
Empirical Analysis for Unsupervised Universal Dependency Parse Tree
Aggregation

Adithya Kulkarni, Oliver Eulenstein and Qi Li
Department of Computer Science, Iowa State University

{aditkulk, oeulenst, qli}@iastate.edu

Abstract

Dependency parsing is an essential task in NLP,
and the quality of dependency parsers is cru-
cial for many downstream tasks. Parsers’ qual-
ity often varies depending on the domain and
the language involved. Therefore, it is essen-
tial to combat the issue of varying quality to
achieve stable performance. In various NLP
tasks, aggregation methods are used for post-
processing aggregation and have been shown
to combat the issue of varying quality. How-
ever, aggregation methods for post-processing
aggregation have not been sufficiently studied
in dependency parsing tasks. In an extensive
empirical study, we compare different unsu-
pervised post-processing aggregation methods
to identify the most suitable dependency tree
structure aggregation method.

1 Introduction

Dependency parsers analyze the grammatical struc-
ture of a given sentence and establish the relation-
ship between the tokens of the sentence. They
are crucial for many downstream tasks, such as
relation extraction (Tian et al., 2021) and aspect
extraction (Chakraborty et al., 2022). Depen-
dency parsers based on large language models
(LLM) (Üstün et al., 2020; Xu et al., 2022) achieve
state-of-the-art performance for several languages.
However, the performance of these models on low-
resource languages is limited due to their depen-
dency on labeled data and language-specific pre-
trained models. Ensemble or non-ensemble models
that do not use LLMs may be suitable for low-
resource languages. Therefore, it is essential to
have a language and domain-agnostic framework
that can estimate the quality of these input parsers
and use the estimation to correct mistakes of the
input parsers.

As a pioneer study, we consider the post-
processing aggregation of the tree structure outputs
of dependency parsers, which we call Dependency

Tree Structure (DTS). To improve the appeal of the
aggregation in practice, we adopt the unsupervised
setting, where little or no ground truth annotations
are available to evaluate the qualities of the base
parsers before aggregation. We compare different
post-processing aggregation frameworks to address
the following questions: (i) Which aggregation
framework is suitable for DTS aggregation, and (ii)
Can aggregation methods outperform individual
state-of-the-art base parsers?

The aggregation frameworks compared in this
study include MST (Gavril, 1987), Conflict Resolu-
tion on Heterogeneous Data (CRH) framework (Li
et al., 2014), and Customized Ising Model (CIM),
an extension of the classic Ising model (Raviku-
mar et al., 2010). MST is a naïve tree aggregation
method that assumes that all the parsers are of the
same quality and aggregates using the maximum
spanning tree (MST) algorithm. CRH framework is
an optimization-based method that estimates parser
quality, and CIM models the joint distribution of
the aggregated result and the input by estimating
the quality of the input. It is designed for binary
label aggregation and requires some extension for
trees. For the experiments, we consider 71 Univer-
sal Dependency (UD) test treebanks of the CONLL
2018 shared task that covers 49 languages across
different domains. As base parsers, we consider
state-of-the-art ensemble, non-ensemble, and LLM-
based parsers.

2 Related Works

The related works are summarized into the follow-
ing categories:
Label Aggregation: These studies aggregate mul-
tiple labels obtained using labeling functions or
crowd workers to quickly and cheaply annotate for
large-scale unlabeled data. These works can be
broadly categorized as programmatic weak super-
vision approaches (Ratner et al., 2016, 2017, 2019;
Chen et al., 2021; Kuang et al., 2022; Ravikumar

ar
X

iv
:2

40
3.

19
18

3v
2 

 [
cs

.C
L

] 
 3

 A
pr

 2
02

4



et al., 2010), constraint-based weak supervision
approaches (Mazzetto et al., 2021a,b) and opti-
mization based approaches (Li et al., 2014; Sabet-
pour et al., 2021). In this work, we compare CRH
framework (Li et al., 2014), an optimization-based
approach, and the Ising model (Ravikumar et al.,
2010), one of the weak supervision label aggrega-
tion approaches, to the aggregation of DTS.
Tree Aggregation: The methods in this category
aggregate multiple tree structures into one rep-
resentative tree. The problem of tree aggrega-
tion has been extensively studied in the phylo-
genetic domain (Bryant, 2003; Bininda-Emonds,
2004), where trees are branching diagrams show-
ing the evolutionary relationships among biolog-
ical species. Since these mentioned methods are
introduced in the phylogenetic domain, they do not
consider the characteristics of parse trees. Charac-
teristics of parse trees are considered by (Kulkarni
et al., 2022), where the constituency parse trees are
aggregated by adopting the CRH framework (Li
et al., 2014).
Tree Ensemble: This category contains studies
that ensemble multiple input trees to obtain a rep-
resentative tree. Prior studies such as random for-
est (Probst et al., 2019) or boosted trees (De’Ath,
2007) perform ensembling on the classification
decisions where they depend on ground truth to
learn the aggregated tree. Another line of stud-
ies (Sagae and Lavie, 2006; Nivre and McDonald,
2008; Surdeanu and Manning, 2010; Kuncoro et al.,
2016) uses the maximum spanning tree to obtain
aggregated trees from the weighted directed graph,
where ground truth is used for weight computation.

The challenge of estimating dependency parser
quality without ground truth has yet to be consid-
ered by previous studies.

3 Comparing Aggregation Frameworks

For aggregating parse trees, MST can be adopted.
However, the aggregated results may be sub-
optimal since low-quality parsers are given equal
weights to high-quality parsers. Previous stud-
ies (Sabetpour et al., 2021; Kuang et al., 2022)
have shown that quality estimation plays a key role
in aggregating the results of multiple models. Both
CRH framework and CIM estimate parser quality.

The basic idea of the CRH framework is that the
inferred aggregation results are likely to be correct
if supported by reliable sources. Therefore, the
objective is to minimize the overall weighted dis-

tance of the aggregated results to individual sources
where reliable sources have higher weights (Li
et al., 2014). The aggregation problem is mod-
eled as an optimization problem and is solved by
applying a block coordinate descent algorithm to
estimate source quality and aggregation results iter-
atively. CRH framework only models the support-
ing votes for estimating the parser quality. Detailed
discussion is provided in Appendix A.1.

The classic Ising model (Ravikumar et al., 2010)
is a probabilistic model that aims to estimate the
joint distribution of the labels provided by input
sources and the unknown ground truth labels. CIM
also models the label correlation between the input
sources; if two are correlated, their outputs are con-
sidered as a single output instead of two different
outputs. This re-weighting of sources helps reduce
error propagation and accurately estimate source
reliability. Since it is a probabilistic model, CIM
considers both supporting and opposing votes to
estimate source reliability. Furthermore, it does not
utilize any distance measurement, and parameter
estimation is solely based on the labels provided by
the input sources. Detailed discussion is provided
in Appendix A.2.

4 Methodology

Except for MST, the other two aggregation frame-
works considered in this study are not designed
for DTS aggregation. Both the CRH framework
and CIM are designed for label aggregation. There-
fore, we model the DTS aggregation problem as an
edge-level binary label aggregation problem, where
the binary label indicates the existence of an edge.
We further propose post-processing steps to ensure
aggregated results follow proper DTS constraints.

4.1 Problem Formulation

Let D = {si}ni=1 be a dataset with n sen-
tences. Let Ti = {t1i, t2i, . . . , tqi} be the
set of tokens in the sentence si ∈ D. Let
P = [P1, P2, P3, . . . , Pm]T be m dependency
parsers and τj = {τ1j , τ2j , . . . , τnj} be the DTSs
obtained for the dataset D using dependency
parser Pj . Therefore, for a sentence si, Si =
{τi1, τi2, . . . , τim}1 is the set of all DTSs obtained
using dependency parsers P. Each DTS, τij =
(Ti, Eij) ∈ Si is a dependency tree structure with

1We consider that all τij’s for the sentence si have the
same vertex set Ti. Therefore, we assume all DTSs τij’s in Si

follow the same token segmentation.



the tokens of the sentence si as vertices and edges
connect the dependent tokens. For each si ∈ D,
DTS aggregation aims to aggregate Si into one
representative DTS.

4.2 Edge-level Binary Label Aggregation
Problem

To convert the DTS aggregation problem into
an edge-level binary label aggregation problem,
we consider the m dependency parsers P =
[P1, P2, . . . , Pm]T as the labeling functions2 L =
[L1, L2, . . . , Lm]T . For each sentence si ∈ D, the
DTSs τij ∈ Si differ only concerning the edges.
We utilize this observation to define the DTS aggre-
gation problem as an edge-level binary label aggre-
gation problem. Specifically, let Ei = ∪mj=1Eij

be the union of edge sets Eij from each DTS
τij ∈ Si and E = ∪ni=1Ei be the union of all Ei
for the dataset D. For aggregation, we consider
each e ∈ E as an instance of D. On the sentence
level, the binary labels for each e ∈ Ei using the
LF Lj ∈ L is obtained as follows:

Lj(e) =

{
1, if e ∈ Eij

−1, Otherwise
. (1)

Thus, the DTS aggregation problem is converted
into a binary labeling task, and both the CRH frame-
work and CIM can be applied to aggregate labels.
Since CIM considers label correlation between in-
put parsers, below we discuss how CIM is used for
DTS aggregation.

4.3 CIM for Dependency Tree Structure
Aggregation

CIM models the label correlation between the in-
put parsers. Due to the absence of ground truth
labels, we estimate the label correlation using the
majority voting results of the labels from the in-
put parsers. Then, the label correlation between the
input parsers is estimated using an l1-regularized lo-
gistic regression, in which the pairwise correlation
between input parsers is estimated by performing
logistic regression subject to an l1-constraint. For
more details, refer to (Ravikumar et al., 2010).

Let Y be the random variable denoting the un-
known ground truth labels for D. With the esti-
mated label correlation between input parsers, the
joint distribution Pµ(Y,L) is estimated by learn-
ing the mean µ = {µ00, µ+, µ0+, µ++} and canon-

2A labeling function (LF) is a mathematical function that
takes xi as input and provides a label as output.

ical θ = {θ00, θ+, θ0+, θ++} parameters of the
model. Once the distribution Pµ(Y,L) is learned,
the probabilistic scores for each xi ∈ D are in-
ferred as:

P (ŷi = 1|L(xi); θ̂00, θ̂0+) = σ(2θ̂00 + 2θ̂0+L(xi)),
(2)

where L(xi) is the i − th row in L representing
the set of m labels obtained for xi using LFs, ŷi is
the aggregated label for xi, and σ(z) = 1

1+exp(−z) .
The probabilistic scores encompass parser quality.
Then, for each Si, we obtain a weighted token
graph ωi = (Ti, Ei). We update the edge weights
of the token graph ωi with the inferred probability
scores and apply the MST on the updated ωi to
ensure the final aggregation results follow tree
structure constraints.

5 Experiments

For the experiments, we aim to have sufficient
diversity concerning the treebanks and the base
parsers. Therefore, we empirically test MST, CRH
framework, and CIM on 71 UD test treebanks of
CONLL 2018 shared task (Zeman et al., 2018).
These treebanks cover 49 languages across differ-
ent domains. The shared task also provides outputs
of the participating teams on these test treebanks3.
The participating teams include various ensemble
and non-ensemble methods. We directly utilize
these outputs as parser predictions. In addition
to these methods, we consider two state-of-the-art
LLM-based methods (Üstün et al., 2020; Xu et al.,
2022). We re-train these models on the train set
of the shared task and obtain outputs for the test
treebanks. We pre-process the outputs to ensure
all parser outputs have the same token segmenta-
tion; the detailed steps are provided in Appendix
A.3. We highlight the summary of the results in
this section4.

5.1 Experimental Setup

In real-life scenarios, it is common practice to esti-
mate the quality of dependency parsers by evaluat-
ing their outputs on small annotated samples and
then using high-quality parsers to save computa-
tion costs. To align with the real-life applications,
for each of the 71 pre-processed test treebanks, we

3The outputs of the participating dependency parsers on the
test treebanks of the CoNLL 2018 shared task is archived and
made public at http://hdl.handle.net/11234/1-2885.

4Please refer to Section A.4 and Section A.5 in Appendix A
for full results and comparison study, respectively.

http://hdl.handle.net/11234/1-2885


sample 10 sentences and rank all the input parsers,
including ensemble methods, depending on the per-
formance of their output DTSs on these sentences.
Then, we choose the top 9 dependency parsers to
include diverse methods (ensemble, non-ensemble,
and LLM-based) in the aggregation.

5.2 Evaluation Metrics
We use the Unlabeled Attachment Score (UAS)
for evaluation, which considers the percentage of
nodes with correctly assigned references to the par-
ent node. We compute the Mean (µ), Median (M),
and standard deviation (σ) of UAS scores on 71
test treebanks.

5.3 Baseline Methods
The three aggregation frameworks are compared
with top two ensemble methods, including HIT-
SCIR (Che et al., 2018) and LATTICE (Lim et al.,
2018), top two non-ensemble methods, including
TurkuNLP (Kanerva et al., 2018) and UDPipe Fu-
ture (Straka, 2018) from CoNLL 2018 shared task,
and two LLM-based methods, UDapter (Üstün
et al., 2020) and MLPSBM (Xu et al., 2022).
Following their respective papers’ settings, we
use the BERT-multilingual-cased encoder for both
UDapter and MLPSBM. MLPSBM is tested only
for high-resource languages such as Bulgarian,
Catalan, Czech, German, English, Spanish, Ital-
ian, Dutch, Norwegian, Romanian, and Russian.
For reference, we also present the performance of
the best parser among these top 9 chosen parsers
(BEST) and the average performance of the top
9 chosen parsers (Average) for each test treebank
evaluated using ground truth annotations.

5.4 Results and Discussion
Table 1 and 2 compare three aggregation frame-
works with the baselines for high-resource and low-
resource language treebanks, respectively. Compar-
ing the aggregation methods and ensemble meth-
ods, we can observe that aggregation methods, in
general, achieve better performance than ensem-
ble methods, with higher mean UAS scores and
lower standard deviation across different test tree-
banks. The better performance is thanks to the
flexibility for aggregation methods to choose dif-
ferent base models. Similar observations can be
made when comparing aggregation methods with
non-ensemble methods. Comparing the aggrega-
tion methods with LLM-based methods, we can
observe that only CIM outperforms the LLM-based

Table 1: Results of MST, CRH, and CIM compared
with the baselines for high-resource language treebanks.
The best performance is highlighted in bold, and the
runner-up is highlighted with underline.

Method µ(UAS) M (UAS) σ (UAS)
HIT-SCIR 87.37 88.83 5.27
LATTICE 83.01 87.84 15.10
TurkuNLP 80.95 86.43 15.77

UDPipe Future 80.21 84.99 14.04
UDapter 89.43 90.1 4.45

MLPSBM 93.04 93.92 3.13
Average 82.5 85.11 8.74
BEST 93.04 93.92 3.13
MST 88.42 90.12 5.37
CRH 87.23 88.97 4.91
CIM 93.18 94.02 3.2

Table 2: Results of MST, CRH, and CIM compared
with the baselines for low-resource language treebanks.
The best performance is highlighted in bold, and the
runner-up is highlighted with underline.

Method µ(UAS) M (UAS) σ (UAS)
HIT-SCIR 78.15 85.64 17.71
LATTICE 74.55 82.93 16.64
TurkuNLP 73.48 82.42 17.96

UDPipe Future 74.59 81.63 16.28
UDapter 83.14 86.25 11.43
Average 74.45 81.19 14.79
BEST 84.08 87.78 10.13
MST 81.71 85.16 10.84
CRH 81.39 85.14 9.98
CIM 85.93 89.33 9.68

methods, suggesting that it is the most suitable DTS
aggregation framework. Using the updated UAS
score as distance measurement for the CRH model
may be a sub-optimal choice for DTS aggregation
since it only considers the supporting votes for each
edge. Thus, the CRH model cannot estimate the
parser quality properly and perform similarly to
MST, which does not consider parser quality. We
can observe that CIM can outperform all baseline
methods in terms of mean and median in both Ta-
bles 1 and 2 and standard deviation in Table 2, even
comparing with the best parser among the chosen
top 9 for each test treebank.

6 Conclusion

This empirical study compares three aggregation
frameworks, MST, CRH, and CIM, for the task
of DTS aggregation. We model the DTS aggrega-
tion problem as an edge-level binary label aggrega-
tion problem to employ CRH and CIM, which are
specifically designed for label aggregation. Exten-
sive empirical studies on 71 UD test treebanks of
CONLL 2018 shared task demonstrate that CIM is
the most suitable DTS aggregation method that can



properly estimate parser quality and outperform
state-of-the-art base parsers. We will consider the
aggregation of relation labels in future work.

7 Limitations

In this work, we only consider the tree structure
of the dependency parse tree under the assumption
that each sentence has the same token segmenta-
tion across the input dependency parse trees. If
the token segmentation differs across the input de-
pendency parse trees, our proposed approach is not
applicable. Furthermore, our proposed approach is
not tested to aggregate different relation labels of
dependency parse trees.

8 Ethics Statement

We comply with the ACL Code of Ethics.

References
Olaf RP Bininda-Emonds. 2004. Phylogenetic su-

pertrees: combining information to reveal the tree of
life, volume 4. Springer Science & Business Media.

David Bryant. 2003. A classifica of co sensus meth-
ods for phylogenetics. In Bioconsensus: DIMACS
Working Group Meetings on Bioconsensus: October
25-26, 2000 and October 2-5, 2001, DIMACS Center,
volume 61, page 163. American Mathematical Soc.

Mohna Chakraborty, Adithya Kulkarni, and Qi Li. 2022.
Open-domain aspect-opinion co-mining with double-
layer span extraction. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 66–75.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and
Ting Liu. 2018. Towards better ud parsing: Deep
contextualized word embeddings, ensemble, and tree-
bank concatenation. CoNLL 2018, page 55.

Mayee Chen, Benjamin Cohen-Wang, Stephen Muss-
mann, Frederic Sala, and Christopher Ré. 2021. Com-
paring the value of labeled and unlabeled data in
method-of-moments latent variable estimation. In
International Conference on Artificial Intelligence
and Statistics, pages 3286–3294. PMLR.

Glenn De’Ath. 2007. Boosted trees for ecological mod-
eling and prediction. Ecology, 88(1):243–251.

Fǎnicǎ Gavril. 1987. Generating the maximum span-
ning trees of a weighted graph. Journal of Algo-
rithms, 8(4):592–597.

Jenna Kanerva, Filip Ginter, Niko Miekka, Akseli Leino,
and Tapio Salakoski. 2018. Turku neural parser
pipeline: An end-to-end system for the conll 2018
shared task. CoNLL 2018, page 133.

Zhaobin Kuang, Chidubem G Arachie, Bangyong Liang,
Pradyumna Narayana, Giulia DeSalvo, Michael S
Quinn, Bert Huang, Geoffrey Downs, and Yang Yang.
2022. Firebolt: Weak supervision under weaker as-
sumptions. In International Conference on Artificial
Intelligence and Statistics, pages 8214–8259. PMLR.

Adithya Kulkarni, Nasim Sabetpour, Alexey Markin,
Oliver Eulenstein, and Qi Li. 2022. Cptam: Con-
stituency parse tree aggregation method. In Proceed-
ings of the 2022 SIAM International Conference on
Data Mining (SDM), pages 630–638. SIAM.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A Smith. 2016. Distill-
ing an ensemble of greedy dependency parsers into
one mst parser. In EMNLP.

Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and
Jiawei Han. 2014. Resolving conflicts in heteroge-
neous data by truth discovery and source reliability
estimation. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of
data, pages 1187–1198.

KyungTae Lim, Cheoneum Park, Changki Lee, and
Thierry Poibeau. 2018. Sex bist: A multi-source
trainable parser with deep contextualized lexical rep-
resentations. CoNLL 2018, page 143.

Alessio Mazzetto, Cyrus Cousins, Dylan Sam,
Stephen H Bach, and Eli Upfal. 2021a. Adversar-
ial multi class learning under weak supervision with
performance guarantees. In International Conference
on Machine Learning, pages 7534–7543. PMLR.

Alessio Mazzetto, Dylan Sam, Andrew Park, Eli Upfal,
and Stephen Bach. 2021b. Semi-supervised aggre-
gation of dependent weak supervision sources with
performance guarantees. In International Confer-
ence on Artificial Intelligence and Statistics, pages
3196–3204. PMLR.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proceedings of ACL-08: HLT, pages 950–958.

Philipp Probst, Marvin N Wright, and Anne-Laure
Boulesteix. 2019. Hyperparameters and tuning strate-
gies for random forest. Wiley Interdisciplinary
Reviews: data mining and knowledge discovery,
9(3):e1301.

Alexander Ratner, Braden Hancock, Jared Dunnmon,
Frederic Sala, Shreyash Pandey, and Christopher
Ré. 2019. Training complex models with multi-task
weak supervision. In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence and Thirty-
First Innovative Applications of Artificial Intelligence
Conference and Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, pages 4763–
4771.

Alexander J Ratner, Stephen H Bach, Henry R Ehren-
berg, and Chris Ré. 2017. Snorkel: Fast training set



generation for information extraction. In Proceed-
ings of the 2017 ACM international conference on
management of data, pages 1683–1686.

Alexander J Ratner, Christopher M De Sa, Sen Wu,
Daniel Selsam, and Christopher Ré. 2016. Data pro-
gramming: Creating large training sets, quickly. Ad-
vances in neural information processing systems, 29.

Pradeep Ravikumar, Martin J Wainwright, and John D
Lafferty. 2010. High-dimensional ising model se-
lection using l1-regularized logistic regression. The
Annals of Statistics, 38(3):1287–1319.

Nasim Sabetpour, Adithya Kulkarni, Sihong Xie, and
Qi Li. 2021. Truth discovery in sequence labels from
crowds. In 2021 IEEE International Conference on
Data Mining (ICDM), pages 539–548. IEEE Com-
puter Society.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proceedings of the Human Language
Technology Conference of the NAACL, Companion
Volume: Short Papers, pages 129–132.

Milan Straka. 2018. Udpipe 2.0 prototype at conll 2018
ud shared task. CoNLL 2018, page 197.

Mihai Surdeanu and Christopher D Manning. 2010. En-
semble models for dependency parsing: cheap and
good? In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
649–652.

Yuanhe Tian, Guimin Chen, Yan Song, and Xiang Wan.
2021. Dependency-driven relation extraction with
attentive graph convolutional networks. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4458–4471.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. UDapter: Language adaptation
for truly Universal Dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302–2315, Online. Association for Computational
Linguistics.

Ziyao Xu, Houfeng Wang, and Bingdong Wang. 2022.
Multi-layer pseudo-Siamese biaffine model for de-
pendency parsing. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 5476–5487, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Daniel Zeman, Jan Hajic, Martin Popel, Martin Potthast,
Milan Straka, Filip Ginter, Joakim Nivre, and Slav
Petrov. 2018. Conll 2018 shared task: Multilingual
parsing from raw text to universal dependencies. In
Proceedings of the CoNLL 2018 Shared Task: Multi-
lingual parsing from raw text to universal dependen-
cies, pages 1–21.

A Appendix

A.1 CRH Framework

The CRH framework is an optimization framework
to minimize the overall distance of the aggregated
result to a reliable source (Li et al., 2014). The
optimization framework is defined as:

min
Y∗,W

f(Y∗,W) =
m∑
k=1

wk

n∑
i=1

q∑
j=1

dj(l
∗
ij , l

k
ij)

s.t. δ(W) = 1 (3)

where Y∗ andW represent the set of aggregated
truths and the source weight, respectively, wk refers
to the reliability degree of the k-th source. The dis-
tance measurement function dj(·, ·) measures the
distance between the labels provided by the sources
lkij and the aggregated labels l∗ij . The regularization
function δ(W) is defined to ensure that the weights
are always non-zero and positive.

The block coordinate descent algorithm is ap-
plied to optimize the objective function in Eq. (3)
by iteratively updating the source weights and ag-
gregated truths by following the two steps below.

Step 1: Source Weight Update.
The source weights are updated considering the

values for the aggregated truths as fixed. The
updated source weights are computed following
Eq. (4) that jointly minimize the objective func-
tion.

W ← argmin
W

f(Y∗,W) s.t. δ(W) =

m∑
k=1

exp(−wk).

(4)
Eq. (4) regularizes the value of wk by constrain-

ing the sum of exp(−wk).
Step 2: Aggregated Truth Update.
To update the aggregated truths, the weight of

each source wk is considered fixed. The aggregated
truths are updated following Eq. (5) that minimizes
the difference between the truth and the sources’ la-
bels, where sources are weighted by their estimated
reliabilities.

l
(∗)
im ← argmin

l

m∑
k=1

wk · dm(l, lkij). (5)

Eq. (5) provides the collection of aggregated
truths Y∗ that minimize f(Y∗,W) with fixedW .

https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://aclanthology.org/2022.coling-1.486
https://aclanthology.org/2022.coling-1.486


A.2 Ising Model
The Ising model (Ravikumar et al., 2010) is pro-
posed to obtain aggregated labels for a binary la-
beling task. Let D = {xi}ni=1 be a dataset with n
instances. Let L = [L1, L2, ..., Lm]T be an n×m
matrix containing the labels provided by m binary
labeling functions (LFs) for the instances in dataset
D. Let the unobserved ground truth label for each
xi be yi ∈ {−1, 1}. We use Y to denote the ran-
dom variable for the ground truth labels for the
dataset D. The Ising model aims to estimate the
joint distribution Pµ(Y,L) and learn the parame-
ters µ.

To consider the correlations between the LFs,
the Ising model can take an undirected corre-
lation graph G = (V,E) as an additional in-
put. In this correlation graph, vertices are the
LFs and the ground truth random variable Y,
V = {L1, L2, L3, ..., Lm,Y}, and an edge e ∈ E
indicates that the connected vertices are corre-
lated. Each LF has an edge to Y since each
LF contributes to estimating the random variable
Y and is thus correlated to Y. With this cor-
relation graph G, the joint distribution between
Y and LFs L is estimated by the Ising model

as:
Pµ(Y,L) =

1

Z
exp(θ00Y +

m∑
j=1

θjjLj +

m∑
j=1

θ0jLjY

+
∑

(Lj ,Lk)=1

θjkLjLk), (6)

where Z is a partition function ensuring that the dis-
tribution sums to one and θ = {θ00, θ+, θ0+, θ++}
are the canonical parameters. For each canonical
parameter there is an associated mean parameter
µ = {µ00, µ+, µ0+, µ++}. Together, the canoni-
cal and mean parameters reflect the quality of the
LFs. To compute Pµ(Y,L), the mean parameters
are learned first, and then they are used to learn
the canonical parameters by solving the following
logistic regression problem:

θ̂00, θ̂0+ =arg min
θ00,θ0+

−θ00µ00 − θT0+µ0+

+
1

n

n∑
i=1

log[exp(θ00 + θT0+L(xi))

+ exp(−θ00 − θT0+L(xi))]. (7)

Once the distribution Pµ(Y,L) is learned, the
probabilistic scores for each xi ∈ D are inferred
as:

P (ŷi = 1|L(xi); θ̂00, θ̂0+) = σ(2θ̂00 + 2θ̂0+L(xi)),
(8)

where L(xi) is the i-th row in L representing the
set of m labels obtained for xi using LFs, ŷi is the
aggregated label for xi, and σ(z) = 1

1+exp(−z) .
For further details, refer to Kuang et al. (2022).

A.3 Data Pre-processing

We obtain the existing outputs of the 26 participat-
ing teams on 82 UD test treebanks from the CoNLL
2018 shared task organizers, plus the outputs of two
LLM-based parsers. We discard sentences from the
test treebanks where input parsers provide different
token segmentation. To better illustrate the perfor-
mance of CIM, sentences with total agreement on
the DTS from all the input dependency parsers are
regarded as easy sentences and also discarded. To
obtain a statistically meaningful evaluation, we dis-
card treebanks with less than 50 sentences or less
than 9 participating parsers. Eventually, we obtain
71 UD test treebanks used in our experiments5.

A.4 Full Results

Full results6 for 19 high-resource language tree-
banks are shown in Table 3 and the full results
for 52 low-resource language treebanks are shown
in Tables 4 and 5. The table is ordered alphabeti-
cally concerning the name of the treebank. From
the results in Table 3, taking treebank bg_btb as
an example, we can observe that MLPSBM, the
LLM-based parser, achieved the best results among
the baselines and CIM outperformed all the base-
lines for this treebank. Similar observation can be
made for results in Table 4 for af_afribooms tree-
bank where UDapter, another LLM-based parser,
achieved the best results among the baselines and
CIM outperformed all the baselines for this tree-
bank too. The examples confirm that CIM is the
most suitable DTS aggregation framework that can
properly estimate parser quality and outperform
state-of-the-art baselines.

A.5 Comparison Study

Figures 1, 2, and 3 depict the histograms of compar-
isons between CIM with ensemble, non-ensemble,
and LLM-based baselines for high-resource lan-
guage treebanks. A positive difference means that
CIM outperforms. From figure 1, we can observe
that CIM outperforms ensemble methods, includ-
ing HIT-SCIR and LATTICE. From figure 2, we
can observe that CIM outperforms non-ensemble

5Refer to Table 3, 4 and 5 for the test treebank details.
6We will publish the code upon acceptance



−10 0 10
Difference

0

2

4

6

8

10

Co
un

t

CIM - HIT-SCIR

−10 0 10
Difference

0

2

4

6

8

Co
un

t

CIM - LATTICE

Figure 1: Difference between CIM and ensemble base-
lines

−10 0 10
Difference

0

2

4

6

Co
un

t

CIM - TurkuNLP

−10 0 10
Difference

0

2

4

6

Co
un

t

CIM - UDPipe-Future

Figure 2: Difference between CIM and non-ensemble
baselines

−10 0 10
Difference

0

2

4

6

8

Co
un

t

CIM - UAdapter

−10 0 10
Difference

0

2

4

6

8

10

12

Co
un

t

CIM - MLPSBM

Figure 3: Difference between CIM and LLM-based
baselines

methods, including TurkuNLP and UDPipe Fu-
ture. From figure 3, we can observe that CIM
outperforms LLM-based baselines UDapter and
MLPSBM. These results support our claim that
CIM can correct the mistakes of individual parsers
— even the best ones — and outperform them.
These results support our claim that CIM is the
most suitable DTS aggregation framework among
the compared aggregation frameworks in this study.



Table 3: Full results of MST, CRH, CIM compared with the baselines for 19 high-resource language treebanks.
The table is ordered in alphabetical order with respect to the name of the treebank. The columns E1 and E2 refer
to ensemble baselines HIT-SCIR (Che et al., 2018), and LATTICE (Lim et al., 2018), respectively. The columns
NE1, NE2 refer to non-ensemble baselines TurkuNLP (Kanerva et al., 2018) and UDPipe Future (Straka, 2018),
respectively. The columns L1 and L2 refer to LLM-based parsers UDapter (Üstün et al., 2020) and MLPSBM (Xu
et al., 2022), respectively. The column Avg. refers to the baseline Average.

TB Sent. E1 E2 NE1 NE2 L1 L2 Avg. BEST MST CRH CIM
bg_btb 226 91.4 88.3 89.2 87.1 90.1 95.7 89.6 95.7 92.1 91.0 96.1

ca_ancora 364 91.4 90.0 89.6 90.0 92.6 95.7 83.3 95.7 92.5 91.2 94.6
cs_cac 156 88.5 87.8 88.1 87.3 89.8 95.2 88.8 95.2 90.1 88.9 95.
de_gsd 212 83.6 81.2 81.1 78.3 86.2 89.3 82.2 89.3 83.3 80.2 89.9
en_ewt 340 89.3 88.6 87.1 81.1 90.2 93.4 86.3 93.4 88.6 87.3 93.6
en_gum 199 86.9 90.8 84.1 85.0 91.3 92.8 80.6 92.8 88.4 86.9 93.4
en_lines 286 84.6 85.1 82.6 79.0 87.2 89.4 83.3 89.4 83.3 81.9 90.4
en_pud 264 86.7 88.7 84.0 80.5 88.4 91.3 84.9 91.3 87.2 86.9 92.5

es_ancora 387 89.8 88.7 88.2 88.3 88.9 93.9 88.9 93.9 91.3 89.5 93.6
it_isdt 83 92.7 91.3 90.3 90.9 93.9 96.4 85.1 96.4 93.1 92.6 95.5

it_postwita 136 91.3 21.8 20.5 27.2 92.7 95.2 57.5 95.2 92.6 86.6 95.0
nl_alpino 152 88.6 86.5 85.4 85.6 89.2 92.9 87.2 92.9 89.3 89.5 93.6

nl_lassysmall 116 88.2 86.2 84.5 85.0 89.8 93.9 80.0 93.9 89.7 89.0 94.1
no_bokmaal 466 90.6 88.2 87.7 86.7 91.2 94.5 89.1 94.5 91.3 90.1 94.9
no_nynorsk 378 90.1 87.3 86.4 84.7 91.8 94.6 88.3 94.6 90.9 90.3 95.2

no_nynorsklia 374 70.6 71.7 61.3 62.9 72.4 82.6 64.2 82.6 70.5 72.6 81.3
ro_rrt 199 88.8 87.3 87.7 85.9 89.2 93.2 88.3 93.2 91.7 90.4 94.0

ru_syntagrus 1150 89.9 88.0 88.5 86.0 92.4 95.3 89.3 95.3 92.7 91.8 94.6
ru_taiga 295 77.0 79.7 71.7 72.7 91.9 92.6 70.5 92.6 81.5 80.7 92.8



Table 4: Full results of MST, CRH, CIM compared with the baselines for 52 low-resource language treebanks.
The table is ordered in alphabetical order with respect to the name of the treebank. The columns E1 and E2 refer
to ensemble baselines HIT-SCIR (Che et al., 2018), and LATTICE (Lim et al., 2018), respectively. The columns
NE1, NE2 refer to non-ensemble baselines TurkuNLP (Kanerva et al., 2018) and UDPipe Future (Straka, 2018),
respectively. The column L1 refers to LLM-based parser UDapter (Üstün et al., 2020). The column Avg. refers to
the baseline Average.

TB Sent. E1 E2 NE1 NE2 L1 Avg. BEST MST CRH CIM
af_afribooms 158 86.0 86.1 85.9 86.0 87.2 77.4 87.2 87.2 86.3 90.9

ar_padt 55 70.1 70.4 68.8 68.9 85.6 73.3 88.8 90.1 88.4 92.1
br_keb 249 17.4 49.8 48.8 38.5 60.8 43.1 65.6 47.7 64.7 70.2
bxr_bdt 763 35.2 40.4 31.7 32.8 35.8 36.1 46.8 48.4 44.5 51.4

cs_fictree 235 89.3 88.9 88.3 86.5 90.2 87.8 90.2 88.6 89.4 92.2
cs_pdt 1708 90.2 88.5 87.6 85.5 89.4 87.0 90.2 88.3 88.1 91.4
cs_pud 166 88.4 86.4 85.0 85.7 89.1 85.8 89.1 89.2 87.5 91.7

cu_proiel 109 74.2 46.1 44.3 87.9 82.4 61.0 87.9 87.4 85.2 92.6
da_ddt 195 86.4 77.7 77.4 81.5 88.5 81.0 88.5 85.1 83.5 88.9
el_gdt 131 90.1 86.8 88.1 89.2 90.6 87.3 90.7 90.5 90.5 92.4
et_edt 803 85.6 83.7 83.9 81.9 86.3 83.8 86.3 84.8 83.6 88.2
eu_bdt 688 82.9 81.2 81.9 82.0 83.8 81.8 83.8 82.3 81.2 86.2

fa_seraji 204 89.8 88.0 87.6 87.6 89.1 86.3 89.8 88.2 88.4 92.3
fi_ftb 455 85.7 86.1 86.0 80.8 90.4 83.6 90.4 84.9 86.6 90.9
fi_pud 203 87.6 86.1 83.6 81.6 91.3 85.4 91.3 86.8 87.1 91.6
fi_tdt 386 84.9 80.0 78.9 80.6 88.5 81.2 88.5 85.0 85.6 90.2
fo_oft 859 51.3 47.1 37.3 51.6 69.6 53.3 69.6 59.1 67.0 69.4
fr_gsd 89 88.9 88.6 87.9 85.9 90.6 85.1 90.6 89.9 88.6 91.4

fr_sequoia 51 88.9 91.0 87.3 82.7 92.1 78.5 92.1 87.8 88.5 91.7
fro_srcmf 362 79.9 82.9 79.9 82.6 80.3 81.2 82.9 84.0 83.8 87.2
gl_treegal 143 82.8 82.9 82.7 83.2 82.3 82.4 83.2 82.8 83.0 88.7

grc_perseus 544 80.6 74.4 74.2 72.7 82.5 74.9 82.5 75.5 75.8 82.7
grc_proiel 110 81.6 66.6 66.4 61.2 81.7 64.0 81.7 80.3 78.2 86.1

he_htb 55 34.5 32.0 33.0 32.8 88.6 49.4 91.5 91.6 88.1 94.2
hi_hdtb 346 92.0 90.7 91.0 90.1 92.8 91.0 92.8 91.7 90.8 93.5
hr_set 304 88.6 87.5 88.1 83.5 89.4 87.3 89.4 88.7 88.0 91.8



Table 5: Full results of MST, CRH, CIM compared with the baselines for 52 low-resource language treebanks
(Contd.). The table is ordered in alphabetical order with respect to the name of the treebank. The columns E1 and
E2 refer to ensemble baselines HIT-SCIR (Che et al., 2018), and LATTICE (Lim et al., 2018), respectively. The
columns NE1, NE2 refer to non-ensemble baselines TurkuNLP (Kanerva et al., 2018) and UDPipe Future (Straka,
2018), respectively. The column L1 refers to LLM-based parser UDapter (Üstün et al., 2020). The column Avg.
refers to the baseline Average.

TB Sent. E1 E2 NE1 NE2 L1 Avg. BEST MST CRH CIM
hsb_ufal 391 55.0 60.7 44.8 35.7 56.2 44.4 60.7 56.2 64.1 60.8

hu_szeged 212 86.5 77.4 81.3 79.2 85.4 80.2 86.5 82.3 82.2 86.6
kk_ktb 461 42.7 39.9 39.5 38.4 62.3 43.9 62.3 59.5 55.3 65.7

kmr_mg 416 45.1 45.5 40.0 44.5 48.2 41.5 51.6 58.3 54.1 56.2
ko_gsd 255 85.0 84.7 83.8 81.7 86.2 82.9 86.2 84.4 84.3 87.9

ko_kaist 843 86.1 86.1 85.4 85.7 87.3 85.8 87.3 86.7 85.1 89.2
la_ittb 133 85.1 86.0 85.0 83.3 86.2 83.9 86.2 85.5 84.6 87.0

la_perseus 487 77.8 70.1 68.7 65.2 82.4 63.4 82.4 68.4 73.4 83.0
la_proiel 114 86.2 53.2 51.9 78.4 84.8 58.8 86.2 84.2 80.0 84.9
lv_lvtb 414 83.8 77.7 79.7 77.4 81.8 79.1 83.8 81.1 81.1 86.6
pl_lfg 256 89.0 88.3 89.2 89.0 90.6 89.2 90.6 89.8 91.5 93.4
pl_sz 235 88.8 87.2 86.9 86.8 90.1 87.0 90.1 88.4 89.0 91.7

pt_bosque 94 89.9 85.8 84.9 85.5 91.2 82.8 91.2 90.1 87.7 92.4
sk_snk 249 88.3 81.9 82.1 78.0 86.2 82.3 88.3 85.2 87.0 90.4
sl_ssj 181 90.4 69.9 70.1 69.3 82.4 76.9 90.4 89.3 89.0 91.5

sme_giella 507 69.2 70.7 69.9 69.9 71.2 61.6 71.2 71.3 74.4 72.6
sr_set 121 88.3 88.0 87.9 86.2 90.5 87.7 90.5 88.8 90.1 93.2

sv_lines 305 87.2 84.0 83.6 83.2 89.2 76.4 89.2 84.3 83.0 89.5
sv_pud 433 84.6 83.3 83.4 77.4 90.6 82.1 90.6 84.3 85.2 91.3

sv_talbanken 387 88.2 85.0 85.5 82.9 91.6 85.3 91.6 85.9 86.6 91.9
tr_imst 412 75.5 71.8 73.1 72.4 76.7 72.8 76.1 76.1 72.2 80.4
ug_udt 346 82.2 78.7 78.5 78.2 84.3 73.3 82.2 81.3 77.0 82.2
uk_iu 287 90.8 83.9 85.7 83.7 92.8 85.4 90.8 86.3 86.2 88.6

ur_udtb 233 87.7 86.1 85.7 84.6 89.2 86.2 87.7 87.7 85.5 90.9
vi_vtb 87 34.5 37.1 38.2 78.0 82.6 53.8 81.3 81.3 70.3 82.4
zh_gsd 69 83.9 44.0 41.2 41.3 84.7 56.3 86.5 86.5 81.2 88.6


