating an
improvement in the model’s performance.

Figure 7 visualizes the results presented in Table 1 by the proposed SNet against
other competing baselines UNet, SwinUnet, and TransUnet. 1 The result in the left
column Figure 7 (a) illustrates the superiority of the SNet on small targets such as
Gallbladder and Pancreas. Evidently, it offers more accurate predictions without intro-
ducing a lot of false detection. Meanwhile, the prediction result in the right column
Figure 7 (b) illustrates the SNet’s excellent performance on large targets such as the
Liver. In addition, SNet appears to work well when predicting the detailed parts.

1The visualized models have been trained which yield results equivalent to those reported in the papers. As
CASTformers and Missformer have not offered pre-trained models, they are not included in the visualization.
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Fig. 7 Examples of the prediction results given by SNet, UNet, Swin-UNet, and TransUnet on
Synapse validation dataset. The prediction result in the left part shows SNet’s superior performance
on small targets such as Gallbladder and Pancreas. Meanwhile, it also works well on large targets as
illustrated on the right part.

5.2.2 Results on ACDC Dataset

The results on the ACDC dataset are summarised in Table 2. We can see that SNet
outperforms the other comparative arts by achieving 91.55% dice score, 0.69% dice
score better than the highest (Missformer) of previous baselines.

Similar to its performance on the Synapse dataset, the model shows a noticeable
improvement in average dice, enhancing RV and Myo predictions for the two smaller
target classes by 1% and 1.57%, respectively. However, there is a decline of 1.36% dice
score in the LV prediction, a larger target. The results are promising, particularly con-
sidering the previously inadequate Myo prediction in all prior models. We have made
substantial progress on classes that were challenging to predict, indicating effective
handling of information loss. However, due to a trade-off in model performance, there
is a decline in the prediction of larger targets. Nevertheless, the overall average dice
score demonstrates improvement.

5.2.3 Results on MoNuSeg Dataset

As shown in Table 3, the proposed SNet achieved the best results on the MoNuSeg
dataset compared to other models in the table, with IoU and dice score of 69.6 and
81.9, respectively. Many small targets can be seen in each image in the MoNuSeg
dataset. SNet outperformed the CT-Net [30], the recent SOTA, with a 1% increase in
IoU and a 0.6% increase in dice score.
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Table 2 Comparison on ACDC data. Bold font indicates
the best result, and the second-best results are highlighted
underlined. The results of other experiments are original
from Missformer. Avg. is the average dice of all the classes.

Methods
Dice (%) ↑

RV Myo LV Avg.
R50 U-Net[13] 87.10 80.63 94.92 87.55

R50 Att-UNet[13] 87.58 79.20 93.47 86.75
R50 ViT[10] 86.07 81.88 94.75 87.57
TransUnet[13] 88.86 84.53 95.73 89.71
SwinUnet[22] 88.55 85.62 95.83 90.00
Missformer[24] 89.55 88.04 94.99 90.86
SNet (ours) 90.56 89.61 94.47 91.55

Table 3 Comparison of SNet and other advanced
methods on the MoNuSeg dataset.

Methods IoU (%) ↑ Dice (%) ↑
UNet[17] 59.40 74.00
Att-UNet[34] 62.60 76.20
TransUNet[13] 65.70 79.20
SwinUNet[22] 64.70 78.50
UCTransNet-pre[38] 63.80 77.20
ATTransUNet[39] 65.50 79.20
CT-Net[30] 66.50 79.80
SNet(ours) 69.60 81.90

Table 4 Comparison on parameters of different models.

Models U-Net[17] Att-UNet[34] R50 ViT[10] TransUnet[13]
Params 7.2M 19.8M 488.25M 105.3M
Models SwinUnet[22] Missformer[24] HiFormer[37] SNet (ours)
Params 41.4M 40.5M 29.52M 38.7M

5.3 Ablation Study

To validate the necessity of the stagger fusion, as well as contributing sub-components
including FFB, FEB, and GAB, we conduct the following ablation studies by evalu-
ating predictions on the Synapse dataset against scenarios when the upon-mentioned
components are disabled.

5.3.1 Effect of the Stagger Fusion

We verify the effectiveness of stagger fusion by using a U-shaped model employ-
ing unstagger fusion, wherein features were merged from comparable CNN and ViT
layers. This comparative model also integrated sub-components such as FEB, FFB,
and GAB, ensuring an apples-to-apples comparison by keeping all other training set-
tings constant. The results reported in Table 5 indicate that stagger fusion improves
predictions by 4.16% dice score, which thus verifies its effectiveness.

As shown in Figure 2 (a), features selected in the stagger fusion are more similar.
In contrast, features selected in the unstagger fusion are characterized by diversity
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Table 5 Performance comparison between the stagger fusion and
unstagger fusion. Avg. is the average dice of all the classes. The bold
values denote the best scores.

Model HD ↓ Dice (%) ↑
Tissues Small Large Avg.

Unstagger 30.11 89.56 70.29 86.54 78.79
Stagger (ours) 15.74 90.19 77.01 88.73 83.05

Table 6 Effect of FEB, FFB, and GAB on tissues, small targets, and large
targets. Avg. is the average dice of all the classes. The bold values denote the
best scores.

Stagger FEB FFB GAB Dice (%) ↑
Tissues Small Large Avg.

! - - - 87.11 67.21 84.22 76.81

! ! - - 87.43 74.53 86.13 80.49

! ! ! - 89.38 74.87 86.32 80.97

! ! ! ! 90.19 77.01 88.73 83.05

with significant semantic gaps. Stagger fusion provides meaningful information and
preserves the characteristics of each feature map. However, unstagger fusion leads to
the overshadowing of certain feature characteristics. It means that there will be a large
information loss after fusion. This could be detrimental, especially in tasks requiring
fine-grained feature discernment. As a result, unstagger fusion models may not be able
to segment small-sized targets.

subsubsectionEffect of the FEB In Table 6, we present the average results of the
backbone with stagger fusion on tissues, small, and large targets against the scenario
when FEB is off. It can be observed that the prediction can be improved by 0.32%,
7.32%, and 1.91% on dice score on tissue, as well as small and large targets respectively.
On average, the dice score can be promoted by 3.68%, demonstrating that the proposed
FEB is useful.

5.3.2 Effect of the FFB

We evaluate the effectiveness of the proposed novel FFB by adding it to the backbone
presented in FEB. As seen from Table 6, we can find that introducing FFB will bring
great improvement in tissue predictions, i.e., promoting the dice score from 87.43% to
89.38%. Improvements on both small and large targets are over 0.2%, clearly showing
that the novel FFB is of crucial importance.

5.3.3 Effect of the GAB

We further evaluate the effectiveness of the proposed GAB by recovering it into
the backbone, becoming the proposed SNet. Seen from Table 6, predictions on tis-
sues, small, and large targets are promoted by 0.81%, 2.14%, and 2.41% dice score
respectively. Particularly, prediction on large targets achieves the most significant
improvement. In summary, sub-components in the proposed SNet including stagger
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fusion, FEB, FFB, and GAB are all necessary to achieve improvement on various-sized
targets in the medical image segmentation field.

6 Conclusion

In this paper, we propose the SNet to segment various-sized medical imaging tar-
gets. To be specific, we design the Parallel Module to avoid early fusion and thus
alleviate information loss at the early stage, the Stagger Module to fusion the simi-
lar distribution from CNNs and ViTs to address possible semantic gaps and decrease
the information loss, and the Information Recovery Module to retrieve complemen-
tary information. To incorporate with the proposed SNet, we also engage the Feature
Enhancement Module, the Feature Fusion Module, and the Global Attention Module
to enhance feature representations. We further theoretically prove that stagger fusion
combining deep CNN and early ViT features will excel superiority compared to the
unstagger approach. Extensive experiments have demonstrated the effectiveness of the
SNet and the necessity of those sub-components.
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