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Abstract
Recently, foundation models, particularly large lan-
guage models (LLMs), have demonstrated an im-
pressive ability to adapt to various tasks by fine-
tuning large amounts of instruction data. Notably,
federated foundation models emerge as a privacy
preservation method to fine-tune models collabo-
ratively under federated learning (FL) settings by
leveraging many distributed datasets with non-IID
data. To alleviate communication and computa-
tion overhead, parameter-efficient methods are in-
troduced for efficiency, and some research adapted
personalization methods to federated foundation
models for better user preferences alignment. How-
ever, a critical gap in existing research is the ne-
glect of test-time distribution shifts in real-world
applications. Therefore, to bridge this gap, we pro-
pose a new setting, termed test-time personaliza-
tion, which not only concentrates on the targeted
local task but also extends to other tasks that ex-
hibit test-time distribution shifts. To address chal-
lenges in this new setting, we explore a simple yet
effective solution to learn a comprehensive foun-
dation model. Specifically, a dual-personalizing
adapter architecture (FedDPA) is proposed, com-
prising a global adapter and a local adapter for ad-
dressing test-time distribution shifts and personal-
ization, respectively. Additionally, we introduce
an instance-wise dynamic weighting mechanism to
optimize the balance between the global and local
adapters, enhancing overall performance. The ef-
fectiveness of the proposed method has been eval-
uated on benchmark datasets across different NLP
tasks.

1 Introduction
Recently, foundational models, especially the large language
model (LLM) within the domain of natural language process-
ing (NLP), have garnered significant interest [Brown et al.,
2020]. By utilizing vast amounts of data and sophisticated
training algorithms, foundation models are endowed with a
rich tapestry of generalized knowledge. To further refine
these models for a more precise alignment with specific tasks

and user preferences, various fine-tuning methods have been
explored. Notably, federated foundation models [Zhuang et
al., 2023; Yu et al., 2023] represent an innovative approach,
integrating federated learning frameworks for collaboratively
fine-tuning the pre-trained foundation models by leveraging
client-specific datasets to address privacy concerns.

Notwithstanding their considerable potential, direct fine-
tuning of foundation models in FL incurs substantial compu-
tational and communication overhead due to the voluminous
number of parameters encompassed. Parameter-efficient fine-
tuning (PEFT) methods [Xu et al., 2023a] present a promis-
ing alternative to mitigate these challenges. By selectively
tuning and transmitting only a subset of parameters in FL,
these methods seek to enhance efficiency. Among these PEFT
methods, the adapter family [Hu et al., 2023] (e.g., LoRA [Hu
et al., 2021]) stands out as one of the most popular methods
in contemporary research of federated foundation models due
to its flexibility compared with other methods.

Existing works have explored a spectrum of methodolo-
gies to address specific challenges when adapting the adapter-
based PEFT methods within federated foundation models,
including data heterogeneity [Babakniya et al., 2023; Jiang
et al., 2023], communication overheads [Xu et al., 2023b;
Sun et al., 2023], and so on. However, there are few stud-
ies delving into the personalization of federated foundation
models for local clients, a crucial aspect in practical sce-
narios characterized by non-uniform data distribution across
clients and the presence of diverse ability preferences among
different clients. Furthermore, conventional personalized FL
approaches [Tan et al., 2022] predominantly concentrate on
the specific targeted task for each client, often neglecting the
challenges posed by test-time distribution shift when some-
times clients encounter other tasks during testing. For exam-
ple, a client focusing on paper writing may sometimes need
translation as an assistant. Given that a global model, trained
on all mixed data, could not consistently excel in specifically
targeted abilities as highlighted in [Wang et al., 2023], there
is a pressing need to devise methods for training personalized
models that not only prioritize the performance on targeted
abilities but also ensure satisfactory outcomes across other
tasks, namely distribution shift on deploying federated foun-
dation models.

To solve the aforementioned challenge, we introduce a
brand-new setting close to real-world applications, noted as
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test-time personalization, which follows: 1) each client needs
to train a personalized model using its own data from a target
task, and 2) during testing, each client’s personalized model
needs to be capable to tackle the receiving new tasks (unseen
in training) with different distributions (test-time distribution
shift). This setting considers the test-time distribution shift
scenario rather than only targeted tasks for personalization,
which is essential in real applications of foundation models
when clients may require assistance with tasks beyond their
primary target task. Under this setting, a test-time person-
alized model should perform well on the personalized tar-
geted task and perform comparably to other test-time tasks.
To make this setting more challenging, we consider an ex-
treme scenario where the proprietary tasks barely overlap
across clients in training, but during the test, we consider test-
time personalization in an ideal setting, where all tasks are
included in all clients. As such, we take tasks of other clients
with different distributions as test-time tasks for each client.

In test-time personalization, challenges become how to
learn general knowledge from different clients for test-time
tasks while prioritizing targeted ability for personalization.
To address this issue, we explore a simple yet effective
method, dubbed dual-personalizing adapter (FedDPA), where
each client learns a global adapter to learn general knowledge
from the aggregation for test-time tasks and maintains a local
adapter for targeted ability personalization. During the infer-
ence phase, the local and global adapters are synergistically
integrated to facilitate prediction, and an instance-wise dy-
namic weighting mechanism is proposed to autonomously ad-
judicate the proportional contribution of the local and global
adapters. Experimental results demonstrate that our method
achieves state-of-the-art performance on benchmarks. Our
main contributions are summarized as follows:

• We propose a novel setting in personalized federated
learning that emphasizes test-time distribution shifts in
practical application scenarios, promoting comprehen-
sive model learning during testing.

• We present a new method to realize test-time per-
sonalization, emphasizing the learning of both general
and personalized knowledge for a more comprehensive
model on various tasks.

• We conduct an exhaustive analysis using heterogeneous
FL benchmarks across diverse NLP tasks. The empirical
outcomes reveal that our method attains state-of-the-art
performance, underscoring its superior test-time person-
alization capabilities in contrast to existing methods.

2 Related Work
2.1 Adapter-based PEFT Methods
Given the substantial computational and storage burdens
associated with directly fine-tuning foundation models,
the community has shifted towards embracing parameter-
efficient methods [Xu et al., 2023a], with the adapter family
[Hu et al., 2023] being a notable exemplar. According to dif-
ferent architectures, methods in the adapter family can be cat-
egorized into four types. The first one is prompt-based learn-
ing [Lester et al., 2021; Li and Liang, 2021], which is aimed

at learning the continuous/soft prompt for discrete optimiza-
tion. The second one is reparametrization-based methods [Hu
et al., 2021; Edalati et al., 2022], achieving parameter ef-
ficiency by utilizing low-rank techniques to decompose the
high-dimensional matrices. The third one is series Adapters
[Houlsby et al., 2019], which introduce additional learnable
modules in a sequential manner within specific sublayers.
The last one is parallel Adapters [He et al., 2021], which fo-
cus on learning additional learnable modules in a parallel way
with distinct sublayers. In this context, our exploration delves
into the adapter-based PEFT methods of federated foundation
models.

2.2 Federated Foundation Models
With the advent of foundation models, there has been a bur-
geoning interest [Zhuang et al., 2023; Yu et al., 2023] in in-
tegrating these models within the FL setting. Particularly, in
light of the inherent computation and communication cost, re-
cent work [Kuang et al., 2023; Zhang et al., 2023b] endeavors
have delved deeper into integrating adapter-based parameter-
efficient tuning (PEFT) methods with federated foundation
models. Building upon this, a multitude of studies have
emerged to navigate the challenges of incorporating feder-
ated foundation models with adapter-based PEFT methods.
The paper [Zhang et al., 2023a] stands at the forefront, ini-
tiating the integration of instruction tuning within federated
LLM frameworks. Addressing data-related issues, the paper
[Babakniya et al., 2023] introduced a data-driven initializa-
tion approach to mitigate the primary challenges associated
with LoRA in highly heterogeneous data scenarios. In addi-
tion, the research presented in [Jiang et al., 2023] proposed a
method to annotate unlabeled client-side data by harnessing
the prowess of large models to address data scarcity concerns.
To further optimize the communication and computational
overheads associated with federated foundation models, the
works [Xu et al., 2023b; Sun et al., 2023] emphasize advanc-
ing gradient-free optimization methods suitable for devices
with limited memory and computing power. For personaliza-
tion, paper [Yi et al., 2023] focused on designing a specific
training paradigm for LoRA to achieve more effective person-
alization in visual model-heterogeneous scenarios. Diverg-
ing from these approaches, our work delves into the realm of
personalization with adapters in federated foundation models,
extending the scope of research in this area.

2.3 Personalized Federated Learning
To address the necessity of personalization for individual
clients, personalized Federated Learning (PFL) [Tan et al.,
2022], which aims at training to cater to individual client pref-
erences and needs, is proposed. Broadly, existing PFL meth-
ods can be categorized into two primary types: fine-tuning
the global model for personalization or learning additional
personalized models. Research works [Fallah et al., 2020;
Collins et al., 2021] in the first category fine-tuned the whole
or part of the global model with each client’s local dataset
for personalization. While research works [Li et al., 2021a;
Li et al., 2021b] in the second category is to learn the ad-
ditional personalized layers or model through local aggrega-
tion. Nonetheless, a prevalent limitation among these PFL ap-
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Figure 1: The overall framework of our proposed method. Each client contains a frozen LLM, a trainable global adapter (LoRA) and a
trainable local adapter (LoRA) with a specific task, where the global adapter (LoRA) is for test-time tasks and the local adapter (LoRA) is for
personalization. During the training, only the parameters of the global adapter (LoRA) are transmitted to the server for aggregation.

proaches is their concentrated focus on a specifically targeted
task, often at the expense of performance when encounter-
ing test-time distribution shifts. Such a constrained approach
might be suboptimal for practical applications that demand
capability across other tasks. Therefore, we introduce the
concept of test-time personalization to fill this gap.

3 Problem Definition
3.1 General FL Framework
In this paper, our method is built upon the general FL frame-
work. In this framework, there are M clients, each possessing
its distinct local privacy data Dm, where m indexes a client.
Concurrently, a server at the center level oversees the learn-
ing and maintenance of the aggregated model. For model
aggregation across clients, we employ the FedAvg algorithm
[McMahan et al., 2017] without sacrificing generality, where
the aggregated parameters θ are derived from a weighted sum
of all clients’ parameters θm based on the numbers of data.
However, to address potential biases stemming from different
numbers of tasks and data privacy concerns, our model ag-
gregation strategy is based on the client number rather than
the number of data. Consequently, the formulation can be
represented as:

θ =

M∑
i=1

1

M
θi (1)

Local Tasks. In general FL framework, each local dataset,
denoted as Dm, is characterized by a set of data pairs repre-

sented as {(xm
i , ymi )|i ∈ 1, ..., Nm}, with Nm denoting the

number of data. The objective for each local client is to mini-
mize the empirical risk of all local data, which can be formu-
lated as

min
θm

∑
(x,y)∈Dm

L(x, y;θm) (2)

where L is the loss function applied to each data instance and
parameterized by θm.

3.2 Test-time Personalization
Here, we will introduce the training and testing phases sepa-
rately for our test-time personalization setting.

In the training phase, the process and objective are the
same as the general FL framework, where the model trains
on the local data for empirical risk minimization. While in
the testing phase, except for the test set Ds driven from the
same domain as training data, there are also some test sets Dt

under data distribution shifts ps(x, y) ̸= pt(x, y), and we call
these datasets Dt as test-time datasets. Therefore, the objec-
tive of the model should not only perform well on the test set
Ds but also have comparable results on the test-time dataset
Dt. This objective is consistent with the practical scenarios,
since users primarily focus on the abilities they often utilize
(abundant data available for training) and occasionally also
introduce new tasks (limited to test data).

Remark. Let us clarify the concepts of “local dataset”,
“personalization” and “test-time”. In our setting, the “local



dataset” refers to the data used in the training phase, serv-
ing as the source domain. “Personalization” denotes opti-
mal performance in this source domain. The term “test-time”
refers to the presence of additional data characterized by dis-
tribution shifts, used exclusively for testing. In our setting,
test-time personalization aims to achieve the personalization
while ensuring comparable performance on tasks encoun-
tered during the test-time phase.

4 Proposed Method
To simplify the illustration, we use LLM as the backbone of
our proposed framework and adopt LoRA [Hu et al., 2021] as
the adapter-based PEFT method in our framework. The over-
all framework is easy to adapt to other types of backbone and
other adapter-based PEFT methods. LoRA decomposes the
training weight into a frozen weight θ, and a trainable weight
derived through the multiplication of two low-rank weights
∆θ = ∆θb∆θa. Given the inherent data heterogeneity in-
trinsic to federated learning environments, distinct NLP tasks
are allocated to different clients. Consequently, within our
FL framework, this data heterogeneity is manifest primarily
in the distribution characteristics of the inputs across these
diverse NLP tasks. Next, we will delve deeply into our pro-
posed framework.

4.1 Overall Framework
In order to align with the application scenarios, we consider
the test-time personalization setting, where the test-time dis-
tribution shifts data are tested. To simplify, we consider test-
time personalization in an ideal setting, where all tasks are
included in all clients. Therefore, for each client, the local
task is taken as the primary task for personalization, while
tasks from other clients are taken as the test-time tasks during
the testing phase.

This framework raises two pivotal considerations: person-
alization and test-time distribution shifts. Since an aggregated
global model at the server may not adequately address the
specific tasks of each client, we introduce a local model to
achieve personalization, with the premise that this personal-
ization is anchored in maintaining local capabilities through
training on each client’s local dataset. However, the aspect
of distribution shifts during the testing phase remains a chal-
lenge, as conventional personalization methods often falter in
these test-time tasks. Considering that data from other clients
represents these test-time tasks, we can glean insights from
the aggregated global model, which has already acquired a
comprehensive understanding of all tasks through aggrega-
tion algorithms.

Therefore, we propose a dual-personalizing adapter (Fed-
DPA) system for each client, based on the intuition that
a global adapter targeting the test-time tasks and a local
adapter for personalization are tuned together under a sophis-
ticated federated learning algorithm. Additionally, we inves-
tigate two personalization methods to learn the local adapter,
dubbed FedDPA-F and FedDPA-T respectively. As illustrated
in Fig 1, the global adapter is obtained by conventional FL
training and the local adapter is maintained locally by tuning
on each local dataset. These two components are strategically
combined to realize test-time personalization.

4.2 FL Training of Global Model
Addressing test-time distribution shifts necessitates a com-
prehensive acquisition of general knowledge. The conven-
tional Federated Learning process is inherently designed to
aggregate this general knowledge from a diverse range of
tasks. Consequently, we utilize the adapter trained within
the FL context as the global adapter for addressing test-
time tasks, with more comprehensive details provided sub-
sequently.

As illustrated in Fig 1, during the training stage, each
client is endowed with a unique task and its correspond-
ing local dataset Dm, which is harnessed for model train-
ing. At each client, there consists of a frozen LLM model
fm(x;θ) with a global lightweight global adapter (LoRA)
∆θm = ∆θb

m∆θa
m. This global adapter is used for aggrega-

tion by sending to the server. Notably, the server’s role is lim-
ited to computing the aggregated adapter ∆θ, thus obviating
the need for maintaining a large-scale model. During each
communication round k, the global adapter ∆θk

m is seeded
with the aggregated adapter ∆θk from the central server, de-
noted as ∆θk

m = ∆θk. After this initialization, the model
is trained on local datasets for a specified number of epochs,
after which the updated adapter parameters are transmitted
back to the server. Upon receipt of the adapter weights ∆θk

m
of all activated clients, the server employs FedAvg to aggre-
gate these adapter weights. This process results in the for-
mulation of the updated adapter weights ∆θk+1 for the next
round. This iterative paradigm persists until training reaches
its convergence. The overall objective can be formulated as:

min
∆θ

M∑
m=1

∑
(x,y)∈Dm

1

M
L(x, y;θ; ∆θ) (3)

Remark. Other federated algorithms like FedProx [Li et
al., 2020] can also be applied with LoRA tuning of this global
model learning. In this paper, we just take FedAVG as an ex-
ample.

4.3 Personalization of Local Model
The primary purpose of test-time personalization lies in the
concept of personalization. To actualize this, we integrate a
local adapter into our approach. Drawing inspiration from
prior research [Tan et al., 2022], We introduce two methods
for personalizing the local adapter: 1) directly fine-tuning the
local adapter initialized by the global adapter, and 2) learn-
ing an additional local adapter during the training. In the first
method, the local adapter is initialized by the global adapter,
followed by subsequent fine-tuning using local datasets to fa-
cilitate personalization. The second method involves main-
taining a separate local adapter locally during training with-
out communication. At each stage of communication, this lo-
cal adapter is initialized based on its previous state and then
fine-tuned in conjunction with a frozen global adapter using
local datasets, thereby facilitating the acquisition of person-
alized knowledge.

To be more specific, a local adapter (LoRA) ∆θ̂ =

∆θ̂b∆θ̂a is introduced. Thus, this model contains three com-
ponents: a frozen LLM θ, a global adapter (LoRA) ∆θ and a
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Figure 2: Frameworks of two personalized methods for the local
adapter (LoRA).

local adapter (LoRA) ∆θ̂. As delineated in Fig 2 (a), for the
first method, after training, the local adapter is first initial-
ized by the global adapter denoted as ∆θ̂ = ∆θ, then fine-
tuned on local data to get the final local adapter. As shown in
Fig 2 (b), for the second method, during each communication
round in training for each adapter layer, upon receiving an in-
put h, it simultaneously traverses the frozen LLM, the frozen
global adapter and the local adapter. The process entails an
initial fusion of the outputs from both the local and global
adapters, followed by integration with the output of the LLM
to yield the final result h

′
. A predefined weighting factor of

α is employed to balance the contributions between the lo-
cal and global adapters. The computational workflow of this
configuration is mathematically formulated as follows:

h
′
= θh+ ((1− α) ·∆θh+ α ·∆θ̂h) (4)

4.4 Instance-wise Dynamic Weighting Mechanism
Upon training completion, we obtain a global adapter for
test-time tasks and a local adapter for the personalized tar-
geted task. The next question becomes how to combine them
for subsequent inference tasks. This challenge is particu-
larly pronounced in practical applications where the nature
of the input instance—whether it pertains to the targeted task
or test-time tasks—is not predetermined. Therefore, dynam-
ically adjusting the weighting ratio between the global and
local adapters for each instance becomes necessary. Con-
sidering the disparate data distributions that characterize test-
time tasks and local tasks, coupled with the wealth of train-
ing instances specific to local tasks available to each client,
we advocate for a novel approach to calculate the similar-
ity between each incoming instance and the available train-
ing instances. This similarity metric serves as the key fac-
tor in determining the proportional contribution of the global
and local adapters, thereby effectively guiding the combined
weighting process and ensuring optimal performance across
varying task scenarios.

Our proposed instance-wise dynamic weighting mecha-
nism calculates the similarity between the input instance and
local instances, using this metric to determine the appropriate
weight balance for the global and local adapter combination.
To facilitate this, the representation of each input instance
is essential. Leveraging the robust capability of pre-trained

LLMs to abstract input sentences, we utilize the hidden states
from the final layer of the LLM as the representation for sim-
ilarity computation. Given that the LLM is decoder-based,
with tokens attending only to preceding tokens, the embed-
ding of the final token is considered representative of the en-
tire input for similarity evaluation. Furthermore, to enhance
the representation quality, the global adapter, which embod-
ies general knowledge, is incorporated into this embedding
process.

More specifically, during the inference stage, for each in-
put instance x in a client, we randomly sample S instances
{x0, x1, ..., xs} from the local training dataset. These in-
stances are then fed into the LLM, augmented with the global
adapter, to obtain the last token’s embeddings from the final
layer, denoted as wx and {wx0

,wx1
, ...,wxs

} respectively.
Subsequently, we calculate the cosine similarity between the
input representation wx and each sampled local represen-
tation in {wx0

,wx1
, ...,wxs

}, resulting in a score range of
[0, 1]. Finally, we average all scores to obtain the final result,
represented as α =

∑S
i=0

1
S cos(wx,wxi).

Through this methodology, the balancing of weights be-
tween the global and local adapters is dynamically adjusted
for each test instance, ensuring the model not only tailors to
the individual client’s specific needs but also benefits from
the aggregated model’s collective knowledge across test-time
tasks.

5 Experiment
5.1 Datasets and Baselines
In our experiment, we construct two federated datasets from
Flan [Wei et al., 2021]. Flan is a collection of diverse NLP
tasks from over 60 datasets. For each dataset, different tem-
plates are used to transfer each example into an instruction for
generative turning. In order to be better suitable for FL set-
tings, we randomly select 8 NLP tasks from different datasets
for each federated dataset and randomly select 300 examples
for training and 200 examples for testing. ROGUE-1 is taken
as a metric.

Here, we compare our methods with four baselines based
on the same model architecture: centralized model, Local-
finetuned model, FedIT [Zhang et al., 2023a] and FedLoRA
model [Yi et al., 2023]. The centralized model is trained on
all data of tasks in one center. The local-finetuned model in-
fers that only local data are used to train the model without
any communication with other clients or the server. Here, we
adapt the training paradigm in FedLoRA [Yi et al., 2023] to
NLP tasks.

5.2 Implementation Details
We distribute the data between clients based on the NLP task
for data heterogeneity. Since we select 8 NLP tasks, cor-
responding to M = 8 clients in our experiment. To better
evaluate the effectiveness of our method, we assume that all
clients are activated for every communication round and set
the communication round K to 20. For local training, each
client conducts 10 local epochs with a batch size of 32. Dur-
ing training, we adapt alpaca-LoRA as our base model and
initialize it with LLaMA-7B. The rank of LoRA is set as



Methods Federated Dataset 1
Para

-phrase
Entail
-ment

Structure
to Text

Text For
-matting

Linguistic
Acc

Word
Dis

Core
-ference

Question
CLS Average

Personalization
Centralized 77.00 82.00 72.58 96.59 70.50 63.50 77.59 89.00 78.60
FedIT 69.00 83.00 71.25 96.32 71.50 62.50 75.43 91.50 77.50
FedLoRA 77.50 84.00 71.49 96.69 73.50 65.00 75.27 92.00 79.43
Local-finetuned 74.50 80.00 73.71 97.36 75.00 54.50 68.55 89.50 76.64
FedDPA-F 79.00 84.50 72.06 96.90 72.00 65.00 73.86 92.50 79.48
FedDPA-T 80.50 84.50 72.79 96.51 73.50 62.00 77.93 94.00 80.22
Test-Time Personalization
Local-finetuned 48.99 47.24 27.53 22.66 48.86 49.07 46.45 52.09 42.86
FedLoRA 75.56 76.55 75.21 74.94 76.16 74.64 74.99 76.97 75.63
FedDPA-F 78.10 77.36 77.18 76.98 77.11 76.23 76.84 77.19 77.12
FedDPA-T 76.20 75.51 76.19 75.63 74.86 74.60 74.77 75.96 75.47

Table 1: Personalization and test-time personalization results of different models on federated dataset 1. FedDPA-F represents the model
with the local fine-tuning adapter and FedDPA-T represents the model with the local training adapter. Linguistic represents the linguistic
acceptability task, Word Dis represents the word disambiguation task, and Question CLS represents the question classification task.

r = 8 and only applied to Wq and Wv . The updating weight
of each client’s local LoRA during training is α = 0.5 for
federated dataset 1 and α = 0.3 for federated dataset 2. We
set S = 5 to select instances for the Instance-wise dynamic
weighting mechanism.

5.3 Main Results
In this section, we represent the experiments of our methods
compared with other baselines. This evaluation encompasses
two primary facets: personalization (scores on targeted lo-
cal tasks) and test-time personalization (average scores on all
tasks including targeted local tasks and test-time tasks).

As evidenced in Table 1 and Table 2, our proposed dual-
personalizing adapter methods (both fine-tuning and training)
exhibit superior performance in personalization compared to
other baseline models, which demonstrates the effectiveness
of local adapter maintenance for enhancing performance on
the targeted local task. For test-time personalization, the
FedDPA-F method stands out as the most effective among
all personalized models, which suggests that incorporating
learning from the global adapter can be instrumental in adapt-
ing to test-time distribution shifts for a more comprehensive
model achievement. In addition, it is noteworthy that while
centralized or global models may yield higher average perfor-
mances across all tasks, they fall short in excelling at specific
tasks for personalization, aligning with the conclusions of the
previous study [Wang et al., 2023].

6 Analysis
6.1 Convergence Analysis
We present the convergence analysis of our methods in Fig-
ure 3. As illustrated in Figure 3 (a), we compared our meth-
ods with FedIT and FedLoRA for personalization, with the
results showcasing the average performance on target lo-
cal tasks across all clients. Notably, our methods exhibit a
more rapid convergence compared to FedIT and achieve no-
table performance enhancements after five communication

rounds. Despite sharing similar trends with FedLoRA, our
approaches, particularly the FedDPA-T, ultimately outper-
form in personalization. For a more granular insight into
test-time personalization convergence, we contrast our ap-
proaches with other baselines, delineating average perfor-
mance on all tasks, including each client’s targeted local and
test-time tasks. Figure 3 (b) substantiates that our approaches
demonstrate faster convergence rates, further bolstering the
efficacy of our methods. Our methods demonstrate parallel
trends with FedIT due to the benefit of general knowledge
from the global adapter for test-time personalization.

Figure 3: Average accuracy varies as communication rounds. TTP
represents test-time personalization.

6.2 Ablation Study
Impact of Instance-Wise Dynamic Weighting Mechanism.
To explore the impact of the instance-wise dynamic weight-
ing mechanism, we implemented experiments with FedDPA
methods on different datasets. As shown in Table 3, the in-
corporation of an instance-wise dynamic weighting mecha-
nism contributes significantly to enhancing performance in
both personalization and test-time personalization scenarios.
This enhancement is particularly pronounced for FedDPA-T.
Impact of Updating Weight α. In this study, we investi-
gated the influence of the updating weight α during FedDPA-
T training with its value α ∈ {03, 0.5, 0.7}. As can be seen



Methods Federated Dataset 2
Para

-phrase
Common

-sense
Entail
-ment

Text For
-matting

Summari
-zation

Reading
Com

Senti
-ment

Open
QA Average

Personalization
Centralized 87.00 64.67 77.00 90.65 29.12 76.00 72.50 76.17 71.64
FedIT 86.00 63.13 79.00 89.80 30.36 75.50 72.00 81.06 72.07
FedLoRA 87.00 64.12 84.50 89.52 27.13 76.50 73.50 79.62 72.74
Local-finetuned 75.00 53.51 81.00 91.28 27.51 69.00 72.50 79.31 68.64
FedDPA-F 88.00 64.80 84.25 89.82 29.58 78.50 72.00 80.89 73.48
FedDPA-T 90.50 70.54 82.00 91.81 30.75 81.00 75.00 91.07 75.33
Test-Time Personalization
Local-finetuned 48.21 49.07 49.75 21.86 17.35 48.57 44.04 48.19 40.88
FedLoRA 69.60 71.64 71.09 71.28 65.63 68.89 70.32 70.44 69.86
FedDPA-F 71.64 72.28 72.42 72.39 71.12 70.46 71.00 71.82 71.64
FedDPA-T 71.63 72.66 71.20 72.58 70.58 69.21 70.67 71.62 71.27

Table 2: Personalization and test-time personalization results of different models on federated dataset 2. FedDPA-F represents the model
with the local fine-tuning adapter and FedDPA-T represents the model with the local training adapter. Reading Com represents the reading
comprehension task.

Methods Auto Fed Dataset 1 Fed Dataset 2
P TTP P TTP

FedDPA-F ✗ 79.06 76.97 73.17 71.70
✓ 79.48 77.12 73.48 71.64

FedDPA-T ✗ 79.57 60.06 73.75 63.57
✓ 80.22 75.47 75.33 71.27

Table 3: Ablation study of instance-wise dynamic weighting mech-
anism (Auto). P represents personalization, and TTP represents test-
time personalization.

Methods α
Fed Dataset 1 Fed Dataset 2

P TTP P TTP

FedDPA-T
0.3 79.69 75.85 75.33 71.27
0.5 80.22 75.47 74.10 70.72
0.7 79.88 75.01 74.04 69.95

Table 4: Ablation study of updating weight. P represents personal-
ization, and TTP represents test-time personalization.

in Table 4, for test-time personalization, increasing updating
weight α will decrease the performance due to the increased
proportion of the local adapter in the model, while for person-
alization, different updating weights α are required for differ-
ent datasets to achieve their optimal results.

Impact of Client Sample Rate. To explore how the
number of participated clients impacts model perfor-
mance, we implemented experiments with sample rate
{0.2, 0.4, 0.6, 0.8, 1}. More specifically, we split the data of
federated dataset 1 into 5 subsets for each task, where each
subset has an equal number of training data and is assigned
to one client. For each communication round, the server will
select clients from each task based on the sample rate. As
shown in Figure 4, as the client participant rates increase,
model accuracy also increases as more participating clients
provide more data for knowledge learning. Besides, FedDPA-

F performs better than FedDPA-T due to the possibility of
overfitting when handling a small dataset,

Figure 4: Average accuracy varies as different client participation
fractions. TTP represents test-time personalization.

7 Conclusion

In this work, we propose a novel setting in federated foun-
dation models by considering the test-time distribution shifts.
In this setting, it is imperative for models to not only excel in
performance on targeted local datasets but also to yield com-
parable results in test-time tasks. To address these challenges,
we present a new method FedDPA, consisting of two core
components: a global adapter to acquire general knowledge
for test-time tasks, and a local adapter to learn personalized
information for targeted local tasks. To further enhance the
performance, an instance-wise dynamic weighting mecha-
nism is introduced for balancing the local and global adapters
during the inference. Compared with existing methods, our
method achieves promising results on the constructed feder-
ated datasets with various NLP tasks, demonstrating its effec-
tiveness.
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Appendix
A Implementation Details
A.1 Datasets
In this paper, we have developed two federated datasets de-
rived from the Flan [Wei et al., 2021], and details to construct
these datasets are elucidated in this section. Flan encom-
passes a diverse array of NLP tasks, each comprising mul-
tiple datasets. To align with FL settings, we employed a strat-
ified selection process, randomly choosing one dataset from
each of the eight distinct tasks from Flan to form each feder-
ated dataset. In addition, to simulate client local data scarcity
[McMahan et al., 2017], we implemented a downsampling
strategy, reducing the size of each selected dataset to 300
training instances and 200 testing instances. Consequently,
each constructed federated dataset encompasses eight distinct
NLP tasks, with a total of 300 training examples and 200 test-
ing examples per task, culminating in a whole dataset com-
prising 2400 training examples and 1600 testing examples
across all tasks. The specific tasks and datasets included in
each federated dataset are cataloged in Table 5.

The NLP tasks within these datasets can be broadly divided
into two types: generation tasks and classification tasks. To
facilitate uniform processing by LLM, all tasks are converted
into a generative format, employing distinct instructions for
each dataset. Illustrative examples of these data for both clas-
sification and generation tasks are provided in Table 6. For
the input of the LLM, we adopted a simple template, the de-
tails of which are delineated in Table 7.

Dataset Partitioning for Ablation Study. In our ablation
study in section 6.2 examining the client sample rate to align
with FL settings, we divided each task in our constructed fed-
erated datasets into five subsets, each comprising an equal
number of training data. Based on our assumption that each
client is associated with a single task, this division results in a
total of 40 clients, with each client possessing a dataset of
60 training examples. To mimic real-world FL communi-
cation dynamics, we employed a randomized selection pro-
cess for clients (subsets) within each task according to spec-
ified sample rates. Accordingly, for sample rates specified as
{0.2, 0.4, 0.6, 0.8, 1}, we selected 1,2,3,4, and 5 clients (sub-
sets) per task, leading to 8, 16, 24, 32, and 40 clients partic-
ipating in federated communications, respectively. The eval-
uation phase involves computing the average results across
these selected clients for each specified sample rate, which
provides a comprehensive analysis of how client sample rates
influence the performance of our method.

A.2 Baselines
In this section, detailed descriptions of the implementation
for each baseline compared in this study will be provided:

• Centralized model: This model is formulated by ag-
gregating all available data from various tasks at a single
centralized center for training purposes, with 50 epochs
to optimize.

• Local-finetuned model: This model trains indepen-
dently of any external communication with other clients

or a central server. It is specifically trained on data per-
taining to a single task, dedicating 50 epochs to optimize
for task-specific performance without the influence of
external data.

• FedIT [Zhang et al., 2023a]: The FedIT model is the
final aggregated global model derived from diverse local
client datasets after training. It embodies the essence of
collaborative learning inherent to federated learning, as-
similating knowledge from a multitude of client-specific
data sources.

• FedLoRA model [Yi et al., 2023]: Here, we adapt the
training paradigm in paper [Yi et al., 2023] to NLP tasks
by focusing on training the lightweight LoRA for ag-
gregation while keeping the majority of the LLM pa-
rameters frozen. Subsequently, a personalized adap-
tation process is employed, where the globally aggre-
gated LoRA undergoes further refinement on each local
client’s dataset to tailor the learning outcomes to indi-
vidual client needs.

B Additional Experiments
B.1 Instance-Wise Dynamic Weighting

Mechanism Analysis
In this section, we further examine the impact of the instance-
wise dynamic weighting mechanism, including the selected
local instance number and the type of instance representation.
Impact of Instance Number S. In Section 4.4, the selec-
tion of S, representing the number of local instances for simi-
larity calculation, is pivotal. To comprehensively evaluate the
effect of varying the number of these instances, we conduct a
series of experiments employing distinct local instance num-
bers, specifically S ∈ {1, 3, 5, 7, 9}. The accuracy results, as
depicted in Figure 5, illustrate the dependency of model per-
formance on different instance numbers S. As demonstrated
in Figure 5 (a), in the context of personalization, it is ob-
served that our models attain a plateau in accuracy when the
instance number exceeds 5. This indicates a stabilization in
model performance beyond this threshold of local instances.
Furthermore, Figure 5 (b) delves into the realm of test-time
personalization. The findings here reveal similar results, indi-
cating that variations in the instance number do not markedly
impact the model’s performance in test-time personalization.

Figure 5: Average accuracy varies as different instance numbers.
TTP represents test-time personalization.



Federated Dataset 1 Federated Dataset 2
Task Dataset Task Dataset
Paraphrase glue qqp Paraphrase paws wiki
Entailment snli Commonsense hellaswag
Structure to text web nlg en Entailment qnli
Text formatting fix punct Text formatting word segment
Linguistic acceptability cola Summarization gigaword
Word disambiguation wic Reading comprehension bool q
Coreference definite pronoun resolution Sentiment sentiment140
Question classification trec Open-domain QA acr easy

Table 5: Tasks and datasets of constructed federated dataset 1 and federated dataset 2.

Data Examples

Input:

The father convinced his son that it is possible for him to one day become a knight, but he may never achieve such
status coming from a peasant family.
Who is ”he”?
OPTIONS:
- The father
- his son

Output: His son

Input:
Police are seeking a former village chief in north china for allegedly killing his political rivals in an attack apparently
motivated by local power plays, state press reported monday .
Can you generate a short summary of the above paragraph?

Output: Former chinese village head wanted for political murders

Table 6: Examples of data in our constructed federated datasets.

Template

Prompt Input Instruction: {instruction}
Response:

Table 7: Prompt Template.

Impact of Instance Representation. In Section 4.4, our
method entails utilizing the embedding of the final token from
the last hidden layer of the LLM, denoted as ’LAST’, as the
input instance representation for the purpose of similarity cal-
culation. In this exploration, we delve into another instance
representation strategy, which involves employing the aver-
age embedding of all tokens from the final hidden layer of
the LLM, herein referred to as ’AVG’. The comparative anal-
ysis, as presented in Table 8, demonstrates that employing the
embedding of the last token yields superior performance rela-
tive to the strategy of averaging the embeddings of all tokens.
This observed difference in performance can be attributed to
the decoder structure inherent to LLMs, wherein the final to-
ken is capable of attending to all preceding tokens, thereby
encapsulating comprehensive sentence-level information.

B.2 Model Scalability Analysis
In order to examine the effectiveness of model scalability, we
conduct experiments based on a larger model, LLaMA-13B.
The outcomes, as presented in Table 9, elucidate that larger
models exhibit superior performance over their smaller coun-
terparts across all personalization methods evaluated. Fur-

Methods Emb Fed Dataset 1
P TTP

FedDPA-F AVG 79.30 76.77
LAST 79.48 77.12

FedDPA-T AVG 79.65 73.36
LAST 80.22 75.47

Table 8: Ablation study of instance representations (Emb). P repre-
sents personalization, and TTP represents test-time personalization.
LAST represents using the embedding of the final token from the
final hidden layer of LLM as instance representation, and AVG rep-
resents using the average embedding of all tokens from the final hid-
den layer of LLM as instance representation.

thermore, it is noteworthy that FedDPA-T surpasses FedDPA-
F in terms of personalization and achieves comparable results
in test-time personalization. This analysis underscores the in-
herent advantages of larger models in enhancing model per-
formance, alongside the advance of the FedDPA-T approach
in the context of personalization and adaptability to test-time
conditions.

B.3 Communication and Computation Analysis
In this section, we undertake a detailed examination of both
the communication and computation overhead associated
with our proposed model in comparison to other baseline
models. The results, as detailed in Table 10, delineate the
communication and computation burdens imposed by vari-
ous models. Given that these models are all based on the



Methods Size Fed Dataset 1
P TTP

FedDPA-F 7B 79.48 77.12
13B 81.52 80.55

FedDPA-T 7B 80.22 75.47
13B 82.76 80.47

Table 9: Ablation study of model size. P
represents personalization, and TTP repre-
sents test-time personalization.

Methods Comm.Overhead Comp.Overhead
FedIT 4.2M(0.06%) 0.277 TFLOPS
FedLoRA 4.2M(0.06%) 0.277 TFLOPS
FedDPA-F 4.2M(0.06%) 0.277 TFLOPS
FedDPA-T 4.2M(0.06%) 0.281 TFLOPS

Table 10: The communication and computation over-
head of FedDPA and other baselines on Federated
Dataset 1.

Methods Time
FedLoRA 3.84s
FedDPA (w/o auto) 3.91s
FedDPA 4.13s

Table 11: Average inference time
per instance. Auto represents the
instance-wise dynamic weighting
mechanism.

LoRA framework and exclusively transmit LoRA weights for
aggregation (with our methods specifically transmitting only
the global LoRA weights), they inherently sustain a minimal
communication overhead. Regarding the computation over-
head, the LoRA architecture permits the training of both lo-
cal and global LoRAs in parallel, resulting in a marginal in-
crease in computational demands for FedDPA-T. Conversely,
FedDPA-F learns the local LoRA through an additional fine-
tuning phase, thereby not imposing any additional computa-
tional overhead during the training phase.

Additionally, we have conducted an analysis of the infer-
ence time associated with our models. This examination in-
volved calculating the average inference time per instance
for FedLoRA, FedDPA without the instance-wise dynamic
weighting mechanism, and FedDPA. As illustrated in Ta-
ble 11, it is observed that our methods incur slightly higher
inference time compared to FedLoRA. This marginal increase
in inference time underscores the efficiency of our proposed
methods, demonstrating that the enhanced performance and
capabilities are achieved with a minimal impact on computa-
tional efficiency during inference.
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