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Abstract

The aim of this paper is to introduce models and algorithms for the Participatory
Budgeting problem when projects can interact with each other. In this problem,
the objective is to select a set of projects that fits in a given budget. Voters express
their preferences over the projects and the goal is then to find a consensus set of
projects that does not exceed the budget. Our goal is to detect such interactions
thanks to the preferences expressed by the voters. Through the projects selected
by the voters, we detect positive and negative interactions between the projects by
identifying projects that are consistently chosen together. In presence of project
interactions, it is preferable to select projects that interact positively rather than
negatively, all other things being equal. We introduce desirable properties that
utility functions should have in presence of project interactions and we build a
utility function which fulfills the desirable properties introduced. We then give
axiomatic properties of aggregation rules, and we study three classical aggregation
rules: the maximization of the sum of the utilities, of the product of the utilities,
or of the minimal utility. We show that in the three cases the problems solved by
these rules are NP-hard, and we propose a branch and bound algorithm to solve
them. We conclude the paper by experiments.

Keywords: Computational social choice, Participatory Budgeting

1 Introduction

Participatory budgeting is a democratic process in which community members decide
how to spend part of a public budget. Started in Porto Alegre, Brazil, in 1989, this
process has spread to over 7,000 cities around the world, and has been used to decide
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budgets from states, cities, housing authorities, universities, schools, and other insti-
tutions1. The principle is the following one: the authorities of a given community (e.g.
a city, or a university) decide to dedicate a budget l between projects proposed by
the community members. Some community members (e.g. citizens, or students) pro-
pose projects, and write a proposal presenting their project and estimating its cost.
All the community members are then asked to vote on the projects. There are several
ways to collect voters’ preferences. Due to its simplicity, the most widely used method
is approval voting, in which voters are asked to approve or not each of the proposed
projects. A variant of this method, called knapsack voting (Goel, Krishnaswamy, Sak-
shuwong, & Aitamurto, 2019), and that we will consider in this paper, asks the voters
to approve projects up to the budget limit l: with knapsack voting, each voter is
encouraged to give the set of projects that he or she would like to be selected, given
the budget allocated. We start by reviewing existing work on participatory budget-
ing. Once the preferences of the voters have been expressed, the authorities use an
algorithm which aggregates them and returns a set of projects (a bundle) of total cost
at most l. In practice, e.g. in Warsaw, the projects are usually selected by decreasing
number of votes. We start by reviewing existing work on participatory budgeting.

1.1 Related work

Participatory budgeting is a very active field in computational social choice and numer-
ous other algorithms have been proposed (Aziz, Lee, & Talmon, 2018; Aziz & Shah,
2021; Peters, Pierczyński, & Skowron, 2021; Talmon & Faliszewski, 2019). Several
social welfare functions have been considered. The aim is usually either to maximize
the minimal utility of a voter (Sreedurga, Ratan Bhardwaj, & Narahari, 2022); to
guarantee proportional representation to groups of voters with common interest (Aziz
et al., 2018; Freeman, Pennock, Peters, & Wortman Vaughan, 2021; Peters et al.,
2021), both aiming to return “fair” solutions; to maximize the sum of the utilities of
the voters (utilitarian welfare); or to maximize the products of these utilities (Nash
product) (Aziz & Shah, 2021; Benade, Nath, Procaccia, & Shah, 2021; Goel et al.,
2019). In this paper we are interested in optimizing three of the most classical crite-
ria: the maximization of the sum of the utilities, of the product of the utilities, or of
the minimal utility of the voters.

There are two main ways to define the utility of a voter. The first way defines the
utility of a voter as the number of funded projects that he or she approves (Jain, Sor-
nat, & Talmon, 2020; Peters et al., 2021). The second way defines the utility of a voter
as the total amount of money allocated to projects approved by the voter (Freeman et
al., 2021; Goel et al., 2019; Talmon & Faliszewski, 2019). This second way of measur-
ing the satisfaction of a voter is particularly relevant in the case of knapsack voting,
where each voter can only approve a total budget of l: if a voter chooses to approve a
project with a large cost at the expense of projects with smaller costs, it means that
he or she prefers the large project to the smaller ones. We will consider this way to
measure utilities.

1https://www.participatorybudgeting.org/
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Project interactions. Project interactions (also called synergies between
projects) have been little explored so far. In almost all the papers, it is assumed that
the utility of a bundle (a set of projects) for a given voter is the sum of the utilities
of these projects (number of projects or total cost of these projects, depending on the
model considered). In a recent paper, Fairstein Roy and Kobi (2023) do an empirical
study of several voting formats, without considering synergies. However, they say in
their conclusion that “real voter utilities likely exhibit complementarities and exter-
nalities — a far cry from our utility proxies”. Indeed, in practice, positive and negative
synergies do exist. For example, two projects which are facilities that are planned to be
built in the same location, or two projects which are very similar (e.g., two projects of
playgrounds, or two skateboard parks) will have negative synergies: for a given voter,
the utility of such two projects A and B will be smaller than the sum of the utilities
of A and B. On the contrary, some projects are complementary and therefore have
positive synergies. This is for example the case when a project aims to build a bicycle
garage and another project aims to build a meeting place nearby. For a given voter,
the utility of two projects A and B with positive synergies will be larger than the sum
of the utilities of A and B. For two projects A and B which are independent, i.e., do
not have positive neither negative synergies, the utility of the two projects A and B
will be as usual the sum of the utilities of A and B.

To the best of our knowledge, there are only two papers which deal with projects
interactions (Rey & Maly, 2023). Jain et al. (2020) introduce a model in which they
assume that the synergies between the projects are already known and are defined as a
partition P over the projects. The projects which belong to a same set of the partition
either have a substitution effect (i.e. a negative interaction) or a complimentary effect
(a negative interaction). The authors define a utility function f such that f(i) is the
utility that a voter v gets from a set of the partition P if i projects from this set
and approved by v are in the returned bundle. If f is concave (i.e. f(i + 1) − f(i) <
f(i) − f(i − 1)) then projects in the same set of P have negative interaction; if f
is convex (i.e. f(i + 1) − f(i) > f(i) − f(i − 1)) then projects in the same set of
P have positive interaction. The utility of a voter is the sum of the utilities it has
over the different sets of the partition. This model is the first one to consider project
interactions. In a subsequent paper, Jain, Talmon, and Bulteau (2021), assuming such
an existing partition of the projects to interaction structures, take voter preferences to
find such interaction structures (in their model, voters submit interaction structures,
and the goal is to find an aggregated structure). Fairstein, Meir, and Gal (2021) also
consider an underlying partition structure and ask the voters to give a partition of
projects into groups of substitutes projects: in this setting only negative interactions
are considered.

These papers are the first ones to consider and model project interaction. However,
by partitioning the projects, their model cannot represent situations in which a project
A can be both in positive interaction with a project B and in negative interaction with
a project C, situation that we wish to take into account in this paper. Furthermore,
the authors of the previous mentioned papers assume that such a partition is either
known (Jain et al., 2020), or computed thanks to the partitions of the projects asked
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to the voters (Fairstein et al., 2021; Jain et al., 2021), which can be a fastidious and
complicated task for the voters.

1.2 Our approach to interaction detection

Our aim is not only to take into account interactions between projects into the utilities
of voters, but also to detect the interactions through the preferences of the voters.
Detecting such interactions through the votes is not possible if, as in (Jain et al.,
2020), the voters use approval voting to give their opinions on the projects. Indeed,
with approval voting, a voter tends to evaluate each project individually and to select
the projects that he or she finds interesting according to his or her own criteria. Thus,
it is likely that a voter who would like to see a playground built near his or her home
will support all the playgrounds projects, even if such projects interact negatively. On
the contrary, with knapsack voting, each voter is asked how he or she would spend the
money if he or she had the opportunity to decide. In that context, it is unlikely that
a voter selects projects that interact negatively, and on the contrary it is likely that
projects that interact positively will be chosen. We think the best way to get reliable
preferences (which express synergies) is to ask the following question to the voters:
“How would you spend the budget if you could make the decision ?”. Assuming most
voters follow this recommendation, the synergies should be estimated quite accurately.

Detecting synergies can be done through the ballots approved by the voters, by
looking at the frequencies of occurrence of groups of projects among the projects
approved by the same voter, compared to the “expected” frequencies of this group
of projects. If, for example, two projects A and B are selected together very often,
we will deduce that they probably are in positive synergy. On the contrary, if two
objects are never selected together, the synergy will be negative. Thus, by comparing
the frequency of appearance of these projects A,B together with the product of the
frequency of A and the frequency of B, we deduce synergies from the voters’ choices.

Example 1. Consider a budget l=9 and 5 projects {A, . . . , E} of costs (2, 3, 3, 1, 1)
(i.e. project A has cost 2, while project E has cost 1). Consider the following votes
of 4 voters: {A,B,D,E}, {A,B,C},{C,E},{A,B,D}. Each project has been selected
2 or 3 times but projects A and B are always selected together, and projects C and
D are never selected in a same ballot: we will deduce that projects A and B have a
positive synergy while projects C and D have a negative synergy. Hence, whereas both
bundles {A,B,C,E} and {A,B,C,D} are optimal for the utilitarian welfare, bundle
{A,B,C,E} is preferable because C and D have a negative synergy while C and E do
not.

One could argue that two projects will not be chosen by the same voter
because of the budget limit and not because they have a negative interac-
tion. First, if the sum of the costs of these two projects is larger than l,
then these two projects will anyway not be chosen in the returned bundle. Sec-
ond, we examined the costs distribution of projects from the 247 real-world
instances of knapsack voting from Pabulib (Stolicki, Szufa, & Talmon, 2020).
These instances mainly have “small projects”: the vector of costs of projects
of these instances is in average: (0.56, 0.18, 0.09, 0.06, 0.04, 0.02, 0.02, 0.01, 0.01,

4



0.01) – which means than 56% of the projects have a cost between 0 and 10% of the
budget, 18% of the projects have a cost between 10 and 20% of the budget, and so
forth. Additionally, on the same instances, the average (resp. median) total cost of
the projects selected by a voter represents 66% (resp. 75%) of the budget. This means
that a majority of voters could have selected one more project, and this among most
of the unapproved projects. Therefore, the overall low cost of the projects paired with
the budget left unused in the votes suggests that if two projects are rarely selected
together, it is usually not because of theirs costs.

Note that taking account of synergies between the projects may be interesting even
if all the projects have the same cost, as shown by the following example.

Example 2. Let us consider a scenario with 12 voters, 8 projects of cost 1 and a
budget of 4. Six voters select projects 1 and 2 plus a pair of projects in {5, 6, 7, 8},
different for each one. The six other voters select projects 3 and 4 plus a pair in
{5, 6, 7, 8}, different for each one. Therefore, each project is selected exactly 6 times.

p1 p2 p5 p7

p1 p2 p5 p8

p1 p2 p6 p7

p1 p2 p6 p8

p1 p2 p7 p8

p1 p2 p5 p6

p3 p4 p5 p7

p3 p4 p5 p8

p3 p4 p6 p7

p3 p4 p6 p8

p3 p4 p7 p8

p3 p4 p5 p6

Fig. 1 Example with l = 4

Without synergies, each bundle of 4 projects is optimal for the sum of the utilities.
However, using synergies, we can detect that {1, 2} and {3, 4} are probably two strong
pairs in comparison to the others. We can also see that the subset{1, 2, 3, 4} is never
chosen as a whole which may indicate an antisynergy of the complete subset.

In the sequel, we will sometimes consider the k-additivity hypothesis, which means
that there are synergies between groups of up to k projects. For example, with the 2-
additivity hypothesis, we consider only interactions between pairs of projects, and not
between more important groups of projects. In addition to the fact that it is realistic
that synergies are important only for small values of k, considering this hypothesis
will have repercussions on the complexity of our algorithms.

We conclude this introduction with an example showing that, in practice, positive
(resp. negative) interactions may indeed be detected through the frequencies of co-
occurrence of the projects in the same bundles.

5



Example 3. By looking at real-world knapsack voting instances in the Pabulib
library (Stolicki et al., 2020), and by considering that two projects interact posi-
tively (resp. negatively) when they are (resp. are not) chosen together, we identified
several cases in which projects seem to interact positively or negatively2. For exam-
ple, in Warsaw (poland warszawa 2017 niskie-okecie.pb), two projects for the same
neighbourhood, the first one being building a sport court and the second one build-
ing a playground, were chosen together less often than expected (given how often
each one was individually approved). Our model says that they interact negatively,
which makes sense, these projects being close to being susbtitutes. In another instance
(poland warszawa 2018 niskie-okecie.pb), two projects, the first one being building
alleys in a park and the second one building public lightning in the same park, were
consistently chosen together, which our model interpreted as a positive synergy. This
also makes sense since these projects are clearly complementary.

1.3 Overview of our results

We tackle the indivisible participatory budgeting problem, with knapsack voting, by
considering that projects are not independent, but that there may have positive and
negative synergies between them.

• In Section 3, we propose desirable properties for utility functions in presence of
project interactions.

• In Section 4 we present a particular utility function, derived from Möbius transforms
and denoted by uM , that fulfills the axioms defined on the previous section.

• In Section 5, we study axiomatic properties of aggregation rules. We consider in
particular three aggregation rules, which either maximize the sum of the utilities,
the product of the utilities, or the minimal utility of the voters.

• In Section 6 we show that these rules solve NP-hard problems, and that synergies
make the problem harder since it is NP-hard to maximize the sum of the utilities
with unit size projects when there are synergies, whereas this problem can be solved
easily without synergies. These results hold for utility function uM but also for other
very general synergy functions.

• In Section 7, we propose an exact branch and bound algorithm which can be used
with any utility function, and we conclude with an experimental evaluation.

2 Preliminaries

We use the general framework for approval-based participatory budgeting proposed by
Talmon and Faliszewski (2019). A budgeting scenario is a tuple E=(A, V, c, l) where
A = {a1, . . . , an} is a set of n projects, or items, and c : A → N is a cost function:
c(a) is the cost of project a ∈ A – abusing the notation, given a subset S, we denote
by c(S) the total cost of S: c(S) =

∑
a∈S c(a). The budget limit is l ∈ N. The set

V ={v1, . . . , vv} is a set of v voters. Each voter vi ∈ V gives a set of approved projects

2To be precise, to detect these interactions, we used the utility function uM presented in Section 4, by
considering 2-additivity hypothesis.
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Ai ⊆ A, containing a set of projects that she approves of and such that c(Ai) ≤ l. We
denote by EA the set of all possible budgeting scenarios having A as a set of projects.

A budgeting method r is a function taking a budgeting scenario E=(A, V, c, l) and
returning a bundle B ⊆ A such that c(B) ≤ l. We consider that a budgeting method
always returns a unique bundle (we can use usual tie-breaking techniques to handle
instances with several winning bundles). The winning bundle for a budgeting scenario
E is denoted by r(E). A project is funded if it is contained in the winning bundle B.
Given a bundle B and a voter vi with her approval set Ai, we denote by Bi=Ai ∩B
the set of projects common to Ai and B.

Utility functions. A utility function u : 2A → R
+
0 is a set function which

gives a value to each subset of items. A linear utility function is such that that the
value of a bundle B is the sum of the utilities of its items: u(B)=

∑
a∈B u({a}). The

overlap utility function, introduced for the knapsack voting by Goel et al. (2019),
considers that the utility of a bundle B is the sum of the costs of the projects in B:
f(Ai, B)=

∑
a∈Bi

c(a)

Satisfaction functions. A satisfaction function f is a function f : 2A×2A → R,
which, given a voter vi ∈ V and a bundle B ⊆ A, returns the satisfaction that vi gets
from B. Given a selected bundle B and a utility function u, we will consider that the
satisfaction of voter vi from bundle B is the utility of Ai ∩B: f(Ai, B)=uBi.

.
The utility function aims at associating to each possible bundle an evaluation of

its quality. The satisfaction function indicates, given two sets of projects, the first one
being the preference of a voter and the other being a potential solution, how satisfied
the voter is given the solution.

In the sequel, we will consider generalizations of the overlap utility function that
take into account potential projects interactions. Since these function may depend on
the instance, we will denote the utility of the subset Bi as: u(Bi, E).

Aggregating criterion. In order to obtain a solution satisfying the whole pop-
ulation, we study the three most classical aggregating methods: the sum (

∑
), the

product (
∏
) and the minimum (min) of the satisfactions of the voters. We denote by

α−ru the budgeting method returning the α aggregation of the utility function u,
where α ∈ {

∑
,
∏
,min}. This rule returns an optimal bundle of the associated maxi-

mization optimization problem, that we will call problem PB-Max−α−u (e.g. problem
PB-Max−

∑
−u consists in computing a bundle maximizing the sum of the utilities

of the voters when the utility function used is u). These three aggregating concepts
rely on different ideas of the collective satisfaction. The sum criterion maximizes the
average satisfaction of a voter. The minimum tries to satisfy as much as possible the
least satisfied voter – this is an egalitarian view. Finally the product stands in between
the two previous criteria: the product is very penalized by the presence of very low
utility values, however, it still takes into account the larger values. This last criterion
has been the favourite of the voters in an experimental study (Rosenfeld & Talmon,
2021). These three criteria share several axiomatic and computational properties, as
we will see in the following sections.

We will now discuss how to obtain satisfactory utility functions and how mathe-
matical properties on such functions impact the budgeting methods.
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3 Axioms for utility functions

In this section, we define desirable properties for utility functions in the presence of
synergies.

The first property states that the utility of a single project should be proportional
to its cost. This property is fulfilled by the overlap utility function (Goel et al., 2019).
It is particularly meaningful in knapsack voting: since there is a budget constraint on
the approval set of the voters, the approval of a project is done with full knowledge of
its cost and the approval of a costly project is done at the expense of the budget for
other projects.

Definition 1. Given a budgeting scenario E = (A, V, c, l), a utility function uE :
2A×EA → R

+
0 is cost consistent if there exists a constant k such that for each project

a in A, we have u({a},) =k · c(a).
The factor k allows normalization. This property insures that the utility function

follows the cost function for the sets containing only one project.
The following classical property ensures that the utility of a set does not decrease

when the set grows. This ensures that we cannot decrease a voter satisfaction by
adding a project that she selected.

Definition 2. Given a budgeting scenario E = (A, V, c, l), a utility function uE is
super-set monotone if for any subset Xsub and X such that Xsub ⊂ X, we have
u(Xsub, E) ≤ u(X,E).

Relaxing the neutrality principle (Brandt, Conitzer, Endriss, Lang, & Procaccia,
2016), the next property states that two similar projects should be treated equally.
Given a set S, we denote by S(ai↔aj) the set obtained from S by swapping ai and
aj : ai (resp. aj) belongs to S(ai↔aj) if and only aj (resp. ai) belongs to S, and each
project ak /∈ {ai, aj} belongs to S(ai↔aj) if and only if ak belongs to S. We also denote
by E(ai↔aj) the budgeting scenario obtained from E by swapping the approval of

the projects ai and aj : a voter vl approves ai (resp. aj) in E(ai↔aj) if and only if vl
approves aj (resp. ai) in E.

Definition 3. Given a budgeting scenario E = (A, V, c, l), and two projects ai and aj
of A such that c(ai) = c(aj), a utility function uE is cost-aware neutral if u(S,E) =
u(S(ai↔aj), E(ai↔aj)).

Note that this property is inspired by the Processing Time Aware neutrality prop-
erty used in the collective schedules model (Durand & Pascual, 2022): this property
ensures that two tasks of equal processing time are treated equally. We restrict our
analysis to cost-aware neutral utility functions since no pair of projects with the same
cost should be treated differently.

If a subset of item is consistently chosen as a whole, then the utility it brings
should be higher than the sum of the utilities of the items. On the opposite side, if
projects are never chosen together, then the utility of the whole subset should be lower
than the sum of utilities of the items. The third axiom states that the more a subset
appear together, the more its utility should increase, everything else being equal.
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The next property, the effect of positive synergies ensures that the utility of subsets
of projects that always appear together is larger than the sum of the utilities of its
components.

Definition 4. Given a budgeting scenario E = (A, V, c, l), a utility function uE fulfills
the effect of positive synergies (resp. strong effect of positive synergies) property if,
for each subset S in 2A such that for each voter vi we have either S ⊆ Ai or S∩Ai=∅
and such that there exists vk ∈ V with S ⊆ Ak, then u(S,E) ≥

∑
a∈S u({a}, E) (resp.

u(S,E) >
∑

a∈S u({a}, E)).
The next property ensures that the utility of subsets of projects that never appear

together is smaller than (or equal to) the sum of the utilities of its components.

Definition 5. Given a budgeting scenario E = (A, V, c, l), a utility function uE fulfills
the effect of negative synergies (resp. strong effect of negative synergies) property if,
for each subset S in 2A such that for each voter vi ∈ V we have |S ∩ Ai| ≤ 1, then
u(S,E) ≤

∑
a∈S u({a}, E) (resp. u(S,E) <

∑
a∈S u({a}, E)).

The next property states that the utility of a subset should increase with the
number of appearances of the whole subset in the preferences of voters with respect
to a solution in which the number of approvals of the items is the same but the items
are not approved by the same voters.

Definition 6. Let E = (A, V, c, l) be a budgeting scenario, S ⊆ A be a subset such
that c(S) ≤ l, and let vi and vj be two voters of V such that S ⊆ (Ai∪Aj), Ai∩Aj=∅,
S ̸⊆ Ai, S ̸⊆ Aj, and c(Ai ∪Aj \ S) ≤ l. Let VS=V ∪ {vk, vl} \ {vi, vj}, where vk and
vl are two voters who are not in V and such that Ak=S and Al=(Ai ∪ Aj) \ S. Let
E′ = (A, VS , c, l) be a budgeting scenario. A utility function uE satisfies regrouping
monotonicity if u(S,E) < u(S,E′).

We can also imagine creating utility functions thanks to prior knowledge on the
projects, however in such cases, it is possible that the last three properties are violated.

In the following section, we propose a utility function taking synergies into account,
and that fulfills the properties that we have introduced in this section.

4 A utility function taking synergies into account

4.1 A function using Möbius transforms: uM

Möbius transforms (Rota, 1964) are a classical tool for measuring synergies in sets of
items. Given a utility function u : 2A → R

+
0 , the Möbius transform of a subset S,

denoted by m(S), expresses the level of synergy between the items in S. For a set
S={a, b} of two elements, and if u(∅)=0, we have m(S)=u({a, b})−u({a})−u({b}).
More generally, the Möbius transform of a set S is calculated as follows:

m(S)=
∑
C⊆S

(−1)|S\{C}|u(C)

The Möbius transform m(S) expresses the level of synergy between the elements
of the subset S. If it is negative, this indicates a negative interaction between the

9



C ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
u(C) 0 0.2 0.4 0.5 0.5 0.7 0.8 1

elements of S; if it is null, this indicates independence of the elements; and if it is
positive, this indicates positive interaction between the elements.

Example 4. Let us consider a utility function u over a set of items {1, 2, 3}. The
utilities are as follows: Let us compute the Möbius transform of subset {1,2}

m({1, 2})=(−1)0u({1, 2})+(−1)u({1})+(−1)u({2})+(−1)2u(∅)
m({1, 2})= u({1, 2}) − u({1}) − u({2}) + u(∅)
m({1, 2})=−0.1

We find a negative Möbius transform, indicating a negative interaction between
elements 1 and 2.

A utility function from Möbius transforms. It is not only possible to find the
Möbius transforms from a utility function, it is also possible to build a utility function
from the Möbius transforms thanks to the following expression (Rota, 1964):

u(S)=
∑
C⊆S

m(C)

The utility of a subset S is then the sum of Möbius transforms of its elements –
which is also the sum of their utilities – plus the Möbius transforms of the subsets
included in S, representing their level of positive and negative synergies. Therefore, if
we can measure the level of synergy of each subset, we can build a utility function.

We use a statistical approach in order to infer synergies from the preferences. Let
r(S, V ) be the rate of occurrence of a subset S in the approval sets of voters in V (i.e.
the ratio between the number of voters who selected all the projects of S, and the
total number of voters). The expected rate of occurrence of a whole subset S if all of
its elements were perfectly independent (ignoring possible cost constraints), would be∏

a∈S r({a}, V ), the product of the appearance rates of each the elements of S. We
use (r(S, V ) −

∏
a∈S r(S, V )) as a marker of synergy. If it is null, then the projects

appear as independent in the preferences. If it is positive, then the subset appears
more frequently than expected if the preferences were random, indicating a positive
interaction. If it is negative, it indicates on the contrary a negative interaction.

We set u(∅)=m(∅)= 0 and, to insure cost consistency, we set u({a})=m({a})=
c(a). Since (r(S, V )−

∏
a∈S r(S, V )) has a range included in [−1; 1], we multiply this

difference by the cost of the subset. We obtain: m(S,E)= (r(S, V ) −
∏

a∈S r(S, V )) ·
c(S). We finally adapt this definition so that the utility function obtained from the
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Möbius transforms fulfills super-set monotonicity:

m(S,E)=



0 if S=∅
c(a) if S={a}
max{(r(S, V )−

∏
a∈S

r(S, V ))c(S),

max
a∈S

(
−

∑
C⊂S,a∈C

m(C,E)

)
}otherwise

(1)

The intuition is the following one:
∑

C⊂S,a∈C

m(C,E) is the sum of the Möbius

transforms of subsets containing project a. By ensuring that the Möbius transform of
S is larger than or equal to the opposite of this sum, we ensure that the utility of S
is not smaller than the utility of S \ {a}.

Note that guaranteeing super-set monotonicity implies that we know the Möbius
transforms value of smaller sets. The utility function uM is as follows:

uM (S,E)=
∑
C⊆S

m(C,E) (2)

4.2 Properties of uM , and remarks on its computation

We use Equation 2 to determine the utility of a bundle with function uM . Because of
its recursive nature, we compute first, as a preprocessing step, the utility of singletons,
then pairs, then triplets and so forth. Determining the utilities in this way costs
up to 2n (since there are 2n subsets) times v × n operations (since determining the
appearance rate of a subset costs v × n operations). This calculation is much faster
with the k-additivity hypothesis, since the Möbius transform associated to any subset
of size larger than k is then 0. Therefore, with such an hypothesis, we simply need to
know the Möbius transforms of the subsets of size at most k: the preprocessing part
is polynomial if k is a constant.

We now state that the utility function uM fulfills all the desirable properties stated
in Section 3. This is true even with the k-additivity assumption, for any value of k.

Proposition 1. The utility function uM fulfills cost consistency, super-set monotonic-
ity, the effect of positive synergies property, the effect of negative synergies property,
regrouping monotonicity and cost aware neutrality. It also fulfills the strong effect of
positive synergies property if for each project a, there is at least one voter who does
not select a.

Proof. • Cost consistency. As defined in equation 1, the Möbius transform of a
single project is its cost. Since the utility of a single project is its Möbius transform,
assuming the Möbius transform and the utility of the empty set is 0, the utility
uM ({a}, E)=c(a) for any project a. Therefore uM fulfills cost consistency.

• Super-set monotonicity. As detailed earlier, the super-set monotonicity of the
function uM is insured by the definition of the Möbius transform. As a reminder,
to fulfill super-set monotonicity, the function uM has to verify the following prop-
erty: uM (S,E) ≥ uM (S \ {a}, E) for all S ∈ 2A \ ∅ and all a ∈ S. Since,
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by definition, we have m(S,E) ≥ −
∑

C⊂S,a∈C m(C,E) for all a ∈ S, it means
that

∑
C⊆S,a∈C m(C,E) ≥ 0 for all a ∈ S and therefore

∑
C⊆S m(C,E) ≥∑

C′⊆S\{a} m(C ′, E) for all a ∈ S. By definition of uM , this means uM (S,E) ≥
uM (S \{a}, E) for all a ∈ S. The utility function uM fulfills super-set monotonicity.

• Effect of positive synergies. Let S be a subset of projects such that for any
a ∈ S and any vi ∈ V , a ∈ Ai =⇒ S ⊆ Ai and such that ∃vk ∈ V with
a ∈ Ak. In other words, if a voter approves of one of the elements of S, she approves
of all projects in S and such a voter exists in V . For such a subset, the value
r(S, V ) −

∏
a∈S r({a}, V ) is equal to r(S, V ) − r(S, V )|S|. Since the r(S, V ) value

is larger than 0 and smaller than or equal to 1, the difference r(S, V ) − r(S, V )|S|

is positive or null. This means that (r(S, V ) −
∏

a∈S r({a}, V ))c(S) is positive or
null, this means that the Möbius transform of S is positive or null, m(S,E) ≥ 0.
The same remark can be said about all subset C ⊆ S since all the projects of S are
only selected together. Therefore, we have

∑
C⊆S,|C|≥2 m(C) ≥ 0. By definition, the

Möbius transforms of the single projects are their cost, we then have:
∑

C⊆S m(C) ≥∑
a∈S c(a), and consequently: uM (S,E) ≥ 0. The utility function uM fulfills the

effect of positive synergies property. If we suppose that for each project a, there is
at least one voter who does not select a, then for each subset S, there is at least
one voter who does not select S. Then r(S, V ) is smaller than 1 and the difference
r(S, V ) − r(S, V )|S| is strictly positive. In this case, uM fulfills the strong effect of
positive synergies property.

• Effect of negative synergies. Let S be a subset of projects such that for any
a ∈ S and any vi ∈ V , a ∈ Ai =⇒ S ∩ Ai={a}. In other words, if a voter selects
an element a of S, then it is the only element of S she selects. For such a subset, the
value r(S, V ) −

∏
a∈S r({a}, V ) is negative or null, since S never appears but the

element of S can appear individually. This is true for any subset C ⊆ S such that
|C| ≥ 2. When summing the Möbius transforms all these subsets included in S,we
will have the Möbius transforms of singleton that are positive and equal to the cost
the project and then null or negative values. This means that the overall utility of
S cannot be greater than the sum of the utility of its components. Therefore, uM

fulfills the effect of positive synergies property.
• Regrouping monotonicity. Let E = (A, V, c, l) be a budgeting scenario and let
S ∈ 2A be a subset of projects with c(S) ≤ l. Let vi and vj be two voters in
V such that Ai ∩ Aj = ∅, S ⊆ Ai ∪ Aj and c(Ai ∪ Aj \ S) ≤ l. We consider
voters vk and vl with Ak = S and Al = Ai ∪ Aj \ S, and a set of preferences
VS = V ∪ {vk, vl} \ {vi, vj}. Let E′ = (A, VS , c, l) be a budgeting scenario. In VS

any subset C ⊆ S appears at least as often than in V and any project appears as
much in VS than in V , therefore for any C ⊆ S, r(C, VS) ≥ r(C, V ), consequently
m(C,E) ≥ m(C,E) and uM (C,E′) ≥ uM (C,E). Since uM (C,E′) ≥ uM (C,E), for
all C ⊆ S and r(S, VS) > r(S, V ) we see that m(S,E′) > m(S,E) and therefore
uM (S,E′, >)uM (S,E) from equation 2. Thus, uM fulfills regrouping monotonicity.

• Cost aware neutrality. Given a budgeting scenario E = (A, V, c, l), let E(ai↔aj)=
(A, V(ai↔aj), c, l) be the budgeting scenario obtained from E by swapping the
approval of two projects ai and aj such that c(ai) = c(aj). For a given sub-
set S, let S(ai↔aj) be the subset obtained from S by swapping ai and aj , i.e.
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S(ai↔aj) contains the same projects than S except for ai and aj , if S con-

tains ai, S(ai↔aj) contains aj and if S contains aj , S(ai↔aj) contains ai. Since
c(ai) = c(aj), and since for any subset C, r(C, V ) = r(C(ai↔aj), V(ai↔aj)), we
can see that m(C,E) = m(C(ai↔aj), E(ai↔aj)) and, because of equation 2 that
uM (C,E) = uM (C(ai↔aj), E(ai↔aj)). The utility function uM fulfills cost aware
neutrality.

5 Axioms for budgeting methods

In this section we discuss some axiomatic properties of the different aggregation rules,
relying on the properties of the utility function used. We try, when it is possible, to
have general results relying on the properties introduced in section 3 instead of on
specific utility functions. We start with the inclusion maximality axiom (Talmon &
Faliszewski, 2019), also known as exhaustiveness (Aziz et al., 2018). This axiom states
that if a bundle B is a winning bundle according to a budgeting method r, then it is
either exhaustive, in the sense that it is impossible to add a project without exceeding
the budget limit, or any of its feasible superset is also a winning bundle.

Definition 7. A budgeting method R satisfies inclusion maximality if for any bud-
geting scenario E = (A, V, c, l) and each pair of feasible bundles B and B′ such that
B′ ⊂ B, it holds that B′ ∈ R(E) =⇒ B ∈ R(E).

Proposition 2. If a utility function u fulfills super-set monotonicity, then the
budgeting method α−ru, for α ∈ {

∑
,
∏
,min} fulfills inclusion maximality.

Proof. Let u be a utility function satisfying super-set monotonicity and α−rua bud-
geting method maximizing either the sum, the product or the minimum over all the
voters utilities. For any voter vi, and for any pair of feasible bundles B and B′ such
that B′ ⊂ B, we call Bi and B′

i the common subsets between Ai and B and Ai and
B′ respectively. Since B′ ⊂ B, we have B′

i ⊆ Bi. Since both the sum, product and the
minimum utility of the voters are non decreasing with the utility of individual voters,
if B′ is optimal for any of these rules, then B is also optimal. The budgeting method
α−Ru thus satisfies inclusion maximality.

Note that when a budgeting method is resolute, meaning that it returns only
one winning bundle, this axioms requires that the only winning bundle is exhaustive.
This means that if we use tie-breaking mechanism to choose a solution among several
optimal ones, they should select an exhaustive solution. Note that it can be easily
obtained by adding projects greedily from an optimal solution that is not exhaustive.

The next two axioms focus on robustness, especially when projects have a compos-
ite structure (i.e. a large project can be divided into several small projects, or small
projects merged into one large project).

Definition 8. A budgeting method r satisfies splitting monotonicity if for every bud-
geting scenario E = (A, V, c, l), for each ax ∈ r(E) and each budgeting scenario E′

which is formed from E by splitting ax into a set of projects A′ such that c(A′)=c(ax),
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and such that the voters which approve ax in E approve all items of A′ in E′ and no
other voters approve items of A′, it holds that r(E′) ∩A′ ̸= ∅.

Proposition 3. For α ∈ {
∑

,
∏
,min}, the budgeting method α− ruM

fulfills splitting
monotonicity.

Proof. Let E = (A, V, c, l) be a budgeting scenario, and let B be the bundle returned
by α−ru for E. Let ax be a project in the bundle α−ru(E). Let E′ = (A′, V ′, c′, l)
be the budgeting scenario formed from E in which ax is divided into a set X ′ of
projects such that c(X ′)=c(ax). Voters in V ′ are the same than in V except that any
voter approving project ax in V approves all the projects of X ′ in V ′. The bundle B
maximizes the objective of the rule α−ru. Note that the utility of any subset that
does not contain ax is identical for E and E′, and brings the same satisfaction to each
voter: it therefore has the same quality regarding the aggregating criterion of α−rufor
E and E′. Let B′ be the bundle B in which ax is replaced by all the projects in X ′.
Bundle B′ is a feasible solution for E′. Any voter v′i in V ′ has a corresponding voter
vi in V . We recall that Bi denotes the set of projects that are common between a
bundle B and the approval set of a voter vi. There are two cases:
• X ′ ∩B′

i=∅: in this case, uM (B′
i, E

′) = uM (Bi, E)
• X ′ ⊆ B′

i: we have c(B′
i) = c(Bi) and r(B′

i, V ) = r(Bi, V ). Additionally, we have∏
b′∈B′

i
r(b′, V ′) ≤

∏
b∈Bi

r(b, V ), since the rates do not change but the number of

projects is larger in B′
i than in Bi. This is also true for any subset C ⊆ B′

i such
that X ′ ⊆ C. Therefore, because of the super-set monotonicity property, we have
uM (B′

i, E
′) ≥ uM (Bi, E).

Overall, B′ is at least as good as any solution containing no element of X ′, meaning
that either B′ maximizes the rule criterion or a solution containing at least one project
in X ′ does. Therefore there is a a in X ′ such that a is in α−ru(E

′): the α−ru rule
fulfills splitting monotonicity.

Definition 9. A budgeting method r satisfies merging monotonicity if for each bud-
geting scenario E = (A, V, c, l), and for each A′ ⊆ r(E) such that for each vi ∈ V we
either have Ai∩A′=∅ or A′ ⊆ Ai – i.e. a voter approves either all projects from A′ or
none – it holds that a ∈ r(E′) for E′=(A\{A′}∪{a}, V ′, c′, l), c′(a)=c(A′), and each
voter vi ∈ V for which A′ ⊆ Ai in E approves a in E′, and no other voter approves a.

Proposition 4. Let α ∈ {
∑

,
∏
,min}. If a utility function u fulfills the strong effect

of positive synergy property and cost consistency, then the budgeting method α−ru
does not fulfill merging monotonicity.

Proof. • Case where α = Σ. Let T be an even positive integer. Let us consider a
budgeting scenario E = (A, V, c, l) with A= x1, x2, y, c(x1) = c(x2) = T/2, c(y) = T
and l= T . There are two types of voters in V . There are v1 voters of the first type,
and each one of them approves x1 and x2. There are v2 voters of type 2, and they
all approve y as shown in Figure 2. By cost consistency, we know that there exists a
constant k such that u(x1, E) = u(x2, E) = kT/2 and u(y,E) = kT . By strong effect of
positive synergies, we have u({x1, x2}, E) > u({x1}, E)+u({x2}, E) and consequently
u({x1, x2}, E) > kT . Let ϵ=u({x1, x2}, E)− kT > 0. The bundle {x1, x2} has a total
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utility of v1(kT + ϵ), the bundle {y} has a utility of v2kT . If v1kT − v2kT + v1ϵ > 0,
then {x1, x2} is the best bundle.

x1 x2

y

n1

n2

Fig. 2 First budgeting scenario E

We now consider E′ = (A′, V ′, c′, l) another budgeting scenario such that A′ =
{x, y}, c′(x) = c(x1) + c(x2) = c′(y) = c(y) = T . In V ′ we create v1 voters approving
x and v2 voters approving y. Note that the budgeting scenario E′ is similar to E
except that the projects x1 and x2 have merged in a project of size T . Because of
cost consistency, we have u({x}, E′)=u({y}, E′)=kT . Therefore the bundle {x} has
a total utility of v1kT and the bundle {y} still has a utility of v2kT . If v1 < v2, {y} is
the winning bundle.

x

y

n1

n2

Fig. 3 Second budgeting scenario E′

By setting v1=⌈2kT/ϵ⌉ and v2=v1 + 1, {x1, x2} is the winning bundle for E and
{y} is the winning bundle for E′, giving us an instance for which the

∑
−ru rule does

not fulfill merging monotonicity.

• Case where α ∈ {
∏
,min}. Let us consider a budgeting scenario E = (A, V, c, l)

with A= {x1, x2, x3, x4, y}, c(x1) = c(x2) = c(x3) = c(x4) = (T − 2)/4, c(y) = T/2 + 1
with T an even integer and l=T . There are two voters in V : the first one approves of
x1, x2, x3 and x4, the second one approves of y.

x1 x2 x3 x4

y

1

1

Fig. 4 First budgeting scenario E

When maximizing either the min utility or the product, for any utility function
u fulfilling cost consistency and the strong effect of positive synergies, the winning
bundle will be y plus two projects xi and xj . Let us assume, without loss of generality
that the projects x1 and x2 are part of the winning bundle. Let E′ =(A′, v′, c′, l) be
a budgeting scenario formed from E in which projects x1 and x2 are merged into one
project X of cost (and therefore utility) T/2− 1.
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X x3 x4

y

1

1

Fig. 5 Second budgeting scenario E′

The utilities of x3 and x4 are still (T − 2)/4. By strong superadditivity of groups,
the utility of {x3, x4} is strictly larger than 2(T − 2)/4 and strictly larger than the
utility of X consequently. Therefore the winning bundle for E′ is {y, x3, x4}. Since X
is not in this bundle, merging monotonicity is not fulfilled.

The next axiom states that if the cost of a funded project decreases, it is still
guaranteed to be funded. It is easy to see that this axiom is not compatible with the
cost consistency property.

Definition 10. A budgeting method r satisfies discount monotonicity if for each
budgeting scenario E = (A, V, c, l) and each item b ∈ r(E), it holds that b ∈ r(E′) for
E′=(A, V, c′, l) where for each item a ̸= b, c′(a)=c(a) and c′(b)=c(b)− 1.

Proposition 5. Let α ∈ {
∑

,
∏
,min}. If a utility function u fulfills cost consistency,

then the budgeting method α−ru does not fulfill discount monotonicity.

Proof. Let us consider a budgeting scenario E = (A, V, c, l) with A= x1, x2, y, such
that c(x1) = 4, c(x2) = 3, c(y) = 4 and l= 8. There are two voters in V : the first one
approves x1 and x2, and the second one approves y. When maximizing either the

∑
,

the min or the
∏

of utilities, for any utility function u fulfilling cost consistency, the
winning bundle will be y plus project x1. Let E

′=(A, V, c′, l) be a budgeting scenario
formed from E in which project x1 now has a cost of 2 instead of 4. The winning
bundle is now {y, x2}. The cost of project x1 was reduced and it was removed from
the winning bundle, therefore discount monotonicity is not fulfilled.

This last axiom states that any funded project in a winning bundle is still funded
when the budget limit increases.

Definition 11. A budgeting method r fulfills limit monotonicity if for each pair of
budgeting scenarios E = (A, V, c, l) and E′ =(A, V, c, l + 1) with no item which costs
exactly l + 1, it holds that a ∈ r(E) =⇒ a ∈ r(E′).

Proposition 6. Let α ∈ {
∑

,
∏
,min}. If a utility function u fulfills cost consistency,

then the budgeting method α−rudoes not fulfill limit monotonicity.

Proof. • Case where α=
∑

: Let us consider a budgeting scenario E = (A, V, c, l) with
A=x1, x2, x3, c(x1)=2, c(x2)=5, c(x3)=6 and l=6. There are three voters in V : the
first one approves of x1, the second one approves of x2 and the third one approves
of x3. When maximizing the sum of utilities, for any utility function u fulfilling cost
consistency, {x3} will be the winning bundle. Let E′ = (A, V, c, l′) be a budgeting
scenario formed from E but such that the budget limit l′ is now 7 instead of 6. The
winning bundle is now {x1, x2}. The budget limit was increased and project x3 was
removed from the winning bundle, therefore limit monotonicity is not fulfilled.
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• Case where α ∈ {min,
∏
}: Let us consider a budgeting scenario E = (A, V, c, l)

with A=x1, x2, x3, c(x1)=1, c(x2)=2, c(x3)=3 and l=4. There are two voters in V :
the first one approves of x1 and x2, the second one approves of x3. When maximizing
either the min or the product of utilities, for any utility function u fulfilling cost
consistency, {x1, x3} will be the winning bundle. Let E′ =(A, v, c, l′) be a budgeting
scenario formed from E but such that the budget limit l′ is now 5 instead of 4. The
winning bundle is now {x2, x3}. The budget limit was increased and project x1 was
removed from the winning bundle, therefore limit monotonicity is not fulfilled.

From Proposition 1 and propositions from Section 5, we get the following corollary.
Corollary 1. The rules α− ru for α ∈ {

∑
,min,

∏
} and u = uM fulfill inclusion

maximality and splitting monotonicity. They do not fulfill merging monotonicity,
discount monotonicity and limit monotonicity.

6 Complexity

We show in this section that, for each α ∈ {
∑

,
∏
,min}, problem PB-Max−α−u is NP-

hard when there are synergies, and this even if all the projects have unitary cost and for
a very general class of utility functions. This shows that synergies add complexity, since
problem PB-Max−

∑
−u is polynomially solvable when projects have the same cost

and without synergies (i.e. when the function u is linear). Indeed, without synergies
and with unitary size projects, selecting the projects by decreasing number of votes
maximizes the sum of the utilities of the voters. Let us now show that, with synergies,
this problem is NP-hard even with very general utility functions. We start by proving
a preliminary result for the Clique problem.

Lemma 1. The Clique problem is strongly NP-complete even if it is restricted to
graphs G in which dmax <

√
m, where m is the number of edges and dmax is the

maximum degree of a vertex of G.

Proof. The Clique problem is the following one. We are given an undirected graph
G= (V,E), with V the set of n vertices and E the set of m edges. We denote by di
the degree of a vertex i, and by dmax the maximum degree of any vertex in V . We are
also given an integer K. The question is: does there exist a clique of size K in G?

This problem is known to be strongly NP-complete (Garey & Johnson, 1979), and
we now show that it is still strongly NP-complete when the graph G is such that√
m > dmax.
We reduce the Clique problem in any graph into the Clique problem in a graph

where
√
m > dmax. Let G and K be an instance of the Clique problem without any

constraint on m and dmax. We first transform graph G into a graph G′, as follows.
Graph G′ is built from graph G by “copying” G m times, obtaining m connected
components: for any vertex vi in V , we create m+ 1 vertices {vi,0, vi,1 · · · vi,m} in V ′,
and for each edge (vi, vj) in E, we create m+1 edges {(vi,0, vj,0) · · · (vi,m, vj,m)} in E′.

We denote by dGmax (resp. dG
′

max) the maximum degree of a vertex of G (resp. G′), and
by m (resp. m′) the number of edges in G (resp. G′). We have dG

′

max=dGmax and m′=
(m+1)m. Since m ≥ dGmax and dG

′

max=dGmax, we have: m
′=m(m+1) ≥ dGmax(d

G
max+1).
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Therefore,
√
m′ > dG

′

max. We now show that there is a clique of size K in G′ if and
only if there is a clique of size K in G.

• Let us first assume that there is a clique C={v1, v2 · · · vK} of size K in G. In that
case, the set C ′ = {v1,0, v2,0 · · · vK,0} is clique of size K in G′ since for any edge
connecting two vertices vi and vj in G we created an edge connecting vi,0 and vj,0
in E′.

• Let us now assume that there exists a clique of size K in G′. Such a clique can only
be formed by a set of vertices {v1,i, v2,i · · · vK,i} with a fixed i since no edges in E′

connect two vertices vk,i and vl,j with i ̸= j by construction. If such a clique exists,
then the subset C={v1, v2 · · · vK} in G is a clique as well since if an edge (vk,i, vl,i)
exists in E′, an edge (vk, vl) exists in E. Therefore C is a clique of size K in G and
the answer to the Clique problem is yes.

Since our problem is in NP, and that there exists a polynomial time reduction of the
strongly NP-complete Clique problem into the Clique problem when

√
m > dmax,

we conclude that the Clique problem is strongly NP-complete even when
√
m >

dmax.

Proposition 7. Problem PB-Max−
∑

−u is strongly NP-hard, even if all the projects
have unit costs. This is true if u = uM , as well as for any utility function u such
that the utility of two projects that have been selected together by at least one voter is
strictly larger than the utility of two projects approved by the same number of voters
but that have never been selected together by a same voter.

Proof. The decision version of our problem, that we will denote PB-Max−
∑

−u-dec,
is the following one. We are given a number R ∈ Z and a budgeting scenario E =
(A, V, c, l) with c a cost function such that the cost of each project of A is exactly one.
We consider that the utility function u is such that the utility of a pair of projects
selected at least once together is strictly larger than the utility of any other pair of
projects that have been selected the same number of times but that have never been
selected together. The set A is a set of v voters {v1, . . . , vv}, having each one approved
up to l projects of A. The question is: does there exist a set B ⊂ A of up to l projects
such that the utility of B,

∑
vi∈V u(Bi, E), is at least R ?

We reduce the strongly NP-complete problem Clique to this problem. We will
assume that the instance of the Clique problem is a graph such that

√
m > dmax

(the Clique problem is still NP-complete in this case, as shown by Lemma 1). The
Clique problem is as follows: given an graph G=(V,E), such that

√
m > dmax, and

an integer K, the question is: does there exist a clique of size K?
Given an instance (G,K) of the Clique problem, we create an instance of PB-

Max−
∑

−u-dec as follows. We first transform graph G into a graph G′, as follows.
We start by setting G′ =G, and we assume that the |V | vertices of G′ are labelled
{1, . . . , |V |}. For each vertex i of degree di < dmax, we add (dmax − di) new neighbor
vertices, denoted by Dummy(i, 1), . . . Dummy(i, dmax − di). By doing this, the ver-
tices of {1, . . . , |V |} are all of degree dmax. Let G′ = (V ′, E′) be the graph obtained.
Each newly added vertex Dummy(i, j) is of degree 1 in G′. Therefore, the number

of newly added vertices in G′ is ndummy =
∑|V |

i=1 dmax − di = |V |dmax − 2|E|, and the
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number of newly added edges is the same value. We label the newly added vertices (if
any) as {|V |+ 1, . . . , |V |+ ndummy}.

We now create from G′ a set of projects A as follows. To each vertex i ∈
{1, . . . , |V ′|} we create a corresponding project Pi of cost 1: there are thus |V | projects
corresponding each one to one vertex of V , and ndummy projects corresponding each
one to one dummy vertex. We create a set V of mV = |E′| + (dmax − 1)ndummy vot-
ers. To each edge {x, y} ∈ E′, we create a voter which approves exactly two projects:
projects Px and Py, corresponding to vertices x and y. For each dummy vertex, we
create (dmax − 1) voters that approve only the project corresponding to the dummy
vertex.

We fix the maximum budget to l=K (since all the projects have a unitary cost,
this means that up to K projects can be selected). The value of R, the target utility,
depends of the synergy function. We observe that in our instance of PB-Max−

∑
−u-

dec each project is chosen by the same number of voters (dmax−1). Let utogether be the
utility that a voter obtains for a set of two projects which have both been chosen by
the voter. The sequel of the proof works for all utility function such that utogether > 2.
This is in particular true for uM , as shown by the following fact.

Fact 1: If the utility function is uM , then utogether > 2.
Proof of the fact: Let us show that the utility function uM count positive interactions
for pairs of projects corresponding to vertices connected by an edge in G′. For function
uM , we have:

m({x, y},V)≥r({x, y},V)− r({x},V)r({y},V)

m({x, y},V)≥ 1

mV
− (dmax)

2

(mV )2
=

1

mV

(
1− (dmax)

2

mV

)
Furthermore:

mV = |E|+
|V |∑
i=1

dmax(dmax − di)= |E|+|V |(dmax)
2−

|V |∑
i=1

dmaxdi

Since didmax ≤ (dmax)
2, we get

∑|V |
i=1 didmax ≤ |V |(dmax)

2, and thus mV ≥ |E|.
Since

√
|E| > dmax, mV > (dmax)

2 and the Möbius transform of the pair is larger
than 0, meaning that the utility of the subset {x, y} is larger than the sum of their
costs: utogether > 2.

Let us now show that it possible to select a set of at most K projects of total

utility larger than or equal to R=Kdmax +
K(K−1)

2 (utogether − 2) if and only if there
is a clique of size K in G.

• Let us first assume that there is a clique C of size K in G. Let Sclique be the
set of the K projects which correspond to the K vertices of C. Note that for each
couple of projects x and y of Sclique, exactly one voter has approved both x and
y. The utility of Sclique is thus utogether for each of these K(K − 1)/2 voters. Note
also that each project has been selected by exactly dmax voters. Therefore, for the
Kdmax−2×K(K−1)/2 voters who approve exactly one project of Sclique, the utility
of Sclique is 1. The other voters do not approve any project of Sclique and have a utility
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of 0. The total utility of Sclique is thus 1× (Kdmax−2× K(K−1)
2 )+utogether

K(K−1)
2 =

Kdmax + K(K−1)
2 (utogether − 2)=R. The answer to our problem is thus ‘yes’.

• Let us now assume that there is a set C of at most K projects of total utility

at least R=Kdmax + K(K−1)
2 (utogether − 2). Note that each project is approved by

exactly dmax voters. The utility of C for a given voter is 0 if the voter does not select
any project of C, 1 if it selects exactly one project, and utogether > 2 if it approves
exactly two projects (recall that a voter approves at most 2 projects). The utility of
C is thus equal to n1, the number of voters who approve exactly one project of C,
plus n2×utogether, where n2 is the number of voters who approve exactly two projects

of C. We have R = Kdmax − 2K(K−1)
2 + K(K−1)

2 utogether ≤ n1 + n2utogether, and
n1+2n2 ≤ Kdmax (since n1+2n2 is equal to the total number of votes for projects of

C and C is of size at most K). Therefore, n1=Kdmax − 2K(K−1)
2 , and n2=

K(K−1)
2 .

This means that there are exactly K projects in C and that for each couple of projects
of C, there is a voter who approves both projects (recall that there is exactly one voter
by edge in G′). Therefore, there exists a clique of size K in G′, and thus a clique of
size K in G. There exists a polynomial time reduction of the strongly NP-complete
Clique problem into the decision version of our problem: PB-Max−

∑
−u-dec is thus

strongly NP-hard.

The next result extends the result from Sreedurga et al. (2022), which proves that
the maxmin participatory budgeting problem is strongly NP-hard for approval voting
when the utility function is the sum of the costs of the funded approved projects. We
generalize this result by proving that this is true for both the maxmin and the product
of utilities and we show that we only need a very weak condition on the utility function
for this to be true. Additionally, it holds for knapsack voting, which is more specific
that approval voting. We also show that the problem is hard to approximate. We first
prove the following lemma.

Lemma 2. The Set cover problem is strongly NP-complete even when restricted to
instances in which the number of subsets containing the same element is bounded by
K, the size of a feasible solution.

Proof. The Set cover problem is the following one: we are given a set U of n elements,
called the universe, and a collection S of m sets whose union is U . Given an integer
K < m, the question is: does there exist a set S of elements in S, such that ∪s∈S=U
and |S| ≤ K ?

From an instance U ,S,K, we create a new instance U ′,S′,K ′. In this new
instance, we create m dummy elements {x1

dummy · · ·xm
dummy} and m dummy sets

{s1dummy · · · smdummy} such that sidummy contains xi
dummy. We then have n′ = n + m

and U ′=U ∪ {x1
dummy, · · · , xm

dummy}, m′=2m and S′=S ∪ {s1dummy · · · smdummy} and
K ′=K +m. In this new instance, it is easy to see that each element is contained by
at most m < K ′ sets.

We now prove that there exists a set cover of U ′ with subsets of S′ and of size K ′

at most if and only if there exists a set cover of U with subsets of S and of size K at
most.
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• Let us first suppose that there exist a cover C ′ of U ′ with subsets of S′ and of size
K ′ at most. This cover necessarily contains the m dummy sets since these sets are
the only one containing the m dummy vertex. The K ′ −m < K other sets of the
cover form a feasible cover of the n elements of U and all of these sets are in S.

• Now, we suppose that that there exist a cover C of U with subsets of S and of size
K at most. The elements of U ′ that are not covered by C are the dummy elements.
By adding the m dummy sets of S′ to C, we obtain a cover C ′ covering all the
elements from U plus the m dummy elements and of size of |C|+m. Since |C| ≤ K,
we have |C|+m ≤ K +m=K ′, we therefore have a feasible cover of U ′.

There exist a polynomial time reduction between any instance of Set cover to a
version of the Set cover problem in which the number of sets containing the same
element is bounded by K. Therefore the Set cover is still strongly NP-complete in
that case.

Proposition 8. Problems PB-Max−min−u and PB-Max−
∏
−u are strongly NP-hard

for any utility function u such that u(∅, E)= 0 and u(S,E) > 0 for each S ̸= ∅. For
any δ > 1, there is no polynomial time δ-approximate algorithm if P ̸= NP .

Proof. The decision version of our problem is the following one. We are given a real
number R and a budgeting scenario E = (A, V, c, l) with A a set of n projects and
c a cost function such that the cost of each project is exactly one. We consider a
utility function u such that u(S,E) > 0 if S ̸= ∅. The set V is a set of v voters
{v1, . . . , vv}, having each one approved up to l projects of A. The question is: does
there exist a set B ⊂ A of up to l projects such that the utility of B,

∏
vi∈V u(Bi, E)

(or minv∈V u(Bi, E)), is at least R ?
We will reduce the strongly NP-complete problem Set cover (Garey & Johnson,

1979) to this problem. The Set cover problem is the following one: we are given
a set U of n elements, called the universe, and a collection S of m sets whose union
equals the universe. Given an integer K, the question is: does there exist a set S of
sets in S, such that ∪s∈S =U and |S| ≤ K ? We suppose that the number of subsets
containing the same element is bounded by K – as shown by Lemma 2, the problem
is still strongly NP-complete in that case.

Let U , S and K be an instance of the Set cover problem. Let us create an
instance of our problem.

For each element s in U , we create a voter ve. For every subset s in S, we create a
project as of cost 1. This project is approved by any voter ve such that e ∈ s. Note
that, since the number of sets containing the same element is smaller than or equal
to K, the number of projects approved by a voter is smaller than or equal to K. We
set l=K and R= ϵ with ϵ > 0. The question is now: does there exist a bundle B of
projects such that the product (or minimum) of the voters’ utilities for bundle B is
greater than or equal to ϵ ? Since ϵ can be as small as we want, we can simply look
for a solution with value strictly larger than 0.

We show that there is a positive answer to this question if and only if there exists
a cover of size K in S.
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• Let us first assume that there is a cover C of size K in S. Let Bcover be the set of the
K projects which correspond to the K sets of S. All voters have at least one of their
approved projects in the bundle Bcover, since the projects corresponding to the sets
have been chosen by the voters matching with the elements. Therefore, if a voter did
not have at least one approved project in Bcover, then the cover C would not cover
the element corresponding to the voter. The answer to our problem is thus ‘yes’.

• Let us now assume that it possible to select at most K projects such that the total
utility is at least R=ϵ. Since we use the product or the min, this means that every
voter has at least one of her approved projects in the funded bundle B. We know
that for each ve ∈ V , there is one project of Ae in B. If we consider the cover CB

formed by the sets corresponding to the projects in B, this means that for every
element e, there is a subset s in CB such that e ∈ s. Since the size of B is at most
K, the size of CB is at most K, which means that CB is a feasible cover for the
Set cover problem. The answer is thus ‘yes’.

There exists a polynomial time reduction of the strongly NP-complete Set cover
problem into our problem: our problem is strongly NP-hard. Furthermore, a δ-
approximate algorithm, with δ, would allow to detect whether there exist a solution
with a product (or minimum) of utilities strictly larger than 0, and thus would allow
to solve the Set cover problem. Therefore, for any δ > 0, there does not exist
polynomial time δ-approximate solution for our problem, unless P =NP .

7 A branch and bound algorithm

In this section, we propose an exact branch and bound algorithm for α−rufor α ∈
{
∑

,
∏
,min} since, as shown in the previous section, this is NP-hard. We also run

experiments on real-life instances.

7.1 Description of the algorithm

Let us now present a branch and bound algorithm which solves PB-Max−α−u exactly,
for α ∈ {

∑
,min,

∏
}. Each level of the decision tree corresponds to a project: we either

add it to the funded projects – if it fits in the remaining budget, or we ban it for the
current node and all of its sons. In such a decision tree, each leaf corresponds to a
feasible bundle. Since every decision is binary and there are n consecutive decisions,
corresponding to the n projects, there are 2n leaves corresponding to the 2n possible
subsets. Since the cost of an optimal bundle is at most l, at a current node, we add
a project only if its cost is at most l minus the cost of the currently funded projects
– this allows us to prune the tree. Moreover, at each node, we compute a feasible
solution, and an upper bound of the value of the quality (w.r.t. the objective function
of PB-Max−α−u) of a bundle that is reachable from this node. If the upper bound
of the value of a reachable bundle is smaller than the value of a feasible solution we
already know, then exploring the node’s sons is useless, and we prune the tree.

Case where α =
∑

. We compute a new feasible solution using a greedy rule, called
Rg

|Bv| by Talmon and Faliszewski (2019), and which simply selects the projects by

decreasing number of selections. At each node we consider the non yet considered
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projects by decreasing number of selections, and we add a project if it fits in the
remaining budget. As we will see in Section 7.2, using this algorithm at the root of
the tree can also be used as a good and fast heuristic.

The upper bound follows the same principle than the classic upper bound for the
Knapsack problem, it is a linear relaxation. In order to compute our upper bound,
we need an upper bound on the utility that each project can give to a voter. By
multiplying it by the number of voters who selected this project, we obtain an upper
bound of the utility that a project can bring to the whole set of voters.

Before starting the exploration of the decision tree, for each project a, we compute
the sum of the Möbius transforms of each feasible subset in which a appears, divided
by the size of this subset. This is an upper bound of how much utility a project can
provide to one voter, we multiply it by the number of voters who selected this project,
and obtain an upper bound of how much utility the project can bring to the whole
set of voters. Note that this can be applied to other utility functions since the Möbius
transforms can be computed for any utility function.

At each node, we then run the greedy algorithm selecting the (non yet selected nor
eliminated) projects by decreasing upper bounds and we relax the integrity constraint,
obtaining a fractional solution. This gives us an upper bound of the best solution
that can be obtained at the current node. Note that the k-additivity assumption is
particularly useful here since the maximum utility a project can give decreases when
k decreases, since all the Möbius transforms of subsets of size strictly greater than k
are null.

Case where α ∈ {min,
∏
}. We compute a feasible solution as follows: we look for the

set of least satisfied voters. We choose the most frequently selected project by these
voters, among projects that fits into the remaining budget. We repeat this process
until there is no budget left.

For the upper bound: at the root of the decision tree, we assume that each voter
gets her favorite set of projects. At each node, we consider that each voter gets the
projects that she voted for among the already selected projects, plus all the projects
that she selected among projects that still fits in the budget and which have not been
considered yet. For example, if the selected projects cost half the budget, then any
project costing more than half the budget could not be chosen and is therefore banned.
If a project is banned, then we simply add it to the ban list. Then, we remove all
newly banned project from the best reachable subsets of the voters. This gives us an
upper bound of the value of any reachable solution.

Computing the utilities. The utility provided by a given solution B to a voter vi is
the utility of Bi. Determining Bi and computing its utility can be done in polynomial
time if we know the utility function. Therefore, for each node of the decision tree,
computing solutions and determining their value as upper and lower bounds can be
done in polynomial time.

To determine the utility of a bundle with function uM , we use Equation 2. Because
of its recursive nature, we compute first, as a preprocessing step, the utility of sin-
gletons, then pairs, then triplets and so forth. Determining the utilities in this way
cost up to 2n (since there are 2n subsets) times nv operations (since determining the
appearance rate of a subset costs nv operations). This calculation is much faster with
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Function n=5 n=8 n=10 n=12 n=15
1-additive 0.013 0.057 0.10 0.26 0.77
2-additive 0.015 0.076 0.15 0.60 3.60
3-additive 0.016 0.11 0.25 1.43 9.85

Table 1 Completion time (s) of the branch and bound
algorithm.

the k-additivity hypothesis, stating, as seen earlier, that we can consider interactions
only in subsets of projects of size at most k.

With the k-additivity hypothesis, it is possible to know the utility of a subset of
size j in O(jk) operations, since its utility is the sum of all the Möbius transforms
of its parts, and there are at most jk parts with a non null Möbius transform. This
hypothesis has great implications on the computational side.

7.2 Experiments

We use real instances from the Pabulib (Stolicki et al., 2020) library with a budget
limit on the approbation sets of the voters. Experiments are run on an Intel Core i5-
8250U processor with 8GB of RAM. We study the completion time of our algorithm
and the impact of the synergies on the returned solutions. We consider that α =

∑
for the experiments since the sum is the most common aggregator.

Quality of the heuristic.

On average, the solution returned by the exact (branch and bound) algorithm has an
overall utility 0.28% higher than the utility of the solution returned by the heuristic
Rg

|Bv| for the uM function: the heuristic returns, on the instances of Pabulib, very

good solutions with regards to our optimization criterion.

Impact of the k-additivity assumption.

The k-additivity assumption allows to decrease the calculation time significantly –
the lower k is, the fastest is the algorithm. Table 1 indicates the computation times
obtained when k=1 (no synergy), and when k=2 and k=3 with utility function uM .

Impact of considering synergies.

We compare the optimal solution for the overlap utility function (1 additive) and the
uM function with no k-additivity assumption. The optimal solutions are different in
35% of the instances, and the amount of money spent differently on average for all the
instances is of 28.5%. Therefore, taking synergies into account impacts the returned
bundle in a little bit more than a third of the instances, and this impact may be
important since the returned bundle considering synergies then differs significantly
from an optimal bundle ignoring synergies.

8 Conclusion and future works

This paper represents a first step towards taking project interactions into account in
participatory budgeting problems. We introduced a utility function uM based on the
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frequency of selection of groups of projects by the voters, and we showed that it fulfills
desirable axioms. We furthermore showed that taking into account synergies is NP-
hard with the main aggregation criterion, and this for very general utility functions.
We designed an exact algorithm that we implemented with uM but which can also be
used with others utility functions.

Whereas, for very costly projects, decision makers will probably identify synergies
“by hand”, when there are numerous small projects, the authorities will likely be
unable or unwilling to identify the synergies. In such settings, identifying the synergies
thanks to the preferences of the voters, is promising. We could also imagine settings
where a community decides to use a participatory budgeting approach to set a program
of a maximum fixed total duration l among various events (presentations, courses,
documentaries, etc), each event having a duration (considered as a cost). Members of
the community could be asked to select the events they prefer, using knapsack voting:
this situation is a participatory budgeting problem for which it would be particularly
interesting to take into account synergies between the events.

There are numerous future work directions. For example, it would be useful to
design utility functions that fit as much as possible to the reality experienced by the
users. Another challenging direction would be to design algorithms that take into
account synergies while ensuring proportional representation of groups of voters.
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