
ar
X

iv
:2

40
3.

19
19

7v
1

 [
cs

.G
T

]
 2

8
M

ar
 2

02
4

Ordering Collective Unit Tasks: from Scheduling

to Computational Social Choice

Martin Durand and Fanny Pascual

Sorbonne Université, LIP6, CNRS, 5 Place Jussieu, Paris, 75005, France.

*Corresponding author(s). E-mail(s): martin.durand@lip6.fr;
Contributing authors: fanny.pascual@lip6.fr;

Abstract

We study the collective schedules problem, which consists in computing a one
machine schedule of a set of tasks, knowing that a set of individuals (also called
voters) have preferences regarding the order of the execution of the tasks. Our
aim is to return a consensus schedule. We consider the setting in which all tasks
have the same length – such a schedule can therefore also be viewed as a ranking.
We study two rules, one based on a distance criterion, and another one based one
a binary criterion, and we show that these rules extend classic scheduling criteria.
We also consider time constraints and precedence constraints between the tasks,
and focus on two cases: the preferences of the voters fulfill these constraints,
or they do not fulfill these constraints (but the collective schedule should fulfill
them). In each case, either we show that the problem is NP-hard, or we provide
a polynomial time algorithm which solves it. We also provide an analysis of a
heuristic, which appears to be a 2 approximation of the Spearman’s rule.

Keywords: Computational social choice, Rank aggregation, Scheduling

The collective schedules problem (Durand & Pascual, 2022; Pascual, Rzadca, &
Skowron, 2018) consists in scheduling a set of n tasks shared by v individuals, also
called voters. The tasks may represent talks of a conference that will be done in a same
room, works to be done sequentially by co-workers, or events that will occur in one
of the weekly meetings of an association. Each voter has his or her own preferences
regarding the order in which theses tasks will be executed. We consider two models.
In the first one, introduced by Pascual et al. (2018) and that we will call Order Pref-
erences, each voter gives his or her preferred order – a permutation of the tasks. In the
second model, that we introduce in this paper, and that we call Interval Preferences,

1

http://arxiv.org/abs/2403.19197v1

each voter gives for each task the interval in which he or she would like the task to
be done. In this paper, we focus on situations in which all the tasks have the same
duration (a time slot per task). Our aim is, given the preferences of each individual,
to compute a good compromise schedule of the n tasks.

Note here that, since the tasks are unit tasks, a schedule of the n tasks can be seen
as a ranking of n tasks (or candidates). In this paper, we will use several concepts –
such as precedence constraints – from the scheduling field: we will therefore use the
term schedule and not ranking for a permutation of the n tasks. Note however that
several results of this paper are interesting not only in the context of scheduling but
also in the context of ranking candidates.

The dissatisfaction of a voter if the returned schedule is schedule S is measured
thanks to two families of criteria, coming from the scheduling theory field. One is a
binary criterion, which says that a voter is satisfied if a task is not scheduled too late
(or not too early) in S with respect to the preferences of the voters (expressed as a
order preferences or interval preferences). The other family of criteria is a distance
criterion, which says that the closer the returned schedule is to the voter’s preferences,
the more satisfied a voter is.

We measure the quality of a compromise schedule S for all the voters by summing
up the sum of the dissatisfaction of the voters for schedule S. This sum, divided
by v, represents the average dissatisfaction of a voter with solution S. We focus on
an utilitarian criterion: our aim is to compute a schedule with the smallest sum of
dissatisfaction.

An assignment problem. Without additional constraints, this problem can be
solved polynomially, both for Order and Interval Preferences, as it is an assignment
problem. Indeed, the returned schedule being a permutation of the n tasks, we know
that there will be n time slots, between 0 and n, one for each task. We create a com-
plete bipartite graph with the tasks on the left and the time slots on the right. For
each couple (task t, time slot s), the cost of the edge (t, s) is the sum of the dissat-
isfaction caused by task t to all the voters if t is scheduled at time slot s. Therefore,
a schedule that minimizes the total dissatisfaction corresponds to a minimum cost
matching in such a graph. The graph can be built in O(vn2), and a minimum cost
matching can be found with Hungarian algorithm in O(n3) (Edmonds & Karp, 1972;
Tomizawa, 1971), leading to a O(vn2 + n3) algorithm.

Additional constraints. Our aim is to study this problem by adding the main con-
straints in scheduling: time constraints and precedence constraints. Time constraints
mean that to each task is associated a release date and a due date (or deadline), and
that in the returned schedule each task should be scheduled between its release date
and its deadline. Precedence constraints mean that there is a precedence graph of the
n tasks: if there is an edge from task i to task j in this graph, this means that in the
returned schedule task i should be scheduled before task j. We will study both the
case where these constraints are imposed, and the case where they are inferred from
the preferences of the voters. Before presenting our results and the map of the paper,
we review related works.

2

Related work. Our work is at the boundary between computational social
choice (Brandt, Conitzer, Endriss, Lang, & Procaccia, 2016) and scheduling (Brucker,
1999), two major domains in operational research.

As mentioned above, the collective schedule problem generalizes the collective
ranking problem, which is an active field in computational social choice (see e.g.
(Asudeh, Jagadish, Stoyanovich, & Das, 2019; Biega, Gummadi, & Weikum, 2018;
Celis, Straszak, & Vishnoi, 2018; Dwork, Kumar, Naor, & Sivakumar, 2001; Geyik,
Ambler, & Kenthapadi, 2019; Narasimhan, Cotter, Gupta, & Wang, 2020; Singh &
Joachims, 2018; Skowron, Lackner, Brill, Peters, & Elkind, 2017)). In this field, authors
often design rules (i.e. algorithms) which return fair rankings, and they often focus
on fairness in the beginning of the rankings. If the items (or candidates) to be ranked
are recommendations (of restaurants, web pages, etc.) for users, the beginning of the
ranking is indeed probably the most important part. Note that this does not hold for
our problem since all the planned tasks will be executed – only their order matters.
This means that rules designed for the collective ranking problem are not suitable not
only because they do not consider duration for the items, but also because they focus
on the beginning of the ranking. This also means that the rules that we will study can
be relevant for consensus ranking problems where the whole ranking is of interest.

The collective schedule problem has been introduced in (Pascual et al., 2018) for
Order Preferences and when tasks have different processing times (lengths). In this
paper, the authors introduced a weighted variant of the Condorcet principle, called
the PTA Condorcet principle (where PTA stands for “Processing Time Aware”), and
they adapted previously known Condorcet consistent rules when tasks have different
processing times. They also introduced a new rule, which computes a schedule which
minimizes the sum of the tardiness of tasks between the preferred schedules of the
voters and the schedule which is returned. They show that the optimization problem
solved by this rule is NP-hard but that it can be solved for reasonable size instances
with a linear program.

Durand and Pascual (2022) also study the collective schedule problem with Order
Preferences and when the tasks have different lengths. They propose an axiomatic
study of three rules: a generalization of the Kemeny rule, and the two rules which
minimizes the sum of the deviations of the tasks between the preferred schedules and
the returned schedule (rule ΣDev, optimal for the total deviation criterion), and the
sum of the tardiness (rule ΣT, optimal for the total tardiness criterion). They show
that these rules solve NP-hard problems, but that it is possible to solve optimally
these problems for reasonable size instances.

Multi agent scheduling problems also aim at returning consensus schedules, but
they focus on cases where (usually two) agents own their own tasks, that are scheduled
on shared machines: the aim is to find a Pareto-optimal and/or a fair schedule of
the tasks of the agents, each agent being interested by her own tasks only (Agnetis,
Billaut, Gawiejnowicz, Pacciarelli, & Soukhal, 2014; Saule & Trystram, 2009).

Last but not least, the work of Elkind, Kraiczy, and Teh (2022) focus on the
assignment of shared unit size tasks to specific unit size time slots. This latter work
focus on fairness notions extended from the multi-winner voting problem and does not
use scheduling notions such as precedence constraints or time constraints.

3

Our results and map of the paper.

• We first start by introducing notations in Section 1, as well as formal definition of
the binary and distance criteria studied in this paper. As we will see, these criteria
generalize the other criteria studied before (total tardiness, and total deviation),
and also allow us to model famous scheduling criteria, as the minimization of the
total earliness of the tasks, or also the minimization of the number of late tasks.
Rules that return optimal solutions of these criteria will be studied in the sequel.

• In Section 2, we focus on the algorithm which, in the Order Preference setting,
computes the median start time of each task, and then schedules the tasks by
increasing median start times (rule EMD – for Earliest Median Date). We show
that, interestingly, this rule returns a schedule which is a 2-approximation of the
total tardiness criterion.

• We then focus in Section 3 on time constraints: we show that it is still possible
to get an optimal solution in polynomial time with time constraints on the tasks.
We focus on the rules optimizing the binary and distance criteria (without time
constraints), as well as the EMD rule, and we present an axiomatic study of these
rules when time constraints are induced by the preferences of the voters (e.g. if all
the voters schedule, in their preferred schedules, a task t at time X , is this task t
necessarily started exactly at time X in the returned schedule ? If task t is always
started after time X in the preferred schedules, is it always scheduled after time X
in an optimal solution ?).

• In Section 4, we focus on precedence constrains between the tasks. We show that the
previously studied rules, which could be run in polynomial time without precedence
constraints, can still be used (with an additional polynomial time step) when the
precedence constraints are inferred by the preference of the voters. On the contrary,
we show that we have to solve NP-hard problem when the precedence constraints
are not fulfilled by the preferred schedules of the voters. This is true both for the
distance and the binary criterion, and in particular in the cases where we wish to
minimize the total deviation, the total tardiness, or the number of late tasks.

• We conclude this paper in Section 5 by an overview of our results and a few research
directions.

1 Preliminaries

1.1 Definitions and notations

Order Preferences and Interval Preferences.

We consider a set J = {1, . . . , n} of n tasks of interest for a set V = {1, . . . , v} of
v voters. Each task has a processing time of 1. The preferences of voter i are denoted
by Vi, and depend of the setting used.

In the Order Preferences setting, each voter indicates its preferred schedule, as a
permutation of the n tasks (we do not consider idle times between the tasks). There-
fore, Vi is the preferred schedule of voter i. We denote by Cj(Vi) the completion time
of task j in the preferred schedule of voter i. More generally, given a schedule S of
tasks of J , we denote by Cj(S) the completion time of task j in S.

4

In the Interval Preferences setting, each voter indicates for each task the interval
in which he or she wishes to see the task scheduled. More precisely, for each task j ∈ J ,
voter i ∈ V indicate a release date – that will be denoted by rj(Vi) – , and which means
that voter i would like task j to be started at the soonest at time rj(Vi). Likewise,
voter i ∈ V indicates a due date (also called deadline) – that will be denoted by dj(Vi)
–, and which means that voter i would like task j to be completed at the latest at time
dj(Vi). Therefore, Vi is the set of the n couples (release date, due date) that voter i
sets for the n tasks. Note that this setting generalizes the Order Preferences settings,
since it is possible for a voter to set for each task a release date (resp. a due date) equal
to its start (resp. its completion time) in its preferred schedule. The only constraint
we impose is that there exists a feasible schedule that fulfills the time constraint given
by a voter (i.e. in which each task j is scheduled in the interval [rj(Vi), dj(Vi)]).

In the sequel, we will penalize schedules in which tasks are scheduled out of the
intervals given by the voters. The Interval Preferences setting allows voters to express
pretty precise preferences. Indeed, if a voter wants a task to be done before a given
date t, and has no preference on the starting date of a task then she can indicate a
release date of 0 and a due date of t. If her only wish is that a task starts after a
given time t′, then she can indicate a release date of t′ and a due date of n. Finally,
if a voter wants a task to start exactly at time t′′, then she can give a release date of
t′′ and a due date of t′′ + 1. This flexibility in the preferences allow voters to express
situations in which they have different expectations regarding the task, from having
no interest in a task to wanting it to be completed exactly at a given time.

Let us now present the two general objective functions that we will consider in this
paper: the binary criterion, and the distance criterion.

Binary criterion.

The first criterion, called Binary Criterion, measures whether a task is executed in
the time interval indicated by a voter or not (the penalty is 0 if the tasks is scheduled
in the desired interval, and is 1 if the task is not scheduled in the desired interval).
The dissatisfaction of voter i ∈ V concerning task j ∈ J is thus:

bj(S,Vi) =

{

1 if Cj(S) > dj(Vi) or Cj(S) ≤ rj(Vi)

0 otherwise

The dissatisfaction of a voter i concerning a schedule S with the binary criterion
is then:

B(S,Vi) =
∑

j∈J

bj(S,Vi)

Distance criterion.

The second criterion, called Distance Criterion, also does not count any penalty
when a task is scheduled in its time interval, but otherwise it counts a penalty which
expresses how far from its interval the task is. The dissatisfaction of voter i concerning

5

task j in schedule S is:

dj(S,Vi) =

Cj(S)− dj(Vi) if Cj(S) > dj(Vi)

rj(Vi)− (Cj(S)− 1) if Cj(S) ≤ rj(Vi)

0 otherwise

The dissatisfaction of a voter i concerning a schedule S with the distance criterion
is then:

D(S,Vi) =
∑

j∈J

dj(S,Vi)

Aggregation function.

As said in the introduction, we will study the utilitarian utility function. Our aim
will be to minimize Σi∈{1,...,v}B(S,Vi) with the binary criterion, or Σi∈{1,...,v}D(S,Vi)
with the distance criterion. The Binary Criterion rule is an algorithm that returns a
schedule minimizing binary criterion, while the Distance Criterion rule is an algorithm
that returns a schedule minimizing distance criterion.

1.2 Generalization of classical scheduling criteria.

The two above defined criteria generalize the main criteria already studied in the Order
Preferences setting (Durand & Pascual, 2022; Pascual et al., 2018). Assume indeed
that voters have expressed their preferences using the Order Preferences setting (i.e.
each voter indicates his or her preferred schedule). Let P be the preference profile, i.e.
the set of all the preferences expressed by the voters.

• Total deviation. The total deviation of a schedule S is Dev(S, P) =
Σi∈{1,...,v}Dev(S,Vi), where Dev(S,Vi) =

∑

j∈J |Cj(S) − Cj(Vi)|. If our aim is to
compute a schedule of minimal total deviation, as does rule ΣDev (Durand & Pas-
cual, 2022; Pascual et al., 2018), then we should use the Distance Criterion by
setting the release date of task j for voter i at Cj(Vi)− 1, and the due date of task
j for voter i at Cj(Vi).

• Total tardiness. The total tardiness of a schedule S is T (S, P) = Σi∈{1,...,v}T (S,Vi),
where T (S,Vi) =

∑

j∈J max(0, Cj(S)−Cj(Vi)). If our aim is to compute a schedule
of minimal total tardiness, as does rule ΣT (Durand & Pascual, 2022; Pascual et
al., 2018), then we should use the Distance Criterion by setting the release date of
task j for voter i at 0, and the due date of task j for voter i at Cj(Vi).

• Total earliness. The total earliness of a schedule S is E(S, P) = Σi∈{1,...,v}E(S,Vi),
where E(S,Vi) =

∑

j∈J max(0, Cj(Vi)−Cj(S)). If our aim is to minimize the total
earliness, a classic criterion in scheduling (Brucker, 1999), then we should use the
Distance Criterion by setting the release date of task j for voter i at Cj(Vi) − 1,
and the due date of task j for voter i at n.

• Total number of late tasks. The total number of late tasks of a schedule S is
U(S, P) = Σi∈{1,...,v}U(S,Vi), where U(S,Vi) is the number of tasks of J such that
Cj(S) > Cj(Vi) (such tasks are called late tasks). This a classic criterion, denoted

6

by ΣU (for “Unit Penalties”), in scheduling (Brucker, 1999). We can solve this opti-
mization problem by using the Binary Criterion by setting the release date of task
j for voter i at 0, and the due date of task j for voter i at Cj(Vi).

• Total number of tasks not well positioned. If our aim is to maximize the number of
tasks scheduled at the exact position given by the voters, then we should use the
Binary Criterion by setting the release date of task j for voter i at Cj(Vi)− 1, and
the due date of task j for voter i at Cj(Vi).

In the next section, we introduce the EMD rule and show that it is a 2
approximation of the total tardiness (ΣT) and total earliness (ΣE) criteria.

2 An analysis of the EMD rule

The EMD rule, introduced as a heuristic by Durand and Pascual (2022) in the Order
Preferences setting, schedules the tasks by increasing median completion times, where
the median time of a task j is the median of the set {Cj(V1), . . . , Cj(Vv)}. If several
tasks have the same median completion time, any tie breaker mechanism can be used.

It was shown previously (Pascual et al., 2018) that, for unit size tasks, and for any
preference profile P and any schedule S, we haveDev(S, P) = 2T (S, P), and thus that
T (S, P) = E(S, P) since Dev(S, P) = E(S, P) + T (S, P). Therefore, a α-approximate
algorithm1 for the total tardiness criterion will also be an α-approximate algorithm for
the earliness criteria, and an α-approximate algorithm for the total deviation criterion.

We consider that we are in the Order Preferences setting. Before showing that
EMD is 2-approximate for the total tardiness criterion (and thus also for the deviation
and earliness criterion), we introduce a way to see the instance that will facilitate the
analysis.

Breaking down the preference profile. We “break down” the preference profile
not by looking at voters individually, but by looking at time slots. Note that this does
not change the preference profile: it is just another way of looking at the preference
profile. For each time slot between 1 and n, each voter i selected a task that she has
scheduled in this time slot in her preferred schedule. We call choice a triplet (Vx, j, t)
indicating that voter x schedules task j between time t − 1 and t in her preference
Vx. We can thus express a preference profile as a set of choices, such that there are v
choices for each time slot and there are n choices for each voter, each task and each
slot being chosen exactly once by each voter. We denote by C the set of all the choices
and, for each y ∈ {1 . . . n}, we denote by Cy the set of all choices (Vx, j, t) such that
t ≤ y.

Iterative breakdown of the tardiness criterion. As we have seen, the total tar-
diness of a schedule S given a preference profile is the sum, over all voters, of the
tardiness of each task in S in comparison to its completion time in the preference
of the voter. By breaking down the set of preferences into choices, it is possible to
express the tardiness in another way, that will facilitate the analysis of the algorithm.

1An α-approximate algorithm, for a minimization problem (as are our criterion), returns, for each instance
I, a solution (schedule) of cost at most αOPT (I), where OPT (I) is the minimal cost that can be obtained
on a solution of instance I.

7

If a task j has been scheduled by a voter i at time slot t, then, if it is not scheduled
in a solution S by time t then we count a penalty; if it is not scheduled by time t+1,
then we count another penalty; and so forth. We can then split the tardiness by look-
ing at the tasks scheduled by S at each time slot: for each slot between Cj(Vi) to n,
if task j has not been scheduled yet, then we count 1 tardiness penalty (for voter i).
We sum this over all the voters. By this way, we compute for each slot t the number
of penalties caused by the decision taken in t – there will be 1 penalty of each couple
(voter i, task j) if task i has not been completed at time t whereas Cj(Vi) ≤ t.
Example 1. Let us consider an instance with 5 voters and 5 tasks as follows. Each
line represents the preferred schedule of a voter – e.g. the preferred schedule of the first
voter is made of task 1, then task 4, followed by task 2, then task 3 and finally task 5
(such a schedule can be written as: 1 ≺ 4 ≺ 2 ≺ 3 ≺ 5):

1 4 2 3 5

1 5 3 4 2

1 2 3 4 5

2 1 3 5 4

3 4 1 5 2

Looking at time slot 1 (between dates 0 and 1), task 1 has been scheduled three
times, task 2 once and task 3 once. In a solution S, scheduling task 1 at slot 1 causes
a (total) tardiness of 2 since task 2 and 3 which were chosen by two voters will not be
scheduled on time. Scheduling task 2 or task 3 causes a tardiness of 4, and scheduling
task 4 or task 5 creates a tardiness of 5.

In the proof of the following proposition, to compute the sum of the tardiness (also
called the total tardiness) of a schedule S, we will look a time slots, starting from the
first one, between dates 0 and 1, to the last one, between dates n − 1 and n. When
looking at time slot y, for each choice (Vx, j, t) ∈ Cy, we will count a penalty if task
j has not been scheduled at time slot y or before. We denote by ky the number of
late tasks at time slot y: ky(S, P) =

∑

(Vx,j,t)∈Cy
1Cj(S)>y. The total tardiness can be

expressed as follows: T (S, P) =
∑n

y=1 ky(S, P).
Proposition 1. The EMD rule is 2-approximate for the total tardiness criterion.

Proof. Let us consider a preference profile P . Let S be the schedule returned by the
EMD rule and let S∗ be a schedule minimizing the total tardiness with respect to
preference profile P . We prove this result by showing that for all i ≥ 0, ki(S, P) ≤
2ki(S

∗, P).
For i = 0, we have ki(S, P) = ki(S

∗, P) = 0, since no task is scheduled before the
first time slot. For any time slot from 1 to n, we express ki(S, P) as the difference
between i × v, the total number of choices from time slot 1 to time slot i, and the
number of choices (Vx, j, t) such that t ≤ i and j has been scheduled at the latest at

8

time slot i in S. We denote by qi the number of tasks with median completion time
smaller than or equal to i. There are two cases:

1. qi ≤ i: in this case, the EMD rule schedules the qi tasks with median completion
time smaller than or equal to i in the i first time slots. Let q∗i be the number of
tasks with median completion time smaller than or equal to i that are scheduled
in S∗ at the latest at date i. These q∗i tasks are necessarily scheduled before date i
by the EMD rule as well. Let Q∗

i be the set of the q∗i tasks of median completion
time smaller than or equal to i and that are scheduled in S∗ before or at time i.

Finally, we denote by Q∗
i the number of choices (Vx, j, y) of Ci such that j ∈ Q∗

i .
These choices are removed from the i× v choices for both the solutions S and S∗.
There are qi − q∗i tasks of median completion time smaller than or equal to i that
are scheduled in S before or at time i and that are scheduled after i in S∗. For each
of these tasks, there are at least v/2 choices among the i × v which are removed
by scheduling the task before date i. There are also (i − qi) tasks with median
completion time strictly larger than i that are scheduled at the latest at date i in
S, but we have no guarantee that scheduling these tasks remove any choice. We
therefore have:

ki(S, P) ≤ i× v −Q∗
i − (qi − q∗i)v/2

In S∗, there are (i− q∗i) tasks of median strictly larger than i, at most, scheduling
these tasks before or at time i removes v/2 choices. We then have:

ki(S
∗, P) ≥ i × v −Q∗

i − (i− q∗i)v/2

We then compute:

2ki(S
∗, P)− ki(S, P) ≥ 2i× v − 2Q∗

i − (i− q∗i)v − i× v +Q∗
i + (qi − q∗i)v/2

2ki(S
∗, P)− ki(S, P) ≥ q∗i v −Q∗

i + (qi − q∗i)v/2

We know that Q∗
i ≤ q∗i v since each task in Q∗

i is scheduled at most v times in the
preference profile, once per voter. We also know that qi ≥ q∗i . We then have:

2ki(S
∗, P)− ki(S, P) ≥ 0

2. qi > i: in this case, the EMD rule schedules, from dates 0 to i, exactly i tasks of
median completion time smaller than or equal to i. There remains (qi − i) tasks of
median completion time smaller than or equal to i that are not scheduled by date
i in S, the schedule returned by the EMD rule. Each of these tasks can appear in
at most v choices in Ci.

Let ri ≥ 0 be the number of tasks with median completion time strictly larger
than i that are not scheduled by date i in S. Let Ri the set of these ri tasks, and
let Ri the set of choices (Vx, j, t) in Ci such that j ∈ Ri. We have:

ki(S, P) ≤ (qi − i)v + |Ri|

9

In S∗, the i tasks scheduled by time slot i are split between the qi tasks of median
completion time smaller than or equal to i and the ri tasks of median completion
time strictly larger than i. We denote by R∗

i the tasks of Ri scheduled by S∗ before
or at time i. We call r∗i = |R∗

i |, and R∗
i the set of choices (Vx, j, t) of Ci such that

j ∈ R∗
i . There are (qi − (i − r∗i)) tasks of median completion time smaller than or

equal to i that are not scheduled by S∗ by time i. Each of these tasks is at least in
v/2 choices in Ci. We can then write:

ki(S
∗, P) ≥ (qi − i+ r∗i)v/2 + |Ri| − |R∗

i |

We then have:

2ki(S
∗, P)− ki(S, P) ≥ (qi − i + r∗i)v + 2|Ri| − 2|Ri|

∗ − (qi − i)v − |Ri|

2ki(S
∗, P)∗ − ki(S, P) ≥ r∗i × v + |Ri| − 2|R∗

i |

Since |Ri| ≥ |R∗
i | and r∗i × v > |R∗

i |, we have: 2ki(S
∗, P)− ki(S, P) ≥ 0.

In both cases, we have ki(S, P) ≤ 2ki(S
∗, P) for all i ≥ 1. Therefore, we have:

∑n

i=1 ki(S, P) ≤ 2
∑n

i=1 ki(S
∗, P) and then ΣT (S, P) ≤ 2ΣT (S∗, P).

As seen above, since, with unitary tasks, T (S, P) = E(S, P) and Dev(S, P) =
2T (S, P), for any schedule S and preference profile P , we get the following corollary.
Corollary 1. The EMD rule is 2-approximate for the ΣDev criterion, and for the
ΣE criterion.

Additional results in voting theory

As noted by Pascual et al. (2018), the ΣDev criterion is equivalent to the Spearman
ranking correlation coefficient when task are of unit size, this gives us the following
corrolary. Although this minimization problem is polynomially solvable, it is still an
interesting property to have for the EMD rule.
Corollary 2. The EMD rule is 2-approximate for the minimization of the total
Spearman correlation coefficient to the preference profile.

We can show that EMD is 4-approximate for the well-studied Kemeny rule Kemeny
(1959). The Kemeny rule returns a ranking R∗ that minimizes the Kendall-Tau dis-
tance δ(R,P) of a ranking R to the preference profile P where this distance is defined
as the number of ordered pairs on which the ranking disagrees with the voters in P .
Proposition 2. The EMD rule is 4-approximate for the minimization of the Kendall-
Tau distance to the preference profile.

Proof. Diaconis and Graham (1977) showed that for any ranking R and any prefer-
ence profile P , the Spearman correlation coefficient ρ fulfills the following property:
δ(R,P) ≤ ρ(R,P) ≤ 2δ(R,P). We call S the solution returned by EMD, S∗

KT a solu-
tion minimizing the Kendall-Tau distance to the preference profile and S∗ a solution
minimizing the total Spearman correlation coefficient with the preference profile.

For the sake of contradiction, let us assume that:

δ(S, P) > 4δ(S∗
KT , P)

10

We then have

ρ(S, P) ≥ δ(S, P) > 4δ(S∗
KT , P) ≥ 2ρ(S∗

KT , P)

And since S∗ is optimal for the Spearman, rule we have:

ρ(S, P) ≥ δ(S, P) > 4δ(S∗
KT , P) ≥ 2ρ(S∗

KT , P) ≥ 2ρ(S∗, P)

A contradiction, given the result from Proposition 1. We therefore have:

δ(S, P) ≤ 4δ(S∗
KT , P)

In the next section, we focus on release time and due dates constraints.

3 Scheduling tasks with time constraints

We first show that it is still possible to compute in polynomial time an optimal solution
of the total dissatisfaction of the voters with both the Binary criterion and the Distance
criterion presented in Section 1.

3.1 Getting optimal solutions with time constraints

Let us consider that each task j ∈ J has a release date rj and a due date dj . These
dates can be imposed, for example when the tasks represent events that cannot occur
before a date rj or after a date dj . They can also be inferred from the preferences of the
voters (by setting rj = mini∈{1,...,v}{rj(Vi)} and dj = maxi∈{1,...,v}{dj(Vi)}). In this
case, we want no task to be scheduled earlier than in the preferred interval of any voter,
or later than in the preferred interval of any voter. This case is particularly interesting
if voters are aware of real time constraints on the events that are represented by the
tasks, and if the scheduler does not necessarily know these constraints.

Returning an optimal schedule for both the Binary criterion and the Distance
criterion is, as without any time constraints, an assignment problem. In the bipartite
graph with the tasks on the left and the time slots on the right, for each couple (task
j, time slot s), we just put an edge between j and s if and only if rj ≤ s ≤ dj − 1. The
costs of the edges are equal to the sum of the dissatisfaction of the v voters if task j
is scheduled between s− 1 and s. An optimal solution which fulfills time constraints
– if there is one feasible solution – is a minimum cost matching. Such a matching, if
it exists, can be found with Hungarian algorithm in O(n3) (Edmonds & Karp, 1972;
Tomizawa, 1971).

In the next section, we study to which extent the rules presented earlier propagate
constraints fulfilled by the preferences of the voters. For example, if all the voters
schedule a task after a given time, it may be because this task is not available before.
This is particularly interesting in contexts in which the preferences given are not
necessarily votes but feasible solutions for a problem (potentially optimizing different
aspects like cost, employee satisfaction, inventory management . . .). In this case, the

11

question becomes: given several feasible solutions satisfying a set of constraints, do
the aggregation rule ensures that the returned solution fulfills the same constraints?

3.2 Axiomatic study of rules with inferred time constraints

3.2.1 Release dates and deadlines consistencies.

The idea of the two following axioms is the following one: if a task j consistently starts
after (resp. ends before) a given date t, we can interpret it as t being a firm release
date (resp. deadline) for task j. In this case, we would like the rule to return a solution
in which j starts after (resp. ends before) t.
Definition 1. Let V be a set of voters and j a task such that for each preference
Vi expressed by voter i ∈ {1, . . . , v}, we have Cj(Vi) ≥ t, with t a constant. An
aggregation rule fulfills release date consistency if it always returns a schedule S in
which Cj(S) ≥ t.
Definition 2. Let V be a set of voters and j a task such that for each preference Vi

expressed by voter i ∈ {1, . . . , v}, we have Cj(Vi) ≤ t, with t a constant. An aggregation
rule fulfills deadline consistency if it always returns a schedule S in which Cj(S) ≤ t.

We show that the Distance Criterion rule, the Binary Criterion rule, and the EMD
rule do not fulfill these axioms.
Proposition 3. The Distance Criterion rule does not fulfill the deadline consistency
nor the release date consistency, even when preferences are expressed as schedules.

Proof. Let us consider an instance with 8 tasks and 6 voters and the following
preferences:

6 2 3 4 5 i j 1

1 6 3 4 5 i j 2

1 2 6 4 5 i j 3

1 2 3 6 5 j i 4

1 2 3 4 6 j i 5

1 2 3 4 5 j i 6

The schedules (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ i ≺ j) and (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺
6 ≺ j ≺ i) are the only two optimal schedules, with a total distance of 54. They do
not fulfill release date consistency since all the voters have completed tasks i and j
at time 7 in their preferred schedules, whereas in the returned solution, one of these
two tasks is completed at time 8. The best solutions fulfilling release date consistency
are (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ j ≺ i ≺ 6), and (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ i ≺ j ≺ 6), with
a total distance of 56. Therefore, the Distance Criterion rule does not fulfill deadline
consistency.

By reversing the preferences (e.g. , when a preferred schedule (1 ≺ 2 ≺ 3 ≺ 4 ≺
5 ≺ j ≺ i ≺ 6) becomes (6 ≺ i ≺ j ≺ 5 ≺ 4 ≺ 3 ≺ 2 ≺ 1)), we obtain an instance

12

in which tasks i and j always start after or at 1, but in which the optimal solutions
are (i ≺ j ≺ 6 ≺ 5 ≺ 4 ≺ 3 ≺ 2 ≺ 1) and (j ≺ i ≺ 6 ≺ 5 ≺ 4 ≺ 3 ≺ 2 ≺ 1)
(the previous optimal solutions but reversed). Either task i or j starts at time 0 in
these solutions, whereas no voter schedule theses tasks before time 1. Therefore, the
Distance Criterion rule does not fulfill release date consistency.

Proposition 4. The Binary Criterion rule does not fulfill the deadline consistency
nor the release date consistency.

Proof. Let us consider the following preferences of 3 voters over 7 tasks:

1 2 4 5 6 3 7

1 4 3 5 2 7 6

4 2 3 1 6 7 5

We first consider that the deadlines are the one given in the above schedules, and
that the release dates are 0. The binary criterion this corresponds to the ΣU criterion
(which minimizes the number of late tasks).

The only optimal solution for ΣU is (1 ≺ 2 ≺ 3 ≺ 5 ≺ 6 ≺ 7 ≺ 4). The number
of late tasks in this solution is 3, task 4 being considered late by the three voters. In
a solution fulfilling the deadline consistency property, task 4 has to be completed at
most at time 3. This implies that either task 1, task 2 or task 3 has to end after time
3 and will therefore be late for two voters. Additionally, if task 1 is delayed, because
of deadline consistency, it has to end at time 4, meaning that task 5 has to be delayed
and will therefore be considered late for 2 voters, which amounts to 4 late tasks, more
than the optimum. The same line of reasoning can be applied for tasks 2 and 3 if they
are delayed after time 3, causing delay to task 5, 6 or 7 if they are scheduled at time
4, 5 or 6. Any solution respecting the deadline consistency property has therefore a
number of late tasks of at least 4: the ΣU rule does not fulfill deadline consistency.

We can show similarly that the Binary Criterion rule does not fulfill the release
date consistency. To this end, we consider that the the deadlines are n, and that the
release dates are the one given in the above schedules, once they have been reversed.
The binary criterion in this case minimizes the number of early tasks).

Proposition 5. The EMD rule does not fulfill deadline consistency nor release date
consistency.

Proof. Let us consider the following preferences of 3 voters over 4 tasks:

2 1 3 4

3 1 2 4

4 1 2 3

13

With such preferences, the median completion times are as follows: m1 = 2, m2 =
m3 = 3 et m4 = 4. The EMD rule returns a schedule in which task 1 is scheduled
first and therefore completes at time 1, which is before its completion time in all
the preferences of the voters. Therefore, the EMD rule does not fulfill release date
consistency.

Let us now consider the following preferences of 3 voters over 4 tasks:

2 3 1 4

2 4 1 3

4 3 1 2

With such preferences, the median completion times are as follows: m1 = 3, m2 =
1, m3 = 2 et m4 = 2. The EMD rule returns a schedule in which task 1 is scheduled
last and therefore completes at time 4, which is after its completion time in all the
preferences of the voters: the EMD rule does not fulfill deadline consistency.

Since our three rules do no fulfill release date nor deadline consistency, we propose
a weaker, yet meaningful, property called temporal unanimity.

3.2.2 Temporal unanimity

An aggregation rule satisfies temporal unanimity if, when all voters agree on the time
interval during which a task i is scheduled, then i is scheduled during this time interval
in the solution returned by the rule. When preferences are given as schedules, this
property means that if all voters schedule task i at the same time slot in their preferred
schedules, then i should be scheduled at the same time slot in the returned solution.
When preferences are expressed as time intervals, it means that if all voters agree
on the same release date and deadline for i, then i should be scheduled in this given
interval in the returned solution.
Definition 3. Let V be a set of voters, and let j be a task such that for each voter i
in V , we have dj(Vi) = d, with d a constant, and rj(Vi) = r, with r a constant strictly
smaller than d. An aggregation rule fulfills temporal unanimity if it returns a schedule
in which task j is executed between r and d.

We show that EMD does not fulfill this property, whereas the Binary and the
Distance Criterion rules do fulfill this axiom.
Proposition 6. The EMD rule does not fulfill the temporal unanimity property.

Proof. Let us consider the following instance:

2 1 3 4

3 1 2 4

4 1 2 3

14

The median completion times are as follows: m1 = 2, m2 = m3 = 3 and m4 = 4.
The EMD rule returns a schedule in which task 1 is scheduled first and thus completes
at time 1 even though it completed at time 2 in all the schedules expressed by the
voters.

Proposition 7. The Binary Criterion rule fulfills temporal unanimity.

Proof. Let us consider a task s(1) such that, for all voter i, ds(1)(Vi) = d and
rs(1)(Vi) = r with r and d two constants such that 0 ≤ r < d ≤ n. Let us now con-
sider an optimal schedule S∗ for the Binary Criterion minimization in which task s(1)
is not scheduled between r and d. Since each of the preferences has to be compatible
with a feasible schedule, in each preferences there are at most d− r tasks with release
dates and deadlines included in the [r, d] interval. Since task s(1) is always included
in this interval in the preferences of the voters, there is in the [r, d] interval of S∗ at
least one task s(2) is scheduled in the preferences of the voters at least once before r
or after d. We distinguish two sub-cases.

• If this task s(2) does not have a unique release date r′ given by the voters and
a unique due date d′ given by the voters, then we can simply perform the swap
between the positions of s(1) and s(2) to obtain a new solution S′ in which there
is one less task out of its unique time interval and which is at least as good as S∗

since we decrease the binary criterion cost for s(1) by the number of voters v and
we increase it for s(2) by at most v.

• If this task s(2) has a unique release date r′ and due date d′ then we consider two
subcases:

– If task s(2) is scheduled in S∗ before r′ or after d′, and therefore not in its unique
time interval, or if its time interval covers the position of s(1) in S∗, we can
perform the swap between the positions of s(1) and s(2) as in the above mentioned
case.

– Otherwise, we consider the other tasks, if any, scheduled in S∗ between r and d
and which are not always scheduled between r and d in the preferences. If none
of these tasks fulfill any of the two previous conditions then we consider the set
Ts(1) of all these tasks scheduled between r and d in S∗ and which have a unique
time interval in which they are scheduled. For each of these tasks, its time interval
r′, d′ is either as r′ < r or d′ > d, or both. We now consider the interval from the
smallest unique release date of a task in Ts(1) to the maximum unique deadline
of a task in Ts(1). We then repeat the same reasoning as above:

∗ if there is a task s(3) which is in the time interval of a task s(2) from
Ts(1), and which does not have a unique time interval or which has a
time interval containing the position of s(1) in S∗, then we perform the
following circular exchange: task s(1) takes the time slot of s(2), which
takes the time slot of s(3), which takes the time slot of s(1). Such a circular
exchange does not increase the binary criterion, since the cost relative to
s(1) is decreased by v, the cost relative to s(2) does not increase, since
s(2) stays in its interval, and the cost of s(3) increases by at most v.

15

∗ If no such task s(3) exists, then there is at least one task which has a
unique release date r′′ < r′, or a unique deadline d′′ > d′, or both. We then
consider the set Ts(2) of such tasks and expand the considered interval.
Since at each of these steps we extend the considered interval by at least
one unit of time, the interval will necessarily include the position of s(1)
at some point and we will be able to perform a swap.

Proposition 8. The Distance Criterion rule fulfills temporal unanimity when prefer-
ences are schedules.

Proof. Let us consider that a task l is always scheduled between time k and time k+1 in
the preferences of the voters. Let S∗ be an optimal solution for the Distance Criterion
minimization, and let us assume, by contradiction, that task l is not scheduled between
k and k+1 in S∗. Let S be a schedule obtained from S∗ by swapping the positions of
task l and the task j scheduled between k and k + 1 in S∗. Note that the distance of
any task other than l or j is the same in S and S∗. The distance of task l is decreased
by the absolute value of the difference between its position in S and its position in S∗,
times the number of voters (since all voters scheduled it between k and k + 1), while
the distance of task j is increased by at most this value. Therefore S is an optimal
schedule as well.

. j . . . l

0 k + 1

Fig. 1 Schedule S∗ and the swap performed to obtain S.

Let us now examine the case in which the distance of task j has increased by
|Cl(S

∗) − Cj(S
∗)| – we will actually show that this cannot happen. Note that if task

j was scheduled before task l in S∗ (case 1) then the distance of j increased by
Cl(S

∗) − Cj(S
∗): it means that j has been scheduled before its completion time in

S∗ by all voters. Likewise, if task j was scheduled after task l in S∗ (case 2) then the
distance of j increased by Cj(S

∗)− Cl(S
∗): it means that j has been scheduled after

its completion time in S∗ by all the voters.
In case 1, let b be the maximum completion time of task j in the preference profile,

and let k be the task which is completed at time b in S∗. We build schedule S′ from S
by swapping the position of task j and task k. The distance of j is decreased by the
difference between the position of j and k for all voters. If the distance of k increases
by the same value it means that task k always completes before b in the preferences
of the voters. By repeating such swaps, the date b is decreased each time and we will
necessarily reach a point where we either find a task for which the distance increase
is smaller than the distance decrease when doing the swap or find a b of 1.

16

. . . k . . . j . . . l

0 b k + 1

Fig. 2 Schedule S∗ and a preliminary swap (case 1) ensuring that the final swap of task l will strictly
decrease the total distance.

The same thing can be done in case 2, by defining b as the minimum completion
time of j in the preference profile, and k as the task which is completed at time b
in S∗. The distance of j is decreased by the difference between the position of j and
k for all voters. If the distance of k increases by the same value than the distance
of j is decreased, it means that task k always completes after b in the preferences of
the voters. By repeating such swaps, the date b is increased each time and we will
necessarily reach a point where we either find a task for which the distance increase
is smaller than the distance decrease when doing the swap or find a b of n.

If we did not find b = 1, or b = n, it means that we have found a schedule of cost
(sum of the distances) better than S∗, a contradiction. If we ended with b = 1 or b = n,
then a task that would always complete before (resp. after) or at time b = 1 (resp.
b = n) would always be scheduled first (resp. last), and doing the swap will always be
strictly better. The solution obtained after doing the swaps is strictly better than the
solution S∗ supposed to be optimal, a contradiction.

Proposition 9. The Distance Criterion rule does not fulfill temporal unanimity when
preferences are expressed as release dates and deadlines.

Proof. Let us consider an instance with 8 tasks and 6 voters and the following
preferences:

6 2 3 4 5 i/j 1

1 6 3 4 5 i/j 2

1 2 6 4 5 i/j 3

1 2 3 6 5 i/j 4

1 2 3 4 6 i/j 5

1 2 3 4 5 i/j 6

In this profile each voter gives a time interval of 1 for all tasks except for i and j
which have a time interval of 2. For example the first voter indicates that task 6 has a
release date of 0 and a due date of 1, while both tasks i and j have a release date of 5
and a due date of 7. The two optimal solutions for the Distance Criterion minimization
are (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ i ≺ j) and (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ j ≺ i), with
a total distance of 48. These optimal schedule do not fulfill temporal unanimity since

17

either i or j is scheduled outside of the time interval agreed on by all the voters. The
best solutions fulfilling temporal unanimity are (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ j ≺ i ≺ 6), and
(1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ i ≺ j ≺ 6), with a total distance of 50.

4 Precedence constraints

In this section, we focus on precedence constraints between the tasks. We will consider
two settings.

Firstly, we consider a setting in which the precedence constraints are known by the
voters. In this setting, that we call inferred precedences, if a task a has to be scheduled
before a task b, then, in the preference Vx of any voter x, we have Ca(Vx) < Cb(Vx).
Our aim is to determine whether or not a given aggregation rule guarantees that task
a will be scheduled before task b in the schedule returned by the rule. Note that in
voting theory this property is called unanimity.

The second setting corresponds to the case in which the precedence constraints
are not known by the voters, and therefore preferences do not necessarily fulfill these
precedence constraints: the precedence constraints only exist for the schedule that has
to be returned. This setting is called precedence graph.

We define a family of optimization problems of form α− Prec where α is an opti-
mization criterion and Prec is a setting for the precedence constraints: it is Inferred
when precedence constraints are fulfilled by the preferences, or Graph when the pref-
erence constraints only apply to the returned solution. For example, the problem
ΣDev-graph has the following input: a set J of n tasks ; an acyclic directed graph
G which represents the precedence constraints between the tasks in J ; a set V of v
preferred schedules (permutation of tasks) – these schedules do not necessarily fulfill
the precedence constraints. The aim is to output a schedule which fulfills the prece-
dence constraints and, among these feasible schedules, which minimizes the sum of
the deviations with respect to the preferences of the voters:

∑

i∈V

∑

j∈J Dj(S,Vi).

Our aim is to study the complexity of problems mentioned before (total deviation,
total tardiness, number of late tasks), when there are inferred or given precedence
constraints. In Section 4.1, we study the case in which precedence constraints are
inferred by the preferences of the voters, and we show that problems ΣDev-inferred
and ΣT -inferred can be solved in polynomial time. In Section 4.2, we study the
case in which precedence constraints are given and are not necessarily fulfilled by
the preferred schedules of the voters. We will show that problems ΣDev-graph, ΣT -
graph and ΣU-graph are NP-hard.

4.1 Inferred precedence constraints

Proposition 10. Problems ΣDev-inferred and ΣT -inferred can be solved in
O(vn2 + n3).

Proof. Durand and Pascual (2022) showed that when two tasks a and b are of same
length, if task a is scheduled before b in all the preferences then there exists an optimal
solution for the ΣDev rule and the ΣT rule such that a is scheduled before b. Addi-
tionally, for any optimal solution in which b would be scheduled before a, it is possible

18

to swap the position of a and b without increasing the deviation (or the tardiness).
Therefore by doing successive permutations from an optimal solution, we can find
another optimal solution in which precedence constraints are fulfilled. We now show
that the number of permutations needed is bounded by n2. Problems ΣDev-inferred
and ΣT -inferred can thus be solved in polynomial time by

1. computing an optimal solution of ΣDev or ΣT (without the precedence constraints)
through an assignment problem, as seen in the introduction. This can been done
in O(vn2 + n3);

2. swapping couple of tasks (a, b) that do not fulfill precedence constraints in the
returned schedule of Step 1. As we will show now, there will be at most n2 swaps.

We create a precedence directed graph with n vertices, one for each task, and in
which there is an edge from vertex a to vertex b if the task corresponding to vertex
a is always scheduled before the task corresponding to vertex b in the preferences of
the voters. There are at most n2 edges so it is possible to create this graph in O(n2)
operations. Note that this precedence relation is transitive: if a is always scheduled
before b and b is always scheduled before c then a is always scheduled before c. This
implies that this graph has no cycle. This also implies that there exists at least one
vertex with no successor.

We choose a vertex x among the vertices with no successor in the above mentioned
precedence graph. For readability, we will in the sequel denote the task corresponding
to vertex x as task x. We look whether among the predecessors of x there exist
vertices corresponding to a task scheduled after x in the optimal schedule returned by
ΣDev or ΣT. If such vertices exist, we swap the position of the task x with the task
corresponding to its predecessor scheduled after it and as close as possible to x in the
returned schedule. We repeat this step until all the tasks corresponding to predecessors
of x are scheduled before x. By swapping x with its closest predecessor scheduled after
it, we make sure that we do not create any violation of the precedence constraints.
Studying all the vertices takes n operations, consisting in at most n swaps: the total
number of swaps is then bounded by n2.

Note that the previous proof is a constructive proof: we can compute an optimal
solution for ΣDev-inferred (or ΣT -inferred) by solving an assignment problem for
ΣDev (or ΣT), and then swapping tasks which do not fulfill the precedence constraints
as explained in the proof of Proposition 10.

We cannot take the same approach for ΣU-inferred. Indeed, there are instances
in which no optimal solution for the minimization of the total number of late
tasks criterion fulfills the inferred precedence constraints, as shown by the following
proposition.
Proposition 11. There exist instances for which no optimal solution for the ΣU
criterion fulfills the inferred precedence constraints.

Proof. Let us consider the following instance of 5 tasks and 6 voters. The number at
the left of each schedule indicates the number of voters whose schedule is the preferred
schedule (e.g. the favorite schedule of three voters is the second schedule).

19

a 2 b 1 3

1 a 2 b 3

1 2 3 a b

1

3

2

The only optimal solution for the ΣU criterion is the following one:

1 2 b a 3

In this solution, b is scheduled before a, whereas all the voters have scheduled a
before b in their favorite schedules: this violates the inferred precedence constraints.

This last proposition means that we cannot proceed like in Proposition 10, by
computing an optimal solution for ΣU and then swapping tasks which would not be
in the right order. Whether problem ΣU-inferred is NP-hard or not is an open
question.

We end this section by noting that the rule EMD computes schedules which fulfill
all the inferred precedence constraints. Indeed, if all the voters schedule a task a before
a task b in their preferred schedules, then the median completion time of a will be
smaller than the median completion time of b and thus a will be scheduled before b in
the schedule returned by EMD.

4.2 Imposed precedence graph

We start by proving that this problem is strongly NP-hard for the total tardiness
criterion.
Proposition 12. The ΣT -graph problem is strongly NP-hard, even when the
precedence graph consists in chains.

We prove this proposition by doing a polynomial time reduction from the schedul-
ing problem denoted by (1|chains, pj=1|ΣTj) using the Graham’s notation, a classical
way to denote problems in scheduling theory (Brucker, 1999). An instance of this
problem is:

• a set J of n unit tasks, each task j having a due date dj . Without loss of generality,
we assume that dj ≤ n for all j.

• a precedence graph, modeling precedence constraints between the tasks. We assume
that and this graph is made of chains in chains (i.e. each task has at most one
successor and one predecessor, and there are no cycle).

The optimization version of this problem consists in minimizing the sum of the tar-
diness of the tasks. The decision version of this problem consists in answering the
following question: given an integer K, is there a schedule S of the tasks in J on a
single machine, such that the precedence constraints are fulfilled, and such that the

20

total tardiness of the tasks,
∑

j∈J max(0, Cj(S)− dj), is smaller than or equal to K ?
This problem is known to be NP-hard (Leung & Young, 1990).

We create an instance of ΣDev-graph from the instance from (1|chains, pj =
1|ΣTj) as follows.

• For each task j in J we create a task tj and a task dumj. These tasks are split into
two sets Jt = {j1, . . . , jn} and Jdum = {dum1, . . . , dumn}. The set J ′ of the tasks
of the instance of ΣT -graph is the union of Jt and Jdum.

• For each precedence relation in the (1|chains, pj=1|ΣTj) problem between tasks i
and j, we create a precedence constraint between ti and tj in the precedence graph
of problem ΣT -graph.

• For each task j in J we also create three voters. Their preferred schedules, that
we will describe now, are represented on Figure 3. The first two voters, of type T ,
schedule tj first, followed by tj+1 and so forth until tn, then t1 to tj−1 by increasing
index. They then schedule the dum tasks following the same pattern: dumj first,
then dumj+1 to dumn, followed by dum1 to dumj−1 by increasing index (see top
schedule in Figure 3). The last voter, of typeD, schedules task tj between time dj−1
and dj . Before that, she schedules (dj−1) dum tasks from dumj by increasing index
(using again a circular order of the tasks, where task dum1 follows task dumn). The
remaining dum tasks are scheduled after tj by increasing indexes. The schedule is
completed with tasks tj+1, tj+2, . . . , until task tj−1 if j 6= 1, or task tn if j = 1 (see
bottom schedule in Figure 3).

tj tj+1 tj−2 tj−1 dumj dumj+1 dumj−2 dumj−1

dumj dumj+1 . . . tj dumj−2 dumj−1 tj+1 tj+2 tj−1

0 dj
n 2n

2

1

Fig. 3 Preferred schedules of the 3 voters generated for task j.

In order to prove Proposition 12, we start by proving the following lemma.
Lemma 1. For the instance of the ΣT -graph problem described above, there is an
optimal solution in which all the t tasks are scheduled before all the dum tasks.

Proof. Let us assume by contradiction that there is no optimal solution in which all t
tasks are scheduled before all dum tasks. Let S be such an optimal solution: there is
at least one dum task completing just before a task t. Let us call dumi the first dum
task scheduled before a t task, and tj be the t task scheduled just after dumi. Let k
be the completion time of dumi in S: we have Cdumi

(S) = k and Ctj (S) = k+1 (note
that 1 ≤ k < 2n).

We call S′ the schedule obtained from S by swapping the position of dumi and tj .
The total tardiness of S′ is similar to S except for the tardiness of dumi and tj . We
then have Cdumi

(S′) = k+1 and Ctj (S
′) = k. Note that if the precedence constraints

over the t tasks are satisfied by S, they are also satisfied by S′ since the order on the

21

t tasks has not changed. Therefore, since S is a feasible solution, S′ is also a feasible
solution. We distinguish two sub-cases:

tk . . . tl duma . . . dumi tj

tk . . . tl duma . . . tj dumi
.

0 k

S

S′

Fig. 4 Schedules S and S′. The first dum task to be scheduled just before a t task in S is dumi.

• k ≤ n. In this case, the tardiness relative to task tj is reduced in S′ in comparison
to S by at least 2k. Indeed, there are 2k voters scheduling tj at time k or before.
Therefore, moving tj from k + 1 to k reduces the tardiness of tj by one for each of
these voters, giving a total of 2k. The tardiness of task dumi is increased in S′ in
comparison to S. There are at most k voters of type D scheduling dumi at time k
or before: for each of these voters, the tardiness is increased by one. The sum of the
tardiness of S′ is decreased by at least 2k (due to tj), and increased by at most k
(due to dumi), in comparison to the sum of the tardiness of S: the total tardiness
of S′ is thus smaller than the tardiness of S. Since S minimizes the sum of the
tardiness, there is a contradiction.

• k > n. In this case, the tardiness relative to task tj is reduced in S′ in comparison
to S by 2n+1+ (k− n). Indeed, there are 2n voters of type T scheduling tj before
k, and one voter of type D scheduling tj so that this task is completed at date dj
with dj ≤ n. This makes a total of 2n + 1. Additionally, there are k − n voters of
type D scheduling tj at time n + 1, n + 2 up to k. For each of these voters, the
tardiness of tj is reduced by one.
On the other hand, the tardiness of dumi is increased in S′ in comparison to S by
n+2(k−n). The n voters of type D scheduled dumi so it that it is completed at most
at time n+ 1, meaning that delaying dumi from k to k + 1 increases the tardiness
by one for each of these n voters. Additionally, there are 2(k − n) voters of type T
scheduling dumi so that it completes at dates n + 1, n + 2 to k: the tardiness is
increased by one for each of these voters. If we compare the increase in tardiness for
task dumi, n+2(k−n), to the decrease of the tardiness for task tj , 2n+1+(k−n),
we see that the sum of the tardiness in S′ is decreased by 2n+1− k. Since k < 2n,
this value is always strictly positive. This means that the total tardiness of S′ is
strictly smaller than the tardiness of S, an optimal solution: a contradiction.

We can now start the proof of Proposition 12.

Proof. From Lemma 1, we know that there exists an optimal schedule S in which t
tasks are scheduled before dum tasks. We analyze the sum of the tardiness in such a
schedule. We first show that the sum of the tardiness of dum tasks is the same in any
schedule fulfilling the property of Lemma 1 (first item below), and we then analyze
the sum of the tardiness due to t tasks (second item below).

22

• We show that in any schedule in which dum tasks are scheduled after t tasks fulfilling
this property, the tardiness due to dum tasks is always the same.
Voters of type T schedule each dum task twice between n and n+1, twice between
n+1 and n+2 and so on until 2n−1 and 2n. In schedule S, the dum task scheduled
between n and n+1 in not late for any voter of type T , the task scheduled between
n+1 and n+2 is late of one unit of time for 2 voters of type T , and so on. Overall,
the total tardiness of dum tasks for T voters is then 2

∑n

i=1

∑i

j=1(j−1), a constant
number.
Let us now show that the sum of the tardiness of dum tasks for D voters will be the
same in any schedule S in which t tasks are scheduled before dum tasks. Indeed,
for each D voter j, and for each task dumi, the completion time of dumi in the
preferred schedule of j is at most n+ 1, whereas the completion time of dumi in S
is at least n+1. Therefore, the sum of the tardiness due to dum tasks for D voters
is equal to the sum of the distances between completion times of dum tasks in the
preferred schedules of voters D to date n+ 1 – which is a constant, since preferred
schedules are fixed –, plus the sum of the distances of dum tasks between date
n+ 1 and the completion time of dum tasks in S – this is also a constant since the
completion times of dum tasks in S are the set of times {n+ 1, . . . , 2n}. Therefore,
the the sum of the tardiness of dum tasks for D voters is a constant.
We have seen that the sum of the tardiness of dum tasks is value is the same for
any schedule S which fulfills Lemma 1. Let Tdum denote this value, which, as we
have seen, is a constant.

• Regarding tasks t, voters of type T schedule them such that each task ti is completed
twice at time 1, twice at time 2 and so on. So, regardless of the order of tasks t in
S, the first task of S is not late for any voter, the second task of S is late by 1 unit
of time for 2 voters, the third task is late by 1 unit of time for 2 voters, by 2 units
of time for two voters and so on. Therefore, the sum of the tardiness of t tasks for
voters of type T is also the same for each schedule S in which t tasks precede dum
tasks. Let Tt denote this sum of tardiness.
Voters D schedule all tasks t after n+1 except one task tj (for the j-th voter of type
D), and this task is completed at time dj . Therefore in S, each task tj is always
early for all voters D except one, the j-th voter of type D, and its tardiness for this
voter is equal to max(0, Ctj (S)− dj).

The sum of the tardiness T (S) in schedule S is thus equal to:

T (S) = Tdum + Tt +
∑

tj∈Jt

max(0, Ctj (S)− dj)

Since Tdum and Tt do not depend on the order of the tasks in S as long as all tasks
t are scheduled first and all tasks dum are scheduled afterwards, the tardiness of
schedule S only depends on the position of tasks t relatively to the due dates of the
(1|chains, pj=1|ΣTj) problem.

We will now prove that there exists a solution S for the instance of the ΣT -graph
problem described above such that T (S) ≤ Tdum+Tt+K, if and only if there exists a
schedule S′ for (1|chains, pj=1|ΣTj) problem such that the tardiness is smaller than

23

or equal to K. In other words, the answer to the question of ΣT -graph problem is
then “yes” if and only if the answer to the question of the corresponding instance of
(1|chains, pj=1|ΣTj) is “yes”.

Let us assume first that there is a solution S of ΣT -graph problem such that
T (S) ≤ Tdum + Tt + K. It means that

∑

tj∈J max(0, Ctj (S) − dj) ≤ K. Let S′ be a

schedule of tasks of (1|chains, pj=1|ΣTj) such that the completion time of task j in
S′ is equal to the completion time of tj in S. We have

∑

j∈J max(0, Cj(S
′)−dj) ≤ K,

and this solution is feasible since the precedence constraints between the tasks of the
(1|chains, pj=1|ΣTj) problem are the same than between the t tasks. The answer to
the question of the (1|chains, pj=1|ΣTj) is then “yes”.

Let us now assume that there is a feasible solution (schedule) S′ of (1|chains, pj=
1|ΣTj) such that the total tardiness is smaller than or equal to K. If we create solution
S such that the completion time of task tj in S is equal to the completion time of j in
S′, we then have

∑

tj∈Jt
max(0, Ctj (S)− dj) ≤ K. The dum tasks are then scheduled

in any order. Such a solution has then a total tardiness of Tt+Tdum+K. This solution
is feasible since the precedence constraints between tasks of the (1|chains, pj=1|ΣTj)
problem are the same than between the t tasks. This implies that the answer to the
ΣT -graph problem is thus “yes”.

There is a polynomial time reduction from decision problem (1|chains, pj=1|ΣTj),
which is strongly NP-complete, to the decision version of our problem ΣT -graph.
Problem ΣT -graph is thus strongly NP-hard.

Since, as we have seen before, with unit tasks graphs, and for any profile P and
any schedule S, the sum of the deviations in S with respect to profile P is equal to
twice the sum of the tardiness in S, a schedule minimizing the sum of the deviations
among schedules which fulfill the precedence constraints will also minimize the sum
of the tardiness. Given Proposition 12, we deduce the following corollary.
Corollary 3. The ΣDev-graph problem is strongly NP-hard, even when the
precedence graph consists in chains.

We now show that problem ΣU-graph, which aims at minimizing the number
of late tasks in the returned schedule, with respect to the preferred schedules of the
voters, is also a strongly NP-hard problem.
Proposition 13. The ΣU-graph problem is strongly NP-hard, even when the
precedence graph only consists in chains.

We prove this results by doing a polynomial time reduction from the (1|chains, pj=
1|ΣUj) problem. The decision version of this problem is the following one. An instance
of this problem is:

• A set J ′ = {1, . . . , n} of n unit tasks. Each task i has a deadline di.
• A a acyclic precedence graph of n vertices {1, . . . , n}: there is one edge from vertex
i to vertex j if task i has to be scheduled before task j. This graph can be only a
set of chains between some tasks.

• An integer K ′

The aim of optimization problem is to compute a schedule which fulfills the prece-
dence constraints and which minimizes the number of late tasks (i.e. tasks which are
completed after their deadlines). The question of the corresponding decision problem

24

is the following one: is there a schedule S which fulfills the precedence constraints and
in which at most K ′ tasks are late ?

Garey and Johnson (1976) have shown that this problem is strongly NP-hard
with general precedence constraints, even with unit time tasks. Lenstra and Rinnooy
Kan (1980) have sharpened this result by showing that this problem remains strongly
NP-hard, even if the set of precedence constraints is a set of chains.

Without loss of generality we assume that di ≤ n (tasks with deadlines larger than
n will never be late in a schedule of n unit tasks without idle time). We create an
instance of ΣU-graph as follows.

For each task i of J ′, we create a task ti and a task dumi. For each task i we also
create (n+ 1) voters as shown in Figure 5. There are n voters “of type T” scheduling
task ti first, then ti+1 and so forth until tn and then scheduling tasks t1 to ti−1 by
increasing index. They then schedule tasks dum1, dum2, . . . dumn. The last voter, “of
type D” schedules task ti so that it is completed at time di, and, if di 6= 1, she schedules
task dum2 to dumdi−2 by increasing index from time 0 to time di−2. From time di, she
schedules tasks dumdi−1 to dumn until time n, by increasing index, and she schedules
dum1 so that this tasks is completed at time n+ 1. She completes the schedule with
tasks ti+1, . . . , tn by increasing index, followed by tasks t1 to ti−1 by increasing index.
For any precedence relation between tasks i and j in (1|chains, pj=1|ΣUj), we create
the same preference relation between tasks ti and tj of our ΣU-graph instance.

ti ti+1 ti−2 ti−1 dum1 dum2
. dumn−1 dumn

dum2
. . . dumdi

ti dumdi+1 . . . dumn dum1
ti+1 ti+2 . . . ti−2 ti−1

0 di
n 2n

n

1

Fig. 5 Preferred schedules of the n+ 1 voters generated for task i.

In order to prove Proposition 13, we introduce several lemmas which describe an
optimal schedule for the above described instance. As in the proof of Proposition 12, we
will see that computing such an optimal solution allow us the associated NP-complete
scheduling problem (problem (1|chains, pj=1|ΣUj) in our case).
Lemma 2. There exists an optimal solution for ΣU-graph in which task dum1

completes at time n+ 1.

Proof. All voters schedule dum1 so that it is completed at time n + 1. Let S be a
schedule in which dumi does not complete at time n+1. We distinguish two sub-cases:

1. Task dum1 completes before time n+1: we create schedule S′ from S by scheduling
dumi so that it is completed at time n + 1. We decrease from 1 unit of time any
task scheduled in S between dum1 and time n + 1. Task dum1 is not late in S′

for any voter, just like in S and the task that have been scheduled before cannot
become late in S′ if they were not in S. Therefore the number of late tasks cannot
increase from S to S′.

2. Task dum1 completes after n+ 1. We distinguish two sub-cases:

25

• If the task j completing at time n + 1 in S is a dum task, we create S′ from S
by swapping the position of dum1 with the task j. The unit time penalty for all
tasks but j and dum1 are identical between S and S′. Task dum1 is in S′ on
time for the n(n + 1) = n2 + n voters, whereas it was late in S. On the other
hand the unit time cost for task j is increased, but at most by n2 voters, since
the n voters of type D already considered it late since they scheduled it before
time n+ 1. Overall the unit time penalty is reduced in S′ in comparison to S.

• If the task j completing at time n+ 1 in S is a t task, we create a new schedule
S′ by scheduling dum1 so that it completes at time n + 1. We then perform
consecutive swaps such that the order on the t tasks is the same in S, which
is a feasible solution, and S′. If there is at least one t task scheduled between
n + 1 and, Cdum1

(S), the completion time of dum1 in S, we schedule task j at
the time slot occupied by the first t task scheduled after n + 1 in S. Let ti be
such a task. This task ti is then scheduled at the time slot of the following t task
which is completed before Cdum1

(S), and so on until there is no t task left before
Cdum1

(S). The final t task moved that way goes on the time slot occupied by
dum1 in S (i.e. is completed at time Cdum1

(S)).

. j . . . ti duma dumb ti′ ti′′ . . . dum1 . . .

0 n 2n

S′

S

. dum1 . . . j duma dumb ti ti′ . . . ti′′ . . .

Fig. 6 Schedule S and the swaps performed to obtain S′.

Note that if the precedence constraints between the t tasks are fulfilled by S,
they are also fulfilled by S′ since the order on the t tasks do not change, just
their positions.
The t tasks which have been moved in S′ were considered late in S by all T voters:
delaying them do not increase unit time penalty for T voters. Since D voters
schedule t task in a cyclic fashion, each t task completes once at time n+2, once
at time n+3 and so on. Therefore delaying a t task by one unit of time between
n+1 and 2n increases its unit time penalty by 1 (since one additional voter will
consider it late). Therefore, when delaying these tasks, the cumulative delay is at
most n. On the other hand, scheduling dum1 at time n+1 decreases the number
of late tasks by n2+n since it is late for all voters in S and on time for all voters
in S′. This means that the total unit time penalty is smaller in S′ than in S.

In all the cases, we managed to generate a solution S′ in which dum1 is scheduled
between time n and time n + 1 with the total number of late tasks of S′ smaller
than or equal to the number of late tasks in S. Therefore there always exist an
optimal solution in which dum1 is scheduled between n and n+ 1.

26

Lemma 3. There exists an optimal solution of ΣU-graph that fulfills
Lemma 2 and such that there is in this solution a set of successive dum tasks sched-
uled by increasing index from time n, and none of these tasks are considered late by
any voter of type T .

Proof. Let S be an optimal solution fulfilling the property of Lemma 2: task dum1 is
completed at time n+ 1.

Let us assume that in S some tasks of the dum set starting at time n are not
scheduled by increasing index. Let duma and dumb be the two tasks scheduled the
earliest in this set and such that duma is scheduled before dumb with a > b. Since
they are the first two tasks fulfilling this condition any task of this set scheduled
before duma in S has a smaller index than a and is also scheduled before duma in the
preferences of voters T .

Let us consider the solution S′ obtained from S by swapping the positions of duma

and dumb. Since b < a, dumb is scheduled before duma in the preferences of T voters
and since all tasks of the set scheduled before duma in S are also scheduled before
duma in preferences of voters T , duma cannot be late for voters of type T . This means
that task duma does not become late for T voters in S′. This tasks is late for D voters
in both S and S′ since it is scheduled after n+ 1. Since the completion time of dumb

is reduced in S′ in comparison to S, it cannot be late in S′ whereas it was not late
in S. Therefore, the number of late tasks in S′ is not larger than the number of mate
tasks in S.

Repeating these swaps until all the dum tasks of the set are scheduled by increasing
index, we obtain a new solution in which all of these tasks are on time for T voters and
in scheduled by increasing index and such that number of late tasks is not increased
in comparison to S.

Lemma 4. There exists an optimal solution for ΣU-graph which fulfills Lemma 3,
and such that all t tasks scheduled between time 0 and time n are scheduled before any
dum tasks scheduled between time 0 and time n.

Proof. Let us consider a solution S fulfilling the properties of Lemmas 2 and 3 and
such that there is a task dumi scheduled between time 0 and time n and such that
there is a task tj scheduled just after dumi in S. Since the task scheduled between
time n and n+ 1 is dum1 in S, task tj completes at most at time n.

We create a schedule S′ from S by swapping the positions of dumi and tj . For
each date k between 1 and n, there are n voters of type T scheduling tj so that it is
completed at time k. Therefore, advancing tj by one unit of time between 1 and n,
decreases the number of late tasks by n. On the other hand, task dumi is delayed by
one unit of time. This does not impact the T voters since they schedule dumi after
time n+1. Voters of type D might have an increased unit time penalty for task dumi.
Since there are n voters of type D, this increases the number of late tasks by at most
n. Therefore, the number of late tasks in S′ is smaller than or equal to the the number
of late tasks in S.

27

Lemma 5. There exists an optimal solution for ΣU-graph which fulfills Lemma 4,
and in which all the t tasks are scheduled before all dum tasks. Moreover, in this
solution, the dum tasks are scheduled in order of increasing indexes.

Proof. Let S be an optimal solution satisfying the properties of Lemma 4 and such
that all tasks t are not scheduled before all dum tasks. Let dumi be the first dum task
to be scheduled in S. This implies that Cdumi

≤ n. Because of Lemma 4, task dumi

has to be scheduled after a series of t tasks, and all tasks scheduled after dumi and
before dum1 are dum tasks as well. Let tj be the first t task scheduled after dumi. As
we have seen, dumi is scheduled after n+1 and after a set of dum tasks scheduled by
increasing index.

tk . . . tl dumi
. . . dumx dum1 dum2 . . . dumy tj

0 n 2n

Fig. 7 Schedule S with the swap performed to obtain Stmp.

Let Stmp be the schedule obtained by swapping from S the position of dumi and
tj , and let S′ be the schedule obtained by swapping from S the position of dumi and
tj and in which dumi is re-positioned in the dum set so that the tasks in the set are
scheduled by increasing indexes (therefore that S′ can also be obtained from Stmp by
repositioning dumi at the right place in the set of dum tasks that follow it in S).

Note that since S fulfills the precedence constraints on the t tasks, then they are
fulfilled by Stmp and S′ as well since the order on the t tasks does not change. In its
new position in Stmp and S′, task dumi is not late for voters of type T (who schedule
dumi after time n). It may be late for some voters of type D whereas it was not
necessarily late for these voters in schedule S. Therefore, since there are n voters of
type D, the number of late tasks due to dumi is increased by at most n in Stmp and
in S′. Let us now focus on the total number of late tasks tardiness in Stmp. The only
tasks whose time slot has changed (compared to is time slot in S) is tj , which was late
for all voters of type T in S but now completes at most at time n. It thus in Stmp on
time for at least n voters of type T (the ones scheduling it between time n − 1 and
n). Overall the number of late tasks does not increase in Stmp in comparison to S.
Since all the voters schedule, in their preferred schedules, the dum tasks by increasing
order, the number of late tasks in S′ is not larger than the number of late tasks in
Stmp. Therefore, the number of late tasks does not increase in S′ compared to in S.

By repeating, if needed, this type of swaps, we obtain an optimal solution in which
all t tasks are scheduled before all dum tasks, and in which dum tasks are scheduled
by increasing indices.

Starting from any optimal solution S and applying the successive swaps described
in Lemmas 2 to 5, we obtain an optimal solution in which tasks t are scheduled first and

28

are followed by dum tasks which are scheduled between time n and 2n by increasing
indices. Let us now prove Proposition 13.

Proof. We show that there exists a solution with a total number of late task smaller
than or equal to K ′ for (1|chains, pj = 1|ΣUj) if and only if there exists a solution
with a total number of late tasks for ΣU-graph smaller than or equal to K = K ′ +
n(n+ 1) +

∑n

i=1(i − 1)n.

Let us first assume that there exists a solution with at most K late tasks for ΣU-

graph. Thanks to Lemmas 5, we know that there exists an optimal solution in which
tasks of type t are scheduled before dum tasks, which are scheduled by increasing
indices. In such a solution S, the number of late tasks can be split into two parts, one
independent from the order of the t tasks, and one depending on this order.

Regardless of the order of the t tasks, the dum tasks are all on time for the voters
of type T , and all (except dum1) late for the voters of type D. There are therefore
n−1 dum tasks late for each of the n voters of type D, which amounts to n(n−1) late
tasks. Furthermore, t task completes n times at time 1, n times at time 2, and so on
until time n. The t task completing at time 1 will be on time for all voters of type T ,
the t task completing at time 2 will be late for n voters of type T , the third task will
be late for 2n voters and so on. This amounts to

∑n

i=1(i−1)n. For each i ∈ {1, . . . , n},
task ti is on time for D voters, except for the i-th D voter, who scheduled task ti so
that it is completed at time di.

This means that the total number of late task in S is Ut(S)+n(n−1)+
∑n

i=1(i−1)n,
where Ut(S) denotes the number of late t tasks in S for voters of type D. Since S is an
optimal solution and since the answer to the ΣU-graph problem is ‘yes’, this means
that Ut(S) ≤ K ′.

We label the t tasks according to their position in schedule S, which can be
described as follows: tS(1), tS(2), . . . , tS(n), dum1, dum2, . . . , dumn, where S(i) denotes
the index of the task scheduled in position i in S. We consider the schedule S′ of
tasks of (1|chains, pj = 1|ΣUj): S(1), S(2), . . . , S(n). Note that since S is a feasible
solution of ΣU-graph and since the precedence constraints on t tasks are the same
than on the tasks of the (1|chains, pj = 1|ΣUj) instance, S′ is a feasible solution of
(1|chains, pj=1|ΣUj). In S′, task S(i) is completed at the same time than task tS(i)

in S, therefore task S(i) is late if and only if S(i) is late for the voter scheduling S(i)
at time dS(i). Therefore if Ut(S) ≤ K ′, the total number of late tasks in S′ is also
smaller than or equal to K ′, which means that the answer to the (1|chains, pj=1|ΣUj)
problem is also ‘yes’.

Reciprocally, if the answer to the (1|chains, pj = 1|ΣUj) problem is ‘yes’, then
there exists a schedule S′ for (1|chains, pj = 1|ΣUj) such that the total number
of late tasks in S′ is smaller than or equal to K ′. We consider S the schedule
tS′(1), . . . , tS′(n), dum1, dum2, . . . , dumn for the ΣU-graph problem. Schedule S ful-
fills the precedence constraints of the ΣU-graph instance since these precedence
constraints are the same than the precedence constraints on the t tasks of the
corresponding instance of ΣU-graph.

Since S fulfills the property of Lemma 5, there is a constant number of late task
n(n− 1)+

∑n

i=1 for voters of type T . The number of late t tasks for voters of type D

29

depends on whether task ti is scheduled before or after time di since only one D voter
schedules task ti before time n (she schedules ti between times di − 1 and di). Task
ti is completed in S at the same time than task i in S′. Therefore task ti completes
after di in S if and only if task i is late in S′. Therefore the number of late t tasks in
S for voters of type D is equal to the number of late tasks in S′. Since the number of
late tasks in S′ is smaller than or equal to K ′, the total number of late tasks in S is
smaller than or equal to K ′ + n(n+ 1)+

∑n

i=1(i− 1)n and the answer to ΣU-graph

is then ‘yes’.
The answer to the ΣU-graph problem is ‘yes’ if and only if the answer to

the (1|chains, pj = 1|ΣUj) problem is ‘yes’. Since the decision version of prob-
lem (1|chains, pj = 1|ΣUj) is strongly NP-complete (Lenstra & Rinnooy Kan,
1980), we conclude that the decision version or problem ΣU-graph is also strongly
NP-complete.

Proposition 12 shows that problem ΣT -graph is strongly NP-hard, while Propo-
sition 13 shows that problem ΣU-graph is strongly NP-hard, even if the precedence
graphs are only made of chains of tasks. Since, as we have seen in Section 1.2, prob-
lem ΣT is a special case of the Distance Criterion, and problem ΣU is a special case
of the Binary Criterion, we get the following corollary.
Corollary 4. Returning an optimal solution for the Distance Criterion or the
Binary Criterion are strongly NP-hard problems when there are imposed precedence
constraints. This is true even with precedence graphs only made of chains.

5 Conclusion

In this paper, we studied the collective scheduling problem with unit size tasks,
which can also be seen as a collective ranking problem since tasks of length 1 can be
considered as items and preferred schedules as preferred rankings.

We introduced two general objective functions, one based on a distance, and the
other one on a binary criterion. The distance based function minimizes the average
distance between the returned schedule (or ranking) and the preferences of the voters
(expressed as preferred schedules or preferred intervals for each task). It generalizes
already known rules that minimize of the average deviation (ΣDev), or the average
tardiness (ΣT). The binary function generalizes the rule ΣU that minimizes the aver-
age number of late tasks. These rules can be applied in polynomial time even if we
add release dates and deadlines constraints on the tasks.

We studied these two general rules from an axiomatic point of view when we infer
release dates and deadlines from the preferences of the voters, showing that they do not
fulfills release date or deadline consistency, but that they fulfill temporal unanimity,
three axioms that we have introduced in this paper.

We have also shown that the rule EMD which schedules the tasks by increasing
median completion time (or by increasing median place in a ranking if we consider
rankings instead of schedules), is a 2-approximation for the sum of the deviation (or
the sum of the tardiness) minimization. Note that the rule which minimizes the sum
of the deviations between a collective ranking and a set of preferred ranking, is known
as Spearman’s rule: interestingly, EMD is thus a 2-approximation of Spearman’s rule.

30

Last but not least, we studied the case where there are precedence constraints
between the tasks. Note that precedence constraints also make sense in the context
of rankings if items, a constraint between two items a and b saying that item a has
to be ranked higher than item b. We showed that if the precedence constraints are
fulfilled by the preferred schedules (or rankings) of the voters, then it is easy to get an
optimal schedule (ranking) which fulfills the precedence constraints while minimizing
the average deviation (or the average tardiness). When the preferred schedules do not
necessarily fulfill the constraints, we showed that on the contrary, it is NP-hard to
find a schedule that fulfills the precedence constraints while minimizing the average
deviation (or the average tardiness, or the average number of late tasks).

Whether the minimization of the number of late tasks is an NP-hard problem
with inferred precedence constraints, remains an open question. Looking for exact but
efficient, or approximate, algorithms to compute solutions for the above mentioned
NP-hard problems is also an interesting research direction. Finally, in context in which
release date or deadline consistency are important axioms, finding a rule which fulfills
these axioms while returning good solutions with respect to the Distance or the Binary
criterion would also be a promising research direction.

References

Agnetis, A., Billaut, J.-C., Gawiejnowicz, S., Pacciarelli, D., Soukhal, A. (2014).
Multiagent scheduling. models and algorithms. Springer.

Asudeh, A., Jagadish, H.V., Stoyanovich, J., Das, G. (2019). Designing fair ranking
schemes. Proceedings of the 2019 international conference on management of
data (p. 1259–1276). Association for Computing Machinery.

Biega, A.J., Gummadi, K.P., Weikum, G. (2018). Equity of attention: Amortizing
individual fairness in rankings. The 41st international acm sigir (p. 405–414).
Association for Computing Machinery.

Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (2016). Handbook of
computational social choice. Cambridge University Press.

Brucker, P. (1999). Scheduling algorithms (Vol. 50). Springer.

Celis, L.E., Straszak, D., Vishnoi, N.K. (2018). Ranking with fairness constraints.
I. Chatzigiannakis, C. Kaklamanis, D. Marx, & D. Sannella (Eds.), 45th icalp
(Vol. 107, pp. 28:1–28:15). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Diaconis, P., & Graham, R.L. (1977). Spearman’s footrule as a measure of disarray.
Journal of the Royal Statistical Society: Series B (Methodological), 39 (2), 262–
268,

Durand, M., & Pascual, F. (2022). Collective schedules: Axioms and algorithms.
International symposium on algorithmic game theory (pp. 454–471).

31

Dwork, C., Kumar, R., Naor, M., Sivakumar, D. (2001). Rank aggregation methods
for the web. V.Y. Shen, N. Saito, M.R. Lyu, & M.E. Zurko (Eds.), Proceedings of
the tenth international world wide web conference, WWW (pp. 613–622). ACM.

Edmonds, J., & Karp, R.M. (1972). Theoretical improvements in algorithmic efficiency
for network flow problems. J. ACM , 19 (2), 248–264, https://doi.org/10.1145/
321694.321699 Retrieved from https://doi.org/10.1145/321694.321699

Elkind, E., Kraiczy, S., Teh, N. (2022). Fairness in temporal slot assignment. P. Kanel-
lopoulos, M. Kyropoulou, & A.A. Voudouris (Eds.), Proceedings of the 15th sagt,
colchester, uk, september 12-15, 2022, proceedings (Vol. 13584, pp. 490–507).
Springer.

Garey, M.R., & Johnson, D.S. (1976, jul). Scheduling tasks with nonuniform deadlines
on two processors. J. ACM , 23 (3), 461–467, https://doi.org/10.1145/321958.
321967 Retrieved from https://doi.org/10.1145/321958.321967

Geyik, S.C., Ambler, S., Kenthapadi, K. (2019). Fairness-aware ranking in search and
recommendation systems with application to linkedin talent search. Proceedings
of the 25th acm sigkdd (p. 2221–2231). Association for Computing Machinery.

Kemeny, J.G. (1959). Mathematics without numbers. Daedalus , 88 (4), 577–591,

Lenstra, J., & Rinnooy Kan, A. (1980). Complexity results for scheduling chains
on a single machine. European Journal of Operational Research, 4 (4), 270-275,
https://doi.org/https://doi.org/10.1016/0377-2217(80)90111-3 Retrieved from
https://www.sciencedirect.com/science/article/pii/0377221780901113 (Combi-
national Optimization)

Leung, J.Y.-T., & Young, G.H. (1990). Minimizing total tardiness on a single machine
with precedence constraints. ORSA Journal on Computing, 2 (4), 346–352,

Narasimhan, H., Cotter, A., Gupta, M., Wang, S.L. (2020). Pairwise fairness for
ranking and regression. 33rd aaai conference on artificial intelligence.

Pascual, F., Rzadca, K., Skowron, P. (2018, July). Collective Schedules: Scheduling
Meets Computational Social Choice. Seventeenth International Conference on
Autonomous Agents and Multiagent Systems .

Saule, E., & Trystram, D. (2009). Multi-users scheduling in parallel systems. 23rd
IEEE international symposium on parallel and distributed processing, IPDPS
(pp. 1–9). IEEE.

32

https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321958.321967
https://doi.org/10.1145/321958.321967
https://doi.org/https://doi.org/10.1016/0377-2217(80)90111-3

Singh, A., & Joachims, T. (2018). Fairness of exposure in rankings. Proceedings of
the 24th acm sigkdd (p. 2219–2228). Association for Computing Machinery.

Skowron, P., Lackner, M., Brill, M., Peters, D., Elkind, E. (2017). Proportional
rankings. C. Sierra (Ed.), Proceedings of the 26th ijcai (pp. 409–415). ijcai.org.

Tomizawa, N. (1971). On some techniques useful for solution of transportation network
problems. Networks , 1 (2), 173–194, https://doi.org/10.1002/net.3230010206
Retrieved from https://doi.org/10.1002/net.3230010206

33

https://doi.org/10.1002/net.3230010206

	Preliminaries
	Definitions and notations
	Generalization of classical scheduling criteria.

	An analysis of the EMD rule
	Additional results in voting theory

	Scheduling tasks with time constraints
	Getting optimal solutions with time constraints
	Axiomatic study of rules with inferred time constraints
	Release dates and deadlines consistencies.
	Temporal unanimity

	Precedence constraints
	Inferred precedence constraints
	Imposed precedence graph

	Conclusion

