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Abstract

Channel state information (CSI) feedback is critical for achieving the promised advantages of

enhancing spectral and energy efficiencies in massive multiple-input multiple-output (MIMO) wireless

communication systems. Deep learning (DL)-based methods have been proven effective in reducing the

required signaling overhead for CSI feedback. In practical dual-polarized MIMO scenarios, channels in

the vertical and horizontal polarization directions tend to exhibit high polarization correlation. To fully

exploit the inherent propagation similarity within dual-polarized channels, we propose a disentangled

representation neural network (NN) for CSI feedback, referred to as DiReNet. The proposed Di-

ReNet disentangles dual-polarized CSI into three components: polarization-shared information, vertical

polarization-specific information, and horizontal polarization-specific information. This disentanglement

of dual-polarized CSI enables the minimization of information redundancy caused by the polarization

correlation and improves the performance of CSI compression and recovery. Additionally, flexible quan-

tization and network extension schemes are designed. Consequently, our method provides a pragmatic

solution for CSI feedback to harness the physical MIMO polarization as a priori information. Our
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experimental results show that the performance of our proposed DiReNet surpasses that of existing

DL-based networks, while also effectively reducing the number of network parameters by nearly one

third.

Index Terms

Deep learning, CSI feedback, disentangled representation learning, dual-polarized, massive MIMO.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has emerged as a key technology for un-

leashing the potential of the fifth-generation (5G) wireless communication systems [1]. By

deploying numerous multiple antennas at both the transmitter and receiver, massive MIMO

enables achieving multiplexing and diversity gains for effectively utilizing spatial resources,

enhancing channel capacity, and reducing multiuser interference, under limited spectral resources

and transmit power [2], [3]. However, to fully realize these promised advantages, it is imperative

for the base station (BS) to accurately acquire the channel state information (CSI) for both the

uplink and downlink channels [4]. For practical systems adopting the frequency division duplex

(FDD) protocol, the uplink and downlink operate at different frequency bands such that channel

reciprocity is absent [5]. As such, in FDD systems, the CSI of the downlink is estimated at the

user equipment (UE), then the channel estimate is fed back to the BS through a feedback link

with limited bandwidth. However, in massive MIMO systems equipped with a large number of

antennas, the required signaling overhead of CSI feedback becomes excessively burdensome.

To address the aforementioned challenges, traditional methods typically adopt codebook-based

methods to reduce feedback signaling overhead [6], such as Type I and Type II codebooks in

the 5G New Radio (NR) [7]. For instance, a low-complexity codebook search scheme was

proposed in [8], which significantly reduces computational complexity. In addition, an effective

codebook based on channel statistics was designed to reduce the feedback signaling overhead

in [9]. Besides, a product codebook was proposed for dual-polarized antenna arrays in [10].

However, the complexity of a codebook search algorithm usually increases exponentially with

the codebook size. As a result, the overhead grows rapidly, necessitating substantial bandwidth

resources in massive MIMO systems. Alternatively, compressed sensing (CS) technologies have

been proposed to address the feedback overhead challenge [11]. For example, a CS-based method
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exploits the CSI sparsity in a specific domain to compress the CSI [12]. Besides, a CS-based

method was proposed in [13] that exploits the high spatial correlation of CSI in massive MIMO.

However, the CSI recovery of the CS-based methods often requires iterative algorithms, which

demand significant computation resources, calling for the development of novel technologies to

address these issues.

Recently, deep learning (DL) has experienced significant advancements across various do-

mains, including computer vision [14], natural language processing [15], and language models for

dialogue [16]. Besides, a neural network (NN) offers powerful learning and parallel calculation

abilities, making it a promising approach to address the unique challenges of CSI compression.

Consequently, researchers have proposed mutiple methods utilizing DL [17], [18]. For instance,

a DL-based method named CsiNet was proposed in [19], which adopted the structure of an

autoencoder in DL. Specifically, an encoder is deployed at the UE to compress the CSI into a

vector, while a corresponding decoder is employed at the BS to recover the original CSI from

the compressed vector. Indeed, CsiNet has shown superior accuracy in recovering CSI compared

with the codebook-based and CS-based methods.

To fully harness the potentials of DL, extensive network architectures have been developed

to improve the performance of CSI compression and feedback. For example, in [20], a deep

recurrent neural network (RNN) was introduced by considering the time correlation of wireless

channels. Besides, a module, termed long short-term memory (LSTM), was introduced to capture

the time correlation in [21]. Given that the convolution layer usually plays a crucial role in

CSI feedback networks, several researchers have focused on the design of convolution layers

to improve the efficiency of the network. For instance, a network named CRNet extracted CSI

features at multiple resolutions by incorporating convolution kernels of different sizes [22]. Also,

ACRNet, a network introduced in [23], aimed to enhance the performance through network

aggregation. Besides, a network that can integrate different propagation features was proposed

in [24]. Furthermore, a self-information model was proposed in [25] to measure the amount of

information in the CSI image and conduct CSI compression by removing information redundancy.

Considering implementation issues in real-world applications, a quantization module was

introduced in [26], devising a bit-level CSI quantization and feedback network. Moreover, a

network added quantization and dequantization modules was proposed in [27]. Also consider-

ing the presence of noise in the received compressed vectors, [28] proposed a noise-resilient

CSI feedback network. In addition, to facilitate network deployment and conserve memory, a
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lightweight architecture was designed in [29] by exploiting the correlations in the angular-delay

domain to strike a balance between computational efficiency and performance. Furthermore,

another lightweight network was proposed in [30], which utilized a complex-valued input layer

to process signals effectively. Moreover, a distributed machine learning approach for a multiuser

mobile edge computing network was proposed in [31].

Despite significant research efforts that have been devoted to the exploitation of DL for CSI

feedback, existing studies often treat a CSI matrix as an image directly for signal processing

[32], [33]. However, the characteristics of a CSI matrix are different from those of an image

[34]. In particular, the utilizing of dual-polarized antennas effectively doubles the number of

available antennas within a limited antenna-array size, providing a doubling of the spatial

multiplexing freedoms. Considering the fact that dual-polarized antennas are widely applied

in practice [35], the received signals in different polarization directions exhibit similarities

from various perspectives, e.g., multipath propagation delay, scattering, angle of arrival (AOA),

direction of arrival (DOA), etc. In fact, dual-polarized CSI in different polarization directions

tends to demonstrate high correlations within specific sets of factors. To leverage this valuable

knowledge as a piece of priori information for NN design, this paper focuses on the characteristics

of dual-polarized CSI and develops an enhanced network by leveraging the power of disentangled

representation learning.

Disentangled representation learning is a celebrated technology that can decompose data

into independent distinct representations through mutual information (MI) constraints [36]. In

particular, disentangled representation learning is usually adopted to extract the shared and

specific representations from two correlated data sets, where each representation includes a

certain physical and semantic significance [37]. In the case of dual-polarized CSI, where there

is a high correlation between the vertical and horizontal polarizations, we design an encoder

network to decompose the original dual-polarized CSI into three parts: the polarization-shared

information of the CSI in both polarization directions, the polarization-specific information in

the vertical polarization, and the polarization-specific information in the horizontal polarization.

Correspondingly, the decoder network recovers the CSI in each polarization by incorporating

the polarization-shared and corresponding polarization-specific information.

In this paper, considering the inherent correlation of dual-polarized channels in practice,

we propose a deep CSI compression network architecture for handling dual-polarized CSI,

named DiReNet, which can differentiate and extract the representations of the polarization-
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shared and polarization-specific information. In particular, the proposed DiReNet minimizes the

information redundancy caused by the polarization correlations. In addition, we establish the

network architecture based on the convolutional attention mechanism, which is able to focus its

limited attention on crucial information and extract relevant features more effectively [38]. The

main contributions in this paper are summarized as follows.

• By considering the inherent embedding characteristics of dual-polarized CSI, we propose

a network that enables the differentiation of dual-polarized CSI into mutually independent

components: the polarization-shared information and two pieces of polarization-specific

information. The CSI compression efficiency is improved by minimizing the information

redundancy through the disentangled representation learning.

• To manage the network complexity, we design separate fully-connected (FC) networks.

Compared with existing networks, the architecture of independent NN reduces the number

of encoder parameters by nearly half and that of the decoder by almost one third. The

total number of parameters required for the deployment with different compression ratios

is significantly reduced.

• To extract the CSI feature maps more effectively, the proposed DiReNet incorporates a

convolutional attention mechanism, which combines spatial and channel attentions. Due to

the inclusion of attention mechanism, DiReNet selectively focuses its attention on the most

essential information, aiming for accurate CSI recovery.

• Experimental results validate the superiority of the proposed DiReNet over other DL-based

networks. The proposed method achieves a performance gain of 1.5∼3 dB under different

compression ratios, while also reducing the total number of trainable parameters by nearly

1/3 compared to existing state-of-the-art (SOTA) methods.

The rest of this paper is organized as follows. The MIMO system model with CSI feedback

is introduced in Section II. Section III elaborates on the correlation of dual-polarized CSI and

the principle of disentanglement representation learning. Section IV describes the details of

the proposed DiReNet and the training procedure. Section V presents the simulation results.

Conclusions are drawn in Section VI.

Notations: Throughout this paper, plain text denotes scalar variable, boldface lower-case letters

denote column vectors, and boldface upper-case letters denote matrices. The superscript (·)H is

the conjugate transpose, the operator ∥·∥ is the Euclidean norm, E[·] is the expectation operator.
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RM×N and CM×N represent the real and complex space of M × N dimensional matrices

respectively. ∇fNN(L) represents the gradient of L with respect to the trainable parameters of an

NN fNN, and I(x;y) denotes the MI between x and y.

II. SYSTEM MODEL

We consider the downlink of an FDD massive MIMO system, where the BS equips Nt dual-

polarized antennas and the UE has a single-antenna1. The system adopts orthogonal frequency

division multiplexing (OFDM) with Ns subbands. The signal received at the k-th subband is

expressed as

yk = hH
k vkxk + zk, k = 1, . . . , Ns, (1)

where hk ∈ CNt×1 and vk ∈ CNt×1 denote the downlink channel frequency response (CFR)

vector at the k-th subband and the corresponding precoding vector, respectively. xk ∈ C is the

transmitted signal and zk ∈ C represents the additive noise. The downlink CSI in the spatial-

frequency domain is written as

H = [h1,h2, . . . ,hNs ]
H , (2)

where H ∈ CNs×Nt is the CSI matrix consisting of all the downlink CFR vectors of the Ns

subbands. Since the dual-polarized antenna are widely applied in practice [35], we consider that

the antennas at the BS are dual-polarized. As such, without loss of generality, the downlink CSI

can be divided into two matrices, Hv ∈ CNs×
Nt
2 and Hh ∈ CNs×

Nt
2 , accounting for the vertical

and horizontal polarization directions, respectively, which are expressed by

Hv = [hv,1,hv,2, . . . ,hv,Ns ]
H , (3a)

Hh = [hh,1,hh,2, . . . ,hh,Ns ]
H , (3b)

where hv,k ∈ C
Nt
2
×1 and hh,k ∈ C

Nt
2
×1 denote the vertical and horizontal polarization CFR

vectors at the k-th subband, respectively. Since the CSI matrix is complex-valued, we concatenate

the real and imaginary parts to form a real-valued matrix as the input.

Note that the channel parameters in the vertical and horizontal polarizations generally ex-

perience high correlations, as both the polarization magnetic waves propagate along the same

1When a UE is equipped with multiple antennas or considering multiuser scenarios, the CSI of each antenna at each user

serves as a separate input for training the network.
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Fig. 1. A framework of the proposed DiReNet for dual-polarized CSI.

physical paths. To exploit the polarization correlations, as depicted in Fig. 1, we develop an

encoder which not only performs compression, but also disentangles the representations of

the two polarizations. For dual-polarized CSI matrices, Hv and Hh, the encoder extracts the

polarization-shared representation, W ∈ R2×Ns×
Nt
2 , and the polarization-specific representations,

Uv ∈ R2×Ns×
Nt
2 and Uh ∈ R2×Ns×

Nt
2 , in the vertical and horizontal polarizations, respectively.

The obtained representations are then reshaped and compressed into vectors, which are expressed

as

zw = fc (W) = fc (fSA (Hv,Hh)) , (4a)

zv/h = fc (Uv/h) = fc (fSP (Hv/h,W)) , (4b)

where fc (·) represents the compression network, fSA (·) is the polarization-shared (SA) informa-

tion extractor network, and fSP (·) is the polarization-specific (SP) information extractor network.

When the compression ratio is σ > 1, vectors zw ∈ R
2NsNt

3σ
×1, zv ∈ R

2NsNt
3σ

×1, and zh ∈ R
2NsNt

3σ
×1

denote the compressed polarization-shared vector, the compressed vertical polarization-specific

vector, and the compressed horizontal polarization-specific vector, respectively, that to be fed

back to the BS.

At the BS side, a corresponding decoder network recovers the CSI in each specific polarization

from its compressed polarization-specific vector, i.e., zv or zh, and the compressed polarization-

shared vector zw. It is expressed as

Ĥv/h = fIR (zv/h, zw) , (5)

where fIR (·) is the information recovery (IR) network. Ĥv ∈ CNs×
Nt
2 and Ĥh ∈ CNs×

Nt
2 are the

recovered CSI matrix of the vertical and horizontal polarization directions, respectively.
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III. DISENTANGLED REPRESENTATION LEARNING FOR DUAL-POLARIZED CSI

In this section, we first introduce the polarization-shared information and the polarization-

specific information within a dual-polarized CSI matrix. Subsequently, we elaborate on the

method of disentangled representation learning, which enables the decomposition of dual-polarized

CSI into distinct representations of the shared and specific information.

A. Correlation between Dual-polarized CSI

We exemplify dual-polarized CSI by utilizing the 3GPP clustered delay line (CDL) channel

model [39] to demonstrate the correlation between the dual CSI matrices associated with the

vertical and horizontal polarizations. The correlation between the two CSI matrices at the two

polarization directions is measured using their generalized cosine similarity (GCS) [40], which

is defined as

ρ =
1

Ns

Ns∑
k=1

|hH
v,khh,k|

∥hv,k∥ ∥hh,k∥
, (6)

where hv,k and hh,k denote the k-th subband CSI vectors at the vertical and horizontal polarization

directions, respectively.

Note that for the complex-valued CSI, we evaluate both the real and imaginary parts, apart

from considering the correlation of the original complex data. To calculate the GCS between

the real part of the horizontal CSI and the real part of the vertical CSI, we can also adopt the
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calculation method in (6). Fig. 2 depicts the GCS distribution in the horizontal and vertical

polarization directions of the original CSI, the real part of CSI, the imaginary part of CSI, the

amplitude of CSI, and the phase of CSI, respectively. We observe that the correlations between

the vertical and horizontal polarization CSI of the original data, real part, and imaginary part

are rather erratic. Nevertheless, considering the physical nature of the dual-polarized multipath

channel model, we recognize that the two different polarization directions can result in random

phase differences, while the magnitude should exhibit pronounced correlation due to the shared

physical propagation multipaths.

To verify the high correlation in the magnitude domain, we transform the complex-valued CSI

into the corresponding polar coordinate representation and separately consider its magnitude and

phase correlations. Fig. 2 demonstrates that the CSI magnitude in different polarization directions

does exhibit a high correlation as expected, whereas the corresponding phases show less corre-

lation. Based on this observation, for dual-polarized CSI, we can conclude that the polarization-

shared representation contains highly correlated CSI components such as the magnitude, while

the polarization-specific representations include independent information between polarizations,

such as random phases.

B. Disentangled Representation Learning in Network Design

Considering that dual-polarized antennas have been widely applied in practice [35] and the

features of the CSI matrix are different from those of natural images, we propose a model-driven

method from a practical perspective. This method aims to reduce information redundancy and

enhances the performance by leveraging the inherent polarization correlation of the CSI.

The proposed encoder of the network first disentangles dual-polarized CSI into three inde-

pendent parts, i.e., a polarization-shared representation, a polarization-specific representation in

the vertical polarization, and a polarization-specific representation in the horizontal polarization.

Subsequently, it compresses these representations into vectors to effectively reduce the feedback

signaling overhead. On the other hand, for the decoder, the proposed network utilizes the received

vectors of the polarization-shared zw and vertical polarization-specific vector zv to reconstruct

the vertical polarized CSI Hv. Similarly, the CSI in the horizontal polarization Hh is recovered

from the polarization-shared vector zw and the horizontal polarization-specific vector zh. The

proposed architecture consists of three main NN modules, i.e., SA module, SP module, and IR

module. These three types of modules are described below.
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Fig. 3. Network architecture of the proposed DiReNet.

SA module: This module, framed by the red dashed line in Fig. 3, takes the concatenated

vertical and horizontal polarized CSI, i.e., Hv and Hh, as an input. It then captures the informa-

tion that is shared between the dual polarization directions and obtains the polarization-shared

representation W. Finally, this module outputs the compressed polarization-shared vector zw.

SP module: This module, framed by the blue dashed lines in Fig. 3, takes the polarization-

shared representation W and the CSI in a certain polarization direction, i.e., either Hv or Hh,

as an input. Subsequently, it extracts the exclusive polarization-specific representation, i.e., Uv

or Uh, which contains the remaining information excluding the shared information in each

polarization direction. In the end, it compresses the representation into a vector, i.e., zv or zh.

IR module: This module, framed by the orange dashed lines in Fig. 3, reconstructs the CSI

in each polarization direction from the polarization-shared information and the corresponding

polarization-specific information at the decoder.

As shown in Fig. 3, with the connection structures of the three types of modules described

above, the proposed network effectively achieves the disentangled representation learning of dual-

polarized CSI [41]. In this case, the goal of disentangled representation learning is to extract the

shared and specific information between the vertical and horizontal polarizations. In terms of the

value of information, we expect the shared representation to contain the common information

I(Hv;Hh), and the specific representations to contain the conditional entropy H(Hv|Hh) or
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H(Hh|Hv), respectively. Based on the structure of the disentangled representation learning

network, as the training progresses, the shared representation will contain information in both

Hv and Hh, and the specific representations will contain information in Hv or Hh, respectively.

However, there are two extremes to consider:

1) One extreme is that the shared representation does not effectively extract the common

information of Hv and Hh, and the specific representations contain some common information.

In other words, the information redundancy cannot be effectively removed.

2) The other extreme is that the shared representation contains an excessive amount of

information such that it contains non-common information. The network fails to achieve ideal

disentanglement.

To avoid these extremes, an MI constraint is imposed, which is mathematically expressed as

argmin
W

|I (Hv,Hh;W)− I (Hv;Hh)|2 , (7)

where I (Hv,Hh;W) denotes the MI between (Hv,Hh) and W. Here, we denote W as the

shared representation of dual-polarized CSI. Then, the MI I (Hv,Hh;W) can be viewed as a

measure of the complexity of W [41]. Using this approach, we ensure that the network learns

to effectively balance between extracting common information and maintaining the uniqueness

of specific information, thereby achieving successful disentanglement.

By applying the proposed modules and network architecture, DiReNet performs the repre-

sentation extraction, compression, and recovery of dual-polarized CSI by fully leveraging the

inherent nature of MIMO channel polarizations. Through disentangled representation extraction,

the shared information with high correlation and the specific information in each polarization are

differentiated and extracted, and the information redundancy in dual-polarized CSI is effectively

reduced.

IV. PROPOSED ARCHITECTURE OF DIRENET

In this section, we first describe the structure details of the encoder and decoder of the proposed

DiReNet, which include the design of the convolutional attention block, the separate FC network,

and the depth-wise and width-wise extensions. Subsequently, we introduce an NN-based method

for the MI estimation. Finally, we describe the training procedure and quantization scheme of

the proposed DiReNet.
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A. Design of the Encoder Network

For dual-polarized CSI, we divide it into two matrices, Hv and Hh, corresponding to the

vertical and horizontal polarizations, respectively. Since CSI matrices are complex-valued, we

concatenate the real and imaginary parts into the corresponding real-valued matrices serving

as inputs to the encoder. The encoder contains three components: one SA module and two

SP modules. The detailed structure of the encoder is shown in Fig. 4, where the SA and SP

modules share the same structure, consisting of a composite block, named information extraction

(IE) block, and an FC layer.

Specifically, the IE block is responsible for extracting the disentangled representations, W, Uv,

and Uh from the dual-polarized CSI, while the compressed vectors zw, zv, and zh are obtained

by FC layers. The IE block in Fig. 4 contains three parts: a composite convolution, multiple

parallel composite convolution branches, and two 1×1 composite convolutions. Furthermore, the

composite convolution consists of a convolution layer, a normalization layer, and an activation

layer. In particular, the normalization layer adopts batch normalization (BN) to stabilize and

accelerate the required training. Also, the leakyReLU activation function, with a negative input

slope of 0.3, is utilized as a nonlinear transformation. This specific slope has been shown to
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yield better performance in [22]. Mathematically, the IE block can be expressed as

M = Conv1×1

(
3∑

i=0

Bi (Convm×n (Hin))

)
, (8a)

Hout = Conv1×1 (Hin)⊗M, (8b)

where M ∈ R2×Ns×
Nt
2 represents the attention mask, Hin ∈ R4×Ns×

Nt
2 and Hout ∈ R2×Ns×

Nt
2

are the input and output features respectively, ⊗ is the matrix multiplication operator, Bi, i ∈

{0, 1, 2, 3} denotes the i-th branch, and Convm×n denotes the composite convolution with a kernel

size of m× n.

As shown in Fig. 4, the composite convolution extracts an initial CSI feature map from the

input, which is concatenated by two matrices. The SA module is expected to extract the feature

map containing the highly correlated channel information between Hv and Hh. As for the SP

module, the feature map is intended to capture the remaining information in Hv or Hv, excluding

the polarization-shared representation W.

The multiple parallel composite convolution branches are designed to capture the spatial

correlation at different scales, since the sparsity of the CSI varies across different channel

scenarios. Therefore, the kernel size for each branch is set to 3, 5, and 7, respectively. Besides,

two composite convolutions are employed in all branches, as shown in Fig. 4.

The 1×1 composite convolutions integrate features from different channels, and there are two

1× 1 convolution layers: one outputting a processed input and the other outputting an attention

mask. The final output is obtained by multiplying the processed input with the attention mask.

Thanks to the involved attention mechanism, the IE block can extract information selectively by

focusing limited attention on the essential information for improving the CSI recovery accuracy.

The FC network is designed to obtain the compressed vectors. We design the separate FC

network that is different from the ones in existing frameworks, e.g., [19], [22], [23], to ensure

independence between different representations and to minimize the parameters within the FC

network. In the following, we compare the parameters between these methods. First, for a typical

framework, a single FC network is adopted. Given that the size of the CSI feature map is

2×Ns×Nt and the length of the vector is 2NsNt, the number of parameters of the FC network

for a typical framework is given by

P0 = 2NsNt ×
2NsNt

σ
=

4Ns
2Nt

2

σ
. (9)
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In contrast, as shown in Fig. 4, the proposed CSI feedback framework employs the design of

three parallel FC networks. Since the three FC networks are designed separately and the length

of each input vector to the FC network is NsNt, the number of parameters in the FC network

can be calculated as

P1 = 3×NsNt ×
2NsNt

3σ
=

1

2
P0. (10)

By comparing the numbers of parameters in (9) and (10), it is concluded that the FC network

in the encoder reduces the number of trained parameters by half compared to the typical existing

networks. In addition, the design of separate FC networks enables independent compression for

better capturing the unique characteristics of the polarization-shared and polarization-specific

representations.

B. Design of the Decoder Network

The decoder consists of two IR modules for recovering CSI in respective polarization directions

from vectors. Fig. 5 illustrates the detailed structure of the IR module. The IR module first

restores the dimension by FC networks and reshapes it into a CSI feature map. Then, the CSI is

reconstructed by combining the shared information and the specific information corresponding

to the polarization direction.

For typical decoders in the literature, the adopted FC networks are symmetric with the encoder.

As such, the number of parameters in these FC networks can also be expressed as in (9). By
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contrast, for the proposed DiReNet decoder, the design of separate FC networks is shown in

Fig. 5 and the required number of parameters is

P2 = 2×NsNt ×
(
2NsNt

3σ
+

2NsNt

3σ

)
=

2

3
P0. (11)

By comparing the numbers of parameters in (9) and (11), we observe that the number of

parameters in the FC network is reduced by one third compared with the typical frameworks.

In the proposed DiReNet decoder, the reshaped CSI feature map is fed into the network with

the extensions of the IR block to recover CSI. In particular, there are two types of network

extensions: depth-wise and width-wise.

On one hand, the depth-wise extension introduces extra IR blocks in series resulting in a deeper

network. It has been reported in [42] that deeper models generally perform better in learning

complex transformations and complicated functions than a compact shallow architecture, due to

superior nonlinear representation capabilities of the former.

On the other hand, the width-wise extension adds IR blocks in parallel. It has been revealed

that as the width of the network increases, the extracted features containing spatial information

becomes richer [43]. Yet, the application of width-wise extension also increases the network

complexity. To strike a balance of complexity and performance, 3 IR blocks are connected in

series, forming a path for depth-wise extension. Meanwhile, 5 paths are connected in parallel,

constituting the main part of the IR module in the width-wise extension.

The design of the IR block closely resembles that of the IE block. However, considering

that the BS is equipped with more memory and computing power, the IR block replaces the

convolution kernels in the IE block with larger convolution kernels, e.g., a pair of 3×3 and 3×3

kernels instead of a pair of 1×3 and 3×1 kernels, the kernel size for each branch is also set to

3, 5, and 7, respectively. As shown in Fig. 5, to prevent gradient exploding and vanishing during

training, the IR block incorporates a shortcut connection.

C. The Mutual Information Estimator

To extract a sufficient and effective representation as in (7), the MI must be obtained accurately.

However, directly calculating the MI in a high dimensional space is generally intractable. Since

an NN enables to approximate arbitrary functions, estimating MI via DL-based methods has

become a widespread approach. We apply the contrastive log-ratio upper bound (CLUB) of MI

in [44] for the optimization of estimating the MI. The CLUB estimator implemented by an NN
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effectively reduces the computational complexity and demonstrates attractive performance for

MI estimation tasks. For a pair of correlated data x and y, the MI is expressed as

I (x;y) = Ep(x,y) [ln p (y|x)]− Ep(x)Ep(y) [ln p (y|x)] . (12)

In practice, the distribution p (y|x) is typically implemented using NN and the estimated

method can be easily extended to tensors. We adopt the network fMI (·) to approximate the actual

distribution p (y|x). With the powerful learning ability of NN, the MI is estimated effectively

by the CLUB estimator, and it has been shown in [44] that the estimator converges and the

estimated MI approaches the actual MI by maximizing the log-likelihood of p(y|x). For data

samples {(xi,yi)}Ni=1, the log-likelihood function, that is the loss function used to update the

estimator fMI (·), is expressed as

LCLUB =
1

N

N∑
i=1

ln p (yi|xi) =
1

N

N∑
i=1

ln(fMI (xi,yi)). (13)

D. Training Procedure of DiReNet

We now introduce the design of the training procedure that incorporates MI regulariza-

tion. Due to the fact that online training requires continuously broadcasting a large number

of weights, resulting in a significant cost of communication resources, the proposed DiReNet

is trained offline. This means that the parameters of the encoder and decoder are static on the

UE and BS, respectively. For explanatory purposes, we denote the parameters of DiReNet as

Φ = {ΦEN,ΦDE}, where ΦEN is the parameters of encoder, ΦDE is the parameters of decoder.

The reconstructed CSI is expressed by

Ĥv/h = fDE
(
fEN
(
Hv/h;ΦEN

)
;ΦDE

)
, (14)

where fEN (·) denotes the encoder network and fDE (·) denotes the decoder network. Note that

the input and output of DiReNet are normalized such that the scaled elements are in the range of

[0, 1]. Besides, the mean squared error (MSE) is exploited as the loss function, which is given

as

LMSE =
1

2T

T∑
t=1

(∥∥∥Ĥv,t −Hv,t

∥∥∥2 + ∥∥∥Ĥh,t −Hh,t

∥∥∥2) , (15)

where T is the total number of samples in the training set, Hv,t and Hv,t denote the original

CSI of the t-th sample on the vertical and horizontal polarizations, respectively, and Ĥv,t and
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Ĥh,t denote the reconstructed CSI of t-th sample on the vertical and horizontal polarizations,

respectively.

In DL frameworks, especially in the representation learning, MI is commonly used as a

regularizer in loss functions, to encourage or restrict the dependence between different data. By

incorporating different regularizers, we can enhance the disentanglement performance or facilitate

the interpretability of the learned representation. The MI constraint in (7) implies that the ideal

shared representation W, which includes common information, is obtained by minimizing the

difference between the mutual information of the original CSI with shared representation and the

mutual information of CSIs on different polarization directions. For disentanglement achieved

through neural networks, W is the output of the encoder of the neural network, and it can

be altered by adjusting the network parameters. Therefore, (7) is added as a loss function for

training the entire neural network and obtaining the ideal disentanglement representation, which

is expressed as

LMI =
1

T

T∑
t=1

|I (Hv,t,Hh,t;Wt)− I (Hv,t;Hh,t)|2 , (16)

where the MI is estimated by the CLUB estimator defined in (12) and the NN is trained by

the loss function in (13). The results of Wt is the polarization-shared representation of the t-th

sample, I (Hv,t,Hh,t;Wt) denotes the complexity of the polarization-shared representation, and

I (Hv,t;Hh,t) is the MI between the correlated dual-polarized CSI.

By setting the difference between these two MI functions as the optimization objective, we

expect to obtain sufficient and effective representations. In summary, combining the above two

loss functions in (15) and (16), we set λ as a hyper-parameter to balance the magnitudes of

LMSE and LMI. The adopted loss function is written as

L = LMSE + λLMI. (17)

The loss function consists of the NMSE term for measuring CSI recovery accuracy and the

MI constraint term used to extract disentangled representations. Even if the dual polarization

correlation of the input CSI is low or absent, the proposed network can still adaptively extract

the features of CSI through the NMSE loss function for compression and recovery.

Since the input dimensions of the two MI in (16) are different, we construct two different

estimators fMI1 (·) and fMI2 (·) in the training procedure. Specifically, fMI1 (·) is adopted to

estimate the MI between polarization-shared representation Wt and original dual-polarized CSI
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Algorithm 1 Training Procedure of Proposed DiReNet
Input: Training dataset T , batch size B.

Output: f ∗
EN, f ∗

DE, f ∗
MI1 , and f ∗

MI2 .

Parameters: Learning rate η, coefficients λ.

repeat

Draw batch data (Hv,t,Hh,t) from T ;

Step 1:

Compute Ĥv,t, Ĥh,t = fDE (fEN (Hv,t,Hh,t));

Obtain Wt from the forward process;

Compute I (Hv,t,Hh,t;Wt) and I (Hv,t;Hh,t) according to (12);

Compute L = LMSE + λLMI according to (15)-(17);

Update fEN ← fEN − η∇fEN(LMSE + λLMI), fDE ← fDE − η∇fDE(LMSE + λLMI);

Step 2:

Compute LCLUB according to (13);

Update fMI1 ← fMI1 − η∇fMI1
(LCLUB), fMI2 ← fMI2 − η∇fMI2

(LCLUB);

until convergence

return fEN, fDE, fMI1 , and fMI2 .

(Hv,t,Hh,t), fMI2 (·) is adopted for the MI estimation between the vertical polarization CSI Hv,t

and the horizontal polarization CSI Hh,t. In addition, since the estimated MI is required in the

training process of the encoder and decoder, the training procedure of the proposed DiReNet

is achieved through alternating and iterative execution. The training algorithm is described in

Algorithm 1, and the training procedure consists of the following two steps.

Step 1: Fixing fMI1 (·) and fMI2 (·), we jointly optimize fEN (·) and fDE (·) to achieve the

compression and recovery of dual-polarized CSI. Specifically, we adopt the gradient descent

algorithm to update fEN (·) and fDE (·) that are given by

fEN ← fEN − η∇fEN(LMSE + λLMI), (18a)

fDE ← fDE − η∇fDE(LMSE + λLMI), (18b)

respectively, where η > 0 is the learning rate and λ > 0 is the hyper-parameter to balance the

magnitudes.
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Fig. 6. The proposed DiReNet with CSI quantization.

Step 2: Fixing fEN (·) and fDE (·), we optimize fMI1 (·) and fMI2 (·) to learn the MI estimators,

the update process of fMI1 (·) and fMI2 (·) follows

fMI1 ← fMI1 − η∇fMI1
(LCLUB), (19a)

fMI2 ← fMI2 − η∇fMI2
(LCLUB). (19b)

As the learning progresses, the estimators fMI1 (·) and fMI2 (·) are gradually trained to accu-

rately estimate the MI. Consequently, accurate MI estimation is beneficial for the encoder fEN (·)

and decoder fDE (·) to effectively realize the disentangled representations extraction, compression,

and recovery of the dual-polarized CSI.

In practice, the transmission of continuous-valued vectors is difficult, therefore it is necessary

to quantize the continuous-valued vectors. The encoder of the proposed DiReNet obtains vec-

tors with different semantics, namely a polarization-shared vector and two polarization-specific

vectors in the vertical and horizontal polarizations. For these vectors, distinct quantization-levels

are adopted to achieve flexible feedback accuracy.

As shown in Fig. 6, independent quantizers are designed to quantize the vectors with differ-

ent quantization-levels. In the decoder, corresponding dequantizers are exploited to reconstruct

the continuous-valued vectors. Specifically, the quantization is achieved by the non-learning

uniform quantizers and dequantizers. The flexible feedback accuracy is achieved by setting

distinct quantization-levels. In particular, during the training phase, we temporarily exclude the

quantization operation. While in the deployment phase, the vectors obtained by the encoder are

quantized through the quantizers and then fed back to the decoder. Correspondingly, dequantizers

are exploited to recover the continuous-valued vectors in the decoder.
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V. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our proposed DiReNet for CSI compression

and recovery. First, we describe the details of our experiments, including data sets, evaluation

criteria, parameter settings, and hardware platform. Then, we show the performance comparison

between the proposed DiReNet and existing DL-based methods under different compression

ratios, and we also discuss the network performance with quantization feedback. Subsequently,

we present the effectiveness of disentangled representation learning and the MI regularization in

the proposed framework. Then, we discuss the impact of depth-wise and width-wise extensions in

the decoder. Finally, we discuss the generalization abilities and the achievable rate performance

of the proposed DiReNet.

A. Simulation Setup

In our experiments, we generate the training set, validation set, and testing set through CDL

channel models defined in 3GPP specification TR 38.901 for link-level simulations [39]. Table

I list the basic parameters, we utilize three channel models with different system configurations

for simulations, including the CDL-A channel model with a delay spread of 30 ns and a UE

speed of 3 km/h, the CDL-B channel model with a delay spread of 100 ns and a UE speed

of 30 km/h, and the CDL-C channel model with a delay spread of 300 ns and a UE speed of

120 km/h. The CDL-A channel is exploited as the default dataset in most of our subsequent

simulations. Besides, we represent the polarization correlation of the CSI by calculating the GCS

between the CSI in horizontal and vertical polarization directions. A larger GCS value indicates

a higher polarization correlation. We calculate the magnitude GCS values for various channel

data and list their means and standard deviations in Table I. It is observed that the polarization

correlations for the CDL-A, CDL-B, and CDL-C channels decrease in order.

For each training set, validation set, and testing set, we sample dual-polarized CSI of M users

and T time slots, with a total of M × T CSI matrices, where Mtrain = 1,000, Mval = 200, Mtest

= 200, and Ttrain = Tval = Ttest = 100, thus the training set, validation set, and testing set contain

100,000, 20,000, and 20,000 samples, respectively. The number of BS dual-polarized antennas is

Nt = 32 and the number of subbands is Ns = 32, where we choose 12 subcarriers as one resource

block (RB) and every two RBs as one subband. For the case of expanding to a different number

of subcarriers, altering the number of RBs contained in one subband or training the network

with different input dimensions are feasible approaches. As for the depth-wise and width-wise
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TABLE I

BASIC SIMULATION PARAMETERS

Parameter Value

Carrier frequency 3.5 GHz

Bandwidth 10 MHz

Subcarrier spacing 15 kHz

Subband numbers 32

Nt, Nr 32, 1

Channel model [39] CDL-A CDL-B CDL-C

Delay spread 30 ns 100 ns 300 ns

UE speed 3 km/h 30 km/h 120 km/h

The value of GCS 0.936± 0.047 0.869± 0.065 0.741± 0.092

Channel estimation Ideal

Mtrain,Mval,Mtest 1000, 200, 200

Ttrain, Tval, Ttest 100, 100, 100

extensions, we set them to 3 and 5, respectively. At the training phase, the hyper-parameter λ

is set to 10−5, the adaptive momentum (Adam) optimizer [45] with learning rate η = 0.001 is

adopted, the number of training epochs is 1,000, the batch size is 200, and the simulation is

carried out in Pytorch on a GTX3090 GPU.

B. Performance of the Proposed DiReNet

To evaluate the performance of the proposed DiReNet for CSI compression and recovery, the

compression ratios in our simulation experiments are 8, 16, 32, and 64, respectively. We compare

with existing methods in terms of the normalized mean square error (NMSE) performance

and the network complexity. The existing DL-based methods proposed by other researchers

for comparison include CsiNet [19], CRNet [22], and ACRNet [23]. Among these, ACRNet

is a method that enhances performance through network aggregation and supports networks of

different scales, such as ACRNet-1x and ACRNet-5x. Given that ACRNet is currently a SOTA

method used for CSI feedback, we selected both ACRNet-1x and ACRNet-5x for comparison

with our proposed DiReNet.

1) NMSE Performance: We utilize the NMSE between the original dual-polarized CSI (Hv,

Hh) and the recovered dual-polarized CSI (Ĥv, Ĥh), as a metric to measure CSI recovery



22

-28 -26 -24 -22 -20 -18 -16 -14

NMSE (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

CsiNet [19]

CRNet [22]

ACRNet-1x [23]

ACRNet-5x [23]

DiReNet

11.90 dB Gain

1.32 dB Gain

(a) σ = 8.

-24 -22 -20 -18 -16 -14 -12

NMSE (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

CsiNet [19]

CRNet [22]

ACRNet-1x [23]

ACRNet-5x [23]

DiReNet

1.17 dB Gain

8.92 dB Gain

(b) σ = 16.

-15.5 -15 -14.5 -14 -13.5 -13 -12.5 -12 -11.5 -11

NMSE (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

CsiNet [19]

CRNet [22]

ACRNet-1x [23]

ACRNet-5x [23]

DiReNet

0.94 dB Gain

3.06 dB Gain

(c) σ = 32.

-13 -12.5 -12 -11.5 -11 -10.5 -10 -9.5 -9 -8.5

NMSE (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

CsiNet [19]

CRNet [22]

ACRNet-1x [23]

ACRNet-5x [23]

DiReNet

1.55 dB Gain

3.69 dB Gain

(d) σ = 64.

Fig. 7. CDF of NMSE performance without quantization under different compression ratio σ.

accuracy, which is defined as

NMSE =
1

2
E


∥∥∥Ĥv −Hv

∥∥∥2
∥Hv∥2

+

∥∥∥Ĥh −Hh

∥∥∥2
∥Hh∥2

 . (20)

We evaluate the performance of the proposed DiReNet, without quantization, by the cumulative

distribution function (CDF) of the NMSE, which can illustrate the percentage of CSI recovery

performance for the entire testing set. By analyzing the CDF of the NMSE, we can observe the

stability of the trained model and the performance gain of our proposed DiReNet compared to

existing DL-based methods.

As shown in Fig. 7, we observe that the proposed DiReNet outperforms other networks under

all the considered compression ratios. When the compression ratio σ is 8, the best NMSE of
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TABLE II

NETWORK COMPLEXITY COMPARISON

Methods
Compression ratio σ

Total param.
8 16 32 64

CsiNet [19] 1.054M 530K 268K 137K 1.989M

CRNet [22] 1.054M 530K 267K 136K 1.987M

ACRNet-1x [23] 1.054M 529K 267K 136K 1.986M

ACRNet-5x [23] 1.062M 538K 276K 145K 2.021M

DiReNet 695K 390K 236K 160K 1.481M

DiReNet, CRNet, and ACRNet-1x are -26.74 dB, -23.30 dB, and -24.23 dB, respectively, and the

NMSE performance gain by DiReNet is approximately 3 dB. Also, even at a high compression

ratio of 64, the NMSE of DiReNet, CRNet, and ACRNet-1x are -12.76 dB, -9.82 dB, and -

10.14 dB, respectively, and the NMSE performance gain by the proposed DiReNet is also about

3 dB. Compared to the larger advanced network named ACRNet-5x, DiReNet also has better

performance. Specifically, the NMSE of DiReNet and ACRNet-5x are -26.74 dB and -25.42 dB

at the compression ratio of 8. When the compression ratio is 64, the NMSE are respectively

-12.76 dB and -11.21 dB, while the performance gain is still approximately 1.5 dB in terms of

the NMSE.

Moreover, considering that the CDL-A, CDL-B, and CDL-C models are all non-line-of-sight

(NLoS) scenarios, we also conduct experiments using the CDL-D model, which simulates the

line-of-sight (LoS) transmission channel [39], to evaluate the performance of DiReNet in the

LoS scenarios. Under the CDL-D model with a delay spread of 30 ns and a UE speed of 3

km/h, the NMSEs of DiReNet are -24.19 dB and -11.63 dB when the compression ratio σ

are respectively 8 and 64. The experimental results indicate that the proposed network exhibits

satisfactory performance in the LoS scenarios.

In our experiments, network complexity is measured by the number of parameters. As demon-

strated in Table II, the proposed DiReNet has fewer parameters compared to other networks

when the compression ratios are 8, 16, and 32. This can be attributed to the employment of

several smaller FC layers in the proposed DiReNet, as opposed to a large FC layer employed

in other networks. Furthermore, by reducing its reliance on FC layers and emphasizing the

design of convolutional attention layers, DiReNet effectively enhances its CSI feature extraction
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capabilities while simultaneously decreasing the number of parameters.

2) Network Complexity: On the other hand, when the compression ratio is 64, the parameters

in DiReNet is slightly larger than in other networks, while the former exhibits a significantly

better NMSE performance than the latter. This is due to the fact that as the compression ratio

increases, the number of parameters in FC layers decreases while the convolutional attention

layers remain unchanged. In practical applications, different networks with various compression

ratios need to be deployed, rendering the parameters with high compression ratios negligible

compared to the total number of parameters. As shown in Table II, the total number of trainable

parameters in DiReNet is significantly lower than in other advanced networks, representing a

reduction of approximately one third.

In practical applications, the deployment of neural networks with various compression ratios

requires a certain degree of memory and computational resources. Indeed, the majority of the

parameters in our proposed DiReNet design are constituted by the decoder. As a result, the

primary computation is offloaded to the high-performance BS. When the compression ratio is

8, we have provided a comparison of the parameters and inference time of both the encoder

and decoder with other methods, as shown in Fig. 8. It is observed that the proposed DiReNet

reduces the number of parameters in both the encoder and decoder, thereby making the memory

consumption on UE wireless devices acceptable. Besides, the inference time is also reduced in
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TABLE III

COMPARISON OF FEEDBACK BITS

σ
(QSA, QSP)

(3, 3), (1, 4), (5, 2) (4, 4), (2, 5), (6, 3)

8 768 1024

16 384 512

32 192 256

64 96 128

the encoder at the wireless device, while the computational cost is more effectively offloaded to

the BS.

C. Performance with Quantization Feedback

In the proposed quantization scheme, distinct quantizers and quantization-levels are utilized

for different vectors. By adopting uniform quantization, the quantization-level of the polarization-

shared quantizer is set to QSA and the polarization-specific quantization-level is QSP. The total

feedback bits B of a CSI matrix with dimensions Ns ×Nt can be expressed as

B =
2NsNt

3σ
(QSA + 2QSP) . (21)

Table III presents the total quantization feedback bits under various compression ratios and

quantization-level configurations. It can be observed that the total number of bits remains

consistent when employing different quantization-level configurations for polarization-shared

and polarization-specific vectors. Specifically, when the configurations of QSA and QSP are set

to (4, 4), (2, 5), and (6, 3), respectively, the total number of feedback bits remains constant.

Furthermore, the total number of feedback bits for the quantization configurations of (3, 3), (1,

4), and (5, 2) are equivalent.

Fig. 9 illustrates the NMSE performance for various quantization-level configurations. In

particular, an increase in the quantization-level of the shared vector results in an improvement

in NMSE performance, while a decrease in the quantization-level of the shared vector leads

to a slight decline in NMSE performance. This indicates that for dual-polarized CSI with high

correlations, it is beneficial to allocate a higher quantization-level to shared information relative

to specific information due to the reuse of the shared vector. Moreover, for dual-polarized CSI
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Fig. 9. NMSE performance under different quantization configurations.

with varying degrees of correlation, the quantization-levels of both the shared and specific vectors

can be flexibly configured to achieve enhanced performance.

D. Impact of Disentangled Representation Learning

In this subsection, we examine the effectiveness of the extracted disentangled representations

by conducting ablation experiments. In one ablation, the average of the vertical and horizontal

CSI magnitude is directly utilized as the shared representation, while the vertical and horizontal

phases are employed as the vertical and horizontal specific representations, respectively. Addi-

tionally, in another ablation, the absolute value (ABS) of the channel coefficients is considered

as the shared representation, while the signs are regarded as the specific representations. In this

ablation, since the real and imaginary parts of CSI are input into the network twice, the final

result is calculated from the average of the two results.

We compare existing DL-based networks with three proposed approaches, including the pro-

posed DiReNet with disentangled representation learning (DR-RL), the ablation of magnitude

and phase inputs (DR-MP), and the ablation of ABS and sign inputs (DR-AS). Fig. 10 shows

that the proposed DiReNet outperforms its ablations and existing methods. This suggests that

disentangled representation learning can effectively extract representations of shared and specific

information. In the absence of disentangled representation learning, the performance of ablation
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Fig. 10. NMSE performance of existing methods, the proposed method, and its two types of variants for ablation study.

experiments deteriorates. The representations obtained through disentangled representation learn-

ing exhibit enhanced performance compared to the direct utilization of certain channel parameters

as representations.

E. Impact of Mutual Information Regularization

In this subsection, we investigate the effectiveness of the proposed MI regularization by ad-

justing the distance between I (Hv,Hh;W) and I (Hv;Hh). As presented in Table IV, we verify

that the proposed MI regularization can learn the most sufficient and effective representations. On

the one hand, when the difference between I (Hv,Hh;W) and I (Hv;Hh) is negative, i.e., the

complexity of the shared representation is less than the correlation between dual-polarized CSI,
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TABLE IV

NMSE(DB) COMPARISON OF DIFFERENT MI DISTANCE

Compression ratio σ
MI distance (bit)*

-100 -50 -25 0 25 50 100

8 -24.92 -25.43 -26.02 -26.74 -26.24 -25.94 -24.96

16 -19.52 -20.82 -21.37 -21.97 -21.83 -21.51 -20.60

32 -14.75 -14.83 -15.03 -15.40 -15.18 -14.88 -14.82

64 -11.31 -11.99 -12.59 -12.76 -12.63 -12.57 -11.97

*MI distance denotes the complexity of the polarization-shared representation W (the larger the distance, the higher the

complexity of the information contained in the representation).

the NMSE performance deteriorates, indicating that the network has not learned an adequate

representation to capture all the highly correlated channel information. On the other hand,

when the difference is positive, i.e., the complexity of the representation is greater than the

polarization correlations, the performance is reduced, indicating that an effective representation

has not been obtained. In summary, the proposed MI regularization effectively guides the learned

representation W to capture all necessary correlated channel characteristics.

F. Impact of Depth-wise and Width-wise Extensions

In this subsection, we compare the NMSE performance with different depth-wise and width-

wise extensions in the decoder. We also analyze the impacts of different depths and widths on

the network, which reveals the tradeoff between NMSE performance and network complexity.

For the depth-wise extensions experiment, we fix the compression ratio at 16 and the width-

wise extension at 5, while varying the depth-wise extensions as 1, 2, 3, 4, and 5, respectively. The

results are presented in Fig. 11(a), we observe that although the networks with fewer extensions

converge faster during the initial 200 training epochs, the final convergence performance is

unsatisfactory. This is due to the limited learning capacity of shallower networks, despite their

relative ease of training, to capture intricate details for accurate CSI recovery. Furthermore,

we note a significant decrease in NMSE performance when the depth is excessively increased,

potentially because an overly deep network leads to the loss of CSI information. Specifically,

optimal performance is achieved with a depth of 3. This illustrates that DiReNet not only extracts

the CSI feature effectively, but also avoids the performance degradation.
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Fig. 11. Comparison of NMSE performance under different depth and width-wise extensions (σ = 16).

For the width-wise extensions experiment, we set the compression ratio to 16 and the depth-

wise extension to 3, while the width-wise extensions are 1, 3, 5, 7, and 9, respectively, Fig.

11(b) shows the results. It is noteworthy that as the width of DiReNet is extended, it exhibits an

enhanced capacity to extract a more diverse range of CSI features, culminating in a commensurate

improvement in its NMSE performance. However, with an increase in the width, the training

procedure becomes more challenging and the required number of network parameters increases

linearly. Consequently, a width-wise extension of 5 is selected to strike a balance between NMSE

performance and network complexity.

G. Generalization Performance of the Proposed DiReNet

In this subsection, we analyze the generalization performance of the proposed DiReNet in

various channel scenarios. First, we train the proposed DiReNet on a single channel scenario

and test its NMSE performance. As it can be observed from Fig. 12, the NMSE performance

of CSI recovery in the CDL-A channel scenario is superior to that in the CDL-B and CDL-

C channel scenarios. This suggests that increased user mobility and a greater delay spread

contribute to more rapid variations in the channel, thereby increasing the complexity of the

channel environment. As a result, the neural network faces increased challenges in accurately

extracting features, compression, and recovery of the CSI.

Moreover, to demonstrate the generalization abilities of the proposed DiReNet, we train it

utilizing data from all CDL-A, CDL-B, and CDL-C channels. We then compare the recovery
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performance across different channel scenarios with other instances of the DiReNet trained on a

single channel scenario. When training data from all CDL-A, CDL-B, and CDL-C channels, to

ensure fairness in the training process, we mix all 300,000 training data together and randomly

select 100,000 samples to form the new training set. From Fig. 12, it is illustrated that the

recovery accuracy of the testing CSI in the CDL-A scenario experiences a relatively significant

decrease, while the accuracy reduction in the CDL-B and CDL-C scenarios for CSI recovery

is marginal. Although the recovery accuracy of the neural network trained on different channel

scenarios is not as high as on a single channel scenario, this method has demonstrated that our

proposed DiReNet possesses generalization abilities and can adapt effectively to various channel

scenarios.

To further evaluate the generalization of the network under various channels, additional ex-

periments have been added to test unknown channel data with the trained network. We generate

new simulation dataset using the QuaDRiGa model [46]. As depicted in Fig. 12, the experiments

include testing the QuaDRiGa channel on a network trained by the CDL-A channel and testing the

CDL-A channel on a network trained by the QuaDRiGa channel. It is observed that satisfactory
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Fig. 13. Comparison of average achievable rate per user performance under different methods.

performance is maintained even although there is some degradation in terms of the NMSE, when

the trained network is applied to unknown channels.

H. Achievable Rate Performance of the Proposed DiReNet

In this subsection, we conduct experiments on the achievable rate performance of different

DL-based and codebook-based CSI feedback methods to evaluate the end-to-end precoding per-

formance. In our experiment, we exploit the recovered CSI matrix to obtain the zero forcing (ZF)

precoding matrix for 4 users and assume that each user has the same distance from the transmitter.

Then, we compare the achievable rate per user performance of three DL-based methods, including

CsiNet [19], CRNet [22] and our proposed DiReNet, along with two codebook-based methods,

i.e., Type I and Type II [7]. As observed from Fig. 13, our proposed DiReNet can achieve the

highest rate and outperforms the other methods across the entire considered signal-to-noise ratios

(SNRs) at the receiver. This can be attributed to the fact that our proposed DiReNet can reduce

information redundancy and extract features more effectively.

VI. CONCLUSION

In this paper, we proposed a deep CSI feedback network named DiReNet based on disentangled

representation learning. Unlike existing DL-based methods, which treat the CSI matrix as an
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image directly, our approach exploited the disparity between the characteristics of natural images

and CSI for the design of a parametric encoder and decoder. Particularly, for dual-polarized CSI,

the proposed DiReNet utilized the inherent correlation between different polarization directions to

enhance network performance. In the encoder, the correlated dual-polarized CSI was decomposed

into the polarization-shared and polarization-specific information. In the decoder, the vertical

polarization CSI was recovered by combining the shared information with the vertical specific

information, while the horizontal polarization CSI was recovered by incorporating the shared

information with the horizontal specific information. Additionally, our approach allowed for

the implementation of different quantization schemes and the design of decoder extensions.

Experimental results showed that the proposed DiReNet is superior to existing methods in terms

of both NMSE performance and network complexity.

Although the DL-based methods have shown promising results, some challenging tasks remain

to be solved in future work. In practice, deploying multiple models for various channel scenarios

inevitably leads to an increase in network complexity. Therefore, how to further reduce the

complexity of networks by more advanced DL-based models is still a topic worth studying. On

the other hand, how to devise a network with sufficient generalization ability, which can leverage

the inherent characteristics of CSI across all scenarios is an interesting and challenging research

topic.
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